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Abstract

The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequen-
cies to transmitters, by exploiting frequency reuse while keeping signal interference to acceptable
levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring
(RC) of a graphG(V,E) is an assignment function� : V → N such that|�(u)− �(v)|�2, when
u, v are neighbors inG, and|�(u) − �(v)|�1 when the distance ofu, v in G is two. The number
of discrete frequencies and the range of frequencies used are called order and span, respectively. The
optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In
this paper we prove that the radiocoloring problem for general graphs is hard to approximate (unless
NP= ZPP) within a factor ofn1/2−� (for any� > 0), wheren is the number of vertices of the graph.
However, when restricted to some special cases of graphs, the problem becomes easier. We prove
thatthe min span RCP isNP-complete for planar graphs. Next, we provide an O(n�) time algorithm
(|V | = n) which obtains a radiocoloring of a planar graphG thatapproximates the minimum order
within a ratio which tends to2 (where� the maximum degree ofG). Finally, we provide afully
polynomial randomized approximation scheme(fpras) for thenumber of valid radiocolorings of a
planar graph Gwith � colors, in the case where��4� + 50.
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1. Introduction, previous work and our results

The Frequency Assignment Problem (FAP) in radio networks is a well-studied, inter-
esting problem, aiming at assigning frequencies to transmitters exploiting frequency reuse
while keeping signal interference to acceptable levels. The interference between transmit-
ters are modeled by an interference graphG(V,E), whereV (|V | = n) corresponds to
the set of transmitters andE represents distance constraints (e.g. if two neighbor nodes in
G get the same or close frequencies then this causes unacceptable levels of interference).
In most real life cases the network topology formed has some special properties, e.g.G
is a lattice network or a planar graph. Planar graphs are mainly the object of study in
this work.
The FAP is usually modeled by variations of the graph coloring problem. The set of col-

ors represents the available frequencies. In addition, each color in a particular assignment
gets an integer value which has to satisfy certain inequalities compared to the values of
colors of nearby nodes inG (frequency-distance constraints). The FAP has been consid-
ered in, e.g.[9–10,18]. Despite the important work done in either lattices or general net-
works, almost nothing has been reported forplanar interference graphs, with the exception
of [3,20].
In the sequel, we denote byD(u, v) the distance ofu, v in G. A discrete version of FAP

is thek-coloring problem:

Definition 1 (k-coloring problem, Hale[12] ). Given a graphG(V,E) find a function� :
V → {1, . . . ,∞} such that∀u, v ∈ V, x ∈ {0,1, . . . , k}: if D(u, v)�k − x + 1 then
|�u − �v| = x. This function is called ak-coloring ofG. Let |�(V )| = �. Then� is the
number of colorsthat� actually uses (it is usually calledorderofG under�). The number
� = maxv∈V �(v)−minu∈V �(u)+ 1 is usually called thespanof G under�.

Note that the casek = 1 corresponds to thewell-knownproblemof vertex graph coloring.
Thus,k-coloring problem (withk as an input) is NP-complete. Here we study the case of
k-coloring problem wherek = 2, called the Radiocoloring problem.

Definition 2 (Radiocoloring problem). GivenagraphG(V,E)finda function� : V →N∗
such that|�(u) − �(v)|�2 if D(u, v) = 1 and|�(u) − �(v)|�1 if D(u, v) = 2. The
least possible number� (order) needed to radiocolorG is denoted byXorder(G). The least
possible number� = maxv∈V �(v)−minu∈V �(u)+1 (span) needed for the radiocoloring
of G is denoted asXspan(G).

Real networks reserve bandwidth (range of frequencies) rather than distinct frequencies.
In this case, an assignment seeks to use as small range of frequencies as possible. It is
sometimes desirable to use as few distinct frequencies of a given bandwidth (span) as
possible, since the unused frequencies are available for other use. However, there are cases
where the primary objective is to minimize the number of frequencies used and the span
is a secondary objective, since we do not want to reserve unnecessary large span. These
optimization versions of the Radiocoloring Problem (RCP) are the main objects of study in
this work and are defined as follows.
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Definition 3 (Min span RCP). The optimization version of the RCP that tries to minimize
the span. The optimal span is calledXspan.

Definition 4 (Min span order RCP). The optimization version of the RCP that tries to find
from all minimum span assignments, one that uses as few colors as possible. The order of
such an assignment is calledX′

order.

Definition 5 (Min order RCP). The optimization version of the RCP that tries to minimize
the order. The optimal order is calledXorder.

Definition 6 (Min order span RCP). The optimization version of the RCP that tries to find,
from all minimum order assignments, one that uses a minimum span. The span of such an
assignment is calledX′

span.

It easy to see thatXorder�X′
order andXspan�X′

span. Also, it holds thatXorder�Xspan.
Another variation of FAP is related to the square of a graphG, which is definedas follows:

Definition 7. Given a graphG(V,E),G2 is the graph having the same vertex setV and an
edge setE′ : {u, v} ∈ E′ iff D(u, v)�2 inG.

The related variation of FAP is to color the square of a graphG,G2, with the minimum
number of colors, denoted asX(G2).
Observe that for any graphG,Xorder(G) is the same as the (vertex) chromatic number of

G2, i.e.Xorder(G) = X(G2).
To see this assume to the contrary thatX(G2)<Xorder(G). Then, from an optimal color-

ing ofG2, we can obtain a radiocoloring ofGwith X(G2) colors by doubling the assigned
color of each node. In this way we get a new radiocoloring assignment ofG with less
thanXorder(G) colors, which contradicts the definition ofXorder(G). Assume now that
X(G2)>Xorder(G). From an optimal min order radiocoloring we can easily get a coloring
of G2 assigning to each node the same color as in the radiocoloring assignment. Such an
assignment is valid for the coloring ofG2 since both distance one and two constraints hold
in any feasible radiocoloring. Thus, we find a new coloringG2 with less thanX(G2) colors,
which contradicts the definition ofX(G2). Concluding,X(G2) = Xorder(G).
However, notice that although the number of colors used in aminimal coloring ofG2 and

a min order span radiocoloring is the same, the set of colors in the two solutions may not be
the same. To see this recall the previous argument showing that from an optimal coloring
of G2 we can obtain an optimal min order radiocoloring by doubling the assigned color to
each node.
Observe also thatX(G2)�Xspan�2X(G2). It is obvious thatX(G2)�Xspan. Further-

more, notice that from a valid coloring ofG2 we can always obtain a valid radiocoloring
of G by multiplying the assigned color of every vertex by two. The resulting radiocoloring
has span 2X(G2).
In [10,9] it has been proved that the problem of min span RCP is NP-complete, even for

graphs of diameter 2. The reductions use highly non-planar graphs. In [19] it is proved that
the problem of coloring the square of a general graph is NP-complete.
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In [3] a similar problem forplanargraphshasbeenconsidered. This is thehidden terminal
interference avoidance(HTIA) problem, which requests to color a planar graphG so that
vertices at distanceexactly2 get different colors. In [3] this problem is shown to be NP-
complete.
However, the above-mentioned result does not imply the NP-hardness of the min span

order RCP which is proved here to be NP-complete. This so because HTIA is a different
problem; in HTIA it is allowed to color neighbors inGwith the same color while in RCP
the colors of neighbor vertices should be at frequency distance at least two apart. Thus, the
minimum number of colors as well as the span needed for HTIA can vary arbitrarily from
Xorder(G) andXspan(G). To see this consider e.g. thet-size clique graphKt . In HTIA this
can be colored with only one color. In our case (RCP) we needt colors and span of size 2t
for Kt . In addition, the reduction used by [3], heavily exploits the fact that neighbors inG
get the same colorin the component substitution part of the reduction. Consequently, the
reduction in [3] considers a different problem and it cannot be easily modified to produce
an NP-hardness proof of RCP.
Note more specifically that, any polynomial time decision procedure for RCP does not

imply a decision procedure for HTIA in the case of “No” answers. Also, any polynomial
time decision procedure for HTIA does not give a decision for RCP in the case of “Yes”
answers. In fact, the minimum number of colors needed for HTIA is the chromatic number
ofG2−G. To our knowledge, the relation betweenX(G2) andX(G2−G) for a planarG
has not been investigated.
Another variation of FAP for planar graphs, calleddistance-2-coloring is studied in

[20]. This is the problem of coloring a given graphG with the minimum number of
colors so that the vertices of distanceat most two get different colors. Note that this
problem is equivalent to coloring the square of the graphG, G2. In the above work
it is proved that the distance-2-coloring problem for planar graphs is NP-complete. As
we show, this problem is different from the min span order RCP considered here. Thus,
the NP-completeness proof in [20] certainly does not imply the NP-completeness of min
span order RCP proved here. Additionally, the NP-completeness proof of [20] does not
work for planar graphs of maximum degree�>7. Hence, their proof gives no infor-
mation on the complexity of distance-2-coloring of planar graphs of maximum degree
>7. In contrast, our NP-completeness proof works for planar graphs of all maximum de-
grees. In [20] a 9-approximation algorithm for the distance-2-coloring of planar graphs is
also provided.
In this paper, we are interested inmin span order, min orderandmin spanRCP of a

planargraphG. We prove the following four basic results:
(a) We first show that the number of colorsX′

order(G) used in themin span order RCP
of graphG is different from the chromatic number of the square of the graph,X(G2).
(b) We prove that the radiocoloring problem for general graphs is hard to approximate

(unless NP= ZPP, the class of problems with polynomial time zero-error randomized
algorithms) within a factor ofn1/2−� (for any�>0), wheren is the number of vertices of
the graph. However, when restricted to some special cases of graphs, the problem becomes
easier. We show thatthe min span RCPandmin span order RCPare NP-completefor
planar graphs. Note that few combinatorial problems remain hard forplanar graphs and
their proofs of hardness are not easy since they have to use planar gadgets which are difficult
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to find and understand[18]. As we argued above, this result isnot implied by the known
NP-completeness results of similar problems [3,20].
(c) We then present an O(n�) algorithm thatapproximatesthe minimum order of RCP,

Xorder, of a planar graphG by a constant ratio which tends to2 as the maximum degree�
of G increases.
Our algorithm ismotivated by a constructive coloring theorem of Heuvel andMcGuiness

[13]. Their construction can lead (as we show) to anO(n2) technique assuming that a planar
embedding ofG is given. We improve the time complexity of the approximation, and we
present a much more simple algorithm to verify and implement. Our algorithm does not
need any planar embedding as input.
(d) Finally, we study the problemofestimating the number of different radiocoloringsof a

planar graphG. This is a #P-complete problem (as can be easily seen fromour completeness
reduction that can be done parsimonious). We employ here standard techniques of rapidly
mixing Markov Chains and thenew method of couplingfor purposes of provingrapid
convergence(see e.g. [14]) and we presenta fully polynomial randomized approximation
schemefor estimating the number of radiocolorings with� colors for a planar graphG,
when��4� + 50.
Very recently and independently, Agnarsson and Halldórsson in [2] presented approxi-

mations for the chromatic number of square and power graphs(Gk). Their method does
not explicitly present an algorithm. A straightforward implementation is difficult and not
efficient. Also, the performance ratio for planar graphs of general� obtained in [2] is 2, i.e.
it is the same as the approximation ratio obtained by our algorithm.
Wenote thatBodlaender et al. [4] provedvery recently and independently that theproblem

of min span radiocoloring, they call it�-labeling, is NP-complete for planar graphs, using
a reduction which is very similar to our reduction. In the same work the authors presented
approximations for the best� for some interesting families of graphs: outerplanar graphs,
graphs of treewidthk, permutation and split graphs.
Another relevantwork is that of Formannet al. [7],where theauthorsproved thechromatic

number of the square of any planar graphs is at most(13�/7) + �(�2/3). However, this
bound is bigger than the bound of Agnarsson et al. [2] and it does not improve the bound
obtained by our algorithm since it holds only for graphs of quite large(>749) maximum
degree. Also their method is non-constructive.
Apreliminary versionof thisworkhasappeared in theProceedingsof th25th International

Symposium on Mathematical Foundations of Computer Science (MFCS 2000) [8].

2. The difference between radiocoloring and distance-2-coloring in planar graphs

The distance-2-coloring problem, discussed above, is formally defined as follows:

Definition 8. TheDistance-2-coloringof a graphG is the problem of coloring the vertices
of the graphGwith the minimum number of colors such that every pair of vertices that are
located at distance at most two get different colors.

The following theorem states that theminimumorder ofmin span order RCPof a graphG
may be different (larger) from the order of distance-2-coloring problem (or the coloring of
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Fig. 1. An instance where the problem of min span order radiocoloring and the problem of distance-2-coloring
have different orders.

G2). Thus, the two problems are different. Hence-forth, the NP-completeness of distance-
2-coloring problem does not imply the NP-completeness of min span order RCP proved
here.

Theorem 9. There is at least one instance(a graph G) where the minimum order of min
span order RCP of G is different from the minimum order of distance-2-coloring of G
(coloring the square of the graph).

Proof. Consider the instance of the two problems appearing in Fig.1. The vertices of the
graph are named as shown in Fig. 1. Given a palette of colors (integers)S, used in an
assignment, we callendmost colorsthe smallest and largest integer of the setS. We call the
rest of the colors asinternal colors. For example in the setS = {1, . . . ,8} the colors 1, 8
are the two endmost colors of setS.
It is easy to see that the minimum number of colors (order) needed for the distance-2-

coloring ofG is 6 colors, while the minimum span of the min span order RCP ofG is at
least 7 (consider the colors needed to radiocolor vertexnew1, the central vertex neighbor
to it, and its radial vertices).
We assert that any optimal min span order radiocoloring assignment needs a span of size

at least 8 and the order of such an assignment is also 8.
We distinguish three cases based on the colors of verticesnew1,new2. Letx, y the colors

of verticesnew1, new2, respectively (note thatx �= y). Let alsoc the color of the central
vertex. Note that|c − x|�2 and|c − y|�2.
(1) Both verticesnew1, new2 get endmost colors. We prove that then, the four vertices of

the clique formed are forced to take colors of spanmore than 8. This because the clique
vertices should take a consecutive sequence of odd (or even) colors. In other case, they
will leave more colors unused increasing the span more than 8. Thus, assume that the
clique vertices take consecutive odds (evens). We will need four consecutive numbers,
hence we will need a range of size 8. Also, we should use an endmost color. But, this
is not possible, since we allocated the endmost colors to the verticesnew1,new2.
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Both verticesnew1,new2 take internal colors. Then,radial neighbors of each of the
two vertices, assumenew1 (resp.,new2) is avoided to take four colors{x − 1, x, x +
1, c} ({y − 1, y, y + 1, c}) instead of threex − 1 orx + 1, x, c(y − 1 or y + 1, y, c).
Since, there are four radial vertices, we will need a span of size 8 for the coloring of
vertexnew1 (new2), its radial vertices, and the central vertex. LetSa palette of size 8.
We now prove that the order of such an assignment is also 8. Leta = {a1, a2, a3, a4}

the set of colors of the radial vertices of vertexnew1. Then,a = S−{x−1, x, x+1, c}.
Note that|S−{x−1, x, x+1, c}| = 4 in this case. Respectively, letb = {b1, b2, b3, b4}
the set of colors of the radial vertices of vertexnew2. Then,b = S−{y−1, y, y+1, c}.
Again,|S− {x− 1, x, x+ 1, c}| = 4. We distinguish three cases for the numbersx, y.

• We consider first the case wherex, y are consecutive internals. Then, we get that
a ∪ b�5. Also note that in this casex /∈ b andy /∈ a becausex, y are consecutive
integers. Thus, the set of colors used to color verticesnew1, new2, their radial and
the central vertex has size|{x ∪ y ∪ (a ∪ b)∪ c}| = 8, i.e. we get an order equal to 8.

• Now, consider the case wherex, y are not consecutive internals and differ by at least
3. Then, it can be easily seen thata ∪ b�7. Also note that in this case it might be
thatx ∈ b or y ∈ a. Thus, the set of colors used to color verticesnew1, new2, their
radial and the central vertex has size|{x ∪ y ∪ (a ∪ b) ∪ c}|�8, i.e. we get an order
at least 8.

• Now, the only case left is the case wherex, y are not consecutive internals and differ
by exactly 2. Then, it can be easily seen thata ∪ b�6. Also note that in this case
it might be thatx ∈ b or y ∈ a. Thus, the set of colors used to color verticesnew1,
new2, their radial and the central vertex has size|{x ∪y ∪ (a∪b)∪ c}|�7. However,
using similar arguments as the case (1), we conclude that then the four vertices of
the clique formed are force to take colors of span more than 8.

(2) One of the two verticesnew1, new2 get an endmost color. Using similar arguments as
the case (1), we conclude that the four vertices of the clique formed are forced to take
colors of span more than 8.

We conclude that any radiocoloring assignment either uses a span of size 8 and an order
also equal to 8 or a span of size more than 8, i.e. the assignment is sub-optimal. There is
a radiocoloring assignment of span 8, as illustrated in Fig.1. By the above analysis we
conclude that any optimal assignment has order equal to 8.�

3. The inapproximability of radiocoloring for general graphs

In this section we prove that the radiocoloring problem is hard to approximate for general
graphs.

Theorem 10. The min order RCP for general graphs is hard to approximate(unlessNP=
ZPP,the class of problems with polynomial time zero-error randomized algorithms) within
a factor ofn1/2−� ( for any�>0),where n is the number of vertices of the graph.

Proof. We reduce min order RCP from the COLORING Problem. Since we are concerned
only in the order of a radiocoloring, the problem is equivalent to the distance-2-coloring
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Fig. 2. GraphH obtained byG.

(d2c) problem. We use the term distance-2-coloring or d2c when referring to a min order
radiocoloring assignment, for terminology convenience purposes.
We start with an arbitrary graphG(V,E) with |V | = N . Let n = O(N2 + N). We

construct a graphH of O(n) vertices as follows:

Vertex set of H:
(1) For each vertexui of Gwe add a new vertexui in H, which we callexisting vertex.
(2) For each edge ofE(G) we add inH a new vertex, calledintermediate vertexand

denoteduij , whereui , uj are the end vertices constituting the edge.
(3) Finally, for each vertexui of G, we addN new vertices, calledauxiliary verticesand

denoted asyij : 1� i, j�N .

Edge set of H:
(1) For each intermediate vertexuij , obtained by end verticesui , uj , we add the edges

(ui, uij ), (uij , uj ).
(2) We connect each auxiliary vertexyij with all neighbor intermediate vertices of the

existing vertexui from which the auxiliary vertex is obtained. Formally, the derived
graphH can be described as follows:

V (H) = {ui : 1� i�N} ∪ {uij : (ui, uj ) ∈ E(G)} ∪ {yi,j : 1� i�N,1�j�N}.
E(H) = {(ui, uij ), (uij , uj ) : (ui, uj ) ∈ E(G)} ∪ {(uij , yi,j ) : (ui, uj ) ∈ E(G)}

An example of the graphH derived by a graphG is presented in the Fig.2.
Observe thatif G is k-colorable then H is((k+1)N+�+1)-distance-2-colorable. Such

a coloring can be obtained as follows:
First,k-color each set{y1j , y2j , . . . , yNj }, where 1�j�N . To show that the radiocol-

oring is valid, for anyj consider the corresponding set{y1j , y2j , . . . , yNj }. Its distance-one
constraints inG are inH distance-two constraints. For each auxiliary vertex in this set, its
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coloring inG is equivalent to its distance-2-coloring inH. Therefore,kcolors are enough for
each such set to be distance-2-colored. Since we haveN such sets, we needk ·N colors for
their coloring. Next, color the existing vertices withk additional colors (this is valid, based
on similar arguments as above) and color the intermediate vertices with� + 1 additional
colors (valid, since it is equivalent to an edge coloring ofG).
Summing up,weused, for the coloring of the auxiliary, existing and intermediate vertices,

i.e. the graphH (k + 1)N + � + 1 colors.
On the other hand, from a distance-2-coloring ofH we can get a coloring ofG by the

following procedure:
For each existing vertexui ∈ V (G) we select one color from the set ofN distinct colors

of the set{yi1, yi2, . . . , yiN } and color the vertexui with this color. This color result to a
valid coloring ofG as proved here: A neighbor ofui , a vertexuj will also take one color of
itsN yj1, yj2, . . . , yjN auxiliary vertices. Since allyj1, yj2, . . . , yjN vertices are distance-
two neighbors with verticesyi1, yi2, . . . , yiN in H, they all get different colors. Hence, the
resulting coloring of verticesui, uj is a valid coloring ofG.
Thus, whenH is distance-2-colorable withqN colors, whereq = N�(1), G is O(q)-

colorable.
We know that it is NP-hard to determine ifG needs at most O(N �) or at least�(N1−�)

colors to be colored[6]. Thus, it is also NP-hard to determine whether the optimal distance-
2-coloring of a given graph (H in our case) with O(n) vertices needs at most O(N �N) or at
least�(N1−�N) colors, i.e. the inapproximability ratio of distance-2-coloring (of a graph
H) is

�(N1−�N)

O(N �N)
� �(N2−�)

O(N1+�)
� �(n1−�/2)

O(n1/2+�/2)
��(n1/2−�). �

4. The NP-completeness of the RCP for planar graphs

In the previous section we proved that the radiocoloring problem for general graphs
is hard to approximate within a factor ofn1/2−� (for any �>0), wheren is the number
of vertices of the graph. However, the problem, when restricted to some special cases of
graphs, such as planar graphs, becomes, as we prove, easier.
In this section, we show that the decision version of min span RCP remains NP-complete

for planar graphs. This version asks given a planar graphG and an integerB, to decide
whether there exists a valid radiocoloring forG of span no more thanB. Therefore, the
optimization version of min span RCP remains NP-hard for planar graphs.
In the sequel the degree of vertexv in a graphG is denoted bydG(v) and when there is

no confusion simply asd(v). We also denote the subtraction operation between sets as\.
Theorem 11. The following decision problem is NP-complete:
Input: A planar graphG(V,E) and an integer B.
Question: Does there exist a radiocoloring for G with span no more than B?

Proof. It can be easily shown that the decision version of min span RCP, where we seek to
decidewhether a radiocoloring assignmentwith span�exists, is inNP (guess the assignment
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and check in polynomial time the local constraints). To prove the theorem, we transform
the PLANAR-3-COLORING problem to min span RCP. The PLANAR-3-COLORING
problem is, given a planar graphG(V,E), to determine whether the vertices ofG can be
colored with three colors, such that no adjacent vertices get the same color.
We denoteymodulox as(y)MOD(x). From the planar graphG(V,E), we construct a

new graphG′(V ′, E′) using the component replacement technique.
The construction uses a component calledGroup, see Fig.3, constructed as follows:

• Add one vertex calledoutvertex.
• Add two vertices called 1,7-verticesand connect one of them to the out-vertex and to
each other, as shown in Fig.3. We call the 1,7-vertex connected to the out-vertex asfirst
1,7-vertex and the other assecond.

• Add two vertices calledcommon internaland connect them to the 1,7-vertices.
• Add one new neighbor to each of the 1,7-vertex, calledinternal.
• For each 1,7, common internal, internal vertex add two newneighbors called 0,8-vertices.
The two vertices added for each such vertex are also calleda pair of0,8-vertices.

• For each 0,8-vertex add six new neighbors, calledradial.
• Add two new neighbors called 0,8′-verticesto the out-vertex. These two vertices added
to the vertex are also calleda pair of0,8′-vertices.

• For each 0,8′-vertex add five new neighbors, called alsoradial.
The construction replaces every vertexv of degreed(v) in the initial graphG with a

component, called a ‘cycle node’. The cycle node obtained by a vertex of degreed(v) is
said to be ‘a cycle node of sized(v)’ and is constructed as follows:
• Add d(v) copies of the subgraphGroup shown in Fig.3. Call theith such group as
Groupi .
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1,7-vertex 1,7-vertex

Out

a cycle node of degree 1

 a cycle node of degree 2

1,7-vertex

Out
Out

1,7-vertex

1,7-vertex
1,7-vertex

Group 1

Group 2

Fig. 4. The cycle nodes of size 1 and 2 in abbreviation (the radial vertices attached to the 0,8 and 0,8′-vertices are
not shown).

• Connect consecutive groups as follows: Connect the second 1,7-vertex ofGroupi to the
out-vertex ofGroup(i)MOD(d(v))+1, for i = 1 : d(v).

For example, the cycle nodes of size 1 and 2 are illustrated in Fig.4 in abbreviation (the
radial vertices attached to the 0,8 and 0,8′-vertices are not shown).
Now the graphG′(V ′, E′) is defined as follows:

(1) Replace each vertexv of degreed(v) in the graphGwith a cycle node of sized(v).
(2) For each vertexv of the graphG, number the edges incident tov in increasing clockwise

order.
(3) For every edge of the initial graphe = (u, v) connectingu andv, letue be the number

of edgeegiven by vertexu and letve be the number of the edgeegiven by vertexv.
Then, take one of the 0,8′-vertices of theueth group of the cycle node of vertexuand

one of the 0,8′-vertices of theveth group of the cycle node of vertexv and collapse them
to a single vertex named also as 0,8′-vertex. Do the same for the second 0,8′-vertex of
u and the second 0,8′-vertex ofv.

An example of a graphG and the new graphG′ obtained is shown in Fig.5 (depicted in a
compact way). It can easily be seen that the new graphG′ is a planar graph. We next prove
two lemmas showing thatG′ can be radiocolored using a span of size at most 9 if and only
if the initial graphG is 3-colorable.



D.A. Fotakis et al. / Theoretical Computer Science 340 (2005) 514–538 525

G'G

Fig. 5. TheG′ obtained by the graphG in abbreviation.

Lemma 12. If �(G)�3 thenXspan(G′)�9.

Proof. Consider a 3-coloring of the initial graphG, using colors{1,2,3}. Let the following
radiocoloring assignment on the graphG′ using a paletteS = {0,1,2,3,4,5,6,7,8} of
size 9:
(i) For each vertexu of the graphG coloredi, i ∈ {1,2,3}, color all out-vertices of the
cycle node of vertexu in G′, with color i + 2 (i.e. a color from set{3,4,5}).
For eachu ∈ V , color each groupGroupi , 1� i�d(u) of the cycle node ofu as
follows:

(ii) Color the first 1,7-vertex of the group with the color 1 and second with color 7.
(iii) Color 0,8-vertices and 0,8′-vertices with colors 0,8.
(iv) Assuming that the out-vertices of the group are coloredi, i ∈ {3,4,5}, color the

common-internal vertices of the group with colors of set{3,4,5}\{i}.
(v) Color the internal-vertex neighbor to the 1,7-vertex colored 1, with color 6 and the

internal-vertex neighbor to the 1,7-vertex colored 7, with color 1.
(vi) Consider a 0,8-vertex and the neighbor to it (common)-internal vertex coloredi, i ∈

{2,3,4,5,6}. If the 0,8-vertex is colored0, color the six uncolor neighborswith colors
{2,3,4,5,6,7,8}\{i}. If the 0,8-vertex is colored 8, color the six uncolor neighbors
with colors{0,1,2,3,4,5,6}\{i}.

(vii) Consider a 0,8′-vertex and the neighbors to it out-verticesu, v coloredi, j, i, j ∈
{3,4,5}. If the 0,8-vertex is colored 0, color the five uncolor neighbors with col-
ors {2,3,4,5,6,7,8}\{i, j}. If the 0,8-vertex is colored 8, color the five uncolor
neighbors with colors{0,1,2,3,4,5,6}\{i, j}.

(viii) Color the radial vertices of 0,8 and 0,8′-vertices with the unused colors from setS.

Claim 13. The suggested radiocoloring assignment is valid.

Proof. The following hold for the suggested radiocoloring assignment:
Considering any cycle node, we have the following observations:
• Note first that, internal, common-internal, out-vertices are colored using colors from
set{2,3,4,5,6}. Note also that common-internal, out-vertices are colored using colors
{3,4,5}.

• Radial vertices neighbors to a 0,8-vertex: These are six vertices. They are neighbors to
a (common)-internal vertex colored using a colori, i ∈ {2,3,4,5,6}. The vertices are
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also neighbors to a 0,8-vertex colored 0 or 8. Thus, if the 0,8-vertex is colored 0, they
can be colored with the six colors of set{2,3,4,5,6}\{i} ∪ {7,8}, else (the 0,8-vertex
takes color 8) with the six colors of set{2,3,4,5,6}\{i} ∪ {0,1}.

• Radial vertices neighbors to a 0,8′-vertex: These are five vertices. They are neighbors to
two out-vertices of neighbor cycle nodes coloredi, j, i �= j, i, j ∈ {2,3,4,5,6}. The
vertices are also neighbors to a 0,8-vertex colored 0 or 8. Thus, if the 0,8-vertex is colored
0, they can be colored with the five colors of set{2,3,4,5,6}\{i, j} ∪ {7,8}, else (the
0,8-vertex takes color 8) with the five colors of set{2,3,4,5,6}\{i, j} ∪ {0,1}.

• 1,7-vertices: Each of them is connected to four vertices (internal, common-internal, out)
colored using colors of set{2,3,4,5,6}. The vertex is at distance one from the other
1,7-vertex of the group and at distance two from one 1,7-vertex of the next group. Recall
that all 1,7-vertices of the cycle node are colored by alternating between colors 1, 7. Also
the vertex is at distance two from at least one pair of 0,8-vertices. So, one of the colors
1, 7 is available for each such vertex.

• Common-internal vertices: Each of them is at distance two from the two internal vertices
colored{2,6} and the out-vertices of the same cycle node coloredi, i ∈ {3,4,5}. It is at
distance one from the 1,7-vertices of the group, hence it cannot take colors 1,2,6,7. Also
the vertex is at distance two from at least a pair 0,8-vertices. Hence, in the set{3,4,5}\{i}
there are two colors free for the two common-internal vertices.

• Internal vertices: Each of them is at distance two from three vertices (common-internal,
out) colored using the colors of set{3,4,5}. Also, the vertex is at distance two from at
least one pair of 0,8-vertices. It is at distance one from one of 1,7-vertex, hence it cannot
take colors{0,1,2} or {6,7,8} and at distance two from the other 1,7-vertex. Hence, one
of the colors 6 or 2 is available for each such vertex.

• Out-vertices: Each of them is at distance two from the two common-internal vertices
colored using two colors of set{3,4,5}. The vertex is also at distance two from two
internal vertices, one of its group and the other of the next group, colored 2 and 6. Also,
the vertex is at distance one from a pair of 0,8′-vertices colored 0,8 and at distance one
from two 1,7-vertices colored 1,7. Hence, one of the colors of set{3,4,5} is available
for each such vertex.

Now, consider any two out-vertices connecting two neighbor cycle nodesu, v. Since they
take the corresponding colors as the verticesu, v in the 3-coloring ofG, there is no conflict
between any two of them.
Thus, the suggested radiocoloring assignment is valid.�

Lemma 14. If Xspan(G′)�9 then�(G)�3.

Proof. Consider any radiocoloring assignment of size 9 ofG′. Then, we get that,

Claim 15. Each pair of0,8-vertices or0,8′-vertices, neighbors to a vertex are colored
0,8.

Proof. Each 0,8-vertex, 0,8′-vertex has even neighbors. In a setSof colors of range 9, if the
vertex takes a color other than 0 or 8, then there will not be enough colors for its neighbors.
Considering a pair of 0,8-vertices neighbors to a vertex, they take colors 0,8.�
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Claim 16. The common-internal, internal, out-vertices of any Groupi ,1� i�d(v) of a
cycle nodev are colored using colors from set{2,3,4,5,6}.

Proof. Each such vertex is connected to at least one pair of 0,8-vertices colored 0,8. Thus,
they can take one of the colors from setS\{0,1,7,8} = {2,3,4,5,6}. �

Claim 17. Each pair of1,7-vertices of any Groupi ,1� i�d(v), of a cycle nodev are
colored1,7.

Proof. Each 1,7-vertex, has four neighbors ((common)-internal, out) colored using four
colors from set{2,3,4,5,6} by claim 16. Moreover, the vertex is at distance two from at
least one pair of 0,8-vertices. If the vertex takes a color other than 1 or 7, then there will not
be enough colors for its neighbors from the setS. Since, the two 1,7-vertices of aGroupi
are at distance one apart they take colors 1,7.�

Claim 18. Anyout-vertex or common-internal vertex of anyGroupi ,1� i�d(v),of a cycle
nodev is colored using one color from the set{3,4,5}.

Proof. Any out-vertex (common-internal vertex) is at distance one from a pair of 0,8′-
vertices (0,8-vertices). The vertex is at distance one from two 1,7-vertices at distance two
(one) apart each other. Thus, the vertex cannot take colors 0,1,2,6,7,8. Thus, it can take
one of the colors 3,4,5. �

Claim 19. Any internal vertex of anyGroupi ,1� i�d(v) of a cycle nodev is colored using
either2 or 6.

Proof. Any internal vertex is at distance one from a pair of 0,8-vertices. The vertex is at
distance one from a 1,7-vertex and at distance two from the other 1,7-vertex of the group.
Also, the vertex is at distance two from the two common-internal vertices and the out-vertex
colored{3,4,5} (by Claim 18). Thus, it can take the color 2 or 6, depending on the color
of the 1,7-vertex neighbor to it.�

Claim 20. For any cycle nodev, assuming that one out-vertex is colored i, i ∈ {3,4,5},
then all out-vertices of the cycle node ofv are colored i.

Proof. Consider the next out-vertex of the cycle node ofv. By Claim 18, the vertex is
at distance one from the two common-internal vertices colored{3,4,5}\{i}. Also, it is at
distance one from two 1,7-vertices colored 1,7, and from a pair of 0,8′-vertices colored 0,8.
Hence, it cannot take colors{0,1,2,6,7,8} ∪ {3,4,5}\{i}. Thus the only color available
for it is i. The argument holds for all consecutive out-vertices of the cycle node.
We now compute a 3-coloring ofG as follows: Assign to each vertexu of the graphG

the color that any out-vertex of the cycle node corresponding to it takes inG′. We argue
that this is a valid 3-coloring ofG. First note that, by Claim18 we know that the computed
assignment onGuses only 3 colors. Moreover, recall also that, by Claim 20, all out-vertices
of a cycle node get the same colori, i ∈ {3,4,5}. Thus, for each cycle nodeuofG′, all of its
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out-vertices (colored with the same color) ‘see’ the colors of the corresponding out-vertices
of all neighbor cycle nodes ofu. This is equivalent to the colors that the corresponding
to u vertex inG ‘see’ by all of its neighbors. Hence, since the out-vertices ofG′ have no
conflicts with their neighbor out-vertices, there is no conflict with the colors of any vertex
in G and its neighbors. Thus, ifG′ can be radiocolored with a span of size 9, then there is
a 3-coloring ofG. �
(End of proof of Theorem11). �

Corollary 21. The following decision problem isNP-complete:
Input: A planar graphG(V,E) and integersB1, B2, B1�B2.
Question: Does there exist a radiocoloring for G with span no more thanB1 and order

no more thanB2?

5. A constant ratio approximation algorithm for min order RCP

We provide here an approximation algorithm for min order RCP for planar graphs by
modifying the constructive proof of the theorem presented by Heuvel and McGuiness in
[13]. Our algorithm is easier to verify with respect to correctness than what the proof given
in [13] suggests. It also has better time complexity (i.e. O(n�)) compared to the (implicit)
algorithm in [13] which needs time O(n2). The improvement was achieved by performing
the heavy part of the computation of the algorithm only in some instances ofG instead of all
as in [13]. This enables less checking and computations in the algorithm. Also, the behavior
of our algorithm is very simple andmore time efficient for graphs of smallmaximumdegree.
Finally, the algorithm provided here needs no planar embedding ofG, as opposed to the
algorithm implied in [13].
Very recently and independently, Agnarsson and Halldórsson in [2] presented approxi-

mations for the chromatic number of square and power graphs(Gk). Their method does
not explicitly present an algorithm. A straightforward implementation is difficult and not
efficient. Also, the approximation ratio for planar graphs of general� obtained is also 2.
The main theorem of Heuvel and McGuiness [13] states that a planar graphG can be

radiocoloredwithatmost 2�+25colors.Morespecifically, theauthors consider theproblem
of L−(p, q)-Labeling, which is defined as follows:

Definition 22 (L−(p, q)-Labeling). Find an assignmentL:V −→ {0,1, . . . , �}, called
L−(p, q)-Labeling, which satisfies|L(u)−L(v)|�p if D(u, v) = 1 and|L(u)−L(v)|�q
if D(u, v) = 2.

Definition 23. The minimum number� for which anL−(p, q)-labeling exists is denoted
by �(G;p, q) and is calledp, q-span ofG.

In other words, when the two vertices are at distance one apart, they should take colors
(integers) that differ by at leastp, and when they are located at distance two apart, they
should take colors that differ by at leastq. Note thatL−(p, q)-labeling is a generalization
of radiocoloring sinceL−(p, q)-labeling is equal to radiocoloring whenp = 2 andq = 1.
The main theorem of[13] is the following:
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Theorem 24(Heuvel and McGuiness[13] ). If G is a planar graph with maximum degree
� andp, q are positive integers withp�q, then�(G;p, q)�(4q−2)�+10p+38q−23.

By settingp = q = 1 and using the observation�(G;1,1) = �(G2), where�(G2) is the
chromatic number of the graphG2 (defined in the Introduction section), we get immediately,
as also[13] notices, that:

Corollary 25 (Heuvel and McGuiness[13] ). If G is a planar graph with maximum degree
� then�(G2)�2� + 25.

The theorem of[13] is proved using two lemmata. For an edgee ∈ E(G), let t (e) the
number of triangular faces containing edgee and for a vertexv ∈ V (G), let t (v) be the
number of triangular faces containingv, in the maximal planar graph ofG. The first of the
two lemmata, used to prove the theorem for the case where�(G)�12, is the following:

Lemma 26(Heuvel and McGuiness[13] ). Let G be a simple planar graph. Then there
exists a vertexv with k neighborsv1, v2, . . . , vk with d(v1)� · · · �d(vk) such that one of
the following is true:
(i) k�2;
(ii) k = 3with d(v1)�11;
(iii) k = 4with d(v1)�7 andd(v2)�11;
(iv) k = 5with d(v1)�6, d(v2)�7,andd(v3)�11.

The second lemma, used to prove the theorem for the case where�(G)�11, is quite
similar.

Lemma 27(Heuvel and McGuiness[13] ). Let G be a simple planar graph with maximum
degree�. Then there exists a vertexv with k neighborsv1, v2, . . . , vk with d(v1)� · · · �
d(vk) such that one of the following is true:
(i) k�2;
(ii) k = 3with d(v1)�5;
(iii) k = 3with t (vvi)�1 for some i;
(iv) k = 4with d(v1)�4;
(v) k = 4with t (vvi) = 2 for some i;
(vi) k = 5with d(vi)�4 andt (vvi)�1 for some i;
(vii) k = 5with d(vi)�5 andt (vvi) = 2 for some i;
(viii) k = 5with d(v1)�7 andt (vvi)�1 for all i ;
(ix) k = 5withd(v1)�5,d(v2)�7,and for each i witht (vvi) = 0 it holds thatd(vi)�5.

These two lemmata give the so-calledunavoidable configurationsof G. The following
operations apply toG: For an edgee ∈ E let G/e denote the graph obtained fromG by
contractinge. For a vertexv ∈ V letG ∗ v denote the graph obtained by deletingv and for
eachu ∈ N(v) adding an edge betweenu andu− and betweenu andu+ (if these edges do
not exist inGalready). The notationN(v) denotes the neighbors ofv. The notationu−, with
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u− ∈ N(v), denotes the edgevu− which directly precedes edgevu (moving clockwise),
andu+, with u+ ∈ N(v), refers to the edgevu+ which directly succeeds edgevu (moving
clockwise).
The two lemmataare used to define thegraphH, a vertexv ∈ V (G)andanedgee ∈ E(G)

using the following rules:
• If ��12, then letv be as described in Lemma 26, and sete = vv1 andH = G/e.
• If 6���11 and one of 27 (i), (ii), or (iv) holds, then letv be as described, and set
e = vv1 andH = G/e.

• If 6���11 and Lemma27 (iii) holds, then letv be as described, sete = vvi with
t (vvi)�1, and setH = G/e.

• If 6���11 and Lemma27 (v) holds, then letv be as described, sete = vvi with
t (vvi) = 2 and setH = G/e.

• If 6���11 and Lemma27 (vi) holds, then letv be as described, sete = vvi with
d(vi)�4 andt (vvi)�1, and setH = G/e.

• If 6���11 and Lemma27 (vii) holds, then letv be as described, sete = vvi with
d(vi)�5 andt (vvi) = 2, and setH = G/e.

• If 6���11 and Lemma27 (viii) holds, then letv be as described and setH = G ∗ v.
• If 6���11 and Lemma27 (ix) holds, then letv be as described and setH = G ∗ v.
Themain idea of theorem of [13] is to defineH to beH = G/e orH = G∗v, with e = vv1
andd(v)�5, depending onwhich case of the two Lemmata holds, so that always�(H)��.
Using these observations it is proved, by induction, that the minimum(p, q)-span needed
for theL−(p, q)-labeling ofH is �(H ;p, q)�(4q − 2)� + 10p + 38q − 23.
FromH we can easily return toG as follows. IfH = G/e then letv′ the new vertex

created from the contraction of edgee. In this case, inG we setv1 = v′ (this is a valid
assumption sinced(v1)�d(v′)) and colorv1 with the color ofv′. Now we only need to
color vertexv (for both cases ofH = G/e orH = G ∗ v). From the wayv was chosen, it
can be easily seen that there is always one color free for the vertex in the set of colors of
span�(4q − 2)� + 10p + 38q − 23 as concluded forH.
For the case of radiocoloring of a planar graphG, we can usep = 1 andq = 1 for the

order. Thus, the above theorem states that we need at most 2� + 25 colors.

5.1. The algorithm

We will use only Lemma 26 and the operationG/e in order to provide a much more
simple and more efficient algorithm than what implied in [14]. We provide below a high-
level description of our algorithm.

Algorithm Radiocoloring (G)
[I] Sort the vertices of the graph G by their degree .
[II] If ��12 then follow Procedure (1) below:

Procedure(1):Compute graph G2.Consider the next vertex of the
order. Delete v from G2 to get G2,. Now recursively color G2,

with 145colors. The number of colors that v has to avoid is
at most �2 = 144.Thus , in a set of 145colors , there is one free
color for v.
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[III] If �>12 then
(1) Find a vertex v and a neighbor v1of it ,as described in Lemma

26, and set e = vv1.
(2) Form G′ = G/e (G′ = (V ′, E′) with |V ′| = n − 1, while |V | = n) and

denote the new vertex in G′ obtained by the contraction of
edge e as v′.
Modify the sorted degrees of G by deleting v, v1, and in-

serting v′ at the appropriate place , and also modify the
possible affected degrees of the neighbors of both v and v1.

(3) �(G′) = Radiocoloring(G′)
(4) Extend �(G′) to a valid radiocoloring of G:
(a) Set v1 = v′ and give to v1 the color of v′.
(b) Color v with one of the colors used in the radiocoloring

� of G′.

5.2. Analysis of the algorithm

5.2.1. Correctness
Notice first that Procedure[1] implies a radiocoloring ofGwithX = 145 colors: Assign

frequencies 1,3, . . . ,2X − 1 to the obtained color classes ofG.

Proposition 28. The algorithmRadiocoloring(G) outputs a valid radiocoloring for G
using no more thanmax{66,2� + 25} colors.

Proof. By induction assume that, the recursive step 3 in [III] outputs a radiocoloring ofG

using at most max{66,2� + 25} colors. Note that�(G′) = �(G), because of the wayv
ande = vv1 are chosen.
At step 4, the radiocoloring�(G′) ofG′ is extended to a valid radiocoloring ofG, using

no more colors than those used in the previous step. This extension procedure is valid
as explained here: At step (a) the vertexv1 of G takes the color of the vertexv′ of G′.
This assignment is valid sincev1 has only a subset of the neighbors ofv′ at distance one
and two.
Also, at step (b), the vertexv ofG is colored with one of the colors used in the radiocol-

oring�(G′) of G′. These colors are enough forv to get a valid color. The correctness of
this claim is explained below.
For any vertexv ∈ V (G), the number of vertices at distance two fromv is equal to∑
u∈N(v) d(u) − d(v) − 2t (v). By the wayv was chosen, it holds thatd(v)�5 and the

above sum gives that there are at most 2� + 19 vertices at distance two fromv. In total,
the number of distance one and two neighbors of the vertex is 5+ (2� + 19) = 2� +
24. Assuming that a palette of 2� + 25 colors is given, there is always one color free
for v.
Thus, algorithmRadiocoloring(G) gives a valid radiocoloring toG using no more than

max{66,2� + 25} colors. �
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5.2.2. Time efficiency and approximation ratio

Lemma 29. OuralgorithmapproximatesXorder(G)byaconstant factor of atmostmax{2+
25
� ,

66
� }.

Proof. Obviously, Xorder(G)>�(G). By Proposition 28, our algorithm uses at most
max{66,2� + 25} colors, i.e.

1<
Xorder(G)

�
� max

{
66

�
,2+ 25

�

}
. � (1)

Lemma 30. Our algorithm runs inO(n�) sequential time.

Proof. Step [I] takes O(n logn) time and Step [II] takes O(n) time. LetS be the set of
neighbors of bothv, v1. Each implementation of [III].1, 2 needs timed(v) + d(v1) +∑

x∈S d(x) in order to perform the operationG/e and O(logn) time to modify the sorted
degree list. The total time spent recursively is then just O(

∑
v∈V d(v) · logn) = O(n logn).

Each implementation of [III].4 needs O(�) time at most and this step is executed at most
n times. Thus, the total time for all executions of [III].4 is O(n�). This dominates the total
execution time. �

A more sophisticated and efficient implementation of the contraction operation can be
found in[16].

6. An FPRAS for the number of radiocolorings of a planar graph

6.1. Sampling and counting

LetG be aplanargraph ofmaximumdegree� = �(G) on vertex setV = {0,1, . . . , n−
1} andC be a set of� colors. Let�:V →C be a (proper) radiocoloring assignment of the
vertices ofG. Such a radiocoloring always exists if��2� + 25 and can be found by our
O(n�) time algorithm of the previous section.
Consider the Markov Chain(Xt ) whose state spaceR = R�(G) is the set of all radio-

colorings ofG with � colors and whose transition probabilities from state (radiocoloring)
Xt are modelled by:
1. Choose a vertexv ∈ V and a colorc ∈ C uniformly at random (u.a.r.)
2. Recolor vertexv with color c. If the resulting coloringX′ is avalid radiocoloring as-
signment then letXt+1 = X′ elseXt+1 = Xt .
The procedure above is similar to the “Glauber Dynamics” of an antiferromagnetic Potts

model at zero temperature, and was used in[14] to estimate the number of proper colorings
of any low degree graph withk colors.
The Markov Chain(Xt ), which we refer to in the sequel asM(G, �), is ergodic(as we

showed below), provided��2� + 26, in which case its stationary distribution isuniform
overR. We show here thatM(G, �) is rapidly mixing, i.e. converges, in time polynomial
in n, to a close approximation of the stationary distribution, provided that��2(2� + 25).



D.A. Fotakis et al. / Theoretical Computer Science 340 (2005) 514–538 533

This can be used to get a fully polynomial randomized approximation scheme (fpras) for the
number of radiocolorings of a planar graphGwith � colors, in the case where��4�+50.

6.2. Some definitions and measures

For t ∈ N let P t :R2→ [0,1] denote thet-step transition probabilities of the Markov
ChainM(G, �) so thatP t(x, y) = Pr{Xt = y|X0 = x},∀x, y ∈ R. It is easy to verify that
M(G, �) is (a) irreducibleand (b)aperiodic. The irreducibility ofM(G, �) follows from
the observation that any radiocoloringxmay be transformed to any other radiocoloringy by
sequentially assigning new colors to the verticesV in ascending sequence; before assigning
a new colorc to vertexv it is necessary to recolor all verticesu>v that have colorc. If
we assume that��2� + 26 colors are given, removing the colorc from this set, we are
left with �2� + 25 for the coloring of the rest of the graph. The algorithm presented in
previous section shows that the remaining graph can by radiocolored with a set of colors of
this size. Hence, colorc can be assigned tov.
Aperiodicity follows from the fact that the loop probabilities areP(x, x) �= 0,∀x ∈ R.
Thus, the finite Markov ChainM(G, �) is ergodic, i.e. it has a stationary distribution

�:R→ [0,1] such that limt→∞ P t(x, y) = �(y),∀x, y ∈ R. Now if �′:R→ [0,1] is any
function satisfying “local balance”, i.e.�′(x)P (x, y) = �′(y)P (y, x) then if

∑
x∈R �′(x) =

1 it follows that�′ is indeed the stationary distribution. In our caseP(y, x) = P(x, y), thus
the stationary distribution ofM(G, �) is uniform.
The efficiency of any approach like this to sample radiocolorings crucially depends on the

rate of convergence ofM(G, �) to stationarity. There are various ways to define closeness
to stationarity but all are essentially equivalent in this case and we will use the “variation
distance” at timet with respect to initial vertexx

	x(t) = max
S⊆R |P t(x, S)− �(S)| = 1

2

∑
y∈R

|P t(x, y)− �(y)|,

whereP t(x, S) = ∑
y∈S P t (x, y) and�(S) = ∑

x∈S �(x).
Note that this is auniform boundover all eventsS ⊆ R of the difference of probabilities

of eventS under the stationary andt-step distributions.
Therate of convergence to stationarityfrom initial vertexx is


x(�) = min{t : 	x(t ′)��,∀t ′ � t}.
We also give the following definition:

Definition 31. � randomized approximation scheme for radiocolorings with� colors of
a planar graphG is a probabilistic algorithm that takes as input the graphG and an error
bound�>0 and outputs a numberY (a random variable) such that

Pr{(1− �)|R�(G)�Y�(1+ �) |R�(G)|}� 3
4.

Such a scheme is said to befully polynomialif it runs in time polynomial inn and�−1. We
abbreviate such schemes tofpras.
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6.3. Rapid mixing

As indicated by the (by now standard) techniques for showing rapid mixing bycoupling
[14,15], our strategy here is to construct a coupling forM = M(G, �), i.e. a stochastic
process(Xt , Yt ) onR×R such that each of the processes(Xt ), (Yt ), considered in isolation,
is a faithful copy ofM. We will arrange a joint probability space for(Xt ), (Yt ) so that, far
frombeing independent, the two processes tend tocoupleso thatXt = Yt for t large enough.
If coupling can occur rapidly (independently of the initial statesX0, Y0), we can infer that
M is rapidly mixing, because the variation distance ofM from the stationary distribution
is bounded above by the probability that(Xt ) and(Yt ) have not coupledby timet .
The key result we use here is theCoupling Lemma(see [11, Chapter 4] by Jerrum), which

apparently makes its first explicit appearance in the work of Aldous [1, Lemma 3.6] (see
also Diaconis [5, Chapter 4, Lemma 5]).

Lemma 32. Suppose thatM is a countable,ergodicMarkov chainwith transition probabil-
itiesP(·, ·) and let((Xt , Yt ), t ∈ N) be a coupling ofM. Suppose further thatt : (0,1] → N

is a function such thatPr(Xt(�) �= Yt(�))��, ∀� ∈ (0,1],uniformly over the choice of initial
state(X0, Y0). Then the mixing time
(�) of M is bounded above byt (�).

The transition(Xt , Yt )→ (Xt+1, Yt+1) in the coupling is defined by the following ex-
periment:
1. Selectv ∈ V uniformly at random (u.a.r.).
2. Compute a permutationg(G,Xt , Yt ) of C according to a procedure to be explained.
3. Choose a colorc ∈ C u.a.r.
4. In the radiocoloringXt (respectivelyYt ) recolor vertexv with colorc (respectivelyg(c))
to get a new radiocoloringX′ (respectivelyY ′).

5. If X′ (respectivelyY ′) is a (valid) radiocoloring thenXt+1 = X′ (respectivelyYt+1 =
Y ′), else letXt+1 = Xt (respectivelyYt+1 = Yt ).

Note that, whatever procedure is used to select the permutationg, the distribution ofg(c)
is uniform, thus(Xt ) and(Yt ) are both faithful copies ofM.
We now remark that any set of verticesF ⊆ V can have the same color in the graph

G2 only if they can have the same color in some radiocoloring ofG. Thus, given a proper
coloring ofG2 with �′ colors, we can construct a proper radiocoloring ofG by giving the
values (new colors) 1,3, . . . ,2�′−1 in the color classes ofG2. Note that this transformation
preserves the number of colors (but not the span).
Now letA = At ⊆ V be the set of vertices on which the colorings ofG2 implied by

Xt, Yt agree andD = Dt ⊆ V be the set on which they disagree. Letd ′(v) be the number
of edges incident atv in G2 that have one point inA and one inD. Clearly, ifm′ is the
number of edges ofG2 spanningA,D, we get

∑
v∈A d ′(v) = ∑

v∈D d ′(v) = m′.
The procedure to computeg(G,Xt , Yt ) is as follows:

(a) If v ∈ D theng is the identity.
(b) If v ∈ A then proceed as follows: Denote byN the set of neighbors ofv in G2.

DefineCx ⊆ C to be the set of all colorsc, such that some vertex inN receivesc in
radiocoloringYt but no vertex inN receivesc in radiocoloringYt . LetCy be defined as
Cx with the roles ofXt, Yt interchanged. ObserveCx ∩Cy = ∅ and|Cx |, |Cy |�d ′(v).
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Let, w.l.o.g.,|Cx |� |Cy |. Choose any subsetC′
y ⊆ Cy with |C′

y |� |Cx | and letCx =
{c1, . . . , cr}, C′

y = {c′1, . . . , c′r} be enumerations ofCx,Cy′ coming from the orderings
ofXt, Yt . Finally, letg be the permutation(c1, c′1), . . . , (cr , c′r )which interchanges the
color setsCx,Cy′ and leaves all other colors fixed.

It is clear that|Dt+1| − |Dt | ∈ {−1,0,1}.
(i) Consider first the probability that|Dt+1| = |Dt |+1. For this event to occur, the vertex

v selected in step (1) of the procedure forg must lie inA and hence we follow (b). If
the new radiocolorings are to disagree at vertexv then the colorc selected in line (3)
must be an element ofCy . But |Cy |�d ′(v) hence

Pr{|Dt+1| = |Dt | + 1}� 1

n

∑
v∈A

d ′(v)
�

= m′

� · n (2)

(ii) Now consider the probability that|Dt+1| = |Dt |−1. For this to occur, the vertexvmust
lie inD and hence the permutationg selected in line (2) is the identity. ForXt+1, Yt+1
to agree atv, it is enough that colorc selected in step (3) is different from all the colors
thatXt, Yt imply for the neighbors ofv inG2. The number of colorsc that satisfy this
is (by our previous results) at least� − 2(2� + 25)+ d ′(v). Hence

Pr{|Dt+1| = |Dt | − 1} � 1

n

∑
v∈D

� − 2(2� + 25)+ d ′(v)
�

� � − 2(2� + 25)

�n
|D| + m′

�n
. (3)

Define now

� = � − 2(2� + 25)

�n
and 
 = m′

�n
.

So

Pr{|Dt+1| = |Dt | + 1}�


and Pr{|Dt+1| = |Dt | − 1}��|Dt | + 
. Given�>0, i.e.�>2(2� + 25), from Eqs. (2)
and (3), we get

E(|Dt+1|) � 
(|Dt | + 1)+ (�|Dt | + 
)(|Dt | − 1)+ (1− �|Dt | − 2
)|Dt |
= (1− �)|Dt |.

Thus, from Bayes, we getE(|Dt+1|)�(1− �)t |D0|�n(1− �)t and since|Dt | is a non-
negative random variable, we get, by Markov inequality, that

Pr{Dt �= 0}�n(1− �)t �ne−�t .

So, we note that,∀�>0, Pr{Dt �= ∅}�� provided thatt�(1/�) ln(n/�) thus proving:
Theorem 33. Let G be a planar graph of maximum degree� on n vertices. Assuming
��2(2� + 25) the convergence time
(�) of the Markov ChainM(G, �) is bounded
above by


x(�)�
�

� − 2(2� + 25)
n ln

(n
�

)
regardless of the initial state x.
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6.4. An fpras for radiocolorings with� colors

The technique we employ is as in[14] and is fairly standard in the area. By using it we
get the following theorem:

Theorem 34. There is a fully polynomial randomized approximation scheme(fpars) for
the number of radiocolorings of a planar graph G with� colors, provided�>2(2� + 25),
where� is the maximum degree of G.

Proof. Recall thatR�(G) is the set of all radiocolorings ofG with � colors. Letm be the
number of edges inG and let

G = Gm ⊇ Gm−1 ⊇ · · · ⊇ G1 ⊇ G0

be any sequence of graphs whereGi−1 is obtained byGi by removing a single edge. We
can always erase an edge whose one node is of degree at most 5 inGi . Clearly

|R�(G)| = |R�(Gm)|
|R�(Gm−1)|

|R�(Gm−1)|
|R�(Gm−2)| · · · |R�(G1)|

|R�(G0)| |R�(G0)|.

But |R�(G0)| = �n for all kinds of colorings. The standard strategy is to estimate the ratio

�i = |R�(Gi)|
|R�(Gi−1)|

for eachi, 1� i�m.
Suppose that graphsGi,Gi−1 differ in the edge{u, v} which is present inGi but not

in Gi−1. Clearly,R�(Gi) ⊆ R�(Gi−1). Any radiocoloring inR�(Gi−1)\R�(Gi) assigns
either the same color tou, v or the color values ofu, v differ by only 1. Let deg(v)�5 in
Gi . So, we now have to recoloruwith one of at least� − (2� + 25), i.e. at least 2� + 25,
colors (from Section5 of this paper). Each radiocoloring ofR�(Gi) can be obtained in at
most one way by our algorithm of the previous section as the result of such a perturbation.
Thus,

1

2
� 2� + 25

2(� + 1)+ 25
��i <1. (4)

To avoid trivialities, assume 0< ��1, n�3 and�>2. Let Zi ∈ {0,1} be the random
variable obtained by simulating the Markov ChainM(Gi−1, �) from any certain fixed
initial state for

T = �
� − 2(2� + 25)

n ln

(
4nm

�

)

steps and returning to 1 if the final state is a member ofR�(Gi) and 0 else.
Let �i = E(Zi). By our theorem of rapid mixing, we have

�i − �
4m

��i��i + �
4m
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and by Eq. (4), we get(
1− �

2m

)
�i��i�

(
1+ �

2m

)
�i .

As our estimator for|R�(G)| we use
Y = �nZ1Z2 · · ·Zm.

Note thatE(Y ) = �n�1�2 · · ·�m. But

Var(Y )� Var(Z1Z2 · · ·Zm)
(�1�2 · · ·�m)2

=
m∏
i=1

(
1+ Var(Zi)

�2i

)
− 1.

Bystandardwaysofworking (as in[14]) onecaneasily show thatYsatisfies the requirements
for an fpras for the number of radiocolorings of graphGwith � colors|R�(G)|. �
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