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Abstract

The Frequency Assignment Problem (FAP) in radio networks is the problem of assigning frequen-
cies to transmitters, by exploiting frequency reuse while keeping signal interference to acceptable
levels. The FAP is usually modelled by variations of the graph coloring problem. A Radiocoloring
(RC) of agraphG(V, E) is an assignment functiof : V. — N such that®(u) — @(v)| > 2, when
u, v are neighbors ir5, and|®(u) — @(v)| > 1 when the distance of, v in G is two. The number
of discrete frequencies and the range of frequencies used are called order and span, respectively. The
optimization versions of the Radiocoloring Problem (RCP) are to minimize the span or the order. In
this paper we prove that the radiocoloring problem for general graphs is hard to approximate (unless
NP = ZPP) within a factor of:1/2=¢ (for any¢ > 0), wheren is the number of vertices of the graph.
However, when restricted to some special cases of graphs, the problem becomes easier. We prove
thatthe min span RCP iNP-complete for planar graphdNext, we provide an @i 4) time algorithm
(V| = n) which obtains a radiocoloring of a planar graBtthatapproximates the minimum order
within a ratio which tends t@ (where4 the maximum degree db). Finally, we provide &ully
polynomial randomized approximation sche(figas) for thenumber of valid radiocolorings of a
planar graph Gwith / colors, in the case where> 44 + 50.
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1. Introduction, previous work and our results

The Frequency Assignment Problem (FAP) in radio networks is a well-studied, inter-
esting problem, aiming at assigning frequencies to transmitters exploiting frequency reuse
while keeping signal interference to acceptable levels. The interference between transmit-
ters are modeled by an interference graptV, E), whereV (]V| = n) corresponds to
the set of transmitters artelrepresents distance constraints (e.g. if two neighbor nodes in
G get the same or close frequencies then this causes unacceptable levels of interference).
In most real life cases the network topology formed has some special properties, e.g.
is a lattice network or a planar graph. Planar graphs are mainly the object of study in
this work.

The FAP is usually modeled by variations of the graph coloring problem. The set of col-
ors represents the available frequencies. In addition, each color in a particular assignment
gets an integer value which has to satisfy certain inequalities compared to the values of
colors of nearby nodes i& (frequency-distance constraints). The FAP has been consid-
ered in, e.g[9-10,18]. Despite the important work done in either lattices or general net-
works, almost nothing has been reporteddtanarinterference graphs, with the exception
of [3,20].

In the sequel, we denote y(u, v) the distance ofi, v in G. A discrete version of FAP
is thek-coloring problem:

Definition 1 (k-coloring problem, Halg¢12]). Given a graptG(V, E) find a functiong :
V —{1,...,00} such thatvu,v € V,x € {0,1,...,k}: if D(u,v)>k — x + 1 then
|, — ¢,1 = x. This function is called &-coloring of G. Let |¢(V)| = A. Then/ is the
number of colorshat¢ actually uses (it is usually callestder of G under¢). The number
v = MaXey ¢(v) — min,cy ¢(u) + 1 is usually called thepanof G undere.

Note that the case= 1 corresponds to the well-known problem of vertex graph coloring.
Thus,k-coloring problem (withk as an input) is NP-complete. Here we study the case of
k-coloring problem wheré = 2, called the Radiocoloring problem.

Definition 2 (Radiocoloring problem Givenagraplé; (V, E) find afunctiond : V — N*
such thati®@(u) — ®(v)|=2if D(u,v) = 1 and|®(u) — ®(v)| =1 if D(u,v) = 2. The
least possible numbeér(order) needed to radiocol@ is denoted byX orqer(G). The least
possible number = max,cy @(v) —min,cy ®(u)+ 1 (span) needed for the radiocoloring
of G is denoted aXspar(G).

Real networks reserve bandwidth (range of frequencies) rather than distinct frequencies.
In this case, an assignment seeks to use as small range of frequencies as possible. It is
sometimes desirable to use as few distinct frequencies of a given bandwidth (span) as
possible, since the unused frequencies are available for other use. However, there are cases
where the primary objective is to minimize the number of frequencies used and the span
is a secondary objective, since we do not want to reserve unnecessary large span. These
optimization versions of the Radiocoloring Problem (RCP) are the main objects of study in
this work and are defined as follows.
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Definition 3 (Min span RCP. The optimization version of the RCP that tries to minimize
the span. The optimal span is call&gpan

Definition 4 (Min span order RCIP The optimization version of the RCP that tries to find
from all minimum span assignments, one that uses as few colors as possible. The order of
such an assignment is calleq, -

Definition 5 (Min order RCB. The optimization version of the RCP that tries to minimize
the order. The optimal order is callétger.

Definition 6 (Min order span RCR The optimization version of the RCP that tries to find,
from all minimum order assignments, one that uses a minimum span. The span of such an
assignment is called ¢,

|t easy to see thaX()rderg Xé)rder andXspan< X/span A|SO, |t h0|dS thatXQrder< Xspan

Another variation of FAP is related to the square of a gi@plvhich is defined as follows:

Definition 7. Given a graplG(V, E), G? is the graph having the same vertex\¢eind an
edge seft’ : {u, v} € E'iff D(u,v)<2inG.

The related variation of FAP is to color the square of a gi@pty2, with the minimum
number of colors, denoted &% G?).

Observe that for any grafB, Xorder(G) is the same as the (vertex) chromatic number of
G?,i.e. Xorded G) = X (G?).

To see this assume to the contrary thaG2) < Xorded G). Then, from an optimal color-
ing of G2, we can obtain a radiocoloring & with X (G?) colors by doubling the assigned
color of each node. In this way we get a new radiocoloring assignme@t with less
than Xqrge(G) colors, which contradicts the definition &forged G). Assume now that
X (G?) > XorgeG). From an optimal min order radiocoloring we can easily get a coloring
of G2 assigning to each node the same color as in the radiocoloring assignment. Such an
assignment is valid for the coloring 6f2 since both distance one and two constraints hold
in any feasible radiocoloring. Thus, we find a new colorifgwith less thark (G2) colors,
which contradicts the definition df (G2). Concluding,X (G?) = Xorded(G).

However, notice that although the number of colors used in a minimal coloriGg ahd
a min order span radiocoloring is the same, the set of colors in the two solutions may not be
the same. To see this recall the previous argument showing that from an optimal coloring
of G2 we can obtain an optimal min order radiocoloring by doubling the assigned color to
each node.

Observe also thaX (G?) < Xspan< 2X (G?). It is obvious thatX (G2) < Xspan Further-
more, notice that from a valid coloring @2 we can always obtain a valid radiocoloring
of G by multiplying the assigned color of every vertex by two. The resulting radiocoloring
has span X (G?).

In [10,9] it has been proved that the problem of min span RCP is NP-complete, even for
graphs of diameter 2. The reductions use highly non-planar graphs. In [19] it is proved that
the problem of coloring the square of a general graph is NP-complete.
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In[3] a similar problem foplanargraphs has been considered. This idtidelen terminal
interference avoidanc€HTIA) problem, which requests to color a planar gr&pbko that
vertices at distancexactly2 get different colors. In [3] this problem is shown to be NP-
complete.

However, the above-mentioned result does not imply the NP-hardness of the min span
order RCP which is proved here to be NP-complete. This so because HTIA is a different
problem; in HTIA it is allowed to color neighbors i@ with the same color while in RCP
the colors of neighbor vertices should be at frequency distance at least two apart. Thus, the
minimum number of colors as well as the span needed for HTIA can vary arbitrarily from
XordedG) and Xspar(G). To see this consider e.g. thaize clique graplk;. In HTIA this
can be colored with only one color. In our case (RCP) we neetbrs and span of size 2
for K,. In addition, the reduction used by [3], heavily exploits the fact that neighbdss in
get the same coldn the component substitution part of the reduction. Consequently, the
reduction in [3] considers a different problem and it cannot be easily modified to produce
an NP-hardness proof of RCP.

Note more specifically that, any polynomial time decision procedure for RCP does not
imply a decision procedure for HTIA in the case of “No” answers. Also, any polynomial
time decision procedure for HTIA does not give a decision for RCP in the case of “Yes”
answers. In fact, the minimum number of colors needed for HTIA is the chromatic number
of G? — G. To our knowledge, the relation betwe&iG?) andX (G2 — G) for a planaiG
has not been investigated.

Another variation of FAP for planar graphs, calldétance2-coloring is studied in
[20]. This is the problem of coloring a given gragh with the minimum number of
colors so that the vertices of distanae mosttwo get different colors. Note that this
problem is equivalent to coloring the square of the gr&hhG?2. In the above work
it is proved that the distance-2-coloring problem for planar graphs is NP-complete. As
we show, this problem is different from the min span order RCP considered here. Thus,
the NP-completeness proof in [20] certainly does not imply the NP-completeness of min
span order RCP proved here. Additionally, the NP-completeness proof of [20] does not
work for planar graphs of maximum degret> 7. Hence, their proof gives no infor-
mation on the complexity of distance-2-coloring of planar graphs of maximum degree
> 7. In contrast, our NP-completeness proof works for planar graphs of all maximum de-
grees. In [20] a 9-approximation algorithm for the distance-2-coloring of planar graphs is
also provided.

In this paper, we are interested fimin span ordermin orderandmin spanRCP of a
planar graphG. We prove the following four basic results:

(a) We first show that the number of cola¥§, ;. (G) used in themin span order RCP
of graphG is different from the chromatic number of the square of the grafiG2).

(b) We prove that the radiocoloring problem for general graphs is hard to approximate
(unless NP= ZPP, the class of problems with polynomial time zero-error randomized
algorithms) within a factor 0f1/2~¢ (for any ¢ > 0), wheren is the number of vertices of
the graph. However, when restricted to some special cases of graphs, the problem becomes
easier. We show thahe min span RCRnd min span order RCRare NPeompletefor
planar graphs. Note that few combinatorial problems remain hargléoar graphs and
their proofs of hardness are not easy since they have to use planar gadgets which are difficult
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to find and understand 8]. As we argued above, this resultristimplied by the known
NP-completeness results of similar problems [3,20].

(c) We then present an(@4) algorithm thatapproximateghe minimum order of RCP,
Xorder, Of @ planar graple by a constant ratio which tends foas the maximum degreée
of G increases.

Our algorithm is motivated by a constructive coloring theorem of Heuvel and McGuiness
[13]. Their construction can lead (as we show) to &n¥technique assuming that a planar
embedding ofG is given. We improve the time complexity of the approximation, and we
present a much more simple algorithm to verify and implement. Our algorithm does not
need any planar embedding as input.

(d) Finally, we study the problem ektimating the number of different radiocolorirafa
planar grapl®. This is a #P-complete problem (as can be easily seen from our completeness
reduction that can be done parsimonious). We employ here standard techniques of rapidly
mixing Markov Chains and theew method of couplinfpr purposes of provingapid
convergencégsee e.g. [14]) and we presemfully polynomial randomized approximation
scheméor estimating the number of radiocolorings withcolors for a planar grapfs,
when/>44 + 50.

Very recently and independently, Agnarsson and Halldérsson in [2] presented approxi-
mations for the chromatic number of square and power gréghs Their method does
not explicitly present an algorithm. A straightforward implementation is difficult and not
efficient. Also, the performance ratio for planar graphs of genedditained in [2] is 2, i.e.
it is the same as the approximation ratio obtained by our algorithm.

We note that Bodlaender et al. [4] proved very recently and independently that the problem
of min span radiocoloring, they call itlabeling, is NP-complete for planar graphs, using
a reduction which is very similar to our reduction. In the same work the authors presented
approximations for the begtfor some interesting families of graphs: outerplanar graphs,
graphs of treewidttk, permutation and split graphs.

Another relevantwork is that of Formann et al. [7], where the authors proved the chromatic
number of the square of any planar graphs is at nitat /7) + ©(4%3). However, this
bound is bigger than the bound of Agnarsson et al. [2] and it does not improve the bound
obtained by our algorithm since it holds only for graphs of quite lgrg&/49 maximum
degree. Also their method is non-constructive.

A preliminary version of this work has appeared in the Proceedings of th 25th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2000) [8].

2. The difference between radiocoloring and distance-2-coloring in planar graphs

The distance-2-coloring problem, discussed above, is formally defined as follows:

Definition 8. TheDistance2-coloringof a graphG is the problem of coloring the vertices
of the graphG with the minimum number of colors such that every pair of vertices that are
located at distance at most two get different colors.

The following theorem states that the minimum order of min span order RCP of a@raph
may be different (larger) from the order of distance-2-coloring problem (or the coloring of
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distance-2-colorinng

(coloring the square) of G: min span order radio coloring:

5 span=8 (min span)

order=6 (min order) order=8 (min order)

Fig. 1. An instance where the problem of min span order radiocoloring and the problem of distance-2-coloring
have different orders.

G?). Thus, the two problems are different. Hence-forth, the NP-completeness of distance-
2-coloring problem does not imply the NP-completeness of min span order RCP proved
here.

Theorem 9. There is at least one instan¢a graph G where the minimum order of min
span order RCP of G is different from the minimum order of disteceloring of G
(coloring the square of the graph

Proof. Consider the instance of the two problems appearing inFEighe vertices of the

graph are named as shown in Fig. 1. Given a palette of colors (inte§eused in an

assignment, we calindmost colorghe smallest and largest integer of theSai/e call the

rest of the colors amiternal colors. For example in the s8t= {1, ..., 8} the colors 1, 8

are the two endmost colors of s&t

It is easy to see that the minimum number of colors (order) needed for the distance-2-
coloring of G is 6 colors, while the minimum span of the min span order RCB &f at

least 7 (consider the colors needed to radiocolor varesd, the central vertex neighbor

to it, and its radial vertices).

We assert that any optimal min span order radiocoloring assignment needs a span of size

at least 8 and the order of such an assignment is also 8.

We distinguish three cases based on the colors of verimak new2. Letx, y the colors

of verticesnewl, new2, respectively (note that # y). Let alsoc the color of the central

vertex. Note thatc — x| >2 and|c — y| > 2.

(1) Both verticenewl, new2 get endmost colors. We prove that then, the four vertices of
the clique formed are forced to take colors of span more than 8. This because the clique
vertices should take a consecutive sequence of odd (or even) colors. In other case, they
will leave more colors unused increasing the span more than 8. Thus, assume that the
cligue vertices take consecutive odds (evens). We will need four consecutive numbers,
hence we will need a range of size 8. Also, we should use an endmost color. But, this
is not possible, since we allocated the endmost colors to the venigds new2.
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Both verticemewl, new? take internal colors. Theradial neighbors of each of the
two vertices, assumeewl (resp.,new?) is avoided to take four colofs — 1, x, x +
Lc({y—1,y,y+1c}) instead ofthree —1orx +1,x,c(y —1ory+1,y,c).
Since, there are four radial vertices, we will need a span of size 8 for the coloring of
vertexnewl (new?), its radial vertices, and the central vertex. Bet palette of size 8.

We now prove that the order of such an assignment is also &. £efas, ao, as, a4}
the set of colors of the radial vertices of vertewl. Theng = S—{x—1, x, x+1, ¢}.
NotethatS—{x—1, x, x+1, c}| = 4inthis case. Respectively, let= {b1, b2, b3, ba}
the set of colors of the radial vertices of vertew2. Thenp = S—{y—1,y, y+1, c}.
Again,|S — {x — 1, x, x + 1, c}| = 4. We distinguish three cases for the numbers.

e We consider first the case wherey are consecutive internals. Then, we get that
a U b>5. Also note that in this case ¢ b andy ¢ a because, y are consecutive
integers. Thus, the set of colors used to color vertiweal, new?, their radial and
the central vertex has sizfr U y U (a Ub) U c}| = 8, i.e. we get an order equal to 8.

e Now, consider the case wherey are not consecutive internals and differ by at least
3. Then, it can be easily seen that) b >7. Also note that in this case it might be
thatx € b ory € a. Thus, the set of colors used to color vertioes\i, new2, their
radial and the central vertex has sjzeU y U (a U b) U c}| > 8, i.e. we get an order
at least 8.

e Now, the only case left is the case whetey are not consecutive internals and differ
by exactly 2. Then, it can be easily seen that »>6. Also note that in this case
it might be thatx € b or y € a. Thus, the set of colors used to color vertices\d,
new?, their radial and the central vertex has gizeJ y U (a Ub) U c}| > 7. However,
using similar arguments as the case (1), we conclude that then the four vertices of
the clique formed are force to take colors of span more than 8.

(2) One of the two verticesewl, new2 get an endmost color. Using similar arguments as
the case (1), we conclude that the four vertices of the clique formed are forced to take
colors of span more than 8.

We conclude that any radiocoloring assignment either uses a span of size 8 and an order
also equal to 8 or a span of size more than 8, i.e. the assignment is sub-optimal. There is
a radiocoloring assignment of span 8, as illustrated in EidBy the above analysis we
conclude that any optimal assignment has order equal taB.

3. The inapproximability of radiocoloring for general graphs

In this section we prove that the radiocoloring problem is hard to approximate for general
graphs.

Theorem 10. The min order RCP for general graphs is hard to approxin{atdessNP =
ZPP the class of problems with polynomial time zero-error randomized algorjtiitisin
a factor ofn/2=¢ (for anye > 0), where n is the number of vertices of the graph

Proof. We reduce min order RCP from the COLORING Problem. Since we are concerned
only in the order of a radiocoloring, the problem is equivalent to the distance-2-coloring
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the graph G

the graph H

Fig. 2. GrapHH obtained byG.

(d2c) problem. We use the term distance-2-coloring or d2¢ when referring to a min order
radiocoloring assignment, for terminology convenience purposes.

We start with an arbitrary grap& (V, E) with |V| = N. Letn = O(N? + N). We
construct a graphl of O(n) vertices as follows:

Vertex set of H

(1) For each vertey; of Gwe add a new vertex; in H, which we callexisting vertex

(2) For each edge of(G) we add inH a new vertex, calledntermediate vertexand
denoted:;;, whereu;, u; are the end vertices constituting the edge.

(3) Finally, for each vertex; of G, we addN new vertices, calleduxiliary verticesand
denoted ag;; : 1</, j<N.

Edge set of H

(1) For each intermediate vertex;, obtained by end vertices, u ;, we add the edges
(i, uij), (wij, uj).

(2) We connect each auxiliary vertgy; with all neighbor intermediate vertices of the
existing vertexu; from which the auxiliary vertex is obtained. Formally, the derived
graphH can be described as follows:

V(H) ={u; : 1<i<KNYU{ug; @ (i, uj) € E(G)}U{y;;: I<Si<N,1< <N}
E(H) = {(ui, uij), wij, uj) : (i, uj) € E(G)}U{(u;j, yi.j) : (i, uj) € E(G)}

An example of the grapH derived by a grapks is presented in the Fi@.

Observe thaif G is k-colorable then H ig(k + 1) N + A + 1)-distance2-colorable Such
a coloring can be obtained as follows:

First, k-color each setyi;, y2;, ..., yn;}, where I< j <N. To show that the radiocol-
oring is valid, for anyj consider the corresponding $ei;, y2;, . .., yn;}. Its distance-one
constraints inG are inH distance-two constraints. For each auxiliary vertex in this set, its
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coloring inGis equivalent to its distance-2-coloringth Thereforek colors are enough for
each such set to be distance-2-colored. Since welNaweh sets, we nedd N colors for
their coloring. Next, color the existing vertices whkiadditional colors (this is valid, based
on similar arguments as above) and color the intermediate verticestwiti additional
colors (valid, since it is equivalent to an edge colorin@pf

Summing up, we used, for the coloring of the auxiliary, existing and intermediate vertices,
i.e. the grapH (k + )N + 4 + 1 colors.

On the other hand, from a distance-2-coloringbfve can get a coloring o& by the
following procedure:

For each existing vertex; € V(G) we select one color from the setNfdistinct colors
of the set{y;1, vi2, ..., yin} and color the vertex; with this color. This color result to a
valid coloring ofG as proved here: A neighbor of, a vertex: ; will also take one color of
itsN yj1, yj2, ..., yjn auxiliary vertices. Since all;1, yj2, ..., yjn vertices are distance-
two neighbors with vertices;1, yi2, ..., yiny in H, they all get different colors. Hence, the
resulting coloring of vertices;, u; is a valid coloring ofG.

Thus, wherH is distance-2-colorable withN colors, whereg = N®D | G is O(g)-
colorable.

We know that it is NP-hard to determineGf needs at most Qv¢) or at leastQ(N1%)
colors to be colorefb]. Thus, it is also NP-hard to determine whether the optimal distance-
2-coloring of a given graph in our case) with @:) vertices needs at most®¢N) or at
leastQ(N1¢N) colors, i.e. the inapproximability ratio of distance-2-coloring (of a graph
H)is

Q(lesN) . Q(szs) . Q(nlfs/Z)

> > }Q 1/2—¢ ) 0O
O(N¢N) O(Nl-i-e) O(nl/2+8/2) (n )

4. The NP-completeness of the RCP for planar graphs

In the previous section we proved that the radiocoloring problem for general graphs
is hard to approximate within a factor ef/2=¢ (for any ¢ > 0), wheren is the number
of vertices of the graph. However, the problem, when restricted to some special cases of
graphs, such as planar graphs, becomes, as we prove, easier.

In this section, we show that the decision version of min span RCP remains NP-complete
for planar graphs. This version asks given a planar g@@nd an integeB, to decide
whether there exists a valid radiocoloring f8rof span no more thaB. Therefore, the
optimization version of min span RCP remains NP-hard for planar graphs.

In the sequel the degree of vertexn a graphG is denoted byi/; (v) and when there is
no confusion simply ag(v). We also denote the subtraction operation between sa&ts as

Theorem 11. The following decision problem is NP-complete
Input: A planar graphG (V, E) and an integer B
Question Does there exist a radiocoloring for G with span no more th&n B

Proof. It can be easily shown that the decision version of min span RCP, where we seek to
decide whether a radiocoloring assignment with spaxists, is in NP (guess the assignment
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Group i
0,8-vertices
0,8-vertices 0,8-yertices
e erral-vertex
interngl-ves

interngl-¥ertex

1,7-vertex ‘ 1,7-vertex

common-internal-Yegex
0,8A/ertjces

Out

Q,8'wertices

Fig. 3. TheGroupcomponent.

and check in polynomial time the local constraints). To prove the theorem, we transform
the PLANAR-3-COLORING problem to min span RCP. The PLANAR-3-COLORING
problem is, given a planar gragh(V, E), to determine whether the vertices®fcan be
colored with three colors, such that no adjacent vertices get the same color.

We denotey modulox as(y)MOD(x). From the planar grap& (V, E), we construct a

new graphG’(V’, E’) using the component replacement technique.

The construction uses a component calBrdup, see Fig3, constructed as follows:

e Add one vertex calledutvertex.

e Add two vertices called 1,verticesand connect one of them to the out-vertex and to
each other, as shown in Fig. We call the 1,7-vertex connected to the out-vertefiras
1,7-vertex and the other ascond

e Add two vertices calledommon internaind connect them to the 1,7-vertices.

e Add one new neighbor to each of the 1,7-vertex, calteernal.

e Foreach1,7,common internal, internal vertex add two new neighbors calleg@i@s
The two vertices added for each such vertex are also calfedr of 0,8-vertices

e For each 0,8-vertex add six new neighbors, caléetial.

Add two new neighbors called 0;8erticesto the out-vertex. These two vertices added
to the vertex are also calledpair of 0,8-vertices

For each 0,8vertex add five new neighbors, called atadial.

The construction replaces every vertexf degreed (v) in the initial graphG with a
component, called a ‘cycle node’. The cycle node obtained by a vertex of dégrees

said to be ‘a cycle node of sizEv)’ and is constructed as follows:

e Add d(v) copies of the subgrap@roup shown in Fig.3. Call theith such group as
Group.
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Fig. 4. The cycle nodes of size 1 and 2 in abbreviation (the radial vertices attached to the 0,8-apdi0e are
not shown).

e Connect consecutive groups as follows: Connect the second 1,7-ve@aruy to the
out-vertex ofGroup;mop((vy)+1, fori = 1: d(v).
For example, the cycle nodes of size 1 and 2 are illustrated indRigabbreviation (the
radial vertices attached to the 0,8 and @8rtices are not shown).
Now the graphG’(V’, E’) is defined as follows:
(1) Replace each vertexof degreed(v) in the graphG with a cycle node of sizé(v).
(2) Foreach vertex of the graplG, number the edges incidentitan increasing clockwise
order.
(3) For every edge of the initial graph= (u, v) connectingu andv, letu, be the number
of edgee given by vertexu and letv, be the number of the edgagiven by vertex.
Then, take one of the 0;8ertices of the:.th group of the cycle node of verterand
one of the 0,8vertices of the,th group of the cycle node of vertexand collapse them
to a single vertex named also as’év8rtex. Do the same for the second’ey8rtex of
u and the second O;&ertex ofv.
An example of a grapls and the new grapty’ obtained is shown in Figh (depicted in a
compact way). It can easily be seen that the new gt@ph a planar graph. We next prove
two lemmas showing tha’ can be radiocolored using a span of size at most 9 if and only
if the initial graphG is 3-colorable.
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G G’

Fig. 5. TheG’ obtained by the grap@ in abbreviation.

Lemma 12. If x(G) <3thenXgspad G') <9.

Proof. Consider a 3-coloring of the initial grajg® using colorq1, 2, 3}. Let the following
radiocoloring assignment on the graph using a palette§ = {0, 1, 2, 3,4,5, 6, 7, 8} of
size 9:
(i) For each vertexi of the graphG coloredi, i € {1, 2, 3}, color all out-vertices of the
cycle node of vertexiin G’, with colori + 2 (i.e. a color from set3, 4, 5}).
For eachu € V, color each grougsroup, 1<i <d(u) of the cycle node oti as
follows:
(i) Color the first 1,7-vertex of the group with the color 1 and second with color 7.
(iii) Color 0,8-vertices and 0,8vertices with colors 0,8.
(iv) Assuming that the out-vertices of the group are colargde {3, 4, 5}, color the
common-internal vertices of the group with colors of &4, 5}\{i}.
(v) Color the internal-vertex neighbor to the 1,7-vertex colored 1, with color 6 and the
internal-vertex neighbor to the 1,7-vertex colored 7, with color 1.
(vi) Consider a 0,8-vertex and the neighbor to it (common)-internal vertex colpied
{2, 3, 4,5, 6}.Ifthe 0,8-vertex s colored 0, color the six uncolor neighbors with colors
{2,3,4,5,6,7,8}\{i}. If the 0,8-vertex is colored 8, color the six uncolor neighbors
with colors{0, 1, 2, 3,4, 5, 6}\{i}.
(vii) Consider a 0,8vertex and the neighbors to it out-verticesv coloredi, j,i, j €
{3, 4, 5}. If the 0,8-vertex is colored 0O, color the five uncolor neighbors with col-
ors{2,3,4,5,6,7,8\{i, j}. If the 0,8-vertex is colored 8, color the five uncolor
neighbors with colorg0, 1, 2, 3, 4, 5, 6}\{i, j}.
(viii) Color the radial vertices of 0,8 and 08ertices with the unused colors from $et

Claim 13. The suggested radiocoloring assignment is valid

Proof. The following hold for the suggested radiocoloring assignment:

Considering any cycle node, we have the following observations:

e Note first that, internal, common-internal, out-vertices are colored using colors from
set{2, 3, 4, 5, 6}. Note also that common-internal, out-vertices are colored using colors
{3, 4, 5}.

e Radial vertices neighbors to a 0,8-vertex: These are six vertices. They are neighbors to
a (common)-internal vertex colored using a calar € {2, 3,4, 5, 6}. The vertices are
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also neighbors to a 0,8-vertex colored 0 or 8. Thus, if the 0,8-vertex is colored 0, they
can be colored with the six colors of & 3, 4, 5, 6}\{i} U {7, 8}, else (the 0,8-vertex
takes color 8) with the six colors of s@&, 3, 4, 5, 6}\{i} U {0, 1}.

e Radial vertices neighbors to a G)&rtex: These are five vertices. They are neighbors to
two out-vertices of neighbor cycle nodes coloved, i # j,i,j € {2,3,4,5, 6}. The
vertices are also neighbors to a 0,8-vertex colored 0 or 8. Thus, if the 0,8-vertex is colored
0, they can be colored with the five colors of §213, 4, 5, 6}\{i, j} U {7, 8}, else (the
0,8-vertex takes color 8) with the five colors of $2t3, 4, 5, 6}\{i, j} U {0, 1}.

e 1,7-vertices: Each of them is connected to four vertices (internal, common-internal, out)
colored using colors of sd®, 3, 4, 5, 6}. The vertex is at distance one from the other
1,7-vertex of the group and at distance two from one 1,7-vertex of the next group. Recall
that all 1,7-vertices of the cycle node are colored by alternating between colors 1, 7. Also
the vertex is at distance two from at least one pair of 0,8-vertices. So, one of the colors
1, 7 is available for each such vertex.

e Common-internal vertices: Each of them is at distance two from the two internal vertices
colored{2, 6} and the out-vertices of the same cycle node colored {3, 4, 5}. Itis at
distance one from the 1,7-vertices of the group, hence it cannot take colors 1,2,6,7. Also
the vertex is at distance two from at least a pair 0,8-vertices. Hence, in {3465} \ {i}
there are two colors free for the two common-internal vertices.

e Internal vertices: Each of them is at distance two from three vertices (common-internal,
out) colored using the colors of si&, 4, 5}. Also, the vertex is at distance two from at
least one pair of 0,8-vertices. It is at distance one from one of 1,7-vertex, hence it cannot
take colorg0, 1, 2} or {6, 7, 8} and at distance two from the other 1,7-vertex. Hence, one
of the colors 6 or 2 is available for each such vertex.

e Out-vertices: Each of them is at distance two from the two common-internal vertices
colored using two colors of s€8, 4, 5}. The vertex is also at distance two from two
internal vertices, one of its group and the other of the next group, colored 2 and 6. Also,
the vertex is at distance one from a pair of' 68rtices colored 0,8 and at distance one
from two 1,7-vertices colored 1,7. Hence, one of the colors of3et, 5} is available
for each such vertex.

Now, consider any two out-vertices connecting two neighbor cycle negesSince they

take the corresponding colors as the verticesin the 3-coloring ofG, there is no conflict

between any two of them.

Thus, the suggested radiocoloring assignment is valid.

Lemma 14. If XsparlG") <9 theny(G) <3.
Proof. Consider any radiocoloring assignment of size @afThen, we get that,

Claim 15. Each pair of0,8vertices or0,8-vertices neighbors to a vertex are colored
0,8.

Proof. Each 0,8-vertex, 0;8/ertex has even neighbors. In a Seff colors of range 9, if the
vertex takes a color other than 0 or 8, then there will not be enough colors for its neighbors.
Considering a pair of 0,8-vertices neighbors to a vertex, they take colors(Q,8.
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Claim 16. The common-internainternal, out-vertices of any Groypl<i<d(v) of a
cycle nodev are colored using colors from s, 3, 4, 5, 6}.

Proof. Each such vertex is connected to at least one pair of 0,8-vertices colored 0,8. Thus,
they can take one of the colors from $&t0, 1, 7,8} = {2, 3,4,5,6}. O

Claim 17. Each pair of1,7vertices of any Group1<i<d(v), of a cycle nodey are
coloredl, 7.

Proof. Each 1,7-vertex, has four neighbors ((common)-internal, out) colored using four
colors from sef2, 3, 4, 5, 6} by claim 16. Moreover, the vertex is at distance two from at
least one pair of 0,8-vertices. If the vertex takes a color other than 1 or 7, then there will not
be enough colors for its neighbors from the SeSince, the two 1,7-vertices of@Group

are at distance one apart they take colors 1[7.

Claim 18. Any out-vertex or common-internal vertex of any Group<i <d(v), ofacycle
nodeuv is colored using one color from the §& 4, 5}.

Proof. Any out-vertex (common-internal vertex) is at distance one from a pair éf 0,8
vertices (0,8-vertices). The vertex is at distance one from two 1,7-vertices at distance two
(one) apart each other. Thus, the vertex cannot take coldr206, 7, 8. Thus, it can take

one of the colors %,5. O

Claim 19. Any internal vertex of any Groupl <i <d(v) of acycle node is colored using
either2 or 6.

Proof. Any internal vertex is at distance one from a pair of 0,8-vertices. The vertex is at
distance one from a 1,7-vertex and at distance two from the other 1,7-vertex of the group.
Also, the vertex is at distance two from the two common-internal vertices and the out-vertex
colored(3, 4, 5} (by Claim 18). Thus, it can take the color 2 or 6, depending on the color
of the 1,7-vertex neighbor to it.[]

Claim 20. For any cycle node, assuming that one out-vertex is colored & {3, 4, 5},
then all out-vertices of the cycle nodewére colored i

Proof. Consider the next out-vertex of the cycle nodevoBy Claim 18, the vertex is
at distance one from the two common-internal vertices col¢Bed, 5}\{i}. Also, it is at
distance one from two 1,7-vertices colored 1,7, and from a pair 6f@8ices colored 0,8.
Hence, it cannot take colof®, 1, 2, 6, 7, 8} U {3, 4, 5}\{i}. Thus the only color available
foritisi. The argument holds for all consecutive out-vertices of the cycle node.

We now compute a 3-coloring @ as follows: Assign to each vertexof the graphG
the color that any out-vertex of the cycle node corresponding to it takés. Ve argue
that this is a valid 3-coloring dB. First note that, by Claimk8 we know that the computed
assignment of®s uses only 3 colors. Moreover, recall also that, by Claim 20, all out-vertices
of a cycle node get the same coloi € {3, 4, 5}. Thus, for each cycle nodeof G’, all of its
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out-vertices (colored with the same color) ‘see’ the colors of the corresponding out-vertices
of all neighbor cycle nodes af. This is equivalent to the colors that the corresponding
to u vertex inG ‘see’ by all of its neighbors. Hence, since the out-vertice&0ohave no
conflicts with their neighbor out-vertices, there is no conflict with the colors of any vertex
in G and its neighbors. Thus, &’ can be radiocolored with a span of size 9, then there is
a 3-coloring ofG. [

(End of proof of Theoremil). O

Corollary 21. The following decision problem NP-complete

Input: A planar graphG (V, E) and integersBi, Bz, B1> Bo.

Question Does there exist a radiocoloring for G with span no more tiiarand order
no more thanB,?

5. A constant ratio approximation algorithm for min order RCP

We provide here an approximation algorithm for min order RCP for planar graphs by
modifying the constructive proof of the theorem presented by Heuvel and McGuiness in
[13]. Our algorithm is easier to verify with respect to correctness than what the proof given
in [13] suggests. It also has better time complexity (i.¢:40) compared to the (implicit)
algorithm in [13] which needs time @?). The improvement was achieved by performing
the heavy part of the computation of the algorithm only in some instancg#stead of all
asin [13]. This enables less checking and computations in the algorithm. Also, the behavior
of our algorithm is very simple and more time efficient for graphs of small maximum degree.
Finally, the algorithm provided here needs no planar embeddirg e opposed to the
algorithm implied in [13].

Very recently and independently, Agnarsson and Halldérsson in [2] presented approxi-
mations for the chromatic number of square and power gréghs Their method does
not explicitly present an algorithm. A straightforward implementation is difficult and not
efficient. Also, the approximation ratio for planar graphs of gengdrabtained is also 2.

The main theorem of Heuvel and McGuiness [13] states that a planar Graph be
radiocolored with at most2+25 colors. More specifically, the authors consider the problem
of L_(p, g)-Labeling, which is defined as follows:

Definition 22 (L_(p, g)-Labeling. Find an assignment:V — {0,1,...,v}, called
L_(p, q)-Labeling, which satisfied.(«) — L(v)| > pif D(u, v) = 1and|L(u)—L(v)|>q
if D(u,v)=2.

Definition 23. The minimum numberv for which anL _(p, ¢)-labeling exists is denoted
by 2(G; p, g) and is calledp, ¢g-span ofG.

In other words, when the two vertices are at distance one apart, they should take colors
(integers) that differ by at leagt and when they are located at distance two apart, they
should take colors that differ by at leagtNote thatL _(p, ¢)-labeling is a generalization
of radiocoloring sincd._ (p, ¢)-labeling is equal to radiocoloring when= 2 andg = 1.

The main theorem dfL3] is the following:
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Theorem 24(Heuvel and McGuinedd3]). If G is a planar graph with maximum degree
Aandp, g are positive integers with > ¢, thenA(G; p, ¢) <(4g —2)4+10p + 38 — 23.

By settingp = ¢ = 1 and using the observatidiiG; 1, 1) = y(G?), wherey(G?) is the
chromatic number of the graggi? (defined in the Introduction section), we getimmediately,
as alsd13] notices, that:

Corollary 25 (Heuvel and McGuined43]). If G is a planar graph with maximum degree
A theny(G?) <24 + 25.

The theorem 0f13] is proved using two lemmata. For an edge E(G), letz(e) the
number of triangular faces containing edgand for a vertex € V(G), let¢(v) be the
number of triangular faces containimgin the maximal planar graph @&. The first of the
two lemmata, used to prove the theorem for the case whetg > 12, is the following:

Lemma 26 (Heuvel and McGuined43]). Let G be a simple planar graph. Then there
exists a vertex with k neighborg, va, ..., v withd(vy) < - -+ <d(vg) such that one of
the following is true

(i) k<2

(i) k=3 withd(v1) <11,
(iii) k& = 4withd(v1) <7andd(v2) <11;
(iv) k =5withd(v1)<6,d(v2) <7,andd(v3) <11.

The second lemma, used to prove the theorem for the case wiéne< 11, is quite
similar.

Lemma 27 (Heuvel and McGuined43]). Let G be a simple planar graph with maximum
degreed. Then there exists a vertexwith k neighborsy, va, ..., vy withd(vy)) < -+ <
d(v) such that one of the following is true
() k<2;

(i) k= 3withd(v1)<5;

(i) k& = 3withz(vv;) >1for somej

(iv) k =4withd(v1) <4

(V) k =4 withz(vy;) = 2for somej

(Vi) k& =5withd(v;)<4andt(vv;)>1for somej
(vii) k = 5withd(v;)<5andz(vv;) = 2 for some]
(viiiy k& =5withd(v1)<7andt(vv;) >1foralli;

(iX) k =5withd(v1) <5,d(v2) <7,and for each i with (vv;) = 0it holds thatd (v;) <5.

These two lemmata give the so-calledavoidable configurationsf G. The following
operations apply t@: For an edge € E let G/e denote the graph obtained froGby
contractinge. For a vertex € V let G x v denote the graph obtained by deletingnd for
eachu € N(v) adding an edge betweerandu~ and betweem andu™ (if these edges do
not exist inG already). The notatiol (v) denotes the neighbors of The notation: —, with
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u~ € N(v), denotes the edge:— which directly precedes edge: (moving clockwise),
andu™, withu* € N(v), refers to the edgeu+ which directly succeeds edge (moving
clockwise).

The two lemmata are used to define the gridpavertex € V (G) andanedge € E(G)
using the following rules:

o If A>12, then let be as described in Lemma 26, andset vvy andH = G/e.
e If 6<A4<11 and one of 27 (i), (ii), or (iv) holds, then letbe as described, and set

e =vviandH = G/e.

o If 6<A<11 and Lemm&7 (iii) holds, then letv be as described, set= vv; with

t(vv;) =21, and setH = G/e.

o If 6<A4<11 and Lemma&7 (v) holds, then leb be as described, set= vv; with

t(vv;) = 2 and setd = G/e.

e If 6<A<11 and Lemma7 (vi) holds, then leb be as described, set= vv; with

d(v;) <4 andr(vv;) >1, and set = G/e.

o If 6 <A<11 and Lemma7 (vii) holds, then lety be as described, set= vv; with

d(v;) <5 andr(vv;) = 2, and setH = G/e.

e If6 <A< 11 and Lemm&7 (viii) holds, then let be as described and s€t= G x* v.

e If6 <A<11 and Lemma&7 (ix) holds, then let be as described and sBt= G * v.
The main idea of theorem of [13] is to defiHdo be H = G /e or H = G * v, withe = vvy
andd (v) <5, depending on which case of the two Lemmata holds, so that al@ys< 4.
Using these observations it is proved, by induction, that the minirgung)-span needed
fortheL_(p, q)-labeling ofH is A(H; p, q) <(4q — 2)4 + 10p + 38 — 23.

FromH we can easily return t& as follows. If H = G/e then letv’ the new vertex
created from the contraction of edgeln this case, ifG we setv; = v’ (this is a valid
assumption sincé(v1) <d(v")) and colorvy with the color ofv’. Now we only need to
color vertexv (for both cases off = G/e or H = G % v). From the wayw was chosen, it
can be easily seen that there is always one color free for the vertex in the set of colors of
span< (4g — 2)4 + 10p + 385 — 23 as concluded fad.

For the case of radiocoloring of a planar graphwe can use = 1 andg = 1 for the
order. Thus, the above theorem states that we need at maest2b colors.

5.1. The algorithm

We will use only Lemma 26 and the operatioiye in order to provide a much more
simple and more efficient algorithm than what implied in [14]. We provide below a high-
level description of our algorithm.

Algorithm Radiocoloring (G)

[l Sort the vertices of the graph G by their degree

[ If A4<12then follow Procedure (1) below:
Procedurgl):Compute graph G2.Consider the next vertex of the
order. Delete v from G?to get G2%.Now recursively color G2
with 145colors. The number of colors that v has to avoid is
at most A% =144Thus,in a set of 145colors ,there is one free
color for  w.
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[ If 4>12then

(1) Find a vertex wvand a neighbor wviof it ,as described in Lemma
26,and set e =vvs.

(2) Form G’ = G/e (G' = (V/,E’) with |V'| = n — 1, while |V| = n) and

denote the new vertex in G’ obtained by the contraction of
edge eas v'.

Modify the sorted degrees of G by deleting v,v1, and in-
serting v/ at the appropriate place , and also modify the
possible affected degrees of the neighbors of both vand vj.

(3) @¢(G’) = Radiocoloring(G")
(4) Extend &(G’)to a valid radiocoloring of G:

(a) Set vy =v' and give to wvpthe color of v
(b) Color v with one of the colors used in the radiocoloring
®of G'.

5.2. Analysis of the algorithm

5.2.1. Correctness
Notice first that Proceduifd] implies a radiocoloring o6 with X = 145 colors: Assign
frequencies 13, ..., 2X — 1 to the obtained color classes@Gf

Proposition 28. The algorithmRadiocoloring(G) outputs a valid radiocoloring for G
using no more thamax{66, 24 + 25} colors.

Proof. By induction assume that, the recursive step 3 in [lll] outputs a radiocoloridg of
using at most maf66, 24 + 25} colors. Note thatd(G') = A(G), because of the way
ande = vvq are chosen.

At step 4, the radiocolorin@(G’) of G’ is extended to a valid radiocoloring 6f, using
no more colors than those used in the previous step. This extension procedure is valid
as explained here: At step (a) the verigxof G takes the color of the vertex of G'.
This assignment is valid sinag has only a subset of the neighborsubfat distance one
and two.

Also, at step (b), the vertexof G is colored with one of the colors used in the radiocol-
oring ®(G") of G'. These colors are enough foito get a valid color. The correctness of
this claim is explained below.

For any vertexv € V(G), the number of vertices at distance two franis equal to
Zue,\,(v) d(u) — d(v) — 2t(v). By the wayv was chosen, it holds that(v) <5 and the
above sum gives that there are at magt2 19 vertices at distance two from In total,
the number of distance one and two neighbors of the vertextis(®4 + 19 = 24 +
24. Assuming that a palette of12+ 25 colors is given, there is always one color free
for v.

Thus, algorithnRadiocoloring(G) gives a valid radiocoloring t& using no more than
max{66, 24 + 25} colors. [
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5.2.2. Time efficiency and approximation ratio

Lemma 29. Our algorithm approximateX orge(G) by a constant factor of at mostax{2+
25 66
VRV

Proof. Obviously, Xorged G) > 4(G). By Proposition 28, our algorithm uses at most
max66, 24 + 25} colors, i.e.

<W<max{%s,2+2—5}. O

1
A

(1)

Lemma 30. Our algorithm runs inO(n4) sequential time.

Proof. Step [I] takes @n logn) time and Step [lI] takes @) time. LetS be the set of
neighbors of bothv, v1. Each implementation of [lll].1, 2 needs tim&v) + d(v1) +

Y .es d(x) in order to perform the operatiafi/e and Qlogn) time to modify the sorted
degree list. The total time spent recursively is then just Q. ,, d(v)-logn) = O(n logn).
Each implementation of [l11].4 needs(@) time at most and this step is executed at most
ntimes. Thus, the total time for all executions of [Ill].4 ig&1). This dominates the total
execution time. [J

A more sophisticated and efficient implementation of the contraction operation can be
found in[16].

6. An FPRAS for the number of radiocolorings of a planar graph
6.1. Sampling and counting

Let G be aplanargraph of maximum degre¢ = A(G) onvertexse¥V ={0,1,...,n—

1} andC be a set ofl colors. Letd: V — C be a (proper) radiocoloring assignment of the
vertices ofG. Such a radiocoloring always existstifz 24 + 25 and can be found by our
O 4) time algorithm of the previous section.

Consider the Markov Chai(X,) whose state spad® = R;(G) is the set of all radio-
colorings ofG with /4 colors and whose transition probabilities from state (radiocoloring)
X, are modelled by:

1. Choose a vertex € V and a color € C uniformly at random (u.a.r.)
2. Recolor vertexw with color c. If the resulting coloringX’ is avalid radiocoloring as-

signment then leX, .1 = X’ elseX;y1 = X;.

The procedure above is similar to the “Glauber Dynamics” of an antiferromagnetic Potts
model at zero temperature, and was usdqd4ito estimate the number of proper colorings
of any low degree graph with colors.

The Markov Chain(X,), which we refer to in the sequel 8$(G, 1), is ergodic(as we
showed below), provided>24 + 26, in which case its stationary distributionusiform
over R. We show here tha (G, 2) is rapidly mixing i.e. converges, in time polynomial
in n, to a close approximation of the stationary distribution, providediba2(24 + 25).
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This can be used to get a fully polynomial randomized approximation scheme (fpras) for the
number of radiocolorings of a planar gra@gtwith / colors, in the case wheve> 44 + 50.

6.2. Some definitions and measures

Fors € N let P': R — [0, 1] denote the-step transition probabilities of the Markov
ChainM (G, 2) so thatP!(x, y) = Pr{X, = y|Xo = x}, Vx, y € R. Itis easy to verify that
M (G, ) is (a)irreducible and (b)aperiodic The irreducibility of M (G, /) follows from
the observation that any radiocoloringnay be transformed to any other radiocoloringy
sequentially assigning new colors to the vertiges ascending sequence; before assigning
a new colorc to vertexuv it is necessary to recolor all verticas> v that have coloe. If
we assume that>24 + 26 colors are given, removing the colofrom this set, we are
left with >24 + 25 for the coloring of the rest of the graph. The algorithm presented in
previous section shows that the remaining graph can by radiocolored with a set of colors of
this size. Hence, colar can be assigned ta

Aperiodicity follows from the fact that the loop probabilities &é€x, x) # 0, Vx € R.

Thus, the finite Markov ChaitM (G, /) is ergodig i.e. it has a stationary distribution
. R — [0, 1] such that lim_, o P'(x,y) = n(y), Vx, y € R. Now if #’: R — [0, 1] is any
function satisfying “local balance”,i.e/(x) P (x, y) = n'(y) P(y, x) thenif)_, . 7'(x) =
litfollows thatr' is indeed the stationary distribution. In our casg, x) = P(x, y), thus
the stationary distribution o¥/ (G, 4) is uniform.

The efficiency of any approach like this to sample radiocolorings crucially depends on the
rate of convergence df (G, /) to stationarity. There are various ways to define closeness
to stationarity but all are essentially equivalent in this case and we will use the “variation
distance” at time with respect to initial vertex

1
Ox (1) = max| P (x, S) — n(S)| = = Y [P (x,y) — (Y,
SCR 20cr

whereP'(x,8) = ¢ P'(x,y) andn(S) = Y, ¢ 7(x).

Note that this is ainiform boundover all eventss C R of the difference of probabilities
of eventS under the stationary anedstep distributions.

Therate of convergence to stationarityom initial vertexx is

7.(6) = min{t : 5, (t") <e, V' >1).
We also give the following definition:

Definition 31. A randomized approximation scheme for radiocolorings wittolors of
a planar grapl@ is a probabilistic algorithm that takes as input the grépand an error
bounde > 0 and outputs a numbét (a random variable) such that

Pr{(1—&)|R)(G)KY<(1+2) [RAG)} >3,

Such a scheme is said to fly polynomialif it runs in time polynomial i ands~1. We
abbreviate such schemesfpoas.
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6.3. Rapid mixing

As indicated by the (by now standard) techniques for showing rapid mixiregbpgling
[14,15], our strategy here is to construct a coupling #r= M(G, 4), i.e. a stochastic
processX;, Y;) onR x R such that each of the proces$#&s), (¥;), considered inisolation,
is a faithful copy ofM. We will arrange a joint probability space f¢X,), (Y;) so that, far
from being independent, the two processes terdtpleso thatX, = Y, for tlarge enough.
If coupling can occur rapidly (independently of the initial stakgs Yp), we can infer that
M is rapidly mixing, because the variation distancebffrom the stationary distribution
is bounded above by the probability th&t,) and(Y;) have not coupledyy timez.

The key result we use here is tBeupling Lemmésee [11, Chapter 4] by Jerrum), which
apparently makes its first explicit appearance in the work of Aldous [1, Lemma 3.6] (see
also Diaconis [5, Chapter 4, Lemma 5]).

Lemma 32. Suppose that M is a countabkrgodic Markov chain with transition probabil-
ities P (-, -) andlet((X,, ¥;), t € N) be a coupling of M. Suppose further that(0, 1] — N

is afunction such tha®r(X, ) # Y:«)) <e. Ve € (0, 1], uniformly over the choice of initial
state(Xo, Yo). Then the mixing time(¢) of M is bounded above hbye).

The transition(X,, Y;) — (X;+1, Y;+1) in the coupling is defined by the following ex-
periment:

1. Selectv € V uniformly at random (u.a.r.).

2. Compute a permutation(G, X, Y;) of C according to a procedure to be explained.

3. Choose a colar € C u.a.r.

4. Inthe radiocolorind(, (respectivelyt;) recolor vertexy with color ¢ (respectivelyg (c))

to get a new radiocoloring’ (respectivelyt’).

5. If X’ (respectivelyY’) is a (valid) radiocoloring theiX, .1 = X’ (respectivelyY; 1 =

Y’), else letX; 1 = X; (respectively¥; 1 = ;).

Note that, whatever procedure is used to select the permutgtitie distribution ofg(c)

is uniform, thus(X;) and(Y;) are both faithful copies ao#/.

We now remark that any set of verticés € V can have the same color in the graph
G? only if they can have the same color in some radiocoloring oThus, given a proper
coloring of G2 with 1’ colors, we can construct a proper radiocoloringsoby giving the
values (new colors),B, ... ., 2/’ —1inthe color classes @2. Note that this transformation
preserves the number of colors (but not the span).

Now let A = A, C V be the set of vertices on which the colorings@t implied by
X,,Y; agree and = D; C V be the set on which they disagree. Wétv) be the number
of edges incident at in G2 that have one point it and one inD. Clearly, if m’ is the
number of edges af? spanningA, D, we gety", ., d'(v) =Y., cpd (v) = m'.

The procedure to computgG, X;, Y;) is as follows:

(a) If v € D theng is the identity.

(b) If v € A then proceed as follows: Denote By the set of neighbors of in G2.
DefineC, C C to be the set of all colors, such that some vertex iN receives in
radiocoloringy; but no vertex inV receives: in radiocoloringY;. LetCy be defined as
C, with the roles ofX;, Y; interchanged. Obsen@, N C, = @ and|C,|, |C,|<d'(v).
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Let, w.l.o.g.,|C,|<|Cy|. Choose any subsét; c C, with |C;| <|Cy| and letC, =
{c1,..., ¢}, C; = {c}, ..., ¢} be enumerations @, C,, coming from the orderings
of X;, ;. Finally, letg be the permutatiotry, ¢}), . .., (¢, c;) which interchanges the
color setCy, C,s and leaves all other colors fixed.

Itis clear thai D, 11| — | D,| € {—1, 0, 1}.

(i) Consider first the probability thaD,, 1| = | D;| + 1. For this event to occur, the vertex
v selected in step (1) of the procedure fomust lie inA and hence we follow (b). If
the new radiocolorings are to disagree at veitéken the color selected in line (3)
must be an element @f,. But|C,|<d'(v) hence

/ /

Pr{ Dl = Dy + <> 3 2 2)

N oyen 4 A-n

(i) Now consider the probability thaD, 1| = | D;|— 1. For this to occur, the vertexmust
liein D and hence the permutatigrselected in line (2) is the identity. Faf; 1, Y;41
to agree ab, it is enough that colaor selected in step (3) is different from all the colors
thatX;, Y, imply for the neighbors of in G2. The number of colors that satisfy this
is (by our previous results) at least- 2(24 + 25) + d’(v). Hence

1 . ] —2(24+25 +d (v)
Pr{lDiy1l =|D:| =1} > = X (

" veD A
A—2244+2 !
> (—S)IDI + = 3)
n n
Define now
A—224 + 25 m’
=——— " and = —.
x n P n
So

Pr{|D;1a] = |D/| + 1} <P
and P¥|D; 1| = |D,;| — 1} >a|D;| + . Givena > 0, i.e. A > 2(24 + 25), from Egs. )
and (3), we get
E(|Ds11]) < BUD:| + 1) + (| Ds| + B)(IDs| = D) + (1 — a| Dy | — 2)| Dy |
= (1= o)|Dyl.

Thus, from Bayes, we gei (| D;+1]) < (1 — a)'|Do| <n(1 — «)! and sincg D] is a non-
negative random variable, we get, by Markov inequality, that

Pr{D; # 0} <n(l — o) <ne ™.
So, we note thalye > 0, Pr{D, # ¢} <e provided that > (1/%) In(n/¢) thus proving:

Theorem 33. Let G be a planar graph of maximum degrdeon n vertices. Assuming
A>224 + 25) the convergence time(e) of the Markov ChainM (G, 4) is bounded
above by

o< |n<ﬁ>
ST 04125 G

regardless of the initial state. x
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6.4. An fpras for radiocolorings with colors

The technique we employ is as[i¥] and is fairly standard in the area. By using it we
get the following theorem:

Theorem 34. There is a fully polynomial randomized approximation schéfpars) for
the number of radiocolorings of a planar graph G witktolors, providedA > 2(24 + 25),
where4 is the maximum degree of G

Proof. Recall thatrR,(G) is the set of all radiocolorings @ with / colors. Letm be the
number of edges i and let

G=Gu2Gu-12-2G12 Go

be any sequence of graphs whérg 1 is obtained byG; by removing a single edge. We
can always erase an edge whose one node is of degree at mast.Sdkearly

[Ri(Gw)| |IR:(Gn-)|  IR)GY)
IRi(Gm-DI 1R (Gn2)|  R,(Go)l

But|R,(Go)| = A" for all kinds of colorings. The standard strategy is to estimate the ratio

|R(G)] =

IR;(Go)l.

y— RAGD
T IRAG)]

for eachi, 1<i <m.

Suppose that graphs;, G;_1 differ in the edge{u, v} which is present irG; but not
in G;_1. Clearly, R,(G;) € R;(G;-1). Any radiocoloring inR;(G;_1)\R,(G;) assigns
either the same color to, v or the color values of, v differ by only 1. Let degv) <5 in
G;. So, we now have to recolorwith one of at least — (24 + 25), i.e. at least 4 + 25,
colors (from Sectiordb of this paper). Each radiocoloring & (G;) can be obtained in at
most one way by our algorithm of the previous section as the result of such a perturbation.
Thus,

1 24 + 25

ST _<pi<L 4
2524+ 125" ()

To avoid trivialities, assume Qe¢<1,n>3 and4 > 2. Let Z; € {0, 1} be the random
variable obtained by simulating the Markov Chain(G;_1, 4) from any certain fixed
initial state for

T 2 n 4dnm
T 7 —2024+25" e

steps and returning to 1 if the final state is a membet giG;) and O else.
Letyw; = E(Z;). By our theorem of rapid mixing, we have

&

&
pl 4m lul pl+4m
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and by Eq. 4), we get

(1— %)Pigﬂig <1+ i) Pi-

As our estimator fotR; (G)| we use
Y ="Z1Z2- Zp.
Note thatE(Y) = A" pyuy - - - w,, - But

Var(Z1Z>---Z, m Var(Z;
a(lZ 1):I—I 1+ a(zz) -1

Var(Y) < 5
(Hapto - - Hy) i=1 %

By standard ways of working (as[ih4]) one can easily show thésatisfies the requirements
for an fpras for the number of radiocolorings of graphwith 4 colors|R,(G)|. O
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