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Abstract

Do-All is the abstract problem of usingn processors to cooperatively performm independent tasks
in the presence of failures. This problem and its derivatives have been a centerpiece in the study
of trade-offs between efficiency and fault-tolerance in cooperative computing environments. Many
algorithms have been developed for Do-All in various models of computation, including message-
passing, partitionable networks, and shared-memory models under a variety of failure models.
This work initiates the study of theDo-All problem for synchronous message-passing processors

prone toByzantinefailures. In particular, upper and lower bounds are given on the complexity of
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Do-All for several cases: (a) the case where the maximum number of faulty processorsf is known a
priori, (b) the case wheref is not known, (c) the case where a task execution can be verified (without
re-executing the task), and (d) the case where task executions cannot be verified. The efficiency of
algorithms is evaluated in terms of work andmessage complexities. Thework complexity accounts for
all computational steps taken by the processors and themessage complexity accounts for all messages
sent by the processors during the computation. The work and messages of a faulty processor are
counted only until the processor fails to follow the algorithm. It is shown that in some cases obtaining
work�(mn) is the best one can do. It is also shown that in certain cases communication cannot help
improve work efficiency.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The ability to effectively cooperate on common tasks in a decentralized setting is key to
solving many computation problems ranging from distributed search (e.g., SETI[20]) to
distributed simulation (e.g.,[7]) and multi-agent collaboration (e.g.,[1,26]). Do-All, an ab-
straction of such cooperative activity, is the problem of usingn processors to cooperatively
performm independent tasks in the presence of failures. The Do-All problem can be used
to study trade-offs between efficiency and fault-tolerance in cooperative computing, and is
considered to be fundamental in the research on the complexity of fault-tolerant distributed
computation[10,17].Variationsof this problemhavebeenstudied in shared-memorymodels
(Write-All) [18,19,24], in message-passing models[8,10,12], and in partitionable networks
(Omni-Do) [9,15,22]. Solutions for Do-All must perform all tasks efficiently in the pres-
ence of specific failure patterns. The efficiency is assessed in terms of work, time, and
communication complexity depending on the specific model of computation.
In this paper we initiate the study of the Do-All problem underByzantine processor fail-

ures[21] that model arbitrary processor malfunction. We consider synchronous processors
that communicate by exchanging messages. We assume that the execution of a single task
takes bounded constant time, modeled as one computation step for any processor. The tasks
can be performed in any order and multiple executions of the same task do not affect the
outcome of the computation. We evaluate algorithms according to the number of computa-
tion steps taken by the processors during the computation, i.e., theavailable processor steps
orworkmeasure of Kanellakis and Shvartsman[17], and according to theircommunication
costthat counts the number of point-to-point messages sent by the processors during the
computation. The work and messages of a faulty processor are counted only until it fails to
follow the algorithm being executed.
The available processor steps measure is a direct generalization of theprocessor× time

product, a standard complexity measure in parallel computing. Both complexity measures
account for all steps of participating processors, including any idling steps.This is especially
relevant in the context offast algorithmswhere the goal is to complete the required work
as efficiently as possible and as fast as possible (which is the natural concern in practical
applications such as factorization for public-key cryptanalysis). Hence, by “forcing” all
non-faulty processors to work at every step (and not allowing the processors to idle for



A. Fernández et al. / Theoretical Computer Science 333 (2005) 433–454 435

free until the computation is complete) we employ the full available parallelism. In the
study of the Do-All problem, this enable us to extract and identify the trade-offs between
efficiency and fault-tolerance in the most general case, where processors must work until
all tasks are performed, and despite the failures in the system components. In this paper our
goal is to obtain fast algorithms, and hence, using the available processor steps measure to
evaluate the efficiency of our solutions and lower bounds, is a natural choice. Evaluating
our solutions in terms of message complexity is also important, as being fast is not our only
goal and it is important to manage the communication efficiency as well.

Prior work. The Do-All problem, its shared-memory version, theWrite-All problem, and
its partitionable networks version, the Omni-Do problem, have been studied under various
failure assumptions. However, this problem has not been studied under Byzantine processor
failures. Prior work on Do-All dealt with processor stop-failures (e.g.,[17,8,10,14,6]), with
processor stop-failures and restarts (e.g.,[18,4]), with networks prone to partition (e.g.,
[9,22,13]), and with processor delays (e.g.,[23,3,2,5,16]).

The model of Byzantine processor failures was introduced by Lamport et al.[21] in the
context of the consensus problem (a set of processors must agree on a common value).
Assuming that the number of faulty processorsf is fixed and known in advance, (among
other results) they gave a lower bound of 3f +1 for the number of synchronous processors
required for consensus. They also presented a synchronous consensus protocol that works
in f + 1 rounds, withn > 3f + 1, but exponential communication (number of messages).

Contributions. This paper presents the first results for theDo-All problem for synchronous
message-passing processors prone to Byzantine failures. Letm be the number of tasks to
be executed, andn the number of processors, of which up tof can fail. Note that the Do-All
problem can be trivially solved with�(mn) work by having each processor perform all the
tasks. Thus the goal is to seek solutions with o(mn) work, or to show that no such solutions
are possible.

We study this problem in several settings. We consider (a) the case where the maximum
number of faulty processorsf is known a priori, (b) the case wheref is not known, (c) the
case where a task execution can be verified (without re-executing the task), and (d) the
case where task executions cannot be verified. Fig.1 summarizes the results obtained in
this paper. For these results we assumen�m (this is the most interesting case, when the
number of processorsn does not exceed the number of tasksm). In the figure,v, 1�v�m,
is the number of tasks whose completion status can be verified by one processor in one step.
Here��f is the actual number of processors that fail in a computation of interest (f is
the upper bound on the number of processors that may fail; of course a smaller number of
processor may actually fail in a specific execution). For brevity, we define�n,� as follows:
�n,� = log(n/�) when��n/ logn and�n,� = log logn whenn/ logn < � < n. Where
the upper bounds on the communication complexity are not given, the work bounds are
obtained without communication. Finally, we use� notation to specify upper and lower
bounds in conjunction with work defined to be the minimum, over all algorithms, of the
maximum work caused by all adversaries.
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No verification Verification:v tasks can be verified in one step
f = �(n) f = o(n)
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)
Fig. 1. Summary of the results.

Among the different assumptions considered, the verifiability of tasks is possibly the
least common. The assumption is that in a system with verification processors can check
whether a task has been executed (up tov tasks can be verified in one step). Depending on
the kind of tasks we are considering, this capability could be provided by several means. For
instance, the tasks could be computational problems such that solving them is significantly
more costly than checking whether a given candidate solution is correct. (Examples of
these problems are sorting a list or factoring a large number.) In this case, a processor can
verify that the task has been done if it has a correct solution. The problem of distributing
these solutions to the processors can be solved, for instance, with a reliable stable storage
holding a database of solutions, which upon request delivers the solutions to given tasks
and which does not accept incorrect solutions (it verifies them before adding them to the
database). Another possibility would be having each processor reliably broadcasting the
obtained solution after each task execution. Note that in both cases it is simple to enforce
that in the same time step two correct processors either both find a task done or undone. In
the rest of the paper we do not consider the specific verificationmethods and we abstract the
cost of verification in terms of the parameterv. Furthermore, we do not count the messages
(if any) involved in the verification, since this is dependent on the particular verification
methods and need not be a function of the number of verifications.
We remark that in the preliminary version of this work[11], some results were incorrectly

stated. Specifically, for the cases of unknownf with verification and of knownf = �(n)
with verification, the upper bound on work was given as O(mn/v), for the full rangesn�m
andv�m. Here we show that the above upper bound holds precisely whenv = O(n) and
m/v = �(logn/�n,�).
More interestingly, in[11] the lower bound on work for the same cases was given as

�(mn/v). Herewe show the stronger lower bound onwork of�(m+mn/v+n logn/�n,�).
Furthermore, in[11], for the case of knownf = o(n) with verification, the lower bound on
work was shown to be�(m(f + 1)/v). Here we show the stronger lower bound on work
of �(m+mf/v + n logn/�n,�).

Document structure. The paper is organized as follows. In Section2we define the model
of computation, the Do-All problem, and the complexity measures. In Section3we present
our results when the task executions cannot be verified, first for the casewhen themaximum
number of faulty processorsf is known (Section3.1) and then for the casewhenf is unknown
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(Section3.2). In Section4we present our results when the task executions can be verified,
first whenf is known (Section4.1) and then whenf is unknown (Section4.2). We conclude
in Section5.

2. Model of computation

We start by defining the system model, the abstract problem of performing a collection
of tasks in a distributed environment with Byzantine failures, and the complexity measures
of interest.

Distributed setting. Weconsideradistributedsystemconsistingofnsynchronousmessage-
passing processors; eachprocessor hasaunique identifier (PID) from the set[n] = {1,2, . . . ,
n}. We assume thatn is fixed and is known to all processors.

Tasks.We define atask to be a computation that can be performed by any processor in
one step. An execution of any task does not depend on the executions of other tasks. The
tasks areidempotent, i.e., executing a task many times or concurrently with other tasks has
the same effect as executing the task once by itself. Each task has a unique identifier (TID)
from the set[m] = {1,2, . . . , m}. We assume that allm tasks are initially known to all
processors.

We consider the setting where a task execution can beverifiedwithout re-executing the
task and the setting where a task execution cannot be verified.When verification is possible,
we assume that up tov tasks, 1�v�m, can be verified by a processor in one step. Because
the setting is synchronous, we assume that if the same task is verified by several processors
in the same step (see below), then either all processors find the task done or all of them find
the task undone. As we mentioned previously, the verification could be done with different
techniques, and our model is a simple abstraction of any of these techniques.

Synchrony and time.We consider the synchronous model where the processors proceed
in lock-step, and assume that in each synchronous step a processor can: (1) execute a task or
verify up tov tasks (when verification can be done), (2) send messages to other processors
and receive the messages sent to it by other processors in the same step, and (3) perform a
constant-time local computation. We measuretime complexityin terms of the synchronous
parallel steps.

Communication. Processors communicate by sending point-to-point messages. The un-
derlying communication network is assumed to be fully connected, that is, any processor
can send messages to any other processor. We assume that messages are neither lost nor
corrupted in transit, and that messages contain O(max{m, n}) bits. Messages sent in one
step of the computation are received in the same step.

Model of failures. We considerByzantine processor failures[21].We assume that a faulty
processor can behave arbitrarily (do nothing, do something not directed by its protocol,
send arbitrarymessages, or behave normally).A faulty processor controls only its ownmes-
sages and its own actions, and it cannot control other processors’messages and actions. In
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particular, a faulty processor cannot corrupt another processor’s state, modify/replace an-
other processor’s messages, or impersonate other processors (i.e., create and sendmessages
that appear to have been sent by another processor). A faulty processor cannot “undo” a
task that was previously executed.
We let an omniscientadversaryimpose Byzantine failures on the system. We use the

notion of afailure patternto describe the occurence of Byzantine failures caused by the
adversary in a given computation. Syntactically, a failure patternF is a set of pairs(p, t),
wheret is the first time step of the computationwhere the adversary forces processorp ∈ [n]
to behave differently from what is prescribed by the algorithm for processorp. We assume
that the adversary has full knowledge of the actions and decisions taken by the algorithm
before stept (i.e., the adversary has full knowledge of the history of the computation).
When a computation occurs in the presence of a failure patternF, we say that processor

p ∈ [n] survivesstepi if F does not contain a pair(p, t) such thatt� i. We say that a
processorp fails in F, if there exists a pair(p, t) in F, for somet. For a failure patternF we
define itssizeto be� = |F |, i.e., it is the number of processors that fail inF (� can be 0).
A failure modelF is the set of all failure patterns that a given adversary can force. For the

purpose of this paper we consider failure modelsFf , wheref < n, that contain all possible
failure patterns of size at mostf. In this work we analyze the case where the parameterf is
known to the algorithms, and the case wheref is unknown.

The Do-All problem. We define the Do-All problem as follows:
Do-All: Given a set ofm tasks, perform all tasks usingn processors, in the presence
of any failure patternF in the given failure modelF .

The Do-All problem is considered to be solved when allm tasks are performed and at least
one non-faulty processor is aware of this.

Work and message complexity.We are interested in studying the complexity of the
Do-All problem measured aswork (cf. [17,10,8]). We assume that a single step of a pro-
cessor corresponds to a unit of work (recall that a single task can be performed in a single
step). When task verification is allowed, we assume that up tov tasks can be verified in a
single step. Thus performing a task or verifyingv tasks corresponds to a unit of work. Our
definition ofwork complexityis based on theavailable processor stepsmeasure[17]. For a
computation subject to a failure patternF ∈ Ff , denote byPi(F ) the number of processors
that survive stepi of the computation.

Definition 2.1 (Work complexity). Given a problem of sizemand ann-processor algorithm
that solves the problem in the failure modelFf , if the algorithm solves the problem for a
failure patternF ∈ Ff by step�(F ), then the work complexitySof the algorithm is

S = Sm,n,f = max
F∈Ff

{
�(F )∑
i=1
Pi(F )

}
.

We also evaluate the efficiency of message-passing algorithms in terms of theirmessage
complexity. For a computation subject to a failure patternF ∈ Ff , denote byMi(F ) the
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number of point-to-point messages sent at stepi of the computation by thePi(F ) processors
that survive that step.

Definition 2.2 (Message complexity). Given a problem of sizemand ann-processor algo-
rithm that solves the problem in the failuremodelFf , if the algorithmsolves the problem for
a failure patternF ∈ Ff by step�(F ), then the message complexityM of the algorithm is

M = Mm,n,f = max
F∈Ff

{
�(F )∑
i=1
Mi(F )

}
.

Note that when processors communicate using broadcasts or multicasts, each broad-
cast/multicast is countedas thenumber of point-to-pointmessages fromsenders to receivers.
As wementioned in the previous section, we do not count as part of themessage complexity
of the algorithm the messages used to verify tasks in the models with verifications.
In the rest of thepaperweassume that, initially, thenumber of processorsn is nomore than

the number of tasksm; these are the scenarios motivated by typical applications. Analysis
for cases whenn > m followsmutatis mutandis.

3. Doing-all when task execution is not verifiable

We first consider the setting where a processor cannot verify whether or not a task was
performed. Thus a faulty processor can “lie” about doing a task without any other processor
being able to detect it.

3.1. The maximum number of faulty processors is known

We assume here that the upper boundf on the number of processors that can fail is known
a priori; of course the set of processors that may actually fail in any given execution is not
known. We first present lower bounds for this setting.

Theorem 3.1. Any fault-free execution of an algorithm that solves theDo-All problem in
the failure modelFf with f known, takes at least�m(f+1)n

 steps.

Proof. By way of contradiction, assume that there is an algorithmA that solves the Do-All
problem for all failure patterns of size at mostf, and that it has some failure-free execution
R that solves the problem ins < �(m(f + 1)/n) steps. Then, inR there is a taskz that has
been performed by less thanf + 1 processors, since� sn

m
��� (�m(f+1)/n−1)n

m
� < f + 1.

Now construct an executionR′ of A that behaves exactly likeRexcept that in the firsts
steps each processor that is supposed to execute taskzis in fact faulty and does not executez.
Sincez is executed by less thanf +1 processors,z is not executed. Since verification is not
available, no correct processor inR′ can distinguishR fromR′, henceR′ stops afterssteps
and the problem is not solved (since at least one task was not performed), a contradiction.

�



440 A. Fernández et al. / Theoretical Computer Science 333 (2005) 433–454

Processorp, 1�p�n does:
1 for kp = 1 to �m(f+1)n  do
2 execute task((�mpn  + kp)modm)+ 1

Fig. 2. AlgorithmCover. The code is for processorp.

Corollary 3.2. Any fault-free execution of an algorithm that solves theDo-All problem in
the failure modelFf with f known, has work at least�m(f + 1)/nn.

We now present algorithmCover that solves Do-All in the case wheref is known and
task execution cannot be verified. The algorithm is simple: each task is performed byf +1
processors. Since there can be at mostf faulty processors, this guarantees that each task is
performed at least once. This implies the correctness of the algorithm. The pseudocode of
the algorithm is given in Fig.2. We now show that algorithmCover is optimal.

Theorem 3.3. Algorithm Cover solves theDo-All problem in the failure modelFf with f
known, in optimal number of steps�m(f + 1)/n and work�m(f + 1)/nn, without any
communication.

Proof. The proof follows from the fact that each task is executed by at leastf +1 different
processors. Since at mostf processors are faulty, at least one correct processor executes the
task.
For simplicity we will remove the modular algebra (see Fig.2) for both processor and

task indices. We do this by assuming that any task numberz, z < 1, is in fact the task
numberz+m, any task numberz > m is in fact the task numberz−m, and any processor
p, with p < 1, is in fact processorp + n.
Let us consider the tasks between�mp

n
 + 2 and�m(p+1)

n
 + 1.We show that these tasks

are executed by processorsp − f to p. For that, it is enough to show that the last task
executed by processorp−f is at least task number�m(p + 1)/n+1. This can be simply
observed, since�m(p − f )/n + �m(f + 1)/n + 1��m(p + 1)/n + 1, from the fact
that�x + �y��x + y. �
It is worth observing that algorithmCoveris work-optimal and time-optimal even though

no communication took place. This shows that in this setting communication does not help
obtaining better performance.

3.2. The maximum number of faulty processors is unknown

Now we consider the case where the upper boundf is not known, i.e., all that is known
is thatf<n. In this setting we observe that no algorithm can do better than having each
processor perform each task, as shown in the following theorem.

Theorem 3.4. Any fault-free execution of an algorithm that solves theDo-All problem in
the failure modelFn−1 takes at least m steps and incurs at leastm · n work.
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This is an immediate corollary of the above discussion. In summary, it is not very inter-
esting to study fault-tolerant computation in this model:

Corollary 3.5. When f is unknown and the task execution cannot be verified, the trivial
algorithm in which each processor executes all the tasks is optimal.

4. Doing-all when task execution is verifiable

Given the pessimistic results in Section3 regarding our ability to solve Do-All efficiently,
we study the problemunder a newassumption.We assume that there is away for a processor
to verify whether a task has been done or not (without executing the task). The verification
mechanism reinforces the ability of correct processors to detect faulty processors: if a faulty
processor “lies” about having done a task, a correct processor can detect this by separately
verifying the execution of the task. Here we assume that in one step any processor can verify
up tov tasks, where 1�v�m.

4.1. The maximum number of faulty processors is known

As before, we first consider the case where the upper boundf on the number of faulty
processors is known.We first show lower bounds on steps and work required by any Do-All
algorithm in this case (Section4.1.1). Then we present an algorithm, calledMinority, de-
signed to efficiently solve Do-All whenf �n/2 (Section4.1.2). Next we present algorithm
Majority that is designed to efficiently solve Do-All whenf < n/2 (Section4.1.3). Finally,
we combine algorithmsMinority andMajority, yielding an algorithm, calledComplete,
that efficiently solves Do-All for the whole range off (Section4.1.4). The complexity of
algorithmCompletedepends onf and comes close to matching the corresponding lower
bound.

4.1.1. Lower bounds
We now present lower bounds on time steps and work for any execution of an algorithm

that solves the Do-All problem with verification and knownf. The first result is a bound on
work that follows directly from the analogous result shown in[14] for the fail-stop model
[25] (a processor may crash at any moment during the computation and once crashed it
does not restart). Recall that we define�n,� as follows:�n,� = log( n� ) when��n/ logn,
and�n,� = log logn whenn/ logn < � < n.

Lemma 4.1. Any execution of an algorithm that solves the Do-All problem in the failure
modelFf with f known, in the presence of��f Byzantine failures, requires work�(m+
n logn/�n,�).

Proof. Theorem 2 in[14] gives a lower bound on the amount of work any algorithm that
solves the Do-All problem requires. The mentioned theorem assumes the fail-stop model,
and the existence of an oracle that gives information about termination and that balances the
undone tasks among the correct processors. Implicitly, the oracle can verify the execution of
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up tomtasks in constant time.The theoremshows that, just in executing tasks, any execution
with � failures of an algorithm that solves Do-All (forn�m) in this model requires work
�(m + n logn/�n,�). Since crashes are a special case of Byzantine failures, the lower
bound applies to our model as well.�

We now present a lower bound on the steps of any algorithm that solves the Do-All
problem.

Lemma 4.2. Any fault-free execution of an algorithm that solves theDo-All problem in
the failure modeFf with f known and with task verification, takes at least�m(f + v)/nv
steps.

Proof. By way of contradiction, assume that there is an algorithmA that solves the Do-All
problem with verification for all failure patterns of length at mostf and it has some failure-
free executionR that solves the problem ins < �m(f + v)/nv steps (sinces is an integer,
we can drop the ceiling:s < m(f + v)/nv). The work in this execution iss · n. Note that
in these steps each task has been executed at least once. Counting just one task execution,
m units of work have been spent on executing the tasks. The remaining work issn − m,
and each work unit can be used to either perform a task or to verifyv of them. Then there
is a taskz that, in addition to having been executed once, has been “looked at” (executed or
verified) at mostf − 1 more times, since⌊

(sn−m)v
m

⌋
<

⌊
(
m(f+v)
nv

n−m)v
m

⌋
=

⌊(
f + v
v
− 1

)
v

⌋
= f

(by the pigeonhole principle). Thus taskzhas been “looked at” at mostf times.
Now construct an executionR′ of A that behaves exactly likeR except that in the first

s steps each processor that is supposed to execute taskz is in fact faulty and does not
execute it, and every processor that is supposed to verifyz is also faulty and behaves as ifz
was executed. Then, no correct processor inR′ can distinguishR from R′, henceR′ stops
afters steps and the problem is not solved (since at least one task was not performed), a
contradiction. �

The above lemma leads to the following result.

Theorem 4.3. Any fault-freeexecutionof analgorithm that solves theDo-All problem in the
failure modelFf with f known and with task verification, requires work�m(f + v)/nv ·n.

Proof. Using Lemma4.2and the fact that none of then processors fail, we compute the
work of any algorithm as�m(f + v)/nv · n. �

From the above we obtain the following lower bound result.

Theorem 4.4. Any algorithm that solves the Do-All problem in the failure modelFf with f
known, in the presence of��f Byzantine failures, and with task verification, incurs work
�(m+mf/v + n logn/�n,�).
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Minority(p, P, T ,�):
1 whileT �= ∅ and� > 0 do
2 execute one task allocated top as a function ofp, P , andT
3 �← ∅
4 C ← tasks allocated to the processors inP , as a list of�min{|P |,|T |}v  sets of at mostv tasks each
5 for l = 1 to �min{|P |,|T |}v  do
6 verify the tasks in thelth setC[l]
7 �← � ∪ {k : taskz ∈ C[l] was allocated to processork and was not done}
8 end for
9 P ← P \�
10 T ← T \ {z : z was allocated to somek ∈ P }
11 �← �− |�|
12 end while
13 execute up to�|T |/|P | tasks allocated top as a function ofp, P , andT

Fig. 3.Algorithm for the casef �n/2. The code is for processorp. The call to the procedure ismadewithP = [n],
T = [m], and� = f .

Proof. It follows directly from Lemma4.1and Theorem4.3. �

4.1.2.Algorithm Minority
Now we present algorithmMinority that is designed to solve Do-All in the case when at

most half of the processors are guaranteed not to fail, i.e.,f �n/2. AlgorithmMinority is
detailed in Fig.3. The code is given for a generic processorp ∈ [n].
As can be seen in Fig.3, the main body of the algorithm is formed by a while loop.

Within the loop the variablesP, T, and� are updated so they always hold the current set of
the processors assumed to be correct, the tasks whose completion status is unknown, and
the number of processors that can still fail, respectively. The iterations of the while loop
are executed synchronously by every correct processor. An important correctness condition
of the algorithm is that every correct processor has the same value in these variables at
the beginning of each loop iteration (that is why we do not index the variables with the
processor’s id). The exit conditions of the loop are that there is no remaining work or no
remaining processor is faulty. If the latter condition holds, then the remaining tasks are
evenly distributed among the remaining processors inP, so that every tasks is assigned to
at least one processor, and the problem is solved.
Consider an execution of algorithmMinority. Let k be the number of iterations of the

while loop in this execution. The iterations are numbered starting with 1. We denote byPi ,
Ti , and�i the values of the setsP andT, and the variable�, respectively, at theendof
iterationi.We also useP0,T0, and�0 to denote the initial values ofP,T, and�, respectively.
To abbreviate, we useni = |Pi | andmi = |Ti |.
For an iterationi of the loop, each processor first chooses one of the tasks inTi−1

deterministically with an allocating function ofp, Pi−1, andTi−1. The allocating function
is known to every processor and must ensure that, ifmi−1�ni−1, different processors in
Pi−1 choose different tasks inTi−1. It must also ensure that ifmi−1 < ni−1, each task
is assigned to at least�ni−1/mi−1� and at most�ni−1/mi−1 processors. One possible
allocating function is one that (once the processors inPi−1 are indexed from 1 toni−1
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Oracle(p):
1 while there are undone tasks do
2 allocate an undone taskt to p
3 execute taskt
4 end while

Fig. 4. Oracle-based Do-All algorithm under the fail-stop model. The code is for processorp.

and the tasks inTi−1 are indexed from 1 tomi−1) assigns to theqth processor inPi−1 the
(((q − 1)modmi−1) + 1)st task inTi−1. After executing this task, the processor verifies
the execution of all the tasks allocated to processors inPi−1 to identify faulty processors.
The identities of the newly discovered faulty processors are stored in the set�. With this
information it updates the setsTi−1 andPi−1 and the value�i−1 and obtainsTi , Pi and
�i , respectively. The list of setsC is the same for each processor. Then, according to the
description of the algorithm all processors verify the tasks allocated to a subset of correct
processors simultaneously, either finding each of them done or undone. This guarantees that
the sets� are the same in all correct processors.
The correctness of algorithmMinority can be shown by induction on the number of

iterations of the while loop. The induction claims that at the beginning of iterationi > 0
all correct processors have the same value of the variablesPi−1, Ti−1, and�i−1, and that
|Ti−1|�m− i + 1. Observe that initially all processors have the sameP0, T0 and�0, and
that|T0| = m, which covers the base case. The induction then has to show that if the correct
processors begin an iterationi with the samePi−1, Ti−1 and�i−1, then at the end of this
iteration all correct processors have the samePi , Ti , and�i , and at least one new task has
been done in the iteration. The first part follows from the fact that all correct processes end
up with the same set� of failed processes. The second follows from the fact that at least
one processor is correct. Then, termination is guaranteed (with all tasks being completed)
by the fact that at least one processor is correct (f < n), by the fact that after at mostm
iterations all correct processors will exit the while loop, by the exit conditions of the while
loop, and by “line 13” of the code of the algorithm. We leave the details of the termination
to the reader.
We now assess the efficiency of algorithmMinority. We denote by�i the value of set�

at theendof iterationi of the loop, and we use�i = |�i |. Recall that� denotes the number
of failed processors in a given execution.
Towards the analysis, we first present the algorithmOracle, shown in Fig.4, which uses

an oracle to solve the synchronous Do-All problem under the fail-stop processor model.
In algorithmOracle, the oracle is queried in each iteration to determine whether there

are still undone tasks. The oracle can detect the processors that crashed during an iteration
and whether a task has been performed or not by the end of the iteration (if all processors
assigned to a task have crashed, then the task has not been performed). If there is at least one
undone task by the end of the iteration, then the oracle is queried to allocate undone tasks to
theuncrashedprocessors.Theallocation satisfies that theundone tasksareevenly distributed
among the uncrashed processors. In fact, we assume here that the function that allocates
in each iteration an undone task to processorp (for each processorp) in line 2 is the same
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used in algorithmMinority. Hence, the difference between algorithmOracleand algorithm
Minority is that in algorithmMinority the task execution verification is performed by the
processors to detect faulty processors and undone tasks, as opposed to algorithmOracle
where the task execution verification is performed by the oracle. AlgorithmOracle is a
rewriting of the oracle-based algorithm presented by Georgiou et al.[14]. Assuming that
the queries to the oracle can be done in constant time, they showed that in an execution with
no more than� crashes the algorithmOraclerequires at most work O

(
m+ n logn/�n,�

)
.

We will use this result to show Lemma4.5for algorithmMinority.

Lemma 4.5. Given an execution of algorithmMinority with� failures andwhere the while
loop consists of k iterations, then

∑k
i=1 ni = O

(
m+ n logn/�n,�

)
.

Proof. Consider an execution of the algorithmMinority with � failures, and letk be the
number of iterations of the while loop. We want to bound the sum

∑k
i=1 ni . For that, let

us consider the execution of algorithmOracle in which after the allocation at line 2 and
before the task execution at line 3 in each iterationi ∈ {1, . . . , k} the processors in�i ,
and only those, crash. Then, since the same allocation function is used in the executions of
Minority andOracle, it follows by induction oni that in the execution of algorithmOracle,
at the beginning of iterationi the set of correct processors isPi−1 and the set of undone
tasks isTi−1, and at the end of the iteration the set of correct processors isPi and the set
of undone tasks isTi . Observe that for algorithmOracle, when the oracle queries can be
done in constant time, we have that the work of iterationi, denotedsi , is a constant multiple
of the number of correct processorsni . Hence, if we denote bySk the work of thek first
iterations ofOracle, we have that

Sk =
k∑
i=1
si�

k∑
i=1
ni. (1)

Now, since the number of failures in the execution ofMinority is �, if we assume that no
processor crashes after iterationk in the execution ofOraclewe have that the number of
failures in this execution is

∑k
i=1�i��. Hence, from the result of Georgiou et al.[14]

mentioned above, we have that

Sk = O
(
m+ n logn/�n,�

)
. (2)

The thesis of the lemma follows from Eqs. (1) and (2). �

We now state and prove the work complexity of algorithmMinority.

Lemma 4.6. Any execution of algorithm Minority has workS = O(m+mn/v + n logn/
�n,�).

Proof. We begin by computing the work incurred in the while loop. We break the analysis
into two parts. In the first part we consider only the iterationsi of the while loop where
initially the number of remaining tasks is at least as large as the number of remaining
processors, i.e.,mi−1�ni−1, and we compute the work incurred in these iterations. In the
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second part we consider only the iterationsi wheremi−1 < ni−1 and we compute the work
incurred in such iterations.
(1) Iterations i withmi−1�ni−1. In these iterations no task is done twice by correct

processors. Hence, at mostm tasks are done in these iterations. For each task done, no more
than�n/v < n/v + 1 verification steps are taken. Hence, the total work incurred in these
iterations isS1 = O(m+mn/v).
(2) Iterations i withmi−1 < ni−1. Let us assume there arer such iterations out of a total

of k iterations (r�k), with indices�(1) to �(r), and 1��(1) < �(2) < · · · < �(r)�k. In
iteration�(i), there are initiallyn�(i)−1 processors andm�(i)−1 tasks, withm�(i)−1 < n�(i)−1.
In this iteration each (correct) processor performs a task and verifiesmin{n�(i)−1,m�(i)−1} =
m�(i)−1 tasks. Hence, the total work incurred in allr iterations is

S2 =
r∑
i=1
n�(i)

(
1+

⌈m�(i)−1
v

⌉)
< 2

r∑
i=1
n�(i) +

1

v

r∑
i=1
n�(i)m�(i)−1.

The first sum is bounded by using Lemma4.5, since

r∑
i=1
n�(i)�

k∑
i=1
ni = O

(
m+ n logn/�n,�

)
.

To bound the second sum, we bound first the value ofm�(i) using the fact that, in iteration
�(i), each task is assigned to at most�n�(i)−1/m�(i)−1 processors,

m�(i)�m�(i)−1−
n�(i)

�n�(i)−1/m�(i)−1
< m�(i)−1−

n�(i)m�(i)−1
m�(i)−1+ n�(i)−1

.

Then, sincem�(i)−1 < n�(i)−1, we have

n�(i)m�(i)−1 < 2 n�(i)−1
(
m�(i)−1−m�(i)

)
. (3)

Then, the second sum can be bounded as follows:
r∑
i=1
n�(i)m�(i)−1 <

r∑
i=1

2n�(i)−1
(
m�(i)−1−m�(i)

)
� 2

(
n�(1)−1m�(1)−1+

r∑
i=2
n�(i)−1m�(i)−1−

r−1∑
i=1
n�(i)−1m�(i)

)

� 2
(
n�(1)−1m�(1)−1+

r−1∑
i=1
m�(i)

(
n�(i+1)−1− n�(i)−1

))
� 2n�(1)−1m�(1)−1
� 2mn.

The first inequality follows from Eq. (3), the third inequality follows from the fact that
m�(i)−1�m�(i−1) , and the fourth inequality follows from the facts that�(i+1)− 1> �(i)− 1
and thatni�nj wheni > j .
Then, we have that the work incurred in these iterations isS2 = O(m + mn/v +

n logn/�n,�).
We now compute the work incurred after the exit conditions are satisfied, say at the end

of iterationk. If Tk = ∅ then each processor takes at most one step before halting for the
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Majority(p, P, T ,�):
1 while |T | > m/n and� > 0 do
2 Do_Work_and_Verify(p, P, T ,�,�)
3 Checkpoint(p, P,�,�)
4 P ← P \�
5 T ← T \ {z : z was allocated to somek ∈ P }
6 �← �− |�|
7 end while
8 if � = 0 then
9 execute�|T |/|P | tasks allocated top as a function ofp, P , andT
10 else
11 execute all the tasks inT
12 end if

Fig. 5. Algorithm for the casef < n/2. The code is for processorp. The call parameters areP = [n], T = [m],
and� = f .

total of O(n) work. Otherwise, at mostn�m/n < m + n�2m work is done. Hence this
work isS3 = O(m).
Therefore, the total work isS = S1+ S2+ S3 = O

(
m+mn/v + n logn/�n,�

)
. �

Note that the work complexity of the algorithm is asymptotically optimal as long as
f = �(n). It is worth observing that algorithmMinority is asymptotically optimal even
though it does not use communication.This shows that for relatively large number of failures
communication cannot improve work complexity (asymptotically).

Remark 4.1. In the conference version of this paper[11], the bound on the work for
Minoritywas imprecisely given asO(mn/v), for anyn�m andv�m.As it can be observed
from Lemma4.6, this bound is valid only as long asv = O(n) andm/v = �(logn/�n,�).

4.1.3.Algorithm Majority
We now present algorithmMajority that is designed to efficiently solve Do-All in the

case where the majority of the processors does not fail, i.e.,f < n/2. At a high level
algorithmMajority proceeds as follows. Each nonfaulty processor is given a set of tasks
to be done and a set of processors whose tasks it has to verify. The processor executes
its tasks and verifies the tasks of its set of processors, detecting faulty processors. Then a
check-pointing algorithm is executed in which all nonfaulty processors agree on a set of
processors identified as faulty in this stage, and update their information of completed tasks
and non-faulty processors accordingly. AlgorithmMajority is detailed in Fig.5. The code
is given for a processorp ∈ [n].
As in algorithmMinority, the parameters of algorithmMajority are the identifierpof the

invoking processor, the set of processorsP that have not been identified as faulty, the set
of tasksT that may still need to be completed, and the maximum number� of processors
in setP that can be faulty. We adopt the parameter notations we used for an iteration of the
while loop of algorithmMinority to the parameters of algorithmMajority. Specifically, for
an iterationi, we letPi , Ti and�i denote the values ofP, T, and�, respectively, at theend
of iterationi. Then,ni = |Pi | andmi = |Ti |. Finally,n0 = n andm0 = m.
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The iterations of the while loop ofMajority in all the correct processors work syn-
chronously, i.e., theith iteration starts at exactly the same step in each correct processor.
An important correctness condition of the algorithm, which can be checked by induction,
is that the values ofPi , Ti , and�i must be the same for each iterationi in differentcorrect
processors.
Before starting a new iterationi, a processor first checks whether all the processors in

Pi−1 are correct or whether the total number of remaining tasks is no more thanm/n. If
either condition holds, it exits the loop. Then, if all the processors inPi−1 are correct, it
computes a balanced distribution of the remaining set of tasks so that, overall, all the tasks
are done by the processors inPi−1. Otherwise the total number of remaining tasks is no
more thanm/n, and in that case the processor does all the remaining tasks itself. Overall,
in either case, this implies O(m) work.
If none of the above conditions hold, a new iterationi starts. The processor first calls the

subroutineDo_Work_and_Verify. In this subroutine each processor inPi−1 gets allocated
some subset of the tasks inTi−1 that it must execute, and a subset of the processors inPi−1
that it mustsupervise, that is, whose tasks it willverify. More formally,

Definition 4.1. For an iterationi of an execution of algorithmMajority, we say that a
processorp ∈ Pi−1 supervises a processorq ∈ Pi−1, if p is assigned to verify all the tasks
from Ti−1 thatqwas assigned to perform in iterationi.

If a processor detects in this subroutine that somesupervisedprocessor in that subset is not
doing the tasks itwasassigned, it includes it inaset of faulty processors, returnedasset�.We
denote by�i,p the processors that processorp suspects to be faulty at theendof subroutine
Do_Work_and_Verify of iteration i. Then the processor calls the subroutineCheckpoint,
which uses a check-pointing algorithm to combine the sets of suspected processors from all
the processors inP i into a common consistent set�i ; this denotes the consistent set of faulty
processors at theendof iterationi. Finally, knowing which processors have been identified
as faulty in this iteration, it updates the values ofPi−1, Ti−1, and�i−1 and obtainsPi , Ti ,
and�i , respectively. Note that since�0 = f < n/2 initially, at any point it is satisfied that
�i < |Pi |/2.
We now detail more the subroutinesDo_Work_and_VerifyandCheckpoint.We begin the

first one. The code of subroutineDo_Work_and_Verify is shown in Fig.6.
In the subroutine,W is an ordered list of tasks. We denote byWi the value ofWafter the

endof routineAllocate_Tasksof iterationi. Hence,Wi is an ordered list of tasks, all of them
in Ti−1. This is needed to ensure that it is known the order in which a given processor is
supposed to perform the tasks in its listWi . That also allows us to ensure that all processors
supervising a processorr verify thezth task allocated tor at the same time (and hence all
find it either done or undone). Note also that to ensure that all correct processors finish the
call toDo_Work_and_Verifyat the same time, they all must be allocated the same number
of tasks to perform.
Similarly,Sis a sequence of setsS[1], . . . , S[�2�

v
+ 2], each with at mostv processors.

We denote bySi the value ofSafter theendof the routineAllocate_Processorsof iteration
i. These sets must also satisfy (in order for the same task to be verified at the same time by
all the processors that do so) that the same processorr is in the same setSi[k] in all the
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Do_Work_and_Verify(p, P, T ,�,�):
1 W ← Allocate_Tasks(p, P, T )
2 S ← Allocate_Processors(p, P, T ,�)
3 �← ∅
4 for z = 1 to |W | do
5 perform thezth task inW

6 for k = 1 to � 2�v  + 2 do
7 verify thezth task of each processor in setS[k]
8 �← � ∪ {r : l is thezth task allocated tor ∈ S[k] and was not done}
9 end for
10 end for

Fig. 6. SubroutineDo_Work_and_Verify. Code for processorp.

processors that superviser. Then, all the tasks ofr will be verified at the same time in the
kth iteration of the inner “for” loop.
Let us now look at the allocation of tasks. For iterationi, we impose that�mi−1/ni−1 dif-

ferent tasks fromTi−1 are allocated to each processor inPi−1 by subroutineAllocate_Tasks,
and that the number of processors allocated to execute two different tasks inTi−1 differs
in at most one. Other than these, there are no other restrictions. For instance, if we num-
ber the tasks inTi−1 from 1 tomi−1 and the processors inPi−1 from 1 toni−1, theqth
processor could be allocated the tasks with numbers((kni−1+ q − 1) modmi−1)+ 1, for
k = 0, . . . , �mi−1/ni−1 − 1.
We look now at the allocation of processors done in subroutineAllocate_Processors,

for iterationi. We require that at least 2�i−1+ 1 processors supervise any other processor
(to be able to use Lemma4.7, stated later). A processor implicitly supervises itself. Then,
any deterministic function that assigns at least 2�i−1 other processors to each processor
in Pi−1 so that each processor is supervised by at least other 2�i−1 processors is valid.
We also need to choose the setsSi−1 appropriately, as described above. All these could
be done as follows. First, define a cyclic order inPi−1 and allocate to each processor the
2�i−1 processors that follow it in that order. Then, group the processors in sets of sizev

using the cyclic order and starting from some distinguished processor (e.g., the one with
smallestPID). Number these sets from 1 to�ni−1/v. Each processor then gets assigned
the sets that contain processors it has to supervise. To enforce that the same set is verified
simultaneously, set numberk is verified in the(k mod (�2�i−1/v + 2))+ 1st iteration of
the inner loop. Since 2�i−1 adjacent processors can span at most�2�i−1/v + 2 sets (out
of which at least�2�i−1/v + 1 havev processors each), there is a way to schedule the
verification of all the sets.
We now consider subroutineCheckpoint. Its code is detailed in Fig.7. We denote by

Ci the value ofC at theendof the assignment at line 1 of the code, of iterationi. The
subroutine uses two communication rounds. At iterationi, first each processorp sends
its set�i,p (computed in the subroutineDo_Work_and_Verify) to the processors in set
Ci . SetCi contains the first 2�i−1 + 1 processors inPi−1 with the smallestPID. An ele-
mentary, but important, invariant of the algorithm is that setCi is the same in all correct
processors.
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Checkpoint(p, P,�,�):
1 C ← the first 2�+ 1 processors inP with smallest PID
2 send set� to every processor inC
3 if p ∈ C then
4 attempt to receive set�q from each processorq ∈ P
5 �← {b : processorb is in at least�+ 1 received setsFq }
6 send� to every processor inP
7 else
8 idle for the rest of the step
9 attempt to receive set�c from each processorc ∈ C
10 �← {b : processorb is in at least�+ 1 received sets�c}
11 end if

Fig. 7. SubroutineCheckpoint. Code for processorp.

The processors inCi attempt to receive all sets�i,p from the processors inPi−1. Note
that a faulty processorbmay not send its corresponding set�i,b or send an erroneous set
�i,b. That is allowed and no note is taken of it by the correct processors. Also, messages
received from processors not inPi−1 are disregarded by the correct processors. Only those
processors that are in at least�i−1+1 received sets from processors inPi−1 are considered
faulty by the processors in setCi . Then, the processorsc in Ci send their updated sets�i,c
to the processors inPi−1. Each processorp in Pi−1 updates its set�i,p by considering as
faulty only the processors that are in at least�i−1 + 1 received sets from processors inCi
and obtains�i . SincePi−1 contains at least 2�i−1 + 1 processors, we have the following
claim.

Lemma 4.7. For an iteration i of an execution of algorithm Majority, if each processor in
Pi−1 is supervised by at least2�i−1+ 1 different processors inPi−1, then after subroutine
Checkpoint has been executed, the set�i is the same for every correct processor inPi−1,
it only contains faulty processors, and all the tasks allocated to processors inP i \�i have
been performed.

Proof. Assuming the correct processors do the supervision properly, if some correct proces-
sorp detects a faulty processorq, and includesq in �i,p in the subroutineDo_Work_and_
Verify, then all correct processors that superviseq also do so. Then, each correct proces-
sor inCi receives at least�i−1 + 1 sets�i,p containingq, since in any set of 2�i−1 + 1
processors (including the set of processors that supervisedq) at least�i−1 + 1 processors
are correct. This also implies that the processors inPi−1 will receive at least�i−1+ 1 sets
�i,c containingq (even if the faulty processorsb in Ci send erroneous sets�i,b). Hence
processorqwill be in the final set�i of each correct processor. Note that if processorq is
not faulty and the faulty processorsb send erroneous sets�i,b that includeq, qwill not be
included in a set�i of a correct processor since there will not be more than�i−1 sets�i,b
containingq. Since this is true for each processorq ∈ Pi−1, after the subroutineCheckpoint
has been executed the set�i is the same for every correct processor inPi−1, and it only
contains faulty processors. This implies that the processors inPi−1 \ �i performed the
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tasks allocated to them correctly (otherwise they would not be inPi−1 \�i but in�i). This
completes the proof of the lemma.�

The following lemmashows that algorithmMajority solves theDo-All problemefficiently
whenf < n/2. Here��f is the exact number of faulty processors in the execution of
interest of the algorithm. This value can be much smaller, for a particular execution, than
the upper boundf.

Lemma 4.8. Algorithm Majority, can be used to solve theDo-All problem in the failure
modelFf with known f, ��f actual Byzantine failures, andv task verifications per pro-
cessor per step,with workS = O(

m+mf/v+n(1+f/v) ·min{�+1, logn}) andmessage
complexityM = O(

n(f + 1) ·min{�+ 1, logn}).
Proof. It can be shown by induction that after each iterationi of the while loop of the
algorithm, each correct processor has the same values ofTi , Pi , and�i�f and that the
tasks not inTi have been executed. Specifically, based on Lemma4.7, if the correct pro-
cessors begin an iterationi with common values ofPi−1, Ti−1 and�i−1, it follows that the
(remaining) correct processors conclude this iteration with common values ofPi, Ti and
�i . Of course, initially all processors have the sameP0, T0 and�0. If there is at least one
correct processor, then each iteration has a setTi of smaller size. This implies that the algo-
rithm terminates with all tasks performed and at least one correct processor being aware of
this.
The proof of the work bound uses several ideas from[8]. To start, we adapt their

Theorem 4 as follows. This theorem says that, under the crash failure model, if in ev-
ery stage of a synchronous algorithm� the work to be performed is evenly divided among
the processors, then the total number of stages executed in algorithm� is bounded by
O(logn). The proof uses the fact that the work previously assigned to a correct processor
is not redone. We can adapt this proof to our algorithm, since we fully divide the work in
each iteration and only redo tasks of failed processors. Hence, at most O(logn) iterations
are required.
We are going to study separately those iterationsi of the while loop in whichmi−1�ni−1

from those in whichmi−1 < ni−1. Since we assumen�m, initially m0�n0. Furthermore,
it is easy to show that once (if ever)mi−1 < ni−1, this holds until the end of the execution
as follows. Since less than half the processors inPi−1 can fail, ifmi−1 < ni−1/2, clearly
at the end of the iterationi mi < ni . Otherwise, ifni−1 > mi−1�ni−1/2, then any task is
assigned to at most two processors, and at the end of the iterationmi has been reduced to
less than half.
Then, we can consider both kind of iterations separately. Let us first consider iterations

i of the while loop wheremi−1�ni−1. Note that there is no such iteration in which more
than�m/n tasks are allocated to any processor. This is so because initially�m/n tasks
are allocated, and the number of failures required to have more than�m/n tasks in any
other iteration is more thann/2. Hence, a faulty processor can force at most�m/n tasks
to be redone. Thus, we have that at mostm + ��m/n < 2m + � = O(m) work spent
executing tasks in these iterations. Similarly, in the iterationsi wheremi−1 < ni−1, one task
is allocated to each processor.We have from above that the number of iterations is O(logn),
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and it can be trivially observed that there can be at most� + 1 iterations. Hence, at most
O(n · min{� + 1, logn}) work is spent executing tasks in this case. Hence, in both kinds
of iterations the work incurred in executing tasks is O(m + n · min{� + 1, logn}). Since
for each task executed there is one call to the checkpoint subroutine (each such call takes
constant time) and at most�2f

v
 + 2 verifications, the work bound follows. Note that the

work incurred after the exit conditions of thewhile loop are satisfied isO(m) (see discussion
on the exit conditions in the description of the algorithm).
For the message bound, we use a similar argument. There are O(min{� + 1, logn})

iterations, with one call to the checkpoint subroutine in each, and at most 2n(2f + 1)mes-
sages required in each checkpoint call. Themessage complexity bound follows. Note that no
communication takes place after the exit conditions of the while loop are
satisfied. �

It is worth observing that in this case, communication helps improve work complexity.

4.1.4.Algorithm Complete
By combining the two cases considered by algorithmsMinority andMajority for different

ranges off, we obtain an algorithm that efficiently solves Do-All for the entire range off.
We refer to this algorithm as algorithmComplete.
The correctness and the efficiency of algorithmCompletefollows directly from the cor-

rectness and efficiency of algorithmsMinority andMajority.

Theorem 4.9. AlgorithmComplete solves theDo-All problem in the failuremodelFf with
f known, ��f actual Byzantine failures, andv verifications per processor per step, with
work S = O(m + mn/v + n logn/�n,�) and no communication whenf = �(n), and
with workS = O(m + mf/v + n(1+ f/v) ·min{� + 1, logn}) and message complexity
M = O(n(f + 1) ·min{�+ 1, logn}) otherwise.

4.2. The maximum number of faulty processors is unknown

In this section we assume that all we know about the number of faulty processors is that
f < n. Using Lemma4.2and Theorem4.3of Section4.1.1. we obtain the following lower
bound.

Lemma 4.10. Any fault-free execution of an algorithm that solves theDo-All problem in
the failure modelFf with f unknown and with task verification, requires�(m/n + m/v)
steps and�(m+mn/v) work.

Proof. Since all that is known about the number of failures is thatf < n, any algorithm
that works under these assumptions has to work forf = n − 1. Then, the result follows
from Lemma4.2and Theorem4.3. �

Note that the lower bound of Lemma4.1does not depend on the knowledge of� or f and
is hence applicable to this case as well. Then, we have the following theorem.
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Theorem 4.11.Any algorithm that solves theDo-All problem in the failure modelFf with
f unknown, in the presence of��f Byzantine failures, and with task verification, has work
�(m+mn/v + n logn/�n,�).

Sincef is unknown, a given algorithmmust solve Do-All efficiently even for the casef =
n−1. Hence, if we use algorithmMinority assuming thatf = n−1, then Lemma4.6gives
us an asymptotically matching upper bound on work for the setting thatf is unknown. Taken
together with the above lower bound result (Theorem4.11), we conclude the following.

Corollary 4.12. The work complexity of algorithm Minority in the failure modelFf with
f unknown, ��f actual Byzantine failures, and with task verification, is�(m+mn/v +
n logn/�n,�).

Remark 4.2. In the conference version of this paper[11], the bound on the work for
Minority for this setting was imprecisely given as�(mn/v), for anyn�m andv�m. As
it can be observed from Corollary4.12, this bound is valid only as long asv = O(n) and
m/v = �(logn/�n,�).

5. Conclusions

In this paper we initiated the study of the Do-All problem under Byzantine processor
failures. In particular we showed upper and lower bound results for synchronous message-
passing processors prone to Byzantine failures for several cases. We considered the case
where the maximum number of faulty processorsf is known a priori, the case wheref is not
known, the case where tasks executions can be verified, and the case where task executions
cannot be verified. We observed that in some cases work�(mn) (m number of tasks,n
number of processors) is unavoidable.We also observed that in some cases communication
does not help obtaining better work efficiency. In most cases we showed asymptotically
matching upper and lower bound results. For the case wheref = o(n) and known, and task
execution is verifiable, the upper bound, produced by the analysis of algorithmMajority is
not tight. Obtaining tight bounds for this case is an interesting open question.

References

[1] C.Aguirre, J. Martinez-Munoz, F. Corbacho, R. Huerta, Small-world topology for multi-agent collaboration,
in: Proc. 11th Internat. Workshop on Database and Expert Systems Appl., 2000, pp. 231–235.

[2] R.J. Anderson, H. Woll, Algorithms for the certified Write-All problem, SIAM J. Comput. 26 (5) (1997)
1277–1283.

[3] J. Buss, P.C. Kanellakis, P. Ragde, A.A. Shvartsman, Parallel algorithms with processor failures and delays,
J. Algorithms 20 (1) (1996) 45–86.

[4] B. Chlebus, R. De Prisco, A.A. Shvartsman, Performing tasks on restartable message-passing processors,
Distributed Computing 14 (1) (2001) 49–64.

[5] B. Chlebus, S. Dobrev, D. Kowalski, G. Malewicz,A.A. Shvartsman, I. Vrto, Towards practical deterministic
Write-All algorithms, in: Proc. 13th ACM Symp. on Parallel Algorithms and Architectures (SPAA 2001),
2001, pp. 271–280.



454 A. Fernández et al. / Theoretical Computer Science 333 (2005) 433–454

[6] B.S. Chlebus, L. Gasieniec, D.R. Kowalski, A.A. Shvartsman, Bounding work and communication in
robust cooperative computation, in: Proc. 16th Internat. Symp. Distributed Computing (DISC 2002), 2002,
pp. 295–310.

[7] P. Dasgupta, Z. Kedem, M. Rabin, Parallel processing on networks of workstation: a fault-tolerant high
performance approach, in: Proc. 15th IEEE Internat. Conf. Distributed Computer Systems (ICDCS 1995),
1995, pp. 467–474.

[8] R. DePrisco,A.Mayer,M.Yung, Time-optimalmessage-efficient work performance in the presence of faults,
in: Proc. 13th ACM Symp. Principles of Distributed Computing (PODC 1994), 1994, pp. 161–172.

[9] S. Dolev, R. Segala, A.A. Shvartsman, Dynamic load balancing with group communication, Theoretical
Computer Science, to appear. A preliminary version appears in the Proc. Sixth Internat. Colloquium on
Structural Information and Communication Complexity (SIROCCO 1999), 1999, pp. 111–125.

[10] C. Dwork, J. Halpern, O. Waarts, Performing work efficiently in the presence of faults, SIAM J. Computing
27(5) (1998)1457–1491.Apreliminaryversionappears in theProc.11thACMSymp.PrinciplesofDistributed
Computing (PODC 1992), 1992, pp. 91–102.

[11] A. Fernández, Ch. Georgiou, The Do-All problem with Byzantine processor failures, in: Proc. 10th
Internat. Colloquium on Structural Information and Communication Complexity (SIROCCO 2003), 2003,
pp. 117–132.

[12] Z. Galil, A. Mayer, M. Yung, Resolving message complexity of byzantine agreement and beyond, in: Proc.
36th IEEE Symp. Foundations of Computer Science (FOCS 1995), 1995, pp. 724–733.

[13] Ch. Georgiou, A. Russell, A.A. Shvartsman, Work-competitive scheduling for cooperative computing with
dynamic groups, in: Proc. 35th ACM Symp. Theory of Computing (STOC 2003), 2003, pp. 251–258.

[14] Ch. Georgiou, A. Russell, A.A. Shvartsman, The complexity of synchronous iterative Do-All with crashes,
Distributed Computing 17 (1) (2004) 47–63.

[15] Ch.Georgiou,A.A. Shvartsman,Cooperative computingwith fragmentable andmergeable groups, J. Discrete
Algorithms 1 (2) (2003) 211–235.

[16] J.F. Groote, W.H. Hesselink, S. Mauw, R. Vermeulen, An algorithm for the asynchronousWrite-All problem
based on process collision, Distributed Computing 14 (2) (2001) 75–81.

[17] P.C. Kanellakis, A.A. Shvartsman, Efficient parallel algorithms can be made robust, Distributed Computing
5(4) (1992) 201–217. A preliminary version appears in the Proc. Eighth ACM Symp. on Principles of
Distributed Computing (PODC 1989), 1989, pp. 211–222.

[18] P.C. Kanellakis, A.A. Shvartsman, Fault-Tolerant Parallel Computation, KluwerAcademic Publishers, 1997.
[19] Z.M. Kedem, K.V. Palem, A. Raghunathan, P. Spirakis, Combining tentative and definite executions for

dependable parallel computing, in: Proc. 23rd ACM Symp. on Theory of Computing (STOC 1991), 1991,
pp. 381–390.

[20] E.Korpela,D.Werthimer,D.Anderson, J.Cobb,M.Lebofsky,SETI@home:Massively distributedcomputing
for SETI, Comput. Sci. Engng. 3 (1) (2001) 78–83.

[21] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM Trans. Programming Languages
and Systems 4 (3) (1982) 382–401.

[22] G. Malewicz, A. Russell, A.A. Shvartsman, Distributed cooperation during the absence of communication,
in: Proc. 14th Internat. Symp. Distributed Computing (DISC 2000), 2000, pp. 119–133.

[23] C. Martel, A. Park, R. Subramonian, Work-optimal asynchronous algorithms for shared memory parallel
computers, SIAM J. Comput. 21 (6) (1992) 1070–1099.

[24] C. Martel, R. Subramonian, On the complexity of certifiedWrite-All algorithms, J. Algorithms 16 (3) (1994)
361–387.

[25] R.D. Schlichting, F.B. Schneider, Fail-stop processors: an approach to designing fault-tolerant computing
systems, ACM Trans. Comput. Systems 1 (3) (1983) 222–238.

[26] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G.A. Kaminka, S. Marsella, I. Muslea, Building agent teams
using an explicit teamwork model and learning, Artificial Intelligence 110 (2) (1999) 215–239.


	The Do-All problem with Byzantine processor failures
	Introduction
	Model of computation
	Doing-all when task execution is not verifiable
	The maximum number of faulty processors is known
	The maximum number of faulty processors is unknown

	Doing-all when task execution is verifiable
	The maximum number of faulty processors is known
	Lower bounds
	==0.3emAlgorithm Minority
	==0.3emAlgorithm Majority
	==0.3emAlgorithm Complete

	The maximum number of faulty processors is unknown

	Conclusions
	References


