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1. INTRODUCTION

This paper has two primary goals. The first is to illustrate how the ?-calculus, a
general theory of interactive systems with changing structure, can be used to reason
rigorously about concurrent operations on data structures: a study of operations on
Blink-trees is presented, and an improved algorithm for compression of the data
structure is explained. The second aim is to show some general results on client�
server systems, couched in the general theory.

The B-tree [1] and variants of it such as the B*-tree [20] are widely used as
index structures. Of concern here is the Blink-tree of Lehman and Yao [6] and the
algorithms for searching, inserting into, deleting from, and compressing it of [6]
and of Sagiv [16]; see also [2, 3, 5, 9] for algorithms on related structures. The
data structure and the algorithms are described in Section 3.

The ?-calculus [13] allows direct expression of mobile systems in whose evolu-
tion components can be created and the connections among them change. The
primitive entities of the calculus are names. Components use names to interact with
one another, and by passing names in interactions, components can pass to one
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another the ability to interact with other components. Terms of the calculus are
interpreted as labelled transition systems whose points describe system states and
whose arrows carry information pertinent to state change. An equivalence relation
on transition systems induces a relation capturing when terms express systems
having the same observable behaviour.

The Blink-system is mobile: when operations are requested, processes are created
that are naturally thought of as acting concurrently on a graph, creating nodes, and
altering the pointer structure among nodes as they carry out their tasks. In assert-
ing this we are beginning to outline the model we will use, which is quite different
from those of [6, 16]. There, operations are expressed using a pseudo-code that
contains commands for copying data to and from an implicit secondary storage
device (disk) and for locking pages of the disk. Here we express both operations
and the data they operate on as active processes, a central idea being that a pointer
is represented by a ?-calculus name. Further, we model the algorithms more
abstractly and thus separate the question of their correctness from that of their
correct implementation. In our view the result is descriptions that are clearer and
more readily comprehended, once the calculus is familiar. Further, the model is
amenable to a perspicuous rigorous analysis that gives insight into why the algorithms
are correct and from which we obtain general results.

We use the ?-calculus's general notion of behavioural equivalence to express the
correctness of the algorithms. We give a very simple term that expresses the expected
interactions of the Blink-system with its environment (the receipt of requests to carry
out operations and the return of the results of doing so). The assertion of correct-
ness is that this term is behaviourally equivalent to the term describing the system.
Thus the assertion of correctness is in terms of the observable behaviour of the
system, rather than a statement of serializability of computations, of which many
varieties have been proposed and used as criteria by which to judge related algo-
rithms. For instance, in [16] a criterion of correctness for the algorithms is that
any ``schedule of operations'' arising by executing them is ``data equivalent to a
serial schedule and [preserves] the validity of the search structure.'' The principle
that concurrent systems should be compared on the basis of their observable
behaviours is, however, widely held. It has been argued to be sound specifically for
database concurrency control systems in the extensive study of atomic transactions
in [8]. That study employs I�O-automata, which are themselves closely related to
process calculus [19]. I�O-automata do not, however, allow direct representation
of systems with changing structure. On the other hand, the proofs in the present
paper are related to serializability. Indeed we will show general results, couched in
the ?-calculus, that isolate conditions on clients and servers that guarantee
atomicity of interactions between them.

The algorithms of [6] are for insertion, search, and a simple form of deletion.
The insertion algorithm may require a process to hold exclusive locks on two or
three nodes simultaneously. The insertion algorithm of [16] improves on this in
that any process need lock at most one node at any time. Further, as observed in
[16], [6] neglects to consider two cases: when the root node of the structure must
be split and when a process should add a pointer but is unable to find the node
where is should go (briefly, because the node that was the root when the process
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was created is no longer the root). The deletion algorithm of [16] is much more
elaborate than that of the earlier paper as it involves compression of the tree to
avoid proliferation of sparsely occupied nodes. We give a full analysis of the inser-
tion and search algorithms. We began with the algorithms of [6] and, in formalising
and analysing them, independently rediscovered the defects and improvement published
in [16]. We also carried out a rigorous analysis of the deletion and compression
algorithms of [16]. In doing so we discovered an improvement to the latter, which
we explain. To avoid the paper becoming over-long we omit the proofs of correct-
ness in the cases of deletion and compression.

In the context of interactive systems, the essence of confluence is that the
occurrence of an action will never preclude others. A theory of confluence of
processes was developed in the setting of the process calculus CCS in [11].
Generalizing the idea, in [7, 14, 18] notions of partial confluence were introduced
and studied. Their essence is that the occurrence of certain actions will never
preclude some others. A key observation is that in reasoning about the behaviour
of a system composed of (partial) confluent components, it may be sufficient to
examine in detail only parts of the components' behaviours: from this and the fact
of their (partial) confluence, it may be possible to deduce properties of the remain-
ing behaviours. The theory of [7, 14] was used to prove the soundness of program
transformation rules for concurrent object-oriented languages.

The main theoretical contribution here is an extension of the theory of partial
confluence. The object-oriented systems studied in [7, 14] can be viewed as consist-
ing of two components, Q and A, which interact in a question�answer fashion, with
possibly many questions outstanding at any moment. An important property is that
on accepting a question from Q, A immediately assumes a state in which the answer
to that question is determined, up to behavioural equivalence. The Blink-system does
not enjoy this property: determination of the result of an operation may involve a
state change affecting subsequent operations. The extension of the theory of partial
confluence to encompass systems such as the Blink-system is quite complicated. It
covers the case when in response to an operation request, A may perform at most
one state-changing internal action (in the case of the Blink-system, representing
commitment of an operation). The main result shows that under certain natural
conditions on A (and mild conditions on Q), a system composed from Q and A is
indistinguishable from one composed from Q and a sequential part of A. This is the
key to the proof of the correctness of the operations on the Blink-structure. We use
it to show that the Blink-system is indistinguishable from the part of it in which at
most one operation is in progress at any moment, that part being easily under-
stood. A theme of the analysis is the use of the theory to reduce the complexity of
the systems that must be examined in detail.

A summary of the paper follows. Section 2 contains background material on the
process calculus. In Section 3 the model of the Blink-system is given and explained.
Section 4 begins with the theory of partial confluence, stating and proving the main
results. It continues with the analysis of the search and insertion algorithms and
concludes with a brief discussion of alternative models of the system. In Section 5
algorithms for deleting from and compressing the data structure are considered and
an improved algorithm for compression explained, with further details in the Appendix.
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2. BACKGROUND

Process calculi are general theories of concurrent systems. The calculus of interest
here is an extension of the ?-calculus of [13], which is itself a descendant of the
process calculus CCS [10, 11]. Before presenting the calculus we outline its salient
features.

The calculus has a small but expressive language for describing systems. Terms
of the language are interpreted as labelled transition systems whose nodes represent
system states and whose arrows carry information pertinent to state change. An
equivalence on transition systems induces a relation capturing when terms express
systems having the same observable behaviour. The basic entities of the ?-calculus
are names. They can be thought of as names of communication links between
components of systems. Components use names to interact, and by passing names
in interactions, components can pass to one another the ability to interact with
other components. More concretely, names can be thought of as pointers. Features
of the ?-calculus central to its success as a theory of pointers and of name-passing
in general are its treatment of the scoping of names and the creation of names.
Descriptions can be further structured by categorizing names according to the ways
they can be used, making the descriptions clearer and providing information useful
in reasoning with them. Type systems that achieve this are studied in many papers,
for instance [12, 15, 17]. The calculus extends the ?-calculus with communicable
data other than names. The data part can be tailored to the application at hand;
here we have integers, tuples, and variants (tagged values). To be able to categorize
names as mentioned above we introduce a simple system of types for data. Assuming
a set of labels (ranged over by l), the types (ranged over by _) are given by

_ ::=int | (_1 , ..., _n) | [l1 �_1 , ..., ln�_n] | Aa _ | X | +X ._.

In +X._, each occurrence of X in _ must be guarded by Aa . Type equality is the
smallest congruence such that +X._=_[+X._�X]. We identify equal types.

We assume an infinite set of names (ranged over by x). The data values (ranged
over by v) are given by

v ::=k | (v1 , ..., vn) | l�v | x.

Values are typed in a context, that is, a partial function from names to types. An
integer constant k has type int. A tuple (v1 , ..., vn) of values has type (_1 , ..., _n)
if each vi has type _ i . In the variant type [l1�_1 , ..., ln�_n] the labels are pairwise
distinct; the values of this type are those li �v with v of type _i . If according to the
context the name x has type Aa _, then x can be used to send and to receive values
of type _. The additional type constructs, X and +X._, allow recursive types. For
instance if x is of type +X. Aa ( int, Aa X) , then x can be used to send and to receive
pairs consisting of an integer and a name that can be used to send and to receive
names of the same type as x. We use b to range over Boolean expressions. We do

76 PHILIPPOU AND WALKER



not specify a rigid syntax for these, but we assume that the only operation on
names is equality. We use z to range over the patterns, that is, the values given by

z ::=x | (z1 , ..., zn)

in which no name occurs more than once. The agents (ranged over by P, Q) are
given by

P ::= :
j # J

? j .Pj | P|Q | (&x : _) P | K (v1 , ..., vn) |

cond(b1 f P1 , ..., bn f Pn) | case(v)[l1�z1 : P1 , ..., ln �zn : Pn],

where the prefixes are given by

? ::=x(z) | x� (v) | {.

Before showing how agents are interpreted as labelled transition systems we
explain their meanings informally. The agent 7j # J ?j .Pj , a finite sum, represents a
choice of the prefixed summands. The prefixed agents are of three kinds. An input-
prefixed agent x(z).P is able to receive via the name x any value v of the appropriate
type and then continue as P[v�z], that is P with v substituted for z. An output-prefixed
agent x� (v).P is able to send the value v via x and continue as P. A silent-prefixed agent
{ .P is able to evolve autonomously and invisibly to P. We write 0 for the empty
summation; it is an agent with no capabilities. The sublanguage in which all sums
have cardinality 1 or 0 is akin to a small programming language. We use sums of
two or more terms only to express the observable behaviour of systems.

The agent P | Q describes the concurrent composition of P and Q: the component
agents can proceed independently and can also interact with one another using
shared names. In (&x) P the scope of the name x is restricted to P: components of
P can use it to interact with one another but not with P's environment; however,
the scope of x may change by its being sent in a communication. In K (v1 , ..., vn) ,
K is an agent constant with an associated definition K(x1 , ..., xn) =

df P where the
pairwise distinct names x1 , ..., xn include all those occurring free in P. The agent
K (v1 , ..., vn) behaves as P[v1 } } } vn �x1 } } } xn]. The agent cond(b1 f P1 , ...,
bn f Pn) is a nested conditional with Boolean expressions bi guarding the alter-
natives Pi . The agent case(v)[l1�z1 : P1 , ..., ln�zn : Pn] allows case analysis on the
for of a value of a variant type: case(li�v)[l1�z1 : P1 , ..., ln�zn : Pn] behaves as
Pi[v�zi]. A convenient derived form is the replicator !P defined by !P(x1 , ..., xn) =

df

(P | !P(x1 , ..., xn) ), which may generate arbitrarily many instances of P.
This informal account is made precise as follows. We consider only agents that

are well typed, i.e., in which the use of names accords with that determined by the
ambient context. We write 1 for the ambient context, a function from names to
types. A family of rules is given for inferring judgments of the forms 1 |&v : _ (in
context 1, value v has type _) and 1 |&P (in context 1, agent P is well typed). We
give just one of the straightforward rules: if 1 |&P, 1(x)= Aa _ and 1 |&v : _, then
1 |&x� (v) .P. In x(z) .P the occurrences of names in z are binding with scope P. In
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(&x : _) P the occurrence of x is binding with scope P. (We often elide the type
annotation in restrictions.) We write fn(P) for the set of free names of P, i.e., those
names occurring in P not within the scope of a binding occurrence. We identify
agents that differ only by change of bound names.

The actions (ranged over by :) are given by

: ::=xv | x� (&x~ ) v | {,

where in the second form the pairwise distinct names in the tuple x~ =x1 } } } xn occur
in v. If the tuple x~ is empty, we write simply x� v. We write Act for the set of actions.
The transition relation defined by the rules below, have the following interpreta-
tions. First, P w�xv Q means that P can receive the value v via x and thereby evolve
into Q. Second, P ww�x� (&x~ ) v Q means that P can send the value v via x and thereby
evolve into Q��the scopes of the names in x~ are enlarged by the transition. And
third, P w�{ Q means that P can evolve invisibly into Q. The subject of an action
: is defined as follows: if : is xv then subj(:)=x, if : is x� (&x~ ) v then subj(:)=x� ,
and subj({)={. The set bn(:) of bound names of : is the set containing the names
in x~ if : is x� (&x~ ) v and < otherwise. The rules are as follows where we write b ^ c
to express that the Boolean expression b evaluates to c (evaluation is a partial
function) and where we elide the symmetric forms of the fourth and fifth rules:

1. } } } +x(z) .P+ } } } w�xv P[v�z] if 1(x)= Aa _ and 1 |&v : _,

2. } } } +x� (v) .P+ } } } w�x� v P,

3. } } } +{ .P+ } } } w�{ P,

4. if P w�: P$ then P | Q w�: P$| Q provided bn(:) & fn(Q)=<,

5. if P ww�x� (&x~ ) v P$ and Q w�xv Q$ then P | Q w�{ (&x~ )(P$ | Q$) provided x~ &

fn(Q)=<,

6. if P w�: P$ then (&x) P w�: (&x) P$ provided x does not occur in :,

7. if P ww�x� (&x~ ) v P$ then (&y) P ww�x� (&x~ ) v P$ provided y occurs in v&(x~ _ [x]),

8. if K(x~ ) =
df P and P[v~ �x~ ] w�: P$, then K (v~ ) w�: P$,

9. if bj ^ false for j<i, bi ^ true and Pi w�: P, then cond(b1 f P1 , ...,
bn f Pn) w�: P,

10. if Pi[v�zi] w�: P then case(li �v)[l1�z1 : P1 , ..., ln�zn : Pn] w�: P.

Here is an example to illustrate the rules:

(&x)(P | x( y, z) .cond( y<5 f z� (0) .Q, y�5 f z� (1) .Q$) | (&w) x� ((3, w) ) .w(u) .R)

w�{ (&x)(P | (&w)(cond(3<5 f w� (0) .Q, 3�5 f w� (1) .Q$) | w(u) .R))

w�{ (&x)(P | (&w)(Q | R[0�u])).

Note how the scope of w grows in the first transition. The combination (&w) x� ((3, w) )
expresses the sending via x of 3 and a fresh name w. Further, if w � fn(Q) _ fn(R)
then (&w) can be removed from the last agent as it is semantically insignificant.
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Semantic claims such as this are justified on the basis of a precise account of
behavioural equivalence of agents. Many notions of behavioural equivalence have
been considered. Here we employ a well-studied equivalence called branching
bisimilarity [4]. An important feature is that it abstracts from silent actions. It is
one of the most demanding reasonable notions of equivalence. We adopt it here
first as it enables us to give a very precise description of the behaviour of the system
we consider, and second because the techniques for reasoning with it are powerful.
A useful piece of notation: we write O for the reflexive and transitive closure
of w�{ .

Definition 2.1. Branching bisimilarity, & , is the largest branching bisimula-
tion, i.e., symmetric relation B on agents such that if PBQ then for all actions :
with bn(:) & fn(P, Q)=<, if P w�: P$ then (1) for some Q", Q$, Q O Q" w�: Q$,
PBQ", and P$BQ$, or (2) :={ and P$BQ.

Thus any transition of either of a pair of branching-bisimilar agents can be
matched by a computation of the other with the same visible content and which
respects the branching structure of the agents. The restriction that any bound
names in an action should not be free in either agent ensures that they are required
to have the same behaviour only when bound names in output actions are fresh to
both. To show that a pair of agents are branching bisimilar, it suffices to find a
branching bisimulation relating them. Branching bisimilarity is an equivalence
relation and is preserved by all the operators except input-prefix. These results can
be shown using standard techniques.

3. DATA STRUCTURE AND OPERATIONS

This section contains the process-calculus descriptions of the Blink-tree and the
concurrent insertion and search algorithms. Salient points in [6, 16] are that the
actions of writing to and reading from the disk are assumed to be atomic, that in
order to write to a disk page a process must hold an exclusive lock on it, and that
no process is prevented from reading a page because another process holds a lock
on it. As mentioned in the Introduction we express both the operations and the
data as (active) agents. We discuss alternative representations in Section 4.3. We
begin with a brief informal description of the data structure.

A Blink-tree indexes a database by storing in its leaves pairs (k, b) with k an
integer key associated with a record and b a pointer to the record. All of its leaves
are at the same distance from the root. Each of its nonleaf nodes has j keys and
j pointers where 2� j�2m+1 if the node is the root and m+1� j�2m+1
otherwise (for some tree parameter m). A node stores its keys in ascending order.
It is intended that a node's largest key, its high key, is the largest key in the subtree
rooted at the node. All but the last pointer of a nonleaf node point to children of
the node. All but the last of a leaf's pointers point to records of the database. The
last pointer of a node or leaf, its link, points to its right neighbour at the same level
of the tree, if it exists. The purpose of links is to provide additional paths through
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FIG. 1. A Blink-tree.

the structure. The rightmost node at each level has high key � and link nil. If a
nonleaf node has keys k� =k1 , ..., kj and pointers p~ = p1 , ..., pj , then an intended
invariant is that for i< j, pointer pi points to a subtree whose leaves contain all
keys k with ki<k�ki+1. An example of a Blink-tree is given in Fig. 1.

We now give the process-calculus description of the Blink-tree and the operations
on it. In its initial state it will be an agent of the form (&x~ )(S0 | I0 | T0) where S0

and I0 represent the search and insertion operations, respectively, and T0 the tree
in its initial state. It will have free names s and i via which the operations may be
requested.

We focus first on the types of data that may be passed between the component
agents. We stipulate that the labels (of variants) are:

link, nonlink, datum, done, split, search, insert, add.

These labels will be used to tag data that processes communicate, and the names
are suggestive of the purposes of the various communications, as will become clear.
We let D be the type of names representing pointers to database records stored in
the leaves of the tree. We introduce synonyms for two mutually-recursive types:

P#[search�( int, Aa R) , insert�( int, D, Aa R) , add�( int, Aa P, Aa R)]

R#[link� Aa P, nonlink� Aa P, datum�D, done�( ) , split�( Aa P, int)].
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TABLE 1

Names Type

p, q, p$, q$, p1 , q1 , ... Aa P

r Aa R
z P

y R
b D

k, k1 , ..., int
s Aa ( int, Aa D)
i Aa ( int, D, Aa ( ))

as Aa D

ai Aa ( )
next Aa ( Aa P, Aa Aa P)

get, put, n Aa Aa P

A name of type Aa P will represent a pointer to a tree-node; it can be thought of as
the name of the node. A name of type Aa R will be used in interrogating a node.
Table 1 summarises the typing context for the definitions to follow.

The Blink-tree in its initial state is represented by the agent

T0(get, next) =
df

(&p, p$, put)(ROOT (p, (&�, �) , (p$, nil) , put)
| LEAF (p$, (&�, �), (nil) , nil)
| STORE ((p) , get, put, next) ).

The name nil of type Aa P or D represents a nil pointer, ROOT represents the root
of the tree, and LEAF the only leaf. The role of STORE is to record the name of each
node that is the root of the structure at some point in its evolution. The interface
between the tree agent and the environment is the names get and next, via which
the environment can acquire the name of the current root and the names of former
roots of the tree, respectively. This is explained in detail later.

We first define an agent NODE (p, k� , p~ ) representing a nonroot, nonleaf node
named p storing keys k� =k1 } } } k j and pointers p~ = p1 } } } pj to node. In this and
later definitions, &1�i�l b(i) f P(i) abbreviates b(1) f P1 , ..., b(l) f Pl . The
definition is

NODE( p, k� , p~ )

=
df p(z) .case(z)[search�(k, r) :

cond(k>kj f r� (link� pj) .N,
&1�h� j&1 kh+1�k>kh f r� (nonlink�ph) .N),

add�(k, q, r) :
cond(k>kj f r� (link� pj) .N,

&1�h� j&1 k=kh f r� (done�( ) ) .Nh ,
notfull f r� (done�( ) ) .N$,
full f (&p$) r� (split�( p$, km+1) ) . (N1 | N2))],
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where N=NODE ( p, k� , p~ ) and Nh , N1 , and N2 are defined below. In its quiescent
state a node can accept via its name p a search request and an add request. The
former contains an integer k (to search for) and a name r (via which to return the
result of the search) tagged with the label search to specify the operation. In
response to a search request the node returns the appropriate pointer, labelled to
indicate whether or not it is its link, and resumes its quiescent state, N.

An add request contains a pair k, q (to be added to the node) and a name r (via
which to return a response) tagged with the label add. If k is larger than the high
key of the node, the link is returned. If k is already present the associated pointer
is updated.

Nh=NODE ( p, k� , p1 } } } ph&1 q ph+1 } } } p j).

The Boolean expression notfull is true if the node can accommodate the pair, i.e.,
if j�2m. Then

N$=NODE ( p, k1 } } } kh k kh+1 } } } kj , p1 } } } ph q ph+1 } } } p j) ,

where kh<k<kh+1 . The last possibility is that the node is full; i.e., j=2m+1. In
this case the node is split. More precisely a node is created and the data are shared
between the two. There are two cases depending on whether the pair k, q is added
to the new node or the existing node. Let h be such that kh<k<kh+1 . Then

1. if km+1�kh then

N1 =NODE ( p, k1 } } } km+1 , p1 } } } pm p$)

N2=NODE ( p$, km+1 } } } kh k kh+1 } } } k2m+1 , pm+1 } } } ph q ph+1 } } } p2m+1);

2. if kh+1�km+1 then

N1 =NODE ( p, k1 } } } kh k kh+1 } } } km+1 , p1 } } } ph q ph+1 } } } pm , p$)

N2=NODE ( p$, km+1 } } } k2m+1 , pm+1 } } } p2m+1).

In each case via r is returned the pair (p$, km+1) consisting of the name of the new
node and its smallest key km+1 (which also becomes the largest key of the node
which was split), tagged with the label split. The recipient of this pair, the agent
responsible for initiating the add, will add it to a node one level up in the tree (see
below). Duplication of the key km+1 facilitates the analysis. In Section 4.3 we show
that it is not necessary for correctness of the algorithms.

The agent LEAF ( p, k� , b� , q) representing a leaf named p storing keys k� =k1 } } } kj ,
pointers b� =b2 } } } bj to database records, and link q is defined by
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LEAF( p, k� , b� , q)

=
df p(z) .case(z)[search�(k, r) :

cond(k>kj f r� (link�q) .L,
&1�h� j&1 k=kh f r� (datum�bh) .L,
k � k� f r� (datum�nil ) .L),

insert�(k, b, r):
cond(k>kj f r� (link�q) .L,

&1�h� j&1 k=kh f r� (done�( ) ) .Lh ,
notfull f r� (done�( ) ) .L$,
full f (&p$) r� (split�( p$, km+1) ) . (L1 | L2))].

Note that LEAF stores j&1 key�pointer pairs (k2 , b2 , ..., kj , b j) and that the key k1

has no associated pointer to a database record (in this LEAF, k1 will be the high key
of the leaf's left neighbour, and as just mentioned this simplifies the analysis). In its
quiescent state a leaf can accept a search request and an insertion request. In
response to the former it reacts similarly to NODE, except that if k�kj it returns,
suitably tagged, the appropriate pointer to the database or nil (of type D) if k is
absent and resumes its quiescent state: L=LEAF (p, k� , b� , q). In response to a request
to insert a (k, b) pair, LEAF behaves analogously to how NODE behaves in response
to an add request (in the second case h ranges over 2, ..., j),

Lh =LEAF (p, k� , b2 } } } bh&1 b bh+1 } } } bj)

L$=LEAF (p, k1 } } } kh k kh+1 } } } kj , b2 } } } bh b bh+1 } } } bj) ,

where kh<k<kh+1 . Finally, if kh<k<kh+1 then

1. if km+1�kh then

L1 =LEAF (p, k1 } } } km+1 , b2 } } } bm+1 , p$)

L2=LEAF (p$, km+1 } } } kh k kh+1 } } } k2m+1 , bm+2 } } } bh b bh+1 } } } b2m+1 , q) ,

2. if kh+1�km+1 then

L1 =LEAF (p, k1 } } } kh k kh+1 } } } km+1 , b2 } } } bh b bh+1 } } } bm+1 , p$)

L2=LEAF (p$, km+1 } } } k2m+1 , bm+2 } } } b2m+1 , q) ,

The agent ROOT (p, k� , p~ , put) representing a root node named p storing keys
k� =k1 } } } kj and pointers p~ = p1 } } } pj to nodes is defined by
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ROOT( p, k� , p~ , put)

=
df p(z) .case(z)[search�(k, r) :

cond(&1�h� j kh+1�k>kh f r� (nonlink�ph) .R),

add�(k, q, r) :
cond(&1�h� j k=kh f r� (done�( ) ) .Rh ,

notfull f r� (done�( ) ) .R$,
full f r� (done�( ) ) . (&p0) put( p0).

(&p$)(NEWROOT | N1 | N2))].

In response to a search request ROOT reacts similarly to NODE: R=ROOT (p, k� , p~ , put).
The first two alternatives in response to an add request are similar to those of NODE.

Rh =ROOT (p, k� , p1 } } } ph&1 q ph+1 } } } pj) ,

R$=NODE (p, k1 } } } kh k kh+1 } } } kj , p1 } } } ph q ph+1 } } } p j) ,

where kh<k<kh+1 . In the final possibility in which the root is split there are again
two cases. In both NEWROOT = ROOT ( p0 , (&�, km+1 , �) , (p, p$, nil) , put) .
Also, assuming that for some h, kh<k<kh+1 , then

1. if km+1�kh then

N1 =NODE (p, k1 } } } km+1 , p1 } } } pm p$)

N2=NODE (p$, km+1 } } } kh k kh+1 } } } k2m+1 , pm+1 } } } ph q ph+1 } } } p2m+1) ,

2. if kh+1�km+1 then

N1 =NODE (p, k1 } } } kh k kh+1 } } } km+1 , p1 } } } ph q ph+1 } } } pm p$)

N2=NODE (p$, km+1 } } } k2m+1 , pm+1 } } } p2m+1) .

Thus the root assumes node status (N1), a node is created (N2), and a root is
created (NEWROOT). The name of the new root is put into the store via the name
put.

The agent STORE (p~ , get, put, next) responsible for recording in order of creation
the names p~ = p1 , ..., pj of the current and previous roots is defined by

STORE( p~ , get, put, next) =
df get( pj) .S+

put( p) .S$+
next( p, n) .cond( p= ph f n� ( ph+1) .S),

where S=STORE (p~ , get, put, next) and S$=STORE (p~ p, get, put, next) . The store
can deliver via get the name pj of the current root, can record the name of a new
root received via put, and when sent via next the name p of a former root can
return via n the name of its successor as root.

This completes the definition of the agent T0 representing the Blink-tree in its
initial state. We now describe the search and insertion operations.
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The searcher S0 (s, get) is defined by

S0(s, get) =
df

! s(k, as).get( p).S(k, p, as)

S(k, p, as) =
df

(&r) p� (search�(k, r) ) .r( y) .case( y)[link�p$ : S (k, p$, as) ,
nonlink�p$ : S (k, p$, as) ,
datum�b : as (b) .0].

The agent S0(s, get) may repeatedly spin off searches when supplied via s with an
integer k to search for and a name as via which to return the result of the search.
For instance

S0(s, get) www�
s (k, as)

ww�get p S (k, p, as) | S0 (s, get)

www�
s(k$, a$s)

ww�get p$ S (k$, p$, a$s) | S (k, p, as) | S0 (s, get).

On initiation of a search, the searcher reads from the STORE via get the name of the
root. It then traces a path through the structure until it reaches some LEAF that
synchronizes with it by performing an action r� datum�b returning the result b of the
search (which may be nil indicating that the key is absent). That result is emitted
via as and the searcher becomes inactive.

The inserter I0 (i, get, next) is defined by:

I0(i, get, next)

=
df

! i(k, b, ai) .get( p) .Down (k, b, ai , p, ( ))
Down(k, b, ai , p, q~ )

=
df

(&r) p� (search�(k, r) ) .r( y).
cond(q~ =( ) f case( y)[link�p$ : Down (k, b, ai , p$, (p)) ,

nonlink�p$ : Down (k, b, ai , p$, (p))],
q~ {( ) f case( y)[link�p$ : Down (k, b, ai , p$, q~ ) ,

nonlink�p$ : Down (k, b, ai , p$, pq~ ) ,
datum�b$ : Insert(k, b, ai , p, q~ )])

Insert(k, b, ai , p, qq~ )

=
df

(&r) p� (insert�(k, b, r) ) .r( y).
case( y)[link�p$ : Insert (k, b, ai , p$, qq~ ) ,

done�( ) : ai .0,
split�(p$, k$) : ai .Up (k$, p$, q, q~ )]

Up(k, p, q, q0q~ )

=
df

(&r) q� (add�(k, p, r) ) .r( y).
case( y)[link�q$ : Up (k, p, q$, q0q~ ) ,

done�( ) : 0,
split�(p$, k$) : cond(q~ {( ) f Up (k$, p$, q0 , q~ ) ,

q~ =( ) f Up$ (k$, p$, q0 , (q0)) )]
Up$(k, p, q, (q0) )

=
df

(&r) q� (add�(k, p, r) ) .r( y).
case( y)[link�q$ : Up$ (k, p, q$, (q0)),

done�( ) : 0,
split�(p$, k$) : (&n) next((q0 , n) ) .n(q1) .Up$ (k$, p$, q1 , (q1))].
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The replicator I0 (i, get, next) can repeatedly spin off inserters when supplied via
i with a pair k, b to insert and a name ai via which to send confirmation that the
insertion has been done. Note that we write ai for ai (( ) ). The inserter obtains the
name of the root from the STORE and searches until the appropriate leaf is reached.
Note that its starting point and the names of the rightmost nodes in the path
followed are recorded in the last parameter; thus the last name in that parameter
is the name of the node which was the root when the inserter was created. An inser-
tion within a leaf may result in it splitting. The inserter is informed of this by being
sent a pair (p$, k$) suitably tagged. In such a case the continuation agent Up is
responsible for inserting the pair (p$, k$) in a node one level higher in the tree. This
process may be repeated by Up in several levels of the tree. This is the reason that
the names q~ of the rightmost nodes visited are recorded during the searching phase.
It is possible that q~ may become empty although an insertion is required at a higher
level of the tree: new levels may have been created after the inserter began its task.
If this happens the inserter Up$ queries the STORE via next to obtain the name of
the leftmost node at the level above. This process too may be repeated. Note that
there may be two pointers to a node: one from a node at the level above it in the
tree and one from its left neighbour. One might think that as far as correctness of
the operations is concerned, an insertion in a leaf of the structure does not require
that any updates be performed in higher levels of the tree, that is, that the Up phase
of an insertion could be omitted. Our analysis will show that this is indeed the case.
The Up phase is, however, important for efficiency. (In the model, omitting the Up
phase means replacing Up ( } } } ) by 0.)

As outlined earlier, the system consisting of the structure and the operations is
represented by the agent

P0(s, i) =
df

(&get, next)(S0(s, get) | I0(i, get, next) | T0(get, next) ).

For ease of reference, we collect the agent definitions below. We then proceed to
analyse the model.

T0(get, next) =
df

(&p, p$, put)(ROOT (p, (&�, �) , (p$, nil) , put)
| LEAF (p$, (&�, �), (nil) , nil)
| STORE ((p) , get, put, next) ).

NODE( p, k� , p~ )

=
df p(z) .case(z)[search�(k, r) :

cond(k>kj f r� (link�pj) .N,
&1�h� j&1 kh+1�k>kh f r� (nonlink�ph) .N),

add�(k, q, r) :
cond(k>kj f r� (link�pj) .N,

&1�h� j&1 k=kh f r� (done�( ) ) .N,
notfull f r� (done�( ) ) .N$,
full f (&p$) r� (split�(p$, km+1) ) . (N1 | N2))],

86 PHILIPPOU AND WALKER



where

N=NODE (p, k� , p~ )

Nh=NODE (p, k� , p1 } } } ph&1 q ph+1 } } } p j)

N$=NODE (p, k1 } } } kh k kh+1 } } } kj , p1 } } } ph q ph+1 } } } p j) where kh<k<kh+1 ,

and where if h is such that km+1�kh<k<kh+1 then

N1 =NODE (p, k1 } } } km+1 , p1 } } } pm p$)

N2=NODE (p$, km+1 } } } kh k kh+1 } } } k2m+1 , pm+1 } } } ph q ph+1 } } } p2m+1) ,

and if h is such that km+1�kh<k<kh+1�km+1 then

N1 =NODE (p, k1 } } } kh k kh+1 } } } km+1 , p1 } } } ph q ph+1 } } } pm , p$)

N2=NODE (p$, km+1 } } } k2m+1 , pm+1 } } } p2m+1) .

LEAF( p, k� , b� , q)

=
df p(z) .case(z)[search�(k, r):

cond(k>kj f r� (link�q) .L,
&1�h� j&1 k=kh f r� (datum�bh) .L,
k � k� f r� (datum�nil ) .L),

insert�(k, b, r):
cond(k>kj f r� (link�q) .L,

&1�h� j&1 k=kh f r� (done�( ) ) .Lh ,
notfull f r� (done�( ) ) .L$,
full f (&p$) r� (split�(p$, km+1) ) . (L1 | L2))],

where

L=LEAF (p, k� , b� , q)

Lh=LEAF (p, k� , b2 } } } bh&1 b bh+1 } } } bj)

L$=LEAF (p, k1 } } } kh k kh+1 } } } kj , b2 } } } bh b bh+1 } } } bj), where and kh<k<kh+1

and if km+1�kh<k<kh+1 then

L1 =LEAF (p, k1 } } } km+1 , b2 } } } bm+1 , p$)

L2=LEAF (p$, km+1 } } } kh k kh+1 } } } k2m+1 , bm+2 } } } bh b bh+1 } } } b2m+1 , q) ,

and if kh<k<kh+1�km+1 then

L1 =LEAF (p, k1 } } } kh k kh+1 } } } km+1 , b2 } } } bh b bh+1 } } } bm+1 , p$)

L2=LEAF (p$, km+1 } } } k2m+1 , bm+2 } } } b2m+1 , q).
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ROOT( p, k� , p~ , put)

=
df p(z) .case(z)[search�(k, r) :

cond(&1�h� j kh+1�k>kh f r� (nonlink�ph) .R),

add�(k, q, r) :
cond(&1�h� j k=kh f r� (done�( ) ) .Rh ,

notfull f r� (done�( ) ) .R$,
full f r� (done�( ) ) . (&p0) put( p0).

(&p$)(NEWROOT | N1 | N2))],

where

R=ROOT (p, k� , p~ , put)

Rh=ROOT (p, k� , p1 } } } ph&1 q ph+1 } } } pj) ,

R$=NODE (p, k1 } } } kh k kh+1 } } } kj , p1 } } } ph q ph+1 } } } p j) ,

where kh<k<kh+1

NEWROOT=ROOT (p0 , (&�, km+1 , �) , (p, p$, nil) , put) ,

and if km+1�kh<k<kh+1 , then

N1 =NODE (p, k1 } } } km+1 , p1 } } } pm p$)

N2=NODE (p$, km+1 } } } kh k kh+1 } } } k2m+1 , pm+1 } } } ph q ph+1 } } } p2m+1) ,

and if kh<k<kh+1�km+1 then

N1 =NODE (p, k1 } } } kh k kh+1 } } } km+1 , p1 } } } ph q ph+1 } } } pm p$)

N2=NODE (p$, km+1 } } } k2m+1 , pm+1 } } } p2m+1) .

STORE( p~ , get, put, next) =
df get( pj) .S+

put( p) .S$+
next( p, n) .cond( p= ph f n� ( ph+1).S),

where S=STORE (p~ , get, put, next) and S$=STORE (p~ p, get, put, next) .

S0(s, get) =
df

! s(k, as) .get( p) .S (k, p, as)

S(k, p, as) =
df

(&r) p� (search�(k, r) ) .r( y) .case( y)[link�p$ : S (k, p$, as) ,
nonlink�p$ : S (k, p$, as) ,
datum�b : as (b).0].
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I0(i, get, next)

=
df

! i(k, b, ai) .get( p) .Down (k, b, ai , p, ( ))
Down(k, b, ai , p, q~ )

=
df

(&r) p� (search�(k, r) ) .r( y).
cond(q~ =( ) f case( y)[link�p$ : Down (k, b, ai , p$, (p)) ,

nonlink�p$ : Down (k, b, ai , p$, (p))],
q~ {( ) f case( y)[link�p$ : Down (k, b, ai , p$, q~ ) ,

nonlink�p$ : Down (k, b, ai , p$, pq~ ) ,
datum�b$ : Insert (k, b, ai , p, q~ )])

Insert(k, b, ai , p, qq~ )

=
df

(&r) p� (insert�(k, b, r) ) .r( y).
case( y)[link�p$ : Insert (k, b, ai , p$, qq~ ) ,

done�( ) : ai .0,
split�(p$, k$) : ai .Up (k$, p$, q, q~ )]

Up(k, p, q, q0q~ )

=
df

(&r) q� (add�(k, p, r) ) .r( y).
case( y)[link�q$ : Up(k, p, q$, q0q~ ) ,

done�( ) : 0,
split�(p$, k$) : cond(q~ {( ) f Up (k$, p$, q0 , q~ ) ,

q~ =( ) f Up$ (k$, p$, q0 , (q0)) )]
Up$(k, p, q, (q0) )

=
df

(&r) q� (add�(k, p, r) ) .r( y).
case( y)[link�q$ : Up$ (k, p, q$, (q0)),

done�( ) : 0,
split�(p$, k$) : (&n) next((q0 , n) ) .n(q1) .Up$ (k$, p$, q1 , (q1))].

P0(s, i) =
df

(&get, next)(S0 (s, get) | I0(i, get, next) | T0 (get, next) ).

4. CORRECTNESS

We define an agent which gives a succinct description of the intended observable
behaviour of the Blink-system P0 . This agent, B, is parametrized on a function f
recording the key�pointer associations held in the leaves of the tree; a multiset _
(the searches) of pairs consisting of a key k to be searched for and a name as to
be used to return the pointer found; a multiset _c (the completed searches) of pairs
consisting of a name as and a pointer b found but not yet returned; a multiset @ (the
insertions) of triples consisting of a key k, a pointer b, and a name ai via which a
signal is to be made when the insertion of the (k, b)-pair has been completed; and
a multiset @c (the completed insertions) of names ai whose key�pointer pairs have
been inserted but which have not been used to signal this.
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We define B as follows. To ease readability, we elide the fixed parameters s and
i from the instances of B on the right hand side of the definition.

B(s, i, f, _, _c, @, @c) =
df s(k, as) .B ( f, _ _ [(k, as)], _c, @, @c)

+i(k, b, ai).B ( f, _, _c, @ _ [(k, b, ai)], @c)

+7(k, as) # _ { .B ( f, _&[(k, as)], _c _ [(as , f (k))], @, @c)

+7(k, b, ai ) # @ { .B ( f [b�k], _, _c, @&[(k, b, a i)], @c _ [ai])

+7(as , b) # _ c as (b) .B ( f, _, _c&[(as , b)], @, @c)

+7ai # @ c ai .B ( f, _, _c, @, @c&[ai]) .

The first and second summands represent initiation of new operations, the third
and fourth invisible completion of outstanding operations (with appropriate update
of the association in the case of insertion), and the fifth and sixth returns of results.
Let B0=B (i, s, *k .nil, =, =, =, =) where = is the empty multiset.

When P0 or B0 receives a request to carry out an operation, the request contains
a name via which to return the result. The claim

P0 &B0

asserts that P0 and B0 are indistinguishable even allowing the possibility that different
requests may contain the same return name. This claim is in fact correct and can be
proved using a more complicated version of the theory presented below. We will
assume, however, that each request for an operation contains a return name different
from those in all other (active) requests. This natural assumption corresponds, for
instance, to the use of integers in [8] to distinguish operation instances.

To express this assumption formally we introduce some notation. Working in the
context given by Table 1, let A be the set of all names of types Aa D and Aa ( ). We
refer to names of these types as A-names. If v is value we write vA for the set of
A-names occurring in v. Then we define &A to be the largest symmetric relation on
agent such that

if P& A Q then for all actions : such that :{xv where vA & fn(P, Q){< and

bn(:) & fn(P, Q)=<, if P w�: P$ then (1) for some Q", Q$, Q O Q" w�: Q$,
P&A Q" and P$&A Q$, or (2) :={ and P$&A Q.

Thus, roughly, P&A Q if P and Q are branching bisimilar except that no require-
ment is placed on their behaviours on receiving an A-name that is free in one of
them.

The assertion of correctness of the operations is then the following.

Theorem 4.1. P0 &A B0 .

We give first a rough outline of the proof and then the proof itself. A central
theme of the proof is the effective use of the theory of partial confluence. Roughly,
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an agent is partial confluent if the occurrence of certain actions cannot preclude
some others. A key insight is that in reasoning about the behaviour of a system
constructed from partial-confluent parts, it is often sufficient to examine in detail
only a part of that behaviour: from this and the fact of the parts' partial confluence,
it may be possible to infer properties of the remaining behaviour of the system.

A derivative of P0 is a restricted composition whose components are the
replicators S0 and I0 , instances of these representing operations in progress, and a
derivative T of T0 representing the data structure. In turn, T is a restricted composi-
tion whose components are a store and agents representing the nodes.

An interaction between an operation-agent and a node-agent takes the form of
a dialogue consisting of a question via a name of type Aa P (the node's name) and
an answer via a name of type Aa R supplied in the question. Let us call an operation-
agent or node-agent active if it is engaged in a dialogue (i.e., it is a party to a
question that has been asked but not answered) and quiescent if it is not. Let Q0

be the part of P0 whose states have at most one operation agent that is active in
the sense just described. (This will be defined formally later.) Using the theory of
partial confluence we will show that

P0 &Q0 . (1)

We will further show that

Q0 &A B0 . (2)

Since P&Q implies P&A Q, the theorem follows immediately from (1) and (2).
To prove (2) we will extend the theory of partial confluence needed to establish

(1). Let Q�
0 be the part of Q0 whose states have at most one operation-agent. Let

B�
0 also be the part of B0 whose states are such that between them _, _c, @, and @c

contain at most one element. Q�
0 and B�

0 can be thought of as the serial versions of
the systems represented by Q0 and B0 , respectively. We will show that as one would
expect of these sequential parts,

Q�
0 &B�

0 . (3)

In addition we will show, using the partial confluence theory, that in each agent-
context C[ } ] in a certain class, Q0 and the part Q�

0 of it are indistinguishable, that
is,

C[Q�
0]&C[Q0], (4)

and similarly that B0 and the part B�
0 of it are indistinguishable, that is,

C[B�
0]&C[B0]. (5)
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From (3), (4), and (5) it follows that in each context C[ } ] in the class, Q0 and B0

are indistinguishable, that is,

C[Q0]&C[B0]. (6)

Finally we will show by considering a particular context in the class that (2) follows
from (6). The result (6) is important as the class of contexts contains all those in
which one would expect to find the Blink-system.

We will point out that the analysis carried out to prove (4) can be extended to
give an alternative proof of the theorem that does not use the partial confluence
theory. Nonetheless, we believe that the theory of partial confluence is likely to be
useful in other contexts and that the proof using it gives valuable insights into why
the operations are correct. Further, it was as a result of carrying out the proof that
we discovered the compression algorithm discussed in the next section.

We now proceed to the proof. In the next section we present the theory of partial
confluence. In Section 4.2 we apply the theory to prove (1), (4), and (5), then show
(3), and finally deduce (2). To finish the section we briefly discuss alternative
models.

4.1. Partial Confluence

The theory of partial confluence can be presented in greater or lesser generality.
We will not give here the most general development as it is not needed for the analysis
and its complication may obscure some of the ideas. The following notation is useful
to state an assumption made for the development here.

Notation 4.2. Let 2=[Aa _1 , ..., Aa _n] be a set of types. Given a context 1, we
write x : 2 and say x is a 2-name if 1 |&x : Aa _i for some i. We write 2+ for the set
of actions of the form xv with x : 2, and 2& for the set of actions of the form
x� (&x~ ) v with x : 2. We write 2\ for 2+ _ 2& and refer to actions in 2\ as 2-actions.
For a value v we set v2=[x : 2 | x occurs in v].

Assumption 4.3. In the development of the theory of partial confluence that
follows, we will assume, a context 1 and disjoint sets Q and A of types of the form
Aa _ such that if 1 |&x� v .P and vA{<, then x : Q and vA contains just one occurrence
of an A-name.

We will apply the theory in two cases. The first concerns interaction between
operation-agents and node-agents. In that case Q will be [Aa P] and A will be
[Aa R]; an operation-agent interrogates a node-agent via an action p� (&r) v, where
p : Q and vA=[r]. The second case concerns interaction between the data structure
and its environment. In that case Q will be [Aa ( int, Aa D) , Aa ( int, D, Aa ( ))] and A
will be [Aa D, Aa ( )]; the environment requests a search operation via an action
s� (&as) v, where s : Q and vA=[as]. In general we will think of a Q-action as the
asking of a question in which the A-name to be used to return the answer is passed
from questioner to answerer.
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We first recall the basic theory of partial confluence from [7] to which we refer
for proofs. (In fact the presentation here gives a more general treatment of bound
names, but the proofs are very similar.) We begin with some useful notation.

Notation 4.4. P O w�: P$ means that P O P" w�: P$ for some P" with P"&P
and if :={ then P$&3 P. (This is a nonstandard use of notation, but confusion is
unlikely to result because the use is followed throughout the paper.) For s=
:1 } } } :n # Act* we write w�s & for the composite relation & w�

:1 & } } } & w�
:n & ,

where in writing P& w�{ &P$ we intend P$&3 P. We refer to w�{ & as a decisive
(silent) transition or action.

The essence of partial confluence is that the occurrence of some actions, here the
A-actions, will never preclude others and that behaviour on A-actions is deter-
minate. A subtle point is the treatment of bound names in output actions. Consider
P=(&p)(a� ( p) .0 | b� ( p) .0) where a, b are A-names. Then P w�: Pb=b� ( p) .0, where
:=a� (&p) p, and P w�; Pa=a� ( p) .0, where ;=b� (&p) p. Then Pb w�p� b 0 rather than
Pb w�; 0. We do not, however, wish to regard P w�: Pb as precluding P w�; Pa ,
although it does affect which names are bound in the action. To capture this we
introduce some notation. Given a pair of actions :, ;, we write :*, ;* for :, ;
unless :=a� (&x~ ) v and ;=b� (&y~ ) u when :* is a� (&x~ & y~ ) v and ;* is b� (&y~ &x~ ) u. (We
assume that bound names are chosen so that no name occurs bound more than
once in an agent and that the bound names in an action of an agent are the corre-
sponding bound names in the agent.) Then

Definition 4.5. 1. An agent P is weak A-confluent if, whenever Q is a derivative
of P, : # A\, Q w�: Q1 , and Q O w�; Q2 , then Q1 O w�;* Q$ and Q2 O w�:* &Q$, or
:=; and Q1 &Q2 .

2. An agent P is A-determinate if whenever Q is a derivative of P,

(a) if : # A+, Q w�: Q1 , and Q O w�: Q2 , then Q1 &Q2 , and

(b) if :, ; # A& with subj(:)=subj(;), Q w�: Q1 , and Q O w�; Q2 , then
:=; and Q1 &Q2 .

3. An agent P is A-confluent if it is weak A-confluent and A-determinate.

A derivative of a weak A-confluent agent enjoys a confluence property with respect
to A-actions and other actions. A derivative of an A-determinate agent is determinate
under A-actions. Note that a weak A-confluent agent need not be semantically
invariant under {-transitions. It is straightforward to show that if P is weak A-confluent
and Q&P, then Q is weak A-confluent, and similarly for A-determinacy; see [7].

We record an observation that will be useful later. It describes how actions of a
weak A-confluent agent commute with sequences of A\-actions. The appropriate
form of commuting involves the ``*''-notation introduced above extended in the
natural way to sequences.

Lemma 4.6. Suppose P is weak A-confluent, P w�s & P1 , where s # A\*, and
P O w�; P2 . Then

1. P O w�;* P3 and P2 w�s* & P3 , or
2. s=t:u, P w�t & P0 w�: & P3 w�u & P1 , P0 O w�;* P4 , P2 w�t* & P4 , :=;*,

and P4 &P3 .
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Proof. The proof is by induction on the length of s and is straightforward from
the definitions. K

A further convenient definition:

Definition 4.7. An agent is A-closed if none of its derivatives can perform an
A-action.

The following important result asserts that &-state (that is, the equivalence class
under &) of an A-closed composition of A-confluent agents is not altered by an
interaction between components via an A-name. We say that actions :, :� are
complementary, : comp :� , if :=xv and :� =x� (&x~ ) v or vice versa.

Lemma 4.8. Suppose C and S are A-confluent, (&z~ )(C | S) is A-closed, and C w�: & C$,
S w�:� & S$, where : comp :� and :� # A&. Then (&z~ )(C | S)&(&z~ u~ )(C$ | S$), where u~ =bn(:� ).

Proof. See [7.] K

Note that this does not hold under the assumption only that C, S are weak
A-confluent: consider C1 = a� (b) .0 | a� (c) .0 and S1 = a(x) .a( y) .x� .0, and C2 =
a� (b) .a� (c) .0 and S2=a(x) .x� .0 | a( y) .0 where C1 and S2 are not A-determinate.

The following definition gives the part of an agent's behaviour in which it never
receives an A-name that it already has and never sends a free A-name.

Definition 4.9. Let P be the transition system generated by an agent P. The
subsystem (P< , [w�: <]:) of P is the smallest transition system such that

1. P # P< , and

2. if Q # P< , and Q w�: R, and neither (i) :=xv, where vA & fn(Q){< nor
(ii) :=x� (&x~ ) v, where vA�3 x~ , then R # P< and Q w�: < R.

Thus (P< , [w�: <]:) consists of some of the derivatives of P and some of the
transitions between those agents. The transitions excluded are those in which an
agent receives an A-name that occurs free in it or sends a free A-name, and the
derivatives excluded are those reachable from P only via computations involving
excluded actions. When considering a derivative Q of P that is in P< , we often write
Q< instead of Q to emphasise the transition system that is under consideration.

Hereafter, we write fn(Q)2 for [x # fn(Q) | x : 2]. We continue with a final piece
of notation:

Notation 4.10. For a~ a set of A-names let Pa~
<=[Q # P< | fn(Q)A=a~ ]. Note that

the sets Pa~
< partition P< .

The following definition isolates a class of questioners.

Definition 4.11. An agent P is an A-client if P< is A-confluent and

1. whenever Q # Pa~
< and Q w�: < R, then

(a) if :=x� (&x~ ) v with vA=[a], then R # Pa~ a
< ,

(b) if :=av with a an A-name, then R # Pa~ &a
< ,

(c) if : is of some other form then R # Pa~
< , and

2. whenever Q # Pa~
< , a # a~ , and : # A+ with subj(:)=a, then Q w�: < .
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It is intended that if Q # Pa~
< then the index set a~ contains the names on which the

A-client expects an answer. When a question is asked a fresh A-name is sent and
added to the index set (1a). When an answer is received the name used is deleted
from the index set (1b). Other actions do not change the index set (1c). Finally, an
A-client is ready to receive an answer via any name in the index set (2).

Complementing this is the following definition of a class of answerers.

Definition 4.12. An agent P is an A-server if P< is A-confluent and whenever
Q # Pa~

< and Q w�: < R, then

1. if :=xv with vA=[a], then R # Pa~ a
< ,

2. if :=a� (&x~ ) v with a an A-name, then R # Pa~ &a
< , and

3. if : is of some other form then R # Pa~
< .

If Q # Pa~
< then a~ contains the names on which the A-server owes an answer.

When a question is received the A-name (which is fresh by definition of �<) is
added to the index set (1), and when a question is answered the name used is
deleted from the set (2). Other actions do not change the index set (3).

In outlining the structure of the proof of Theorem 4.1, we referred to parts of
agents whose derivatives have at most one component of a certain kind. The follow-
ing definition makes this precise.

Definition 4.13. Let P be the transition system generated by an agent P with
fn(P)A=<. Then (P� , [w�: � ]:) is the subsystem of (P< , [w�: <]:) with P� =
� [Pa~

< | |a~ |�1] and Q w�: � R if Q, R # P� , and Q w�: < R.

Thus (P� , [w�: � ]:) consists of the derivatives of P that have at most one free
A-name and the transitions between them (that respect that A-name property).
When considering a derivative Q of P that is in P� , we often write Q� instead of
Q to emphasise the transition system that is under consideration.

In what follows we will write an expression such as (&z~ )(R | P� ). Such an expres-
sion describes the part of the transition system of (&z~ )(R | P) containing the agents
of the form (&w~ )(R$ | Q) where Q is in P� and whose transitions are the transitions
between these agents. (Note that every derivative of (&z~ )(R | P) is of the form
(&w~ )(R$ | P$) where R$ is a derivative of R and P$ is a derivative of P.)

The following definition picks out a class of A-servers.

Definition 4.14. An A-server P is prompt if whenever Q # Pa
< with a a singleton,

then Q O w�: for some :=a� (&x~ ) v.

If Q # Pa
< then Q may deliver the answer to the one outstanding question, possibly

after some {-actions that do not change its &-state.
We now have the first main result. It asserts that a prompt A-server S is

indistinguishable from the part S � of it in an A-closed composition with an A-client.

Theorem 4.15. Suppose C is an A-client, S is a prompt A-server, fn(C)A=<,
fn(S)A=<, and (&z~ )(C | S) is A-closed. Then (&z~ )(C | S)& (&z~ )(C | S � ).
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Proof. See [7]. K

The definitions and results presented so far in this section are generalizations of
material in [7] and constitute a basic theory of partial confluence which will be
used in the next section. We continue with an extension of the theory.

In Theorem 4.15, S is assumed to be prompt: on accepting a question it
immediately assumes a state in which it may deliver the answer, possibly after some
semantically-insignificant {-actions. All nodes of the Blink data-structure are prompt.
The Blink-system, however, is not prompt (for the appropriate Q and A): determina-
tion of the result of an operation may involve a state change affecting subsequent
operations. The extension of the theory is concerned with servers in which deter-
mination of the answer to a question may involve at most one decisive {-action.

It involves agents some of whose actions commute, where the term is understood
to take into account possible change of bound names. Consider again P=(&p)
(a� ( p) .0 | b� ( p) .0). Then P w�: w�; 0 where :=a� (&p) p and ;=b� p. The communica-
tion is P w�;

-

w�:
-

0, where :-=a� p and ;-=b� (&p) p. In the following definitions,
given a pair of actions :, ; we write :-, ;- for :, ; unless :=a� (&x~ ) v and ;=b� (&y~ ) u
when for some z~ �x~ , :- is a� (&x~ &z~ ) v and ;- is b� (&y~ z~ ) u. Also, we say actions :, ;
are partners if either :=x� (&x~ ) v and ;=au, where vA=[a], or :=xv and
;=a� (&y~ ) u, where vA=[a].

Definition 4.16. An A-client P is a QA-client if P< is weak Q-confluent and
for Q # P< , if Q O w�: Q1 O w�; Q2 , : # Q&, and :, ; are not partners, then
Q O w�;

-

Q$1 O w�:
-

Q$2 with Q2 &Q$2 .

A QA-client is weak Q-confluent as well as A-confluent, and the asking of a ques-
tion commutes with any action except the receipt of the answer to that question.

We now isolate a class of servers motivated by consideration of the Blink-system.

Definition 4.17. An A-server P is an almost-prompt QA-server if P< is Q-confluent
and for Q # P< ,

1. if Q O w�: Q1 O w�; Q2 and (a) : # Q+, :, ; are not partners, and ;{{,
or (b) ; # A&, :, ; are not partners, and :{{, or (c) ;={ and : � (Q+ _ A&

_ [{]), then Q O w�;
-

Q$1 O w�:
-

Q$2 with Q2 &Q$2 ,

2. if Q # Pa
< (where a is a singleton) then Q O w�: or Q O w�{ Q$ O w�: for

some :=a� (&x~ ) v,

3. if Q O w�{ Q$ then there exists : # A& such that Q$ O w�: but not
(Q O w�:$ ) for any :$ with subj(:$)=subj(:),

4. if not (Q O w�: ), Q O w�{ Q1 O w�: , and Q O w�{ Q2 O w�:$ , where :,
:$ # A& with subj(:$)=subj(:), then Q1 &Q2 .

Note that a QA-server is Q-determinate. Condition 1 asserts that certain actions
commute. The second condition expresses that when there is one outstanding ques-
tion it may be answered after at most one decisive {-action. Condition 3 expresses
that each decisive {-action determines the answer to a question and Condition 4
that only one decisive {-action can determine the answer to a particular question.
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The following result records some properties of almost-prompt QA-servers. For
J�Act, an agent P is J-inert if for all : # J, not (P O w�: ).

Lemma 4.18. Suppose P is an almost-prompt QA-server.

1. If Q # P<
< then Q is A& _ [{]-inert.

2. If Q # Pa
< is not A&-inert then Q is {-inert.

3. If Q # P<
< , Q w�u & Q1 w�; & w�: & Q2 , where u; # Q+* and : # A& and Q1

is A&-inert, then Q2 in A&-inert.

Proof. The first part is straightforward from the definitions.
For the second suppose that Q O w�: Q1 , where : # A&. If Q O w�{ then as Q

is A-confluent, Q1 O w�{ , contrary to the first part as Q1 # P<
< .

For the third part suppose Q # P<
< , Q w�u & Q1 w�; & w�: & Q2 , where u; # Q+*,

: # A&, and Q1 is A&-inert. If Q2 is not A&-inert then Q2 O w�:$ , where :$ # A&,
when either Q1 w�: & or Q1 w�:$

& since at least one of :, :$ commutes with ; and
:$ commutes with :. But this contradicts that Q1 is A&-inert. K

The main result, Theorem 4.20 below, asserts that an almost-prompt QA-server
S is indistinguishable from the part S � of it in a QA-closed composition with a
QA-client. The following result is used in its proof. In asserts that the &-state of
a QA-closed composition of a QA-client and a pruned almost-prompt QA-server is
not changed by a communication via an A-name.

Theorem 4.19. Suppose that C is a QA-client with state space C and S is an
almost-prompt QA-server with state space S. Suppose C1 # Ca

< , S1 # Sa
< , and

C1 w�: C2 and S1 O
:� S2 where :� # A& and : comp :� . Further suppose (&z~ )(C1 | S1) is

QA-closed. Then (&z~ )(C1 | S �
1)& (&z~ u~ )(C2 | S �

2), where u~ =bn(:� ).

Proof. Since S1 # Sa
< , either S1( O w�:� ) O S2 or S1( O w�{ )( O w�:� ) O S2 .

Let (M1 , M2) # B0 if M1=(&z~ )(C1 | S �
1) and M2=(&z~ u~ )(C2 | S �

2), where C1 # Ca
< ,

S1 # Sa
< , C1 w�: & C2 S1 w�:� & S2 , and :=av, :� =a� (&u~ ) v. Moreover, let (M1 , M2) #

B1 if M1=(&z~ )(C1 | S �
1) and M2=(&z~ u~ )(C2 | S �

2), where C1 # Ca
< , S1 # Sa

< , C1 w�: & C2 ,
S1 w�{ & S0 w�:� & S2 , :=av and :� =a� (&u~ ) v. We show that B0 _ B1 _ & is a branching
bisimulation.

First suppose (M1 , M2) # B0 , where M1 , M2 are as above. Suppose M2 w�\ M$2 .
Then M1 O M"1=(&z~ u~ )(C$1 | S$�

1 ), where C1 O w�: C$1 &C2 and S1 O w�:� S$1 &S2 .
Since S$1 &S2 , S$�

1 &S �
2 . Hence M"1 &M2 which implies that M"1 O w�\ M$1 , where

M$1 &M$2 as required. (The case \={ and M$2 &M2 is clear.) So suppose
M1 w�\ M$1 . The following possibilities exist:

1. M$1 #(&y~ )(C$1 | S �
1), where C1 w�; C$1 . Since C1 is A-confluent, C2 O w�; C$2

and C$1 w�: & C$2 . Hence M2 O w�; M$2=(&y~ u~ )(C$2 | S �
2), where (M$1 , M$2) # B0 .

2. M$1 #(&z~ )(C1 | S$�
1 ), where S1 w�{ S$1 . By Lemma 4.18(2), S1 &S$1 . So

S$1 w�:� & S2 and hence (M$1 , M2) # B0 .

3. M$1 #(&y~ )(C1 | S$�
1 ), where S1 w�; S$1 and ;{{. The argument is similar to

the first above with attention to bound names.
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4. M$1 #(&z~ w~ )(C$1 | S$�
1 ), C1 w�# C$1 , S1 w�#� S$1 , where # comp #� , w~ =bn(#, #� ).

Note that since S1 # Sa
< , # � Q&. If #� # A& then subj(#� )=a� , and so by A-determinacy

#� =:� and S$1 &S2 . Also, #=: and by A-determinacy, C$1 &C2 . Hence M$1 &M2 .
Otherwise the argument is a combination of those above.

So suppose (M1 , M2) # B1 . As before it is clear that if M2 w�\ M$2 then M1 O M"1
=(&z~ u~ )(C$1 | S$�

1 ), where C1 O w�: C$1 &C2 and S1 O w�{ O w�:� S$1 &S2 . Hence
M"1 &M2 . Moreover, M"1 O w�\ M$1 where M$1 &M$2 as required. (Again the case
\={ and M$2 &M2 is clear.) So suppose M1 w�\ M$1 . The following possibilities
exist:

1. M$1 #(&y~ )(C$1 | S �
1) and C1 w�; C$1 . Then C2 O w�; C$2 and C$1 w�: & C$2 so

M2 O w�; M$2=(&y~ u~ )(C$2 | S �
2), where (M$1 , M$2) # B1 .

2. M$1 #(&z~ )(C1 | S$�
1 ), where S1 w�{ S$1 . If S1 &S$1 then S$1 w�{ & w�:� & S2 and

so (M$1 , M2) # B1 as required. Otherwise, as S is almost-prompt, S$1 &S0 when
S$1 w�:� & S2 . Hence (M$1 , M2) # B0 .

3. M$1 #(&y~ )(C1 | S$�
1 ), where S1 w�; S$1 and ;{{. Note that since S1 w�{ & S0

w�:� & S2 and S1 # Sa
< , by Lemma 4.18(2), S1 is A&-inert. Since S$1 # Sa

< , either
S$1 O w�# or S$1 O w�{ O w�# S"1 , where # # A&, subj(#)=a. In the former case
by commutativity, S1 O w�#

-

contrary to S1 being A&-inert. (Note that ;{{ by
assumption, and ;, # are not partners as ; � Q& by Q-closure.) Hence by commutativity
S1 w�{ & S$0 w�#

-

& S$2 w�;
-

& S"1 . So as S is an almost-prompt QA-sever, S"0 &S0 , #-=:� ,
and S$2 &S2 so S2 O w�;

-

S$2 &S$1 . Hence (M$1 , (&y~ u~ )(C2 | S$�
2 )) # B0 .

4. M$1 #(&z~ w~ )(C$1 | S$�
1 ), C1 w�# C$1 , S1 w�#� S$1 , # comp #� and w~ =bn(#, #� ).

Note that since S1 # Sa
< , # � Q&. Also #� � A& as S1 as A&-inert. The argument is

then a combination of those above.

This completes the proof. K

The intuition underlying the main theorem below is that the determination of the
answer to any question can be thought of as an atomic action, and therefore
processing of questions can be serialized. The reason for this is that the answer
to a question is determined by at most one decisive {-action, and each decisive
{-action determines an answer to a question. In more detail, let P be a system with
a server capable of processing questions concurrently, and let P$ be a similar system
with a serial server. Clearly, any computation of P$ is also (essentially) a computa-
tion of P. The converse, however, does not hold: there are states of P where more
than one question is outstanding in the server. Nonetheless, P$ is branching
bisimilar to P. A key observation in seeing that P$ can match any computation of
P is that the server of P$ can postpone accepting a question which has been accepted
by the server of P until the decisive {-action (if it exists) is performed. The serial system
can then accept the question and determine and return the answer. Since the answer
to the question has been determined in P, by A-confluence no difference in behaviour
is observable. This intuition is formalized in the proof.

Theorem 4.20. Suppose that C is a QA-client and that S is an almost-prompt
QA-server. Suppose fn(C)A=<, fn(S)A=<, and (&z~ )(C | S) is QA-closed. Then
(&z~ )(C | S)& (&z~ )(C | S � ).
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Proof. Let (M1 , M2) # B if M1=(&z~ )(C1 | S1) and M2=(&w~ )(C2 | S �
2), where

C2 # C<
< , S2 # S<

< and there are C, an A&-inert S, s� =:1 } } } :n # A& with :i =
ai (&x~ i) vi , and u� =;1 } } } ;k # Q& with ; i =b i (&y~ i) u i such that setting s=:1 } } } :n ,
where :i=aivi and u=;1 } } } ;k , where ;i=biui , then C1 w�s & C and S1 w�s� & S,
and C2 w�u� & C and S2 w�u & S. We show that B& _ & is a branching bisimula-
tion.

First suppose (M1 , M2) # B, where M1 , M2 are as above. Suppose M2 w�\ M$2 .
We show that M1 O M"1 w�\ M$1 , where (M"1 , M2) # B& and (M$1 , M$2) # B& (or
\={ and M$2 &M2 when (M1 , M$2) # B& ). There are several cases.

1. M$2 #(&y~ )(C$2 | S �
2), where C2 w�; C$2 . Then as ; � Q& by Q-closure, by

Lemma 4.6 C O w�; C$ and C2 w�u� & C$. Now M1 O M"1=(&v~ )(C | S), and by A-con-
fluence M"1 &M1 . Further, M"1 O w�\ M$1=(&v~ )(C$ | S) and (M$1 , M$2) # B.

2. M$2 #(&y~ )(C2 | S$�
2 ), where S2 w�; S$2 . Since S2 # S<

< , if ;={ then
S2 &S$2 . With this observation the argument is similar to the above.

3. M$2 #(&y~ )(C$2 | S$�
2 ) and \={ as C2 w�# C$2 , S2 w�#� S$2 , where # comp #� and

# � Q&. Since S2 # S<
< , # � A+. The argument is a combination of those above.

4. M$2 #(&y~ )(C$2 | S$�
2 ) and \={ as C2 w�#� C$2 , S2 w�# S$2 , where #� comp # and

#� # Q&. By A-confluence M1 &M"1=(&v~ )(C | S), and (M"1 , M2) # B. Since C is weak
Q-confluent, by Lemma 4.6 there are two cases:

(a) u� =v� ;� w� , C2 w�v� & C3 w�;� & C4 w�w� & C, C$2 w�v*
& C$3 , C3 w�#*

& C$3 , ;� =#*,
and C$3 &C4 . Then, where S2 w�v & S3 w�; & S4 w�w & S, since S is weak Q-confluent
and Q-determinate, by Lemma 4.6 S$2 w�v & S4 . Hence (M"1 , (&x~ )(C$2 | S$�

2 )) # B as
C$2 w�vw

& C and S$2 w�vw
& S.

(b) The previous case does not hold and C w�#*
& C$, C$2 w�u*

& C$ where the
bound name in #� does not occur in u� . Again by Lemma 4.6 either (i) u=v#w,
S2 w�v & S3 w�# & S4 w�w & S, and S$2 w�v & S4 , or (ii) S w�# & S$ and S2 w�u & S$. But
(i) is impossible since the bound A-name of #� does not occur in u� , so that # cannot
occur in u. So assume (ii). Since S$2 # Sa

< , S$2 w�:� & S"2 or S$2 w�{ & w�:� & S"2 , where
subj(:� )=a� , and since C$2 # Ca

< , C$2 w�: & C"2 , where : comp :� . By Theorem 4.19,
M2 &M"2=(&w~ )(C"2 | S"�

2 ). Further, by Lemma 4.6 S$ w�:� & S" of S$ w�{ & w�:� & S",
where S"2 w�u & S", and C$ w�: & C" where C"2 w�u*

& C". Hence M"1 O M$1=(&v~ )
(C" | S") and (M$1 , M"2) # B and S" is A&-inert. In summary, M1 O M"1 O M$1 ,
M1 &M"1 , and (M"1 , M2) # B& .

Now suppose (M1 , M2) # B and M1 w�\ M$1 . There are several cases.

1. Suppose M$1 #(&y~ )(C$1 | S1), where C1 w�; C$1 . The case when ;={ and
C1 &C$1 is clear. Otherwise, by A-confluence, C O w�; C$ and C$1 w�s & C$. Since C2

is a QA-client, C2 O w�;
-

C$2 w�u
-

& C$.
So M2 O w�\ M$2=(&w~ )(C$2 | S �

2) and (M$1 , M$2) # B.

2. Suppose M$1 #(&y~ )(C1 | S$1), where S1 w�; S$1 and ;{{. Then by A-con-
fluence, S O w�; S$ and S$1 w�s & S$. Since S2 is a QA-server, S2 O w�; S$2 w�u & S$.
So M2 O w�\ M$2=(&w~ )(C2 | S$�

2 ) and (M$1 , M$2) # B.
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3. Suppose M$1 #(&y~ )(C1 | S$1) and S1 w�{ S$1 . The case S$1 &S1 is simple so
suppose S1 w�{ & S$1 . By A-confluence S O w�{ S$ and S$1 w�s� & S$. Further since S
is A&-inert, S$ O w�:� S", where :� # A&. Hence by commutativity, S$1 O w�:

-

S"1 ,
and by A-confluence, S"1 w�s

-

& S". Note that S" is A&-inert.
Since S2 # S<

< and S2 w�u & S, where u # Q+*, by commutativity for some ; # u,
S2 w�; & w�{ & S$2 and S$2 w�t & S$, where t is u with ; deleted. Hence by commuta-
tivity S$2 O w�:� S"2 . By Lemma 4.6, A-determinacy, and Q-determinacy, S"2 w�t & S".
Further, there is ;� comp ; such that ;� # u� and as C2 w�u� & C, by commutativity,
C2 w�;

-

& C$2 w�t
-

& C, where C$2 # Ca
< . Hence C$2 w�: C"2 where : comp :� and by

Lemma 4.6, C"2 w�t
-

& C$ and C O w�: C$. So, M2 O � M$2=(&v~ )(C"2 | S"�
2 ) and

since C1 w�s:
& C$ and S$1 w�s:

& S", (M$1 , M$2) # B.

4. If :={ and M$1=(&y~ )(C$1 | S$1) where C1 w�# C$1 , S1 w�#� S$1 , and # � Q& _ A+

then the argument is a combination of those above.

5. Suppose :={ and M$1=(&y~ )(C$1 | S$1), where C1 w�#� C$1 and S1 w�# S$1 with
#� comp # and #� # Q&. By A-confluence, C w�#� & C$ and C$1 w�s & C$, and S w�# & S$
and S$1 w�s� & S$. If S$ is A&-inert then C2 w�u#

& C$ and S2 w�u#
& S$, so (M$1 , M2) # B.

Otherwise, S$ w�:� S" for some :� # A& and S" is A&-inert. Since S2 # S<
< , S is

A&-inert, and S2 w�u & S w�# & S$ w�:� S", by Lemma 4.18(3), S2 w�# & S$2 w�:� & S"2
w�u & S". Moreover, since C2 w�u� & C w�#� & C$, by commutativity, C2 w�#

-

& C$2
w�u

-

& C$. Further, C$2 w�: C"2 where : comp :� , and by Lemma 4.6, C$ O w�: C",
where C"2 w�u

-

& C". Hence, M2 O M$2=(&w~ )(C$2 | S$�
2 ) O M"2=(&v~ )(C"2 | S"�

2 ), where
S"2 w�u

-

& S" and C"2 w�u
-

& C". Since also S$1 w�s:
& S" and C1 w�s:

& C", (M$1 , M"2) # B,
and by A-confluence M$2 &M"2 .

6. Finally, suppose :={ and M$1=(&y~ )(C$1 | S$�
1 ), where C1 w�# C$1 and

S1 w�#� S$1 with # # A+. Then subj(#) # subj(s) as S is A&-inert. So by Lemma 4.6
and A-determinacy, S$1 w�s*

& S, where s* is s� with #� deleted and possibly change of
bound names, and by Lemma 4.6 C$1 w�s*

& C. Thus (M$1 , M2) # B.

We have shown that if (M1 , M2) # B and M1 w�: M$1 then M2 O M"2 w�: M$2
where (M1 , M"2), (M$1 , M$2) # B& , (or :={ and (M$1 , M1) # B& ), and vice versa.
From this the result follows. K

4.2. Analysis of Q0

In this section we apply the partial-confluence theory to prove first that P0 &Q0

and then that C[Q0]&C[Q�
0] for each context C[}] in a certain class. To do this

we must examine P0 . We begin with T0 .
From the definitions we see that NODE (p, k� , p~ ) may alternately accept a ques-

tion via p and answer it using a name occurring in the question. We refer to
NODE (p, k� , p~ ) as a quiescent node and to an immediate derivative N of it as an
active node, and we set name(NODE (p, k� , p~ ) )=name(N)= p. Similarly we define
quiescent leaf, active leaf, and name(L), where L is a leaf. We refer to ROOT (p, k� , p~ )
as a quiescent root, to an immediate derivative R of it as an active root, and to a
derivative R$ of it of the form (&p0) put( p0).W as a quasi-quiescent root; we set
name(ROOT (p, k� , p~ ) )=name(R)=name(R$)= p.
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The following lemma gives a rough description of the form of derivatives of T0 .

Lemma 4.21. A derivative of T0 is of the form (&z~ )(S | 6i Ci) with free names only
of types Aa P, Aa (Aa P, Aa Aa P) , D, Aa R, and Aa Aa P, where S is a store, each Ci is a root,
a node, or a leaf, and if i{ j then name(Ci){name(Cj).

Proof. The proof is by induction on the length of computation and involves a
straightforward case analysis, which is omitted. K

A derivative of T0 is active if at least one of its components is, and quiescent
otherwise. Below we will give a more detailed description of those derivatives, but
first:

Lemma 4.22. T0 is a prompt A-server where A=[Aa R].

Proof. It is possible to give a typing system for agents that guarantees A-con-
fluence; this may be done by extending the system introduced in [17]. Here,
however, we argue directly.

That T0 is A-confluent follows from the fact that each active component of a
derivative of T0 has a different free A-name via which it may immediately return a
unique value. This observation shows also that T0 is prompt. (Note that a quasi-
quiescent root can only interact with the store.) That T0 is an A-server is seen by
examining its definition. If a component receives an A-name it uses it exactly once
to return a value.

In more detail, we observe first that the agents NODE, ROOT, and LEAF are prompt
A-servers. This is because whenever any of these agents receives an A-name it uses
it immediately and exactly once to return a value. It is not difficult to prove that
a composition of prompt A-servers, none of which uses A-names for input, is itself
a prompt A-server. Since T0 is the composition of a LEAF, a ROOT, and the store
agent (which does not use A-names), and since also none of these agents ever uses
an A-name for input, we may conclude that T0 is a prompt A-server. K

We now examine the operation agents S0 and I0 . A searcher is a derivative of
get( p) .S (k, p, as). We say a searcher is active if of the form r( y).W, and quiescent
otherwise. Similarly an inserter is a derivative of get( p) .Down (k, b, ai , p, ( )). An
inserter is active if of the form r( y) .W, and quiescent otherwise. We refer to an
inserter as being in its down, insert, or up phase with the obvious meanings.

Lemma 4.23. A derivative of S0 | I0 is of the form S0 | I0 | 6 iAi where each Ai is
a searcher or an inserter.

Proof. Immediate from the definitions. K

A derivative of S0 | I0 is active if at least one of its components is, and quiescent
otherwise. To complement Lemma 4.22 we have:

Lemma 4.24. S0 | I0 is an A-client, where A=[Aa R].

Proof. That S0 | I0 is A-confluent follows from the observation that when a
searcher or inserter interrogates a node it supplies a fresh A-name, waits to receive
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a value via that name, and then proceeds as determined by that value. That it is
an A-client follows similarly. K

Recalling the definition of T �
0 where Q=[Aa P] and A=[Aa R] we set

Q0 =
df

(&get next)(S0 | I0 | T �
0).

We now prove equivalence (1):

Theorem 4.25. Q0 &P0 .

Proof. Since S0 | I0 is an A-client, T0 is a prompt A-server, and neither has any
free A-names, the result follows by Theorem 4.15 and the observation that P0 is
A-closed, which is a consequence of the fact that P0 is well-typed: by the typing, no
derivative of P0 has a free A-name. K

A derivative Q of Q0 is of the form (&z~ )(Z | T ) where Z and T are both quiescent
or both active; in the former case Q is quiescent, in the latter active. If Q is active
its two active agents share an A-name. By Lemma 4.8 the & -state of an A-closed
composition of A-confluent agents is not changed by an interaction via an A-name.
Hence,

Lemma 4.26. If Q is an active derivative of Q0 then there is a unique quiescent
Q$ such that Q w�{ Q$; and Q$&Q.

Proof. The two active components of Q may interact in exactly one way via the
A-name which they share and thereby evolve to a quiescent Q$. By Lemma 4.8,
Q$&Q. K

Hence we can focus on quiescent derivatives of Q0 . The following figure shows
the structure of one.
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Let Q=(&z~ )(Z | T ) be a quiescent derivative of Q0 . Then T=(&z)(S | 6i # I Ci)
where S = STORE (( q1* } } } q*l ) } } } ) or n� ( qh* ) .STORE (( q1* } } } q*l ) } } } ) , Ci =
NODE (p i , k� i , p~ i) if C i is a node, Ci=LEAF (p i , k� i , b� i , qi) if Ci is a leaf, and
Ci=ROOT (pi , k� i , p~ i , put) or

Ci (pi , k� i , p~ i , put) =(&p0) put( p0) . (&p$)(ROOT (p, k� , p~ ) | NODE (p1 , k� i1 , p~ i1 p$) |

NODE (p$, k� i2 , p~ i2) ),

where k� i=k� i1k� i2 with the duplicate km+1 deleted and p~ i= p~ i1p~ i2 . Let N=[ pi | i # I]
and define ^ on N by:

1. if Ci is a node or the root then pi ^ p if p # p~ i ;

2. if Ci is a leaf then pi ^ p if p=qi .

Thus ^ is intended to give the ``points to '' relation among the cells of the data
structure. The following long lemma establishes some invariant properties satisfied
by the quiescent derivatives of Q0 .

Lemma 4.27. In the notation above:

1. Exactly one Ci is a root, and if Ci is the root then k� i=ki1 } } } kimi
and p~ i=

pi1 } } } pimi
where 2�mi�2m+1 if the root is quiescent and mi=2m+2 if it is

quasi-quiescent; ki1=&�, kimi
=�, and p imi

=nil; if h<m i then pih # N, say
pih= pj , and k j1=k ih and kjmj

�k i(h+1) .

2. If Ci is a node then: k� i=ki1 } } } k imi
and p~ i= pi1 } } } pimi

where m+1�mi

�2m+1; kimi
=� iff p imi

=nil; if k ih {� then pih # N, say pih= pj , and kj1=kih

and if h<mi then kjmj
�ki(h+1) , and if h=mi then Cj is a node.

3. If Ci is a leaf then: k� i=ki1 } } } kimi
and b� i=bi2 } } } bimi

where 2�mi�2m+1;
kimi

=� iff q i=nil; if kimi
{� then q i # N, say qi= pj , and kj1=k imi

and Cj is a leaf.

4. If h<mi then kih<k i(h+1) .

5. If pi ^ pj then k i1�kj1 .

6. (N, ^) is acyclic.

7. In the store, l�1, and if 1�h�l then qh* # N, say qh*= p i(h) , and
ki(h) 1=&�. Also: Ci(l) is the root; if h<l then Ci(h) is a node; if 1<h�l then
pi(h) 1= p i(h&1) ; p i(1) 1= pj where Cj is a leaf and k j1=&�.

8. If Z has a component S (k, p, as) then for some i, p= pi and k>k i1 .

9. If Z has a component Down (k, b, ai , q0 , (q1 } } } qn)) then: [q0 , ..., qn]�N,
say qh= pi(h) ; if j�1 then Ci( j) is not a leaf; ki(n) 1� } } } �k i(1) 1�k i(0) 1<k; if n=0
then q0=qh* for some h; if n�1 then qn=qh* for some h.
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10. If Z has a component Insert (k, b, ai , q0 , (q1 } } } qn)) then: [q0 , ..., qn]�N,
say qh= pi(h) ; if j�1 then Ci( j) is not a leaf; Ci(0) is a leaf; ki(n) 1� } } } �ki(1) 1�
ki(0) 1<k; n�1 and qn=qh* for some h.

11. If Z has a component Up (k, q0 , q1 , (q2 } } } qn)) or ai .Up (k, q0 , q1 ,
(q2 } } } qn)) then: [q0 , ..., qn]�N, say qh= pi(h) ; if j�1 then Ci( j) is not a leaf ;
ki(n) 1� } } } �k i(1) 1<k=k i(0) 1 ; n�2 and qn=qh* for some h.

12. If Z has a component Up$ (k, q0 , q1 , (q2)) then: [q0 , q1 , q2]�N, say
qh= pi(h) ; Ci(1) and Ci(2) are not leaves; ki(2) 1�k i(1) 1<k=k i(0) 1 ; q2=qh* for
some h.

13. If Z has a component (&n) next((q1 , n) ) .n(q2) .Up$ (k, q0 , q2 , (q2))
then: [q0 , q1]�N, say qh= pi(h) ; ki(1) 1<k=ki(0) 1 ; q1=qh* for some h<l.

Proof. The proof is by induction on the length of the computation. It is
straightforward to check that the conditions hold of Q0 . Assume they hold of Q
which is quiescent and consider Q w�: Q$. There are 11 cases. Although the proof
is long, the use of the model introduced in this paper helps greatly in managing the
detail (at least some of which must surely be handled in any proof).

v A. Q has a quasi-quiescent root and Q$ a quiescent root.

v B. An operation is requested: Q$ has a get( p).S (k, p, as) or get( p) .Down (k, b,
ai , p, ( )) which Q does not.

v C. A search begins: Q has get(q) .S (k, q, as) and Q$ has S (k, p, as).

v D. An insertion begins: Q has get(q) .Down (k, b, ai , q, ( )) and Q$ has
Down (k, b, ai , p, ( )).

v E. A searcher S (k, p, as) requests a search at p.

v F. A search finishes: Q has as (b) .0 and Q$ has 0.

v G. An inserter Down (k, b, ai , q0 (q1 } } } qn)) requests a search at q0 .

v H. An inserter Insert (k, b, ai , q0 , (q1 } } } qn)) requests an insertion at q0 .

v I. An insertion finishes: Q has ai .0 and Q$ has 0, or Q has ai .Up (k, q0 ,
q1 , (q2 } } } qn)) and Q$ has Up (k, q0 , q1 , (q2 } } } qn)).

v J. An inserter Up (k, q0 , q1 , (q2 } } } qn)) requests an add at q1 .

v K. An inserter Up$ (k, q0 , q1 , (q2 } } } qn)) requests an add at q1 .

First note that if the root is quasi-quiescent then no searcher or inserter can
interact with it. Further, if a searcher or inserter interacts with another cell, the
return of the result commutes with the action of the root becoming quasi-quiescent,
even in case K when Up$ reads the store. The proof is mostly a matter of routine
checking. The most significant cases are: A1, A2, A4, A5, A6, A7, C8, D9, E8, G9,
G10, H10, H11, I11, J5, J6, J11, J12, K5, K6, K12, K13. Of these J5, J6, K5, K6
are most notable. The add results in the new pointing pi(1) ^ pi(0) , and before the
inserter requests the add at q1 we know k i(n) 1� } } } �ki(1) 1<k=ki(0) 1 . If the add
were to introduce a cycle it would be that pi(1) ^ pi(0) ^ } } } ^ pi(1) , so ki(1) 1�ki(0) 1

� } } } �k i(1) 1 , so k i(1) 1=k i(0) 1 , which is not the case. K
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As a consequence we have the vital lemma that a searcher or inserter can always
reach its target leaf;

Lemma 4.28. In the notation above, suppose Z has a component get(q) .S (k, q, as) ,
S (k, p, as), get(q) .Down (k, b, ai , q, ( )) , Down (k, b, a i , p, q~ ) , or Insert (k, b,
ai , p, q~ ).

1. There is a unique leaf LEAF (p$, k� , b� , q$) such that k1<k�k j where k� =
k1 } } } kj .

2. Further, Q O Q$=(&z~ )(Z$ | T ) where Z$ differs from Z only in that the
component in question is replaced by S (k, p$, as) or Insert (k, b, a i , p$, q~ $).

Proof. From Lemma 4.27 it follows that there are n�1 leaves Ci(1) , ..., Ci(n) with
ki(1) 1=&�, k i(h) j<k i(h)( j+1) and ki(h) mi(h)

=ki(h+1) 1 for h<n and j<i(h)mi(h)
, and

ki(n) mi(n)
=�. The first part follows.

Again from Lemma 4.27 ((6) and (8)) we have that (N, ^) is acyclic and, if in
S (k, p, as), p= pi , then k>k i1 and hence the searcher may proceed, and similarly
in the other cases. K

Now let Q=[Aa ( int, Aa D) , Aa ( int, Aa D, Aa ( ))] and A=[Aa D, Aa ( )]. We have:

Theorem 4.29. Q0 is an almost-prompt QA-server.

Proof. That Q<
0 is A-confluent follows from the fact that each searcher or inserter

uses its free A-name just once to return the value it receives from the data structure.
That it is Q-confluent follows immediately from the definition. To prove the other
conditions we have a lemma, preceded by a definition:

Definition 4.30. Suppose T=(&z~ )(S | 6i Ci) is a quiescent derivative of T0 .
Define valT : int � D as follows. Given k let Ci=LEAF (p, k� , b� , q) be the unique leaf
of T such that k1<k�k j where k� =k1 } } } kj . Then set valT (k)=bh if k=kh and nil
if k � k� .

Lemma 4.31. Define B by setting (Q, Q$) # B if Q=(&z~ )(Z | T ) and Q$=(&z~ )(Z$ | T$)
are quiescent derivatives of Q0 in Q< (where Q is the transition system of Q) such that

1. valT=valT $ ,

2. Z has a component as (b) .0 iff Z$ has the same component,

3. Z has a component ai .W iff Z$ has a component ai .W$,

4. Z has a component get(q) .S (k, q, as) or S (k, p, as) iff Z$ has a component
get(q) .S(k, q, as) or S (k, p$, as) , and

5. Z has a component get(q) .Down (k, b, ai , q, ( )) or Down (k, b, ai , p, q~ )
or Insert (k, b, ai , p, q~ ) iff Z$ has a component get(q) .Down (k, b, ai , q, ( )) or
Down (k, b, ai , p$, q~ $) or Insert (k, b, ai , p$, q~ $) .

Then (Q, Q$) # B implies Q& A Q$.

Proof. Note that if (Q, Q$) # B then in Z and Z$ the same results are available
for immediate return and the same search and insertion operations must be in
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progress. The operations may, however, be at different stages. In addition, Q and
Q$ may have arbitrary inserters in up phase. Suppose (Q, Q$) # B and Q w�: Q1 .

If : is s (k, as), i (k, b, a i) , asb or ai , it is immediate from the definition that
Q$ w�: Q$1 with (Q1 , Q$1) # B.

If : is { and is not an interaction between either S (k, p, as) and LEAF (p, k� , b� , q)
or Insert (k, b, ai , p, q~ ) and LEAF (p, k� , b� , q) where k1<k�k j where k� =k1 } } } kj ,
then Q$ may match by doing nothing: where Q$1 w�{ Q"1 with Q"1 quiescent, Q$1 &Q"1
and (Q"1 , Q$) # B.

If Q1 results from Q by interaction between S (k, p, as) and LEAF (p, k� , b� , q) ,
where k1<k�kj with k� =k1 } } } kj , then T is unchanged and Q1 has as (b) .0, where
b=valT (k) and Q has S (k, p, as). By the previous lemma, the corresponding
component of Q$ can progress to the corresponding leaf of T $ and then make the
corresponding step, leaving T $ unchanged and yielding Q$1 with as (b) .0 (as valT=
valT $) in place of that component. Then (Q1 , Q$1) # B.

The argument in the case of insertion is similar with the observation that where
T becomes T1 and T $ becomes T $1 , valT1

=valT $1
. K

It is clear that the interactions in the last two cases above are decisive; i.e.,
Q&3 Q1 . (In the case of a search for instance, in Q an insertion could be requested
with key k and a value b${b, and could overtake the search, and the a� b$ would be
possible for a O -derivative of Q but not for any of Q1 .) It follows from the lemma
that these are the only decisive {-actions. The four conditions of Definition 4.17
follow from these observations and the analysis above, recalling that P0 &Q0 . This
completes the proof of Theorem 4.29. K

It is possible to extend this analysis to show that Q0 &A B0 . However, for the
reasons explained earlier we show this result using the partial-confluence theory.
From Theorem 4.20 we have equivalence (5) stated in the introduction to Section 4:

Corollary 4.32. Let C[}]=(&z~ )(C | } ), where C is a QA-client and C[Q0] is
QA-closed. Then C[Q0]&C[Q�

0].

The agent B0 is easy to comprehend:

Theorem 4.33. B0 is an almost-prompt QA-server.

Proof. From the definition it is immediate that B<
0 is A-confluent and Q-confluent.

That it enjoys properties 1�4 of Definition 4.17 is easily checked. Consider, for instance,
Property 2. If B=B ( f, _, _c, @, @c) then

1. _=[(k, as)] and _c=@=@c=<, and B w�{ B$ w�
as b

, where b= f (k), or

2. _c=[(as , b)] and _=@=@c=<, and B w�
asb

, or

3. @=[(k, b, ai)] and _=_c=@c=<, and B w�{ B$ w�
ai , or

4. @c=[ai] and _=_c=@=<, and B w�
ai . K

Hence, again by Theorem 4.20, we have equivalence (4) stated in the introduction
to Section 4:

Corollary 4.34. Let C[}]=(&z~ )(C | } ) where C is a QA-client and C[B0] is
QA-closed. Then C[B0]&C[B�

0].
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To complete the proof of Theorem 4.1 it remains to prove equivalences (3) and
(2) stated in the introduction to Section 4. The first is straightforward:

Theorem 4.35. Q�
0 &B�

0 .

Proof. Define S by (Q, B) # S if Q=(&z~ )(S0 | I0 | Z | T ) and B=B ( f, _, _c, @, @c)
where valT= f and

1. Z is empty or is an inserter in its up phase, and _=_c=@=@c=<,

2. Z is a quiescent or active derivative of S (k, p, as) , and _=[(k, as)] and
_c=@=@c=<,

3. Z is a done searcher as (b) .0, and _c=[(as , b)] and _=@=@c=<,

4. Z is a quiescent or active derivative of Down (k, b, ai , p, ( )) in its down
or insert phase, and @=[(k, b, ai)] and _=_c=@c=<, or

5. Z is of the form ai .0 or ai .U, and @c=[a i] and _=_c=@=<.

It is routine to check, using Lemma 4.28, that S _ & is a branching bisimulation.
K

By this analysis we see that a variant system in which an inserter does not signal
completion until it has completed its up phase is equivalent to the one studied.

We now have the final step in the proof of Theorem 4.1. We construct a QA-client
C* such that setting C*[}]=(&s, i)(C* | } ), from C*[Q0]&C*[B0] we can deduce
Q0 &A B0 . To do this we introduce the following types:

E#[search�( int, Aa O) , insert�( int, D, Aa O)]

O#[datum�D, done�( )].

In the following, e: Aa E, o: Aa O, and w : E. Define

C*(e) =
df

! e(w).case(w)[search�(k, o) : (&as) s� (k, as) .as(b) .o� (datum�b) .0,

insert�(k, b, o) : (&ai) @� (k, b, ai) .ai ( ) .o� (done�( ) ) .0].

It is clear that C* (e) is a QA-client. Hence with C*[}] as above, C*[Q0]&
C*[Q�

0]&C*[B�
0]&C*[B0].

Theorem 4.36. Q0 &AB0 .

Proof. Set (Q, B) # S if (&z~ )(C* | R | Q)& (&z~ )(C* | R | B), where fn(Q)A=
fn(B)A=Fs _ F i , R=Rs | Ri , with the oas

and oai
distinct,

Rs=6as # Fs
as(b) .oas

(datum�b) .0 and Ri=6ai # Fi
ai ( ) .oai

(done�( ) ) .0.

By the observations above it suffices to show that S� &A .
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Lemma 4.37. Let M=(&z~ )(C* | R | Q) and N=(&z~ )(C* | R | B).

1. Suppose Q w�{ Q$ and M$=(&z~ )(C* | R | Q$). If Q$&3 Q then M$&3 M.

2. Suppose B w�{ B$ and N$=(&z~ )(C* | R | B$). Then B$&3 B and N$&3 N.

Proof. We consider just 2 since the same ideas, together with the results above,
show 1. From the definition of B0 we see that B$ differs from B in that the _c of
B$ contains (as , b) while the _ of B contains (k, as) , or the @c of B$ contains ai

while the @ of B contains (k, b, ai) . In the first case M can accept a request to insert
k, b$ where b${b, carry out the insertion followed by the search, and then return
b$ as the result via oas

; and M$ cannot match this. In the second M can accept a
request to insert k, b$, where b${b, carry out this new insertion followed by the one
in question, then signal completion of both leaving b the value of k rather than b$;
and M$ cannot match this. K

Suppose (Q, B) # S and M, N are as in the lemma. We consider just the search
operation; the insert operation is handled similarly.

1. Suppose Q www�
s (k, as)

< Q$. Then M w�: M$ w�{ M", where :=e search�(k, o)
with o fresh and for a fresh as , M"=(&z~ as)(C* | R$ | Q$). Now, N w�: N$ w�{ N",
where N"=(&z~ as)(C* | R$ | B$) with B www�

s (k, as)
< B$. It follows from the lemma and

A-confluence that N$&M$. But by Q-confluence, M"&M$ and N"&N$. Hence
(Q$, B$) # S. The converse is similar.

2. Suppose Q w�
as b

< Q$. Then M w�{ M$ w�: M", where :=oas
datum�b and

M"=(&z~ $)(C* | R$ | Q$). Since M$&M by A-confluence, from the lemma it follows
that N w�{ N$ w�: N", where N"=(&z~ $)(C* | R$ | B$) and B w�: B$. Again by A-con-
fluence, N&N$, and again by the lemma M"&N" and so (Q$, B$) # S. The converse
is similar.

3. Suppose Q w�{ Q$. If Q$&Q then clearly (Q$, B) # S. Suppose Q$&3 Q so
that by the lemma, M$&3 M, where M$=(&z~ $)(C* | R | Q$). Then N w�{ N$=
(&z~ $)(C* | R | B$)&M$, where B w�{ B$. Then (Q$, B$) # S. The converse is similar.

This completes the proof of the theorem and hence of Theorem 4.2. K

4.3. Alternative Models

In the analysis of P0 , appeal was often made to the fact that the low key of a cell
coincides with the high key of its left neighbour (if it has one). This duplication is
not necessary, however, for the correctness of the algorithms: it is straightforward
to show T $0 &T0 (which implies P$0 &P0) where T $0 and P$0 are variants of T0 and
P0 , respectively, without the duplication (we omit the definitions). This involves
showing that the two tree variants, exhibit exactly the same behaviour by building
the appropriate branching bisimulation.

As mentioned earlier, the process-calculus description of the algorithms is at a
higher level of abstraction than those in [6, 16]. A process-calculus model with
explicit representation of locking and unlocking can easily be given. Rather than
write out the entire description we give just one definition and invite the interested
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reader to work out the rest. The main differences are that cells become more passive
in nature, and operation-agents become responsible for comparisons between keys
and for creating cells when splitting is required (which they do by interacting with
a replicator which may generate cells). A leaf may be either unlocked (LEAF) or
locked (LEAFl):

LEAF( p, k� , b� , q)

=
df p(z) .case(z)[search�r : r� (leaf�(k� , b� , q) ) .LEAF (p, k� , b� , q) ,

lock� r : r� (leaf�(k� , b� , q) ) .LEAFl (p, k� , b� , q)]

LEAFl( p, k� , b� , q)

=
df p(z) .case(z)[search� r : r� (leaf�(k� , b� , q) ) .LEAF (p, k� , b� , q) ,

lock� r : r� (locked�( ) ) .LEAFl (p, k� , b� , q) ,
unlock�(k� $, b� $, q$) : LEAF (p, k� $, b� $, q$)]

A reader who works out the model may care to examine its relationship to that
studied in the paper and thus to establish the correctness of the algorithms as
expressed in it. This route is easier than a direct analysis of the new model.

5. DELETION AND COMPRESSION

In this section we first consider the deletion and compression algorithms of [16],
and then motivate and describe a new compression algorithm and briefly discuss its
correctness.

The definitions of NODE, LEAF, and ROOT must be changed to accommodate the
additional operations. In particular, the representation of a pointer to a node
becomes a name of type Aa P, where

P#[search�( int, Aa R) , insert�( int, D, Aa R) , add�( int, Aa P, Aa R) ,

delete�( int, Aa R), compress�Aa R, findp�( int, Aa P, Aa R)]

R#[link�Aa P, nonlink�Aa P, datum�D, done�( ) , split�(Aa P, int) , empty�( ) ,

data�( int2m+1, D2m&1, Aa P, Aa U) , contents�( int2m+1, (Aa P)2m+1, Aa U) ,

right�(Aa P, Aa U) , left�(Aa P, Aa U), retry�( )]

U#[update�( int2m+1, D2m&1, Aa P) , write�( int2m+1, (Aa P)2m+1) ,

root�( int2m+1, (Aa P)2m+1) , empty�( int, Aa P) , full�( ) , emptyr�( ) ,

done�( ) , del�Aa P, replace�( int, Aa P) , remove�Aa P].

Here we give the definition of a leaf; the definitions of NODE and ROOT are given
in the Appendix. Since the high key of a leaf is a vital guide to operation-agents,
it is duplicated so that even if it and the associated pointer are deleted, a copy of
the key remains. Thus the definition of agent LEAF (p, k� , d� , q) representing a leaf
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named p storing keys k� =k1 } } } k j&1 , high key k j , pointers d� =d2 } } } d j&1 to data-
base records and link q is

LEAF( p, k� , d� , q)

=
df p(z) .case(z)

[search�(k, r) :
cond(k>kj f r� (link� q) .L,

k=kh f r� (datum� dh) .L,
k � k� f r� (datum�nil) .L),

insert�(k, d, r):
cond(k>kj f r� (link� q) .L,

k=kh f r� (done�( ) ) .Lh ,
notfull f r� (done�( ) ) .L$,
full f (&p$) r� (split�(p$, k$) ) . (L1 | L2)),

delete�(k, r) :
cond(k>kj f r� (link� q) .L,

k � k� f (done�( ) ) .L,
notempty f r� (done�( ) ) .Lk ,
empty f r� (empty�( ) ) .Lk),

compress�(r) :
(&u) r� (data�(k� , d� , q, u) ) .u(w) .case(w)[update�(k� $, d� $, q$) : LEAF (p, k� $, d� $, q$) ,

del� q$ : DELETED (p, q$)]],

where the Boolean expressions empty and notempty are j�m and j>m, respec-
tively. In its quiescent state a leaf may accept, in addition to search and insert
requests, requests for deletions and compressions. Search and insert requests are
handled as before with the exception that the free variable h now ranges over
2 } } } j&1 and in the case where the leaf is split we have

1. if km+1�kh<k<kh+1 then

L1 =LEAF (p, k1 } } } km+1km+1 , b2 } } } bm+1 , p$)

L2=LEAF (p$, km+1 } } } kh k kh+1 } } } k2m+1 , bm+2 } } } bh b bh+1 } } } b2m , q) ,

2. if kh<k<kh+1�km+1 then

L1 =LEAF (p, k1 } } } kh k kh+1 } } } km+1km+1 , b2 } } } bh b bh+1 } } } bm+1 , p$)

L2=LEAF (p$, km+1 } } } k2m+1 , bm+2 } } } b2m , q).

A delete request contains an integer k to be deleted and a name r via which to
return the result. If k is greater than the high of the leaf, the link is returned. If k
is not present in the leaf then done�( ) is returned. Otherwise the deletion is performed,

Lk=LEAF (p, k1 } } } kh&1kh+1 } } } kj , d2 } } } dh&1dh+1 } } } dj , q) ,
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where k=kh . If as a result of the deletion the leaf has become less than half full,
the value empty�( ) is returned; the recipient of this will activate a compressor
process to rebalance the tree so that all nodes are at least half full. On receiving a
compress request containing a name r, the leaf emits via r its contents and a fresh
name u. It may then receive via u a tuple of the form (k� $, d� $, q$) tagged with label
upd, or a single pointer q$ tagged with label del. In the former case the leaf updates
its contents to be the data received, in the latter it becomes empty; the agent
DELETED (p, q) is defined and explained below.

We continue with the deletion algorithm of [16]. A deletion is effected by locat-
ing the appropriate leaf and then requesting removal of the key and the associated
pointer. Thus execution of a deletion is somewhat similar to that of an insertion
where no splitting occurs:

D0(d, get)

=
df

!d(k, ad) .get( p) .Delete (k, ad , p, ( ))
Delete(k, ad , p, q~ )

=
df

(&r) p� (search�(k, r) ) .r( y) .
cond(q~ =( ) f case( y)[link� p$ : Delete (k, ad , p$, (p)) ,

nonlink� p$ : Delete (k, ad , p$, (p))],
q~ {( ) f case( y)[link� p$ : Delete (k, ad , p$, q~ ) ,

nonlink� p$ : Delete (k, ad , p$, pq~ ) ,
datum� b$ : Del (k, ad , p, q~ )])

Del(k, ad , p, q~ )

=
df

(&r) p� (delete�(k, r) ) .r( y) .case( y)[link� p$ : Del (k, ad , p$, q~ ) ,
done�( ) : ad .0,
empty�( ) : ad .c� ( p, k, q~ ) .0].

The agent D0 may repeatedly generate deletion processes when supplied via name
d with a key k to be deleted and a name ad via which to signal completion of the
operation. Delete follows a path through the tree, recording its starting point and
the rightmost node visited at each level. When the appropriate leaf is found, it
requests deletion of key k. If the deletion results in the leaf becoming less than half
full, via the name c a compression process is activated to redistribute the leaf's data
or delete it if it has become empty; this may lead to activation of other compression
processes.

We continue to consider the compression algorithm of [16]. Rather than describ-
ing the entities involved as agents, we will discuss a certain defect of the algorithm
and then present an improvement of it using agents in the Appendix.

Using the names q~ received, the compressor of [16] first locates and locks the
parent P of the leaf A to be compressed. It then locks and examines leaf A. If A is
no longer less than half full, due to insertions and compressions having taken place
since the compressor's creation, the compressor terminates. Similarly, if A is the
rightmost child of P, the two cells are unlocked and the compressor terminates.
Otherwise, the third cell to be locked is A's right neighbour, B. If P does not have
a pointer to B then it must be that this is still to be inserted in P by an inserter in
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its Up phase. In this case all three cells are unlocked and the compressor repeats
this part of its activity, beginning by locking P. It is expected that in the meantime
a pointer to B will have been added to P and the compressor will be able to
proceed. If, on the other hand, P does have a pointer to B, then one of the follow-
ing takes place:

1. If A and B have together no more than 2m pairs, the data of B are moved
into A, leaf B is deleted, and the old high key of A and the pointer to B are deleted
from P. Then the cells are unlocked. It is possible that due to the deletion of a pair
from node P, it may become less than half full. If either of A and P is less than half
full then further compression processes are initiated to rebalance the tree. This
process may be repeated in several levels of the tree and may reach the root. As
with insertion agent Up, it is possible that the path provided by the deletion process
may become empty although a compression is required at a higher level of the tree.
If this happens, the compression process queries the STORE to obtain the name of
the leftmost node at the level above.

2. If A and B together have more than 2m pairs then pairs are moved from
B to A so that each has at least m pairs. The high key of A is updated in P and
the three cells are unlocked.

The compression algorithm may result in a leaf (or other cell) becoming empty.
It is possible, however, that an operation-agent has a pointer to this leaf. Hence a
leaf cannot simply be removed. Instead, when a leaf becomes empty its data is
replaced by a pointer to the leaf where the search should continue: the leaf whither
its data is moved. The agent DELETED (p, q) representing an empty cell with name
p and storing pointer q is defined by

DELETED( p, q) =
df p(z) .cond[search�(k, r) : r� (link� q) .DELETED (p, q),

} } }
compress�(r) : r� (link� q) .DELETED (p, q)].

An empty leaf (or other node) responds to any request by returning the stored
pointer.

The algorithm has the following defect. Suppose a compressor and a searcher are
executing concurrently. Suppose the compressor is at a leaf A and that case (2)
above applies so that data of A's right neighbour B is to be moved to A. Suppose
the searcher has progressed so that it is about to examine B which contains its
target key k. Suppose further that k is among the data to be moved. The search will
then continue at B and fail erroneously. This problem was noted in [16] and a
solution was proposed in which processes are aborted and restarted. This involves
storing the low key of each node explicitly and modifying the search phase of all
of the operations so that during the search in a node for a key k, it is checked
whether k is greater than the node's low key. If it is, the operation may proceed;
otherwise it is aborted and must be restarted at a higher level.

The compression algorithm we propose is a variant of the algorithm above which
avoids the problem described. Its design was guided by the proof of correctness in
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Section 4. The intention was to ensure that, like Up, the compressor affects neither
the contents of the tree nor the accessibility of nodes. Hence its actions do not
change the &-state of the system.

As mentioned before, an invariant maintained by the search and insertion
algorithms crucial to their correctness is that the minimum key of a node is not
altered during the node's lifetime. This and the fact that data is moved only from
left to right ensures that operations can always be completed successfully. In fact a
weaker property suffices: that the minimum of a node is never increased. Note that
an execution of the compression algorithm of [16] may violate this property.

The new algorithm maintains this invariant during the compression process:
when a leaf A is half empty the compressor locates and locks its parent P. If P has
a pointer to A's left neighbour B, the compressor locks B and then A. (Note that
this is in contrast to the algorithm of [16] where A's right neighbour is locked
instead.) If A is no longer half empty, the compressor releases the three cells and
terminates. If the link pointer of B does not point to A then all three cells are
unlocked and the compressor repeats this part of its activity, beginning by locking
P. Otherwise, one of the following takes place: if A and B have together no more
than 2m pairs, the data of A is moved into B, leaf A is deleted, and the old high
key of B and the pointer of A are deleted from P. This deletion may cause the
activation of compression processes in higher levels of the tree, as described in (1)
above. Otherwise, if A and B have together more than 2m pairs then the compressor
performs (2) above.

Thus either A is deleted and all its data is moved into B, or data is moved from
B to A. In the first case the low key of B remains the same, and as A is deleted it
is made to point to node B. In the second case A's lowest key decreases and data
moves from left to right.

If, however, A is the leftmost child of a node then this procedure cannot be
applied, A having no left neighbour in the subtree rooted at P. If A is the only child
of P then the nodes are unlocked and the compressor repeats this part of the
activity beginning by locking P. It is expected that in the meantime node P will
have been compressed. Otherwise, A's right neighbour C is visited. If A and C
together have fewer than 2m+1 keys, then C is deleted and its data is moved to
A. Otherwise, the compressor releases the three nodes and repeats this part of its
activity, beginning by locking P. The algorithm does not move data from C to A:
this may cause failure of a process that subsequently tries to read C expecting to
find information that has been moved to A. Although this last scenario may result
in the compressor locking and unlocking the three nodes several times and delay
the progress of other processes, we may expect that it is likely to arise infrequently
due to the normal movement of data from left to right.

Hence the new algorithm maintains the invariants necessary to guarantee its
correctness and that of the other operations, and in contrast to [16], none of the
other operations must be changed, and the abortion and restarting of operations is
avoided. Moreover, the new algorithm does not require the addition of the low key
to the nodes of the data structure and is at least as efficient as the original algo-
rithm. The process-calculus description of the compression algorithm, and of the
modified NODE, ROOT, and STORE agents, are given in the Appendix.
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Let P+
0 be the system consisting of the initial data structure and the operations

S0 , I0 , D0 and C0 (the generator of compressor agents). Let B+(s, i, d, f, _, _c, @,
@c, $, $c) be defined as follows, where d is the name via which deletions may be
initiated, $ (the deletions) is a set of pairs consisting of a key k to be deleted and
a name ad via which to signal completion, and a set $c (the completed deletions) of
names ad whose keys have been deleted but which have not been used to signal this:

B+ =
df s(k, a) .B+( ..., _ _ [(k, as)], ...)

+i(k, b, ai) .B+( ..., @ _ [(k, b, ai)], ...)

+d(k, ad) .B+( ..., $ _ [(k, ad)], ...)

+7(k, as) # _ { .B+( ..., _&[(k, as)], _c _ [(as , f (k))], ...)

+7(k, b, ai) # @ { .B+ ( ..., f [b�k], ..., @&[(k, p, a i)], @c _ [ai], ...)

+7(k, ad ) # $ { .B+ ( ..., f [nil�k], ..., $&[(k, ad)], $c _ [(ad)])

+7(as , b) # _ c as (b) .B+ ( ..., _c&[(as , b)], ...)

+7ai # @ c ai .B+ ( ..., @c&[(a i)], ...)

+7ad # $c ad .B+ ( ..., $c&[(ad)]).

Let B+
0 =B+(i, s, d, *k .nil, =, =, =, =, =, =). The result asserting the correctness of the

operations is the following:

Theorem 5.1. P+
0 &A B+

0 .

Proof. The proof is an extension of that of Theorem 4.1. It involves a detailed
analysis to show that a deleter does indeed perform a single decisive {-action, and
that a compressor does not alter the &-state of the system. The proof is omitted.
Note that branching bisimilarity does not distinguish processes that differ only in
that one can diverge while the other cannot. K

6. CONCLUSION

This paper has presented an analysis of concurrent operations on Blink-trees using
the ?-calculus. The process calculus made possible a natural and direct description
of both data and algorithms and of change in the system's structure as it evolves.
Moreover, the general theory of process equivalence was used to assert the correct-
ness of the algorithms in terms of the observable behaviour of the system. The
calculus helped in clarifying certain details of the algorithms, and in guiding us to
consider some cases absent from the pseudo-code descriptions in [6]. Moreover,
the calculus was invaluable in structuring the proof of correctness. We believe the
proof offers increased confidence over previous proofs, and gives useful insight into
why the operations are correct. The insight may be helpful in considering design
alternatives. It may also provide a guide for analysis of operations on other search
structures. Indeed, insight gained from the proof was vital in discovering the improve-
ment to the deletion and compression algorithms of [16].
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The paper has also presented some general results on partially confluent processes
and client-server systems. The results, which extend work in [7], make precise that in
reasoning about compositions of partially confluent agents, it is often sufficient to
examine in detail only a part of the composite behaviour. The main result establishes
that under certain conditions, a system composed of a client Q and a server A that
interact in a question�answer fashion with possibly many questions outstanding at any
moment, is behaviourally equivalent to a system composed from Q and a sequential
part of A. The conditions on Q and on A are fairly mild. In particular, on accepting
a question from Q, A may perform at most one state-changing internal action before
producing an answer. Many systems, including algorithms proposed for dynamic
search structures, appear to satisfy the conditions; thus the result may be helpful in
proving their correctness.

The result was applied twice in proving the correctness of the Blink-tree opera-
tions. This made it possible to focus on the part of the system in which at most one
operation is outstanding at any moment. This part is essentially a sequential
system, and it was therefore much easier to understand and analyse than the full
system. The main challenge was to establish that the hypotheses of the main theorem
are met. In the case of the Blink-tree this could be done by fairly straightforward means.
We believe it would be worthwhile to develop other techniques to help with this task,
for instance based on type systems, and to seek other results in a similar vein.

APPENDIX

In this appendix we present the process-calculus descriptions of the compress
operation and the modified NODE, ROOT, and STORE agents.

The definition of a nonroot, nonleaf node named p storing keys k� =k1 } } } kj and
pointers p~ = p1 } } } pj to nodes is as follows:

NODE( p, k� , p~ )
=
df p(z) .case(z)

[search�(k, r):
cond(k>kj f r� (link� pj) .N,

kh+1>k�kh f r� (nonlink� ph) .N),
add�(k, q, r):
cond(k>kj f r� (link� pj) .N,

k=kh f r� (done�( ) ) .Nh ,
notfull f r� (done�( ) ) .N$,
full f (&p$) r� (split�(p$, km+1) ) . (N1 | N2)),

findp�(k, q, r):
cond( parent f r� (retry�( ) ) .N,

k>kj f r� (link� pj) .N,
q # p~ f (&u) cond(q= p1 f r� (right�(p2 , u) ) .NODEL (u) ,

q= ph f r� (left�(ph&1 , u) ) .NODEL (u) )),
compress�(r):
(&u) r� (contents�(k� , p~ , u) ) .u(w) .case(w)[root�(k� $, p~ $) : ROOT (p, k� $, p~ $) ,

write�(k� $, p~ $) : NODE (p, k� $, p~ $) ,
del� q : DELETED (p, q)]]
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NODEL(u)

=
df u( y) .case( y)

[done�( ) : N,
replace�(k, q) : Nk ,
remove� q : cond(empty f u� (empty�(k1 , p) ) .Nq ,

notempty f u� ( full�( ) ) .Nq)],

where the Boolean expression parent is true when (k�kj 7 q � p~ ) 6 j=2. Thus, in
its quiescent state a node may accept, in addition to search and add requests,
requests for searches for the parent of a node and requests for compressions. The
former contains the low key k of the node whose parent is to be found, its name
p and a name r via which the return of the search should be returned. If k belongs
to the range of the node but the pointer is not one of the node's pointers, or the
node has only one child, that is if parent is true, then the node returns via r an
empty tuple tagged with the label retry. The recipient of this message, the agent
responsible for initiating the search, will repeat this part of the activity at a later
point. It is expected that in the meantime, either pointer q will have been added to
the node (if q � p~ ), or the node will have been compressed (if j=2) and thus the
search for the parent of q will proceed. On the other hand, if k is larger than the
high key of the node, the link is returned. Otherwise, one of the following takes
place: if p is the leftmost child of the node, p2 , the pointer to its right neighbour
tagged with label right is returned via r, otherwise a pointer to its left neighbour
tagged with label left is returned. In each case the pointer is accompanied by a fresh
name u of type Aa U and the node assumes state NODEL (u) . In this state the node
may accept a message along name u. If the message done�( ) is received then the
node enters the quiescent state N=NODE (p, k� , p~ ). If the pair replace�(k, q) is
received then the key associated with pointer q is updated to k;

Nk=NODE (p, k1 } } } kh&1kkh+1 } } } k j , p~ ) ,

where q= ph . Finally, if message remove� q is received, pointer q and its associated
key are removed fro the node

Nq=NODE (p, k1 } } } kh&1kh+1 } } } kj , p1 } } } ph&1 ph+1 } } } pj) ,

where q= ph . Via u the message empty�(k1 , p) is returned, if the node has become
less than half full, and the message full�( ) , otherwise.

Finally, in its quiescent state a node may receive compress requests, containing
a name r via which the node emits its contents and a fresh name, u. It then receives
a message via u which may have one of three forms: it may contain a tuple of the
form (k� $, p~ $) tagged with label root, or with label write, or a pointer tagged with
label del. In the first two cases the node updates its contents to the data received
and if the message was tagged with the root label it assumes root status. In the last
case the node is deleted.
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The agent ROOT (p, k� , p~ , put) representing a root named p storing keys k� =
k1 } } } kj and pointer p~ = p1 } } } pj to nodes is defined by

ROOT( p, k� , p~ , put)

=
df p(z) .case(z)

[search�(k, r) :
cond(kh+1�k>kh f r� (nonlink� ph) .R),
add�(k, q, r) :
cond(k=kh f r� (done�( ) ) .Rh ,

notfull f r� (done�( ) ) .R$,
full f (&p0 , p$) put( p0) .r� (done�( ) ) . (NEWROOT | N1 | N2)),

findp�(k, q, r):
cond( parent f r� (retry�( ) ) .R,

q # p~ f (&u) cond(q= p1 f r� (right�(p2 , u) ) .ROOTL,
q= ph f r� (left�(ph&1 , u) ) .ROOTL))]

ROOTL

=
df u(z) .case(z)

[done�( ) :R,
replace�(k, q) :Rk ,
remove� q :cond( j=3fu� (emptyr�( ) ) .u(w) .case(w)

[done�( ) :Rq ,
del� q:DELETED(p,q)]

j>3fu� ( full�( ) ) .Rq)].

Search and add requests are handled as before. The response to findp-tagged requests
is similar to that of a node

Rk=ROOT (p, k1 } } } kh&1kkh+1 } } } kj , p~ ) ,

where q= ph . In the final alternative, following the receipt of message remove� q,
the root deletes the pointer q from its contents

Rq=ROOT (p, k1 } } } kh&1 kh+1 } } } kj , p1 } } } ph&1 ph+1 } } } pj) ,

where q= ph , and if the resulting root has a single remaining child, that is if j=3,
it signals on name u that it has become empty by sending the message emptyr�( ) .
It then accepts a message on u and enters state Rq or becomes a deleted node,
DELETED (p, q) , where q is the pointer received from the agent responsible for the
deletion.

We now proceed to the formal definition of the compression algorithm in the
process calculus. First note that since compressions may result in the deletion of
nodes including the root, it is necessary that the STORE agent is notified of such
deletions and is kept updated regarding the identity of the current root. Thus agent
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STORE (p~ , get, put, next, rem), where p~ = p1 } } } pj are the names of the current and
previous roots currently present in the data structure in order of creation, is defined
by

STORE( p~ , get, put, next, rem) =
df get( pj) .S

+ put( p) .S$

+next( p, n) .cond( p= ph f n� ( ph+1) .S)

+rem( p) .cond( p= ph f Sh),

where S=STORE( p~ , get, put, next, rem), S$=STORE( p~ p, get, put, next, rem), and
Sh=STORE( p1 } } } ph&1 , get, put, next, rem). Thus the store may receive via name
rem the name of a root, q, that has been deleted. In response to such a message it
removes pointer q and all pointers that have named the root after q.

When the compression agent C0 (c, rem) below is supplied with the pointer to
the half-empty leaf and the path recorded by the deletion process, it activates a
compressor responsible for redistributing the leaf's data or deleting it if it has become
empty:

C0(c, rem)

=
df

! c( p, k, p~ ) .FindPL (p1 , p, k, p~ )

FindPL(q, p, k, p~ )

=
df

(&r) q� ( findp�(k, p, r) ) .r( y).
case( y)[retry�( ) : FindPL (q, p, k, q~ ) ,

link� q$ : FindPL (q$, p, k, p~ ) ,
left�(q$, u) : CompLL (q$, p, k, p~ , u) ,
right�(q$, u) : CompRL (p, q$, k, p~ , u)]

CompLL( p, q, k, p~ , u)

=
df

(&r, s1 , s2 , s3) p� (compress� r) .r(data�(k1

t
, d1

t
, q1 , u1) ) .

cond(q1 {q f u1 (update�(k1

t
, d1

t
, q1) ) .u� (done�( ) ) .FindPL (p1 , q, k, p~ ) ,

q1=q f (&r) q� (compress� r) .r(data�(k2

t
, d2

t
, q2 , u2) ) .

cond( j1>m f s1 .0,
j1+ j2>2m+2 f s2 .0,
j1+ j2�2m+2 f s3 .0))

| s1 .u2 (update�(k2

t
, d2

t
, q2) ) .u1 (update�(k1

t
, d1

t
, q1) ) .u� (done�( ) ) .0

| s2 .u2 (update�(k2

t
$, d2

t
$, q2) ) .u1 (update�(k$1

t
, d $1
t

, q1) ) .u� (replace�(k$, q) ) .0

| s3 .u1 (update�(k1

t
", d1

t
", q2) ) .u2 (del� p) .u� (remove� q) .u(y) .

case( y)[ full�( ) : 0,
emptyr�( ) : u� (done�( ) ) .0,
empty�(p$, k$) : CN (p$, k$, p~ )]
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CompRL( p, q, k, p~ , u)

=
df

(&r, s1 , s2) p� (compress� r) .r(data�(k1

t
, d1

t
, q1 , u1) ) .

cond(q1 {q f u1 (update�(k1

t
, d1

t
, q1) ) .u� (done�( ) ) .0,

j1>m f u1 (update�(k1

t
, d1

t
, q1) ) .u� (done�( ) ) .0,

j1�m f (&r) q� (compress� r) .r(data�(k2

t
, d2

t
, q2 , u2) ) .

cond( j1+ j2>2m+2 f s1 .0,
j1+ j2�2m+2 f s2 .0))

| s1 .u2 (update�(k2

t
, d2

t
, q2) ) .u1 (update�(k1

t
, p1
t , q1) ) .u� (done�( ) ) .0

| s2 .u1 (update�(k1

t
", d1

t
", q2) ) .u2 (del� p) .u� (remove� q) .u( y).

case( y)[ full�( ) : 0,
emptyr�( ) : u� (done�( ) ) .0,
empty�(p$, k$) : CN (p$, k$, p~ )].

Thus, using the path received, the compressor first searches for the parent of the
leaf A to be compressed at the level above, until a node synchronizes with it by
performing one of the actions r� (left�(q$, u) ), r� (right�(q$, u) ), where q$ is the
name of a neighbour B of A. Receipt of the first message results in activation of
agent CompLL , whereas receipt of the second message triggers execution of agent
CompRL . Agent CompLL begins by reading the leftmost of the two leaves, B, and
establishing whether it points to A. If not, the leaf and its parent are unlocked via
actions u1 (update�(k1

t
, d1

t
, q1) ) and u� (done�( ) ), otherwise the compressor

proceeds to read A. Three cases exist:

1. If A is no longer less than half empty, that is if j2>m, all nodes are unlocked.

2. If the two leaves together have more than 2m+2 pairs then pairs are shifted
from B to A: if k1

t
=k11 } } } k1 j1

, d1

t
=d12 } } } d1( j1&1) and k2

t
=k21 } } } k2 j2

, d2

t
=

d22 } } } d2( j2&1) , letting n=W( j1+ j2)�2X

k1

t
$=k11 } } } k1nk1n

k2

t
$=k1n } } } k1( j1&1)k22 } } } k2 j2

d1

t
$=d11 } } } d1n

d2

t
$=d1(n+1) } } } d1( j1&1)d2

t
.

Moreover, the parent of the nodes is informed that the low key of A has been
altered via return of the message replace�(k$, q) , where k$=k1n is the new low key
of A.

3. If the two leaves together have fewer than 2m+2 pairs then the contents
of A are moved to B:

k1

t
"=k11 } } } k1( j1&1)k22 } } } k2 j2

d1

t
"=d1

t
d2

t
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Furthermore, the high key of B becomes the high key of A, and A becomes a
deleted node pointing to B. This is achieved by the sending of message del� p. Note
that the parent of the node is also informed that node A has been deleted by being
sent the message (q, r) suitably tagged. The parent is then responsible for deleting
the pointer q to leaf A and for informing the compressor via name r whether it has
become less than half empty. If it has indeed become empty, and it is not the root,
then the compressor activates another compressor agent to compress the node. The
definition of agent CN is given below.

Finally, agent CompRL behaves similarly to CompLL . The main difference is that
CompRL begins by locking A, being now the leftmost of the two leaves, and only
then does it proceed to lock B. Furthermore, if the two leaves together have more
than 2m pairs then no data is moved from B to A (as this would increase the low
key of B) and instead all nodes are unlocked.

Whenever the compression agent CN , defined below, is supplied with a tuple
(p, k, p~ , rem) is undertakes the compression of the node A with name p and low
key k. Note that here p~ is a path from the root (or a node which was the root) to
a node on the same level and to the left of A. The behaviour of CN is similar to C0

with the distinction that it deals with internal nodes rather than leaves:

CN( p, k, (q) , rem) =
df

(&n) next((q, n) ) .n(q$) .FindPN (q$, p, k, (q$))

CN( p, k, p~ , rem) =
df FindPN (p2 , p, k, p2 } } } pm) .

If the path contains only one element then the compressor queries the store to obtain
the pointer that named the root after q and proceeds to find the parent of A. If the path
contains two or more elements, the compressor immediately undertakes that search.
Note that p2 is a pointer to a node one level higher than A.

FindPN(q, p, k, p~ )

=
df

(&r) q� ( findp�(k, p, r) ) .r(z) .
case(z)[retry�( ) : FindPN (q, p, k, p~ ) ,

link� q$ : FindPN (q$, p, k, p~ ) ,
left�(q$, u) : CompLN (q$, p, k, p~ , u) ,
right�(q$, u) : CompRN (p, q$, k, p~ , u)]

CompLN( p, q, k, p~ , u)

=
df

(&r, s1 , s2 , s3) p� (compress� r) .r(contents�( p1
t, k1

t
, u1) ) .

cond( p1 j1
{q f u1 (write�(k1

t
, p1
t) ) .u� (done�( ) ) .FindPN (p1 , q, k, p~ ) ,

p1 j1
=q f (&r) q� (compress�r) .r(p2

t, k2

t
, u2) .

cond( j2>m f s1 ) .0,
j1+ j2>2m+2 f s2 .0,
j1+ j2�2m+2 f s3 .0))
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| s1 .u2 (write�(k2

t
, p2
t) ) .u1 (write�(k1

t
, p1
t) ) .u� (done�( ) ) .0

| s2 .u2 (write�(k$2
t

, p$2
t

) ) .u1 (write�(k$1
t

, p$1
t

) ) .u� (replace�(k$, q) ) .0
| s3 .u2 (del� p) .u� (remove� q) .u(w) .

case(w)[ full�( ) : u1 (write�(k1

t
", p1

t") ) .0,

empty�(k$, p$) : u1 (write�(k1

t
", p1

t") ) .CN (p$, k$, p~ ) ,

emptyr�( ) : cond( p2 j2
{nil f u1 (write�(k1

t
", p1

t") ) .
u� (done�( ) ) .0,

p2 j2
=nil f u1 (root�(k1

t
", p1

t") ) .
u� (del� p) .rem (p1) .0)]

CompRN( p, q, k, p~ , u)

=
df

(&r, s1 , s2) p� (compress� r) .r(contents�( p1
t, k1

t
, u1) ) .

cond( pj1
{q f u1 (write�(k1

t
, p1
t) ) .u� (done�( ) ) .0,

j1>m f u1 (write�(k1

t
, p1
t) ) .u� (done�( ) ) .0,

j1�m f (&r) q� (compress� r) .r(contents�( p2
t, k2

t
, u2) ) .

cond( j1+ j2>2m+2 f s1 .0,
j1+ j2�2m+2 f s2 .0))

| s1 .u2 (write�(k2

t
, p2
t) ) .u1 (write�(k1

t
, p1
t) ) .u� (done�( ) ) .0

| s2 .u2 (del� p) .u� (remove�q) .u(w) .

case(w)[ full�( ) : u1 (write�(k1

t
", p1

t") ) .0,

empty�(k$, p$) : u1 (write�(k1

t
", p1

t") ) .CN (p$, k$, p~ ) ,
emptyr�( ) : cond( p2 j2

{nil f u1 (write�(k1

t
", p1

t") ) .
u� (done�( ) ) .0,

p2 j2
=nil f u1 (root�(k1

t
", p1

t") ) .

u� (del� p) .rem(p1) .0)]

Agent FindPN behaves similarly to FindPL . The main difference concerns the last
alternatives of agents CompLN and CompRN . In particular, if the compression
results in the root becoming empty, which corresponds to the state where the root
contains a single pair, and if additionally its child has no neighbours, then the root
is deleted and its child becomes the root. In such a case, the compressor emits via
name rem the name of the old root, p1 . This action synchronizes with agent STORE

which, in response to the message, removes pointer p1 and all pointers that have
named the root after p1 , if any.
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