
A Bound on the Rounds to Reach Lattice Agreement

Marios Mavronicolas
a��

a Department of Computer Science� University of Cyprus� Nicosia CY������

Cyprus

Abstract

The lattice agreement decision problem is studied in the synchronous message�
passing model of distributed computation� subject to crash failures� Processors
p�� p�� � � � � pn start with input values X�� X�� � � � � Xn� respectively� drawn from a
lattice L� the size of a maximal chain of elements of L that can be de�ned� start�
ing with fX�� X�� � � � � Xng� as the joins of other elements is denoted joinheight�L �
fX�� X�� � � � � Xng�� Each non�faulty processor chooses a value greater than or equal
to its original value� and less than or equal to the join of the original values� more�
over� the chosen values must be pairwise comparable� Thus� lattice agreement is a
weakening of traditional consensus�

Early�stopping algorithms for the stronger consensus problem are known to re�
quire 	�f� rounds of communication for any execution in which f � n processors
crash� We present an early�stopping algorithm for lattice agreement whose perfor�
mance is superior to early�stopping algorithms for consensus� More speci�cally� each
nonfaulty processor decides within minf
� joinheight�L � fX�� X�� � � � � Xng�� b���p
f �
���cg rounds� for any execution of the algorithm in which f � n processors

crash� In particular� this algorithm distinguishes itself from a comparable algorithm
of Attiya et al� ��� that requires ��lgn� communication rounds in every execution�

Keywords	 Lattice agreement� fault�tolerance� distributed algorithms�

� Introduction

The lattice agreement decision problem was introduced by Attiya� Herlihy and
Rachman ��� in an e�ort to identify connections between implementing concur�
rent objects and solving decision problems in wait�free computation� Roughly
speaking� in this problem� n processors start with input values drawn from
a lattice L� a special case of a partially ordered set� and must �non	trivially

� Supported by funds for the promotion of research at University of Cyprus�

Preprint submitted to Elsevier Science � October ����

decide on output values that are comparable to each other in the lattice� Thus�
the lattice agreement decision problem is a weakening of traditional consensus
�see� e�g�� ���� Chapter ��
� which� unlike consensus� can be solved in failure	
prone asynchronous systems� The lattice agreement decision problem models
situations arising in applications such as updating a distributed database� or
detecting termination� deadlock� or a stable property of a distributed system�
In such situations� processors need to adopt recent and consistent �views� of
an execution� Such �views� capture a global snapshot of a distributed system�
and processors may use them to infer possible future behaviors of the system�

Besides the fact that lattice agreement is an interesting decision problem in
its own right� Attiya et al� show ��� Theorem ���� that� in the shared memory
model of computation� solving the lattice agreement problem is equivalent to
implementing the atomic snapshot object ������ that is� given any solution to
lattice agreement� it is possible to construct an implementation of a snapshot
object� and vice versa� A snapshot object is a valuable tool that simpli�es the
design and veri�cation of concurrent algorithms by restricting the possible
interleavings of an execution �see� e�g�� �����
� thus� an additional motivation
to solve the lattice agreement problem stems from this equivalence� in order to
implement a snapshot object in a given model of distributed computation for
which the equivalence holds� it may be helpful to solve the lattice agreement
problem in the speci�c model and reduce the solution to an implementation
of the snapshot object�

Attiya et al� ��� Section �� present an algorithm that solves lattice agreement
in the synchronous� message	passing model of distributed computation� sub	
ject to crash failures� this algorithm is recursive� using a �branch	and	bound�
technique� and terminates after lg n� � communication rounds� In this work�
we still consider the same model� and we assume that the lattice has a unique

least element� this assumption is reasonable for using lattice agreement to
implement an atomic snapshot� since in such an implementation� a lattice el	
ement corresponds to a vector of �round numbers�� all of which are initially
zero� that can grow without bound�

We present a new algorithm for lattice agreement� which distinguishes itself
from the comparable algorithm of Attiya et al� in being early�stopping ����
that is� its running time is bounded by the number of failures that actu	
ally occur in an execution� whereas the algorithm of Attiya et al� ��� re	
quires ��lg n
 rounds in every execution� In particular� consider any exe	
cution in which f � n processors crash� and assume that processors start
with input values X��X�� � � � �Xn �not necessarily distinct
� Assume that one
starts with the set of input values fX��X�� � � � �Xng� and repeatedly enlarges
this set by �inserting� other elements of the lattice that can be formed as
joins of elements currently in the set� roughly speaking� the resulting set is
a chain if any two of its elements can be �compared� in the lattice� Denote

joinheight �L � fX��X�� � � � �Xng
 the size of a maximal chain that can be
produced in this way� We show that each non	faulty processor decides within
minf� � joinheight�L � fX��X�� � � � �Xng
� b�� �

p
�f � �
�cg rounds�

The rest of this paper is organized as follows� We provide our de�nitions in
Section � The algorithm that solves the lattice agreement problem is presented
and analyzed in Section �� We conclude� in Section �� with a discussion of our
results and a look ahead to some possible future work�

� De�nitions

In Section ��� we de�ne our model of computation� Lattices are introduced
in Section �� while Section �� poses the lattice agreement problem� Both
Sections � and �� borrow from Attiya et al� ��� Section �� Throughout�
denote for any integer n � � �n� � f�� � � � � � ng�

��� Model of Computation

Our model of distributed computation is a standard synchronous� message	
passing model subject to crash failures� we sketch the model here� and we refer
the reader to ���� Chapter ��� or to previous work using this model ������������
for more details� We consider a message	passing system with n processors de	
noted p�� p�� � � � � pn� We will sometimes use processor indices to denote pro	
cessors� Each processor is modeled as a �possibly in�nite
 state machine�

Processors execute in lock	step� and an execution proceeds in a sequence of
consecutively numbered rounds� the initial round is round �� In each round�
a processor may perform some local computation and send messages to any
group of processors� the processors in that group are guaranteed to receive
these messages before the next round� We assume that the state of processor
pi contains a special component bu� i in which incoming messages are bu�ered
at each round� and removed by the next round�

We consider a mild form of failure where a processor may halt in the mid	
dle of an execution� If a processor crashes in a certain round� then only some
�possibly empty
 subset of the messages it sent during that round arrives� Fur	
thermore� this processor will not participate in any of the subsequent rounds�
A crashed processor is called faulty� processors that do not crash are called
nonfaulty�

�

��� Lattices

A partially ordered set is a �possibly in�nite
 set L with a partial order ��
For any two elements S�� S� � L� say that S� and S� are comparable within

L under �� or comparable for short� if either S� � S� or S� � S�� S� and
S� are incomparable if they are not comparable� Write S� � S� if S� � S�
but S� �� S�� A chain of L is a totally ordered subset of L� The height of L�
denoted height�L
� is the size of a maximal chain of L� or in�nite if L has
in�nite chains�

For any �possibly empty
 subset S of L� say that S � L is an upper bound

of S if for each Si � S� Si � S� A least upper bound� or join� of S� denoted
join�S
� is an upper bound S of S such that if bS is an upper bound of S�
then S � bS� A lower bound of S and a greatest lower bound� or meet� of S�
denoted meet�S
� are de�ned similarly� A lattice is a partially ordered set L
such that for every �possibly empty
 subset S of L� join and meet of S exist�
A least element of L is a meet of L� We will assume that the lattice L has a
unique least element� denoted �L� �Lattices with no in�nite chains have this
property� see� e�g�� ���� Chapter ���

For any �possibly empty
 subset S of L� we inductively de�ne the sublattice

of L generated by S� denoted L � S� as follows�

�i
 for each S � S� S � L � S�
�ii
 for any integer l � � if Si�� Si�� � � � � Sil � L � S� then

�a
 join�fSi�� Si�� � � � � Silg
 � L � S� and
�b
 meet�fSi�� Si�� � � � � Silg
 � L � S�

�iii
 nothing is in L � S unless it can be obtained by using rules �i
 and �ii
�

So� L � S is the smallest sublattice of L including S �cf� �� Exercise II�����
�

Roughly speaking� for any �possibly empty
 subset S of L� the joins of L � S
is the subset of L � S that contains all elements that can �enter� L � S as
elements or S or as joins of other elements� formally� de�ne the joins of L � S�
denoted joins�L � S
� as follows�

�i
 for each S � S� S � joins�L � S
�
�ii
 for any integer l � � if Si�� Si�� � � � � Sil � joins�L � S
� then

join�fSi� � Si�� � � � � Silg
� joins�L � S
 �

�iii
 nothing is in joins�L � S
 unless it can be obtained by using rules �i
 and
�ii
�

We show that each element of joins�L � S
 is the join of some subset of S�

�

Proposition � For each S � joins�L � S
� S � join�T
 for some set T � S�

Moreover� if S � join� bT
 for some set bT such that for each �i � bT � �i �
join�Ti
 for some set Ti � S� then S � join��iTi
�

Proof� By induction on the number of applications of rule �ii
 required for S
to enter joins�L � S
�

For the base case� where zero applications of rule �ii
 are required� S enters
joins�L � S
 by rule �i
� Then� S � Si for some Si � S� Since Si � join�fSig
�
the claim follows�

Assume now that a nonzero number of applications of rule �ii
 is required
for S to enter joins�L � S
� thus� S � join� bT
 where for each �i � bT � �i �
joins�L � S
� Assume inductively that for each �i � bT � �i � join�Ti
 for some
set Ti � S�

Since the join is an upper bound� for each �i � bT � �i � S� and �i is an
upper bound of Ti� Hence� by transitivity� S is an upper bound of Ti� which
implies that S is an upper bound of �iTi� By de�nition of join� it follows that
join��iTi
 � S�

By de�nition of join� join��iTi
 is an upper bound of �iTi� since Ti � �iTi� it
follows that join��iTi
 is an upper bound of Ti� so that� by de�nition of join�
join�Ti
 � join��iTi
� Thus� join��iTi
 is an upper bound of �ifjoin�Ti
g �
�if�ig � T � Since S is the least upper bound of T � this implies that S �
join��iTi
� Hence� S � join��iTi
� as needed� �

The joinheight of L � S� denoted joinheight �L � S
� is the height of joins�L �
S
�

��� The Lattice Agreement Problem

In the lattice agreement problem ���� each processor pi is assigned some in	
put Xi� and must decide on some output Yi� Both input and output values
are drawn from a lattice L with partial order �� An algorithm solves lattice

agreement if it satis�es the following three conditions�

� Comparability	 for all indices i� j � �n�� Yi and Yj are comparable�
� Downward�Validity	 for all indices i � �n�� Xi � Yi�
� Upward�Validity	 for all indices i � �n�� Yi � join�fX��X�� � � � �Xng
�

�

The comparability condition requires that outputs of processors are all com	
parable to each other within the lattice� The downward	validity condition
requires that the output of each processor is not smaller in the lattice than its
input� The upward	validity condition requires that the output of each proces	
sor is not greater in the lattice than the join of all the inputs�

An algorithm that solves lattice agreement is wait�free �cf� ����
 if� for each
of its executions� every nonfaulty processor decides within a bounded number
of rounds� regardless of the execution or failures of other processors� say that
it solves lattice agreement in r rounds if every nonfaulty processor decides no
later than round r� An algorithm that solves lattice agreement is early�stopping
�cf� ���
 if for each execution in which f processors crash� every nonfaulty
processor decides after running for O�f
 rounds� Clearly� any early	stopping
algorithm is also wait	free�

� The Algorithm

In this section� we present our main result�

Theorem � There is an early�stopping algorithm that solves lattice agree�

ment in minf��joinheight �L � fX��X�� � � � �Xng
� b���
p
�f � �
�cg rounds�

for any execution in which processors p�� p�� � � � � pn start with input values

X��X�� � � � �Xn� respectively� and f processors crash�

In Section ���� we provide a description of an algorithm A with the claimed
properties� A correctness proof and analysis of round complexity for A are
presented in Sections �� and ���� respectively�

��� Description and Preliminaries

The local state of processor pi contains components Si and ri� the component
Si represents the �current decision value�� while the component ri holds a
nonnegative integer round number� initially ��

Roughly speaking� a processor changes its current decision value in a round
only if some value received in the previous round is incomparable to its current
decision value� In round �� if Xi � �L� then pi decides on �L and halts� else pi
adopts Xi as its current decision value Si and broadcasts it� In round r � ��
pi checks if any of the values received in round r 	 � is incomparable to Si� If
so� then Si is replaced by its join with all values received in round r 	 �� and
pi broadcasts Si and passes to round r � �� else� pi decides on Si and halts�

�

Precondition	 initial next�phase transition

ri �

Xi �� �L

E
ect	

Si �� Xi

broadcast�Si�
ri �� ri �

Precondition	 initial decision transition

ri �

Xi � �L

E
ect	

decide��L�

Precondition	 next�phase transition

ri �

for some Rj � bu
 i� Si �� Rj and Rj �� Si

E
ect	

Si �� join�fSig � fRj j Rj � bu
 ig�
broadcast�Si�
ri �� ri �

Precondition	 decision transition

ri �

for every Rj � bu
 i� either Si � Rj or Rj � Si

E
ect	

decide�Si�

Fig�
� The algorithm A� program for processor pi

Figure � presents the code for processor pi in a precondition	e�ect style that
is commonly used to describe I�O automata ����� A decide�Y
 operation
causes pi to enter a decision state for value Y �by recording the decision in the
appropriate state component
� a broadcast�S
 operation causes pi to send
the message S to all other processors�

For each nonfaulty processor pi� de�ne the decision round of pi� denoted �i�
to be the round in which pi decides� For the case where �i � �� consider the
sequence S

���
i � � � � � S

��i�
i of values held by Si� where for each r� � r � �i� S

�r�
i

is the value held by Si right before pi executes round r� The next result sum	
marizes certain properties of the sequence S���

i � � � � � S
��i�
i � these properties will

be crucial in both showing correctness for and analyzing the round complexity
of A�

Lemma � For each nonfaulty processor pi such that �i � ��

��
 S
���
i � Xi and S

��i�
i � Yi

�

�
 S
���
i � � � � � S

��i�
i

��
 for each r� � r � �i� S
�r�
i � joins�L � fX��X�� � � � �Xng
�

Proof� Property ��
 follows immmediately from the algorithm �see initial
next	phase transition and decision transition in Figure �
�

To show �
� consider any consecutive S
�r���
i and S

�r�
i � where � r � �i� By

the algorithm� S
�r�
i is the least upper bound of S

�r���
i and all values received

by pi at the end of round r	 �� thus� S
�r���
i � S

�r�
i � By the algorithm� there is

some value Rj received by pi at the end of round r 	 � that is incomparable

to S
�r���
i � since Rj � S

�r�
i � it follows that S�r���

i �� S
�r�
i � Hence� S�r���

i � S
�r�
i �

as needed�

We continue to show ��
 by induction on r� For the base case where r � �

S
���
i � Xi by ��
� and the claim holds trivially� Assume inductively that the

claim holds for all rounds � � � � � r 	 �� and consider round r� By induction
hypothesis� both S

�r���
i and each of S

�r���
j are in joins�L � fX��X�� � � � �Xng
�

By the algorithm� S
�r�
i � join�fS�r���

i g�fS�r���
j j S

�r���
j � bu� ig
� It follows�

by rule �ii
�a
 used in de�ning the joins�L � fX��X�� � � � �Xng
 that S
�r�
i �

joins�L � fX��X�� � � � �Xng
� as needed� �

��� Correctness

We show that processors� decisions satisfy the three conditions in the de�nition
of the lattice agreement problem �Section ��
�

We �rst show comparability� Consider nonfaulty processors pi and pj � and
assume� without loss of generality� that pi decides no later than pj � i�e�� �i � �j�
If �i � �� then� by the algorithm� Yi � �L� so that Yi and Yj are trivially
comparable� since �L is the least element of L� So assume �i � �� By the
algorithm� pi broadcasts S

��i�
i in round �i 	 �� There are two possibilities

regarding the values received by pj in round �i�

�i
 All of these values are comparable to S
��i�
j � in particular� Yi � S

��i�
i and

S
��i�
j are comparable� Then� by the algorithm� pj decides on Yj � S

��i�
j in

round �i� and comparability holds�
�ii
 Some of these values is incomparable to S

��i�
j � so that pj does not decide

in round �i� i�e�� �i � �j � By the algorithm� S��i���
j is the join of S��i�

j with

all values received by pj in round �i� in particular� S
��i�
i � S

��i���
j � Since

�i �� � �j� Lemma ��
 implies that S
��i���
j � S

��j�
j � Yj � It follows that

�

Yi � S
��i�
i � Yj � and comparability holds�

We continue to show downward	validity� Consider any nonfaulty processor pi�
We proceed by case analysis on the decision round of pi� Assume �rst that
�i � �� so that pi decides on �L� since� by the algorithm� pi decides on �L
only if its input equals �L� downward	validity holds trivially� Assume now
that �i � �� By Lemma ���
 and �
� Xi � S

���
i � � � � � S

��i�
i � Yi� and

downward	validity holds�

We �nally show upward	validity� Consider any nonfaulty processor pi� We pro	
ceed by case analysis on the decision round of pi� Assume �rst that �i � �� so
that pi decides on �L� then� upward	validity holds trivially since �L is the least
element of L� Assume now that �i � �� By Lemma ���
� Yi � S

��i�
i � It follows

by Lemma ���
 that Yi � joins�L � fX��X�� � � � �Xng
� Thus� by Proposi	
tion �� Yi � join�fXi� � � � � �Xilg
� where fXi� � � � � �Xilg � fX��X�� � � � �Xng� It
follows that Yi � join�fX��X�� � � � �Xng
� as needed�

��� Round Complexity

In this section� we prove an upper bound on the number of rounds incurred by
the algorithm A in the worst case� this will establish the wait	freedom �and�
thereby� the termination
 of this algorithm�

Consider processor pi deciding on Yi in round �i � �� By Lemma ���
�

Yi � S
��i�
i � By Lemma ���
� for each r� � � r � �i� S

��i�
i � joins�L �

fX��X�� � � � �Xng
� Thus� it follows by Lemma ��
 that the sequence of length

�i 	 � S
���
i � � � � � S

��i�
i forms a chain of joins�L � fX��X�� � � � �Xng
� Since the

size of a maximal chain of joins�L � fX��X�� � � � �Xng
 is joinheight �L �
fX��X�� � � � �Xng
� this implies that �i	� � joinheight�L � fX��X�� � � � �Xng
�
so that�

Lemma � A solves lattice agreement in �� joinheight �L � fX��X�� � � � �Xng

rounds� for any execution in which processors p�� p�� � � � � pn start with input

values X��X�� � � � �Xn� respectively�

We continue to show an upper bound on the number of rounds taken by A�
which is a function of the number of failures f occurring in an execution�

Lemma � A solves lattice agreement in b�� � p
�f � �
�c rounds� for any

execution in which f processors crash�

Proof� Consider any execution 	 of A in which f processors crash� denote
fr � f the number of processors that crash in round r � �� We show�

�

Claim 	 In 	� for any round r� � �� every processor decides within r��fr���
rounds�

Proof� Without loss of generality� let �� � � � � fr� be the processors crashing in
round r� of 	� Clearly� by Lemma �� for any nonfaulty processor pi� for each
r� r� � � � r � �i� S

�r�
i � joins�L � fX��X�� � � � �Xng
� Thus� by Proposi	

tion � and the structure of the algorithm� for each r� r� � � � r � �i� S
�r�
i �

join�fXfr���
� � � � �Xng�fXi� � � � � �Xikg
� where fi�� � � � � ikg � f�� � � � � fr�g� Since�

by the algorithm� pi does not decide in round r only if it updates S
�r���
i � the

maximumnumber of rounds pi can remain undecided after it completes round
r�� is at most the length of the longest possible sequence S

�r����
i � � � � � S

��i�
i �

Since� by Lemma �� S�r����
i � � � � � S

��i�
i � this longest possible sequence is the

following sequence of length fr� � ��

� join�fXfr���
�X�� � � � �Xng�

� join�fXfr���
�X�� � � � �Xng � fXi����g
�

� join�fXfr���
� � � � �Xng � fXi���� �Xi����g
�

� � � ��
� join��fXfr���

� � � � �Xng � fXi���� � � � � �Xi��fr� �
g
�

where
 is any permutation of f�� � � � � fr�g� That is� the fr� � � elements of
the sequence are those obtained by joining in �� �� � � � and fr� elements from
X�� � � � �Xfr�

� Thus� the total number of rounds for pi to decide is no more
than r� �for rounds up to round r�
 plus fr� ��� the number of rounds needed
subsequently� which is r� � fr� � �� as needed� �

Assume that A solves lattice agreement in � rounds� for any execution in which
f processors crash� Clearly� � is no more than the upper bounds established
in Claim � for any such execution� Thus� for each index r�� � � r� � ��
� � r� � fr� � �� so that

���X
r���

��	 r�
�
���X
r���

�fr� � �
 �
���X
r���

fr� �
���X
r���

� � f � �	 � �

or
P���

r��� r� � f��	�� or ��	�
�� � f��	�� implying that ��	��	f� � ��
Thus� � may not exceed the positive root of the quadratic form in the left side�

so that � � ���
q
�	 ��	f �

� � ���

p
�f � �
�� Since � is an integer�

this implies that � � b�� �p
�f � �
�c� as needed� �

Lemmas � and � together imply�

��

Proposition
 Algorithm A solves lattice agreement in minf��joinheight �L �
fX��X�� � � � �Xng
� b���

p
�f � �
�cg rounds� for any execution in which pro�

cessors p�� p�� � � � � pn start with input values X��X�� � � � �Xn� respectively� and

f processors crash�

� Discussion

We have presented a synchronous� early	stopping algorithm for lattice agree	
ment in the message	passing model of distributed computation� Each processor
decides using no more than minf� � joinheight �L � fX��X�� � � � �Xng
� b�� �p
�f � �
�cg rounds� for any execution in which n processors� out of which

f crash� start with input values X��X�� � � � �Xn� The translation of this algo	
rithm to the synchronous shared memory model subject to crash failures is
straightforward�

The most obvious open question left open by our work is whether this upper
bound is tight or not� does there exist an early	stopping algorithm that solves
lattice agreement in the synchronous� message	passing model in o�

p
f
 rounds�

Also� can our synchronous algorithm be extended to yield a wait�free and
early	stopping algorithm for lattice agreement in the completely asynchronous
model �see� e�g�� ���� Chapter ��
� �Attiya et al� ��� Section �� show that their
synchronous algorithm can be extended to yield a corresponding asynchronous�
wait	free lattice agreement algorithm�
 It would also be interesting to study
the lattice agreement problem in the partially synchronous message	passing
model of computation �see� e�g�� ���� Chapter ��
� in the presence of crash �or
even more severe
 processor failures�

Some more recent results on lattice agreement in the shared� read�write mem	
ory model of computation appear in ����

Acknowledgments�

We are indebted to one anonymous referee for numerous valuable comments�
corrections and suggestions�

��

References

�
� Y� Afek� H� Attiya� D� Dolev� E� Gafni� M� Merritt and N� Shavit� �Atomic
Snapshots of Shared Memory�� Journal of the ACM� Vol� ��� No� �� pp� ���
��� September
����

��� M� Aigner� Combinatorial Theory� Springer�Verlag�
����

��� J� Anderson� �Composite Registers�� Distributed Computing� Vol� �� No� �� pp�

�
�
���
����

��� H� Attiya and A� Fouren� �AdaptiveWait�free Algorithms for Lattice Agreement
and Renaming�� Proceedings of the ��th Annual ACM Symposium on Principles

of Distributed Computing� pp� ������� June�July
���

��� H� Attiya� M� Herlihy and O� Rachman� �Atomic Snapshots Using Lattice
Agreement�� Distributed Computing� Vol� � pp�
�
�
���
����

��� H� Attiya� N� Lynch and N� Shavit� �Are Wait�Free Algorithms Fast�� Journal
of the ACM� Vol� �
� No� �� pp� �������� July
����

��� S� Chaudhuri� �Towards a Complexity Hierarchy of Wait�Free Concurrent
Objects�� Proceedings of the �rd IEEE Symposium on Parallel and Distributed

Processing� pp� �������� October
��
�

�� D� Dolev� R� Reischuk� and H� R� Strong� �Early Stopping in Byzantine
Agreement�� Journal of the ACM� Vol� ��� No� �� pp� ������
� October
����

��� R� Gawlick� N� Lynch and N� Shavit� �Concurrent Time�Stamping Made
Simple�� Proceedings of the �st Israel Symposium on Theory of Computing and

Systems� Lecture Notes in Computer Science� Vol� ��
� pp�
�
�
�� Springer�
Verlag� May
����

�
�� J� Halpern and Y� Moses� �Knowledge and Common Knowledge in a Distributed
Environment�� Journal of the ACM� Vol� ��� No� �� pp� ������� July
����

�

� M� Herlihy� �Wait�free Synchronization�� ACM Transactions on Programming

Languages and Systems� Vol�
�� No�
� pp�
���
��� January
��
�

�
�� M� Herlihy and M� Tuttle� �Wait�Free Computation in Message�Passing
Systems�� Proceedings of the �th Annual ACM Symposium on Principles of

Distributed Computing� pp� �������� August
����

�
�� J� H� van Lint and R� M� Wilson� A Course in Combinatorics� Cambridge
University Press�
����

�
�� N� Lynch� Distributed Algorithms� Morgan Kaufmann�
����

�
�� N� Lynch and M� Tuttle� �An Introduction to Input�Output Automata�� CWI

Quarterly� Vol� �� No� �� pp� �
������ September
���

�
�� Y� Moses and M� Tuttle� �Programming Simultaneous Actions Using Common
Knowledge�� Algorithmica� Vol� �� No�
� pp�
�
�
���
��

�

