Τελικός Διαγωνισμός

- Συμπληρώστε εδώ το ονοματεπώνυμό σας:
- Αυτή είναι μία εξέταση με ερωτήσεις τύπου "πολλαπλών επιλογών". Οι απαντήσεις σας πρέπει να καταγραφούν στους κατάλληλους πίνακες πιο κάτω.
- Απαντείστε όλα τα θέματα. Ο συνολικός αριθμός μονάδων είναι 60.
- Η διάρκεια της εξέτασης είναι 2 ώρες. Το φυλλάδιο αυτό παραδίδεται κατά τη λήξη της.
- 1.~(20 imes 1.5 = 30~μονάδες) Έστω $L_1 = \{a^n \mid n \geq 0\},~L_2 = \{a^nb^n \mid n \geq 0\}$ και $L_3 = \{a^n b^n c^n \mid n \geq 0\}$. Κατατάξτε κάθε μία από τις παρακάτω γλώσσες σε **μία** από τις ακόλουθες κατηγορίες:
 - Κ (κανονική)
 - ΚΚ (κατηγορηματική, αλλά όχι κανονική)
 - Α (αναδρομική, αλλά όχι κατηγορηματική)
 - ΑΑ (αναδρομικά αριθμήσιμη, αλλά όχι αναδρομική)
 - ΣΑ (συναναδρομικά αριθμήσιμη, αλλά όχι αναδρομική)
 - Τ (ούτε αναδρομικά αριθμήσιμη, ούτε συναναδρομικά αριθμήσιμη)

Γλώσσα	Κατηγορία
$L_1 \times L_2$	
$L_2 \times L_3$	
$L_3 \times \underline{L_1}$	
$L_1 \times \underline{L_1}$	
$L_2 \times \underline{L_2}$	
$L_1 \times \overline{L_2}$	
$L_1 \times L_2$	
L_1L_2	
L_2L_3	
L_3L_1	
$K_0 \times \underline{L_1}$	
$K_0 \times L_1 \times K_1$	
$K_0 \times \underline{L_2}$	
$K_0 imes \overline{L_2} imes \overline{K_1}$	
$K_0 \times L_3$	
$\underline{K_0} \times \underline{L_1}$	
$K_0 \times L_1 \times K_1$	
$K_0 \times L_2$	
$K_0 \times L_2 \times K_1$	
$K_0 \times L_3$	

- 2. $(20 \times 1.5 = 30$ μονάδες) Κατατάξτε κάθε μία από τις παρακάτω γλώσσες σε μία από τις ακόλουθες κατηγορίες:
 - Α (αναδρομική)
 - ΑΑ (αναδρομικά αριθμήσιμη, αλλά όχι αναδρομική)
 - ΣΑ (συναναδρομικά αριθμήσιμη, αλλά όχι αναδρομική)
 - Τ (ούτε αναδρομικά αριθμήσιμη, ούτε συναναδρομικά αριθμήσιμη)

(Σε όλες τις γλώσσες, M συμβολίζει μία μηχανή Turing, $\rho(M)$ συμβολίζει μία κατάλληλη κωδικοποίησή της μηχανής Turing M, L(M) συμβολίζει τη γλώσσα που γίνεται δεκτή από τη μηχανή Turing M, και |L(M)| συμβολίζει τον αριθμό των λέξεων στη γλώσσα L(M). Eπίσης, τ. ω. είναι μια συντομογραφία για "τέτοια ωστε".)

Γλώσσα		Κατηγορία
$\rho(M)$	$ L(M) \ge 9\}$	
$\{\rho(M)\mid$	$99 \ge L(M) \ge 9\}$	
$\rho(M)$	$L(M) \cap \{a^n b^n \mid n \ge 0\} = \emptyset\}$	
$\rho(M)$	η γλώσσα $L(M)\cap \{a^nb^n\mid n\geq 0\}$ είναι άπειρη $\}$	
$\rho(M)$	η γλώσσα $L(M)\cap \{a^nb^n\mid n\geq 0\}$ είναι αναδρομιχή $\}$	
$\rho(M)$	$L(M) \cap \{a^n b^n c^n \mid n \ge 0\} = \emptyset\}$	
$\rho(M)$	η γλώσσα $L(M)\cap \{a^nb^nc^n\mid n\geq 0\}$ είναι άπειρη $\}$	
$\rho(M)$	η γλώσσα $L(M)\cap \{a^nb^nc^n\mid n\geq 0\}$ είναι αναδρομιχή $\}$	
$\rho(M)$	$L(M) \cap K_1 = \emptyset \}$	
$\rho(M)$	η γλώσσα $L(M)\cap K_1$ είναι άπειρη $\}$	
$\{ ho(M)\mid$	η γλώσσα $L(M)\cap K_1$ είναι αναδρομιχή $\}$	
$\{ ho(M)\mid$	$L(M) \cap \overline{K_1} = \emptyset \}$	
$\rho(M)$	$L(M) \times K_1 = \emptyset \}$	
$\{ ho(M)\mid$	$L(M) imes \overline{K_1} = \emptyset$	
$\rho(M)$	$L(M) \cap K_1 = L(M) \cap \overline{K_1} $	
$\{ ho(M)\mid$	$L(M) \times K_1 = L(M) \times \overline{K_1}$	
$\rho(M)$	υπάρχει κανονική γλώσσα L τ. ώ. η $L(M)\cap L$ είναι κανονική $\}$	
$\{ ho(M)\mid$	υπάρχει μη κανονική γλώσσα L τ. ώ. η $L(M)\cap L$ είναι μη κανονική $\}$	
$\{ ho(M)\mid$	υπάρχει κανονική γλώσσα L τ. ώ. η $L(M)\cap L$ είναι μη κανονική $\}$	
$\{ ho(M)\mid$	υπάρχει μη κανονική γλώσσα L τ. ώ. η $L(M)\cap L$ είναι κανονική $\}$	