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One of the main goals of Cloud and Grid infrastructures is to make their services easily accessible and
attractive to end-users. In this article we investigate the problem of supporting keyword-based searching
for the discovery of software files that are installed on the nodes of large-scale, federated Grid and Cloud
computing infrastructures. We address a number of challenges that arise from the unstructured nature of
software and the unavailability of software-related metadata on large-scale networked environments. We
present Minersoft, a harvester that visits Grid/Cloud infrastructures, crawls their file systems, identifies
and classifies software files, and discovers implicit associations between them. The results of Minersoft
harvesting are encoded in a weighted, typed graph, called the Software Graph. A number of information
retrieval (IR) algorithms are used to enrich this graph with structural and content associations, to annotate
software files with keywords and build inverted indexes to support keyword-based searching for software.
Using a real testbed, we present an evaluation study of our approach, using data extracted from production-
quality Grid and Cloud computing infrastructures. Experimental results show that Minersoft is a powerful
tool for software search and discovery.
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1. INTRODUCTION

A growing number of large-scale Grid and Cloud infrastructures are in operation
around the world, providing production-quality computing and storage services to
numerous users from a wide range of scientific and business fields. Recent surveys
report that by 2020 most people will employ software running on Cloud computing

This work was supported in part by the European Commission under the Seventh Framework Program
through the SEARCHiN project, Marie Curie Action, contract FP6-042467, and the Enabling Grids for
Escienc Eproject, contract INFSO-RI-222667. The work of A. Katsifodimos was done at the University of
Cyprus.
Authors’ addresses: M. D. Dikaiakos, Department of Computer Science, University of Cyprus, Cyprus; A.
Katsifodimos, LRI, Universite Paris-Sud XI and INRIA, Saclay; G. Pallis, Department of Computer Science,
University of Cyprus, Cyprus.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1533-5399/2012/07-ART2 $15.00

DOI 10.1145/2220352.2220354 http://doi.acm.org/10.1145/2220352.2220354

ACM Transactions on Internet Technology, Vol. 12, No. 1, Article 2, Publication date: July 2012.



TOIT1201-02 ACM-TRANSACTION June 15, 2012 17:50

2:2 M. D. Dikaiakos et al.

infrastructures [Anderson and Rainie 2010]. One of the main goals of Cloud and Grid in-
frastructures is to make their services easily accessible and attractive to a wide range of
users (Grid/Cloud application users/developers/administrators) [Armbrust et al. 2010;
Dikaiakos et al. 2009]. Cloud computing is enabling companies and researchers to vir-
tualize and externalize their data, providing them efficiency and flexibility in running
their IT systems, and making it possible to deploy new services at low costs. To achieve
this goal, it is important to establish advanced tools for software search and discovery
in order to help users locate application software suitable to their needs and encourage
software reuse [Bass et al. 2008; Mohagheghi and Conradi 2008], software investiga-
tion [Robillard 2008], clone detection [Gabel et al. 2008] and computational resources
selection.

Software retrieval is an important element of software development and deploy-
ment in Grid/Cloud infrastructures, where the use and reuse of software components
and libraries represent a major element of application development and infrastructure
adoption. The need for software retrieval is a well-recognized problem in the computer
software engineering literature and practice [Toch et al. 2007], but has been addressed
primarily in the context of controlled software repositories [Grechanik et al. 2010] or,
more recently, in the context of Web search engines [Coyle and Smyth 2007; Xue et al.
2008]. In the Grid and Cloud context, the problem is equally motivated but presents
a different set of challenges: the software repositories are essentially the file systems
of the different computing nodes of the infrastructures; these nodes comprise very
large numbers of unclassified files belonging to a variety of types: source codes, binary
executables, software libraries, software manuals, and numerous unrelated files. All
these files are not attached to Web servers and are not accessible to Web search engine
crawlers. Thus, existing Web search engines cannot be used for software retrieval in
these infrastructures, since access to such a software cannot be gained through HTTP,
the common transfer protocol of the Web. Furthermore, all these files do not contain
explicitly specified links that could capture their interrelationships. Software installed
in Grid/Cloud infrastructures is unstructured and software-related metadata or soft-
ware descriptions in natural language are typically poor or unavailable. Also, typical
file systems do not maintain metadata about the semantics of files and software. Con-
sequently, software files are not easily amenable to information-extraction techniques
used in information retrieval (IR) or semantic search techniques.

Nevertheless, adopting a full-text-based search paradigm for locating software seems
like an obvious choice, given that full-text search is the dominant paradigm for informa-
tion discovery [Li et al. 2008]. To motivate the importance of such a tool, let us consider
a researcher who is searching for graph-mining software deployed on a Grid/Cloud
infrastructure. Unfortunately, the manual discovery of such software is a daunting,
nearly impossible task. Taking the case of EGEE/EGI,1 one of the largest production
Grids currently in operation, the software developer would have to gain access and
search inside 300 sites, several of which host well over 1 million software-related files.
The situation is equally challenging in emerging Cloud infrastructures: for example,
the Amazon Elastic Cloud service provides access to a growing repository with more
than 8,500 virtual computational servers (Amazon Machine Images, AMIs), with each
AMI comprising over 14,000 files, including application and utility software. Therefore,
the software developer would have to spawn some AMIs, connect to them, and search
manually for installed software files.

Alternatives to manual search for software are limited. Although Grid infrastruc-
tures comprise centralized Grid information registries that can be queried to provide

1Enabling Grids for E-SciencE project:http://www.eu-egee.org/; European Grid Infrastructure:http://www
.egi.eu/.
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information about the configuration and status of Grid files, these registries typically
contain scarce and poorly maintained tags about installed software [Dikaiakos et al.
2006]. The lack of well-organized and properly maintained information about software
is due to the intrinsic characteristics of software management across large-scale, fed-
erated infrastructures: software installation and maintenance is performed by various
actors in an uncoordinated manner and does not follow a common standard for soft-
ware packaging and description. Similar problems arise in the context of Clouds, as
they grow larger and more diverse. Currently, Cloud providers like Amazon, support
only the capability to search for AMIs on the basis of their names and not on their
contents.

Envisioning the existence of a software search engine, the software developer would
submit a query to the search engine using some keywords (e.g., “graph mining” or
“pajek”). In response to this query, the engine would return a list of software matching
the query’s keywords, along with additional textual descriptions and a listing of com-
putational resources where this software was located. Thus, the software developer
would be able to identify the providers hosting an application suitable to her needs and
would accordingly prepare and submit jobs to them, thus, saving considerable effort.
To meet this vision, we need a new methodology that will (i) automatically discover
software-related files installed in large file systems; (ii) extract structure and meaning
from those files; and (iii) discover and exploit implicit relationships between them.
Also, we need to develop methods for effective querying and for deriving insights from
query results. The provision of full-text search over large, distributed collections of
unstructured data has been identified among the main open research challenges in
data management that are expected to bring a high impact in the future [Agrawal and
et al. 2008]. Searching for software falls under this general problem, since file-systems
treat software files as unstructured data and maintain very little if any metadata about
installed software.

Following this motivation, we developed the Minersoft software search engine. A
prototype implementation of the Minersoft is available online.2 Unlike desktop search,
which is designed to assist users in locating specific files, Minersoft supports searching
not only for source codes but also for executables and libraries stored in binary format,
and metadata (software versions, timestamps, permissions). To the best of our knowl-
edge, Minersoft provides the first full-text search facility for the retrieval of software
installed in large-scale Grid and Cloud infrastructures. Minersoft visits a computa-
tional resource, crawls the file systems of Grid and Cloud computing sites, identifies
software files of interest (binaries, libraries, documentations, etc.), assigns type infor-
mation to these files, and discovers implicit associations between them. Subsequently,
it extracts text and keywords from the context that surrounds software files in order
to tag the software-files with descriptions amenable to full-text search.

To achieve these tasks, Minersoft invokes file-system utilities and object-code analyz-
ers, implements heuristics for file-type identification and filename normalization, and
performs document analysis algorithms on software documentation files and source-
code comments. The results of Minersoft harvesting are encoded in the software graph
(SG), which is used to represent the context of discovered software files. We process the
software graph to annotate software files with metadata and keywords, and use these
to build an inverted index of software. Indexes from different computational resource
providers in Grids and Clouds are retrieved and merged into a central inverted index,
which is used to support full-text software retrieval.

Our study is focused on software search in Grids and Clouds. Nowadays, software re-
trieval in Grids and Clouds has become an important element in software development,

2http://grid.ucy.ac.cy/minersoft.
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where software components and libraries are used extensively in order to harness the
capabilities of these infrastructures. The present work continues and improves upon
the authors’ preliminary efforts in Katsifodimos et al. [2009] and Pallis et al. [2009]
focusing on developing a software search engine. In this article (i) we extend Minersoft
architecture to support efficient software search not only on Grids but also on Cloud
computing infrastructures. To be able to locate computing resources in different in-
frastructures, Minersoft uses a unique URI for each resource; the technical aspects are
discussed in Section 3. (ii) We elaborate the SG and Minersoft’s software retrieval al-
gorithm to support queries for the metadata of files (e.g., version-specific queries); and
(iii) we present an extended evaluation study of Minersoft’s software retrieval engine.
The main contributions of this work can be summarized as follows.

—We present the design, architecture, and implementation of the Minersoft system.
—We introduce the Software Graph, a typed, weighted graph that captures the meta-

data and content of software files found in a file system, along with structural and con-
tent associations between them (e.g., directory containment, library dependencies,
documentation of software). We present a Software-Graph construction algorithm,
which comprises techniques for discovering structural and content associations be-
tween software files that are installed on the file systems of large-scale distributed
computing environments.

—We implement and apply this algorithm to retrieve and represent software files
installed in three large-scale, production-quality distributed computing infrastruc-
tures: the EGEE Grid [Bird et al. 2009; EGEE 2010], Amazon EC2 Cloud [AMAZON
2009], and Rackspace [RACKSPACE 2009].

—We provide a test data set that can be used to evaluate software retrieval systems.
This data-set collection contains software files installed in Grid and Cloud infras-
tructures and their relevance judgments for a set of keyword queries.3

—We conduct an experimental evaluation of Minersoft on real, large-scale Grid and
Cloud testbeds, exploring performance issues of the proposed scheme and using
the aforementioned data set. We also demonstrate the effectiveness of the Software
Graph as a structure for annotating software files with descriptive keywords and for
supporting full-text search for software. Results show that Minersoft achieves high
search efficiency.

The contributions of this work can be used from researchers and software practitioners
to harness the capabilities of Grids and Clouds, locating software files suitable to their
needs and encouraging software investigation, software reuse, clone detection, and
computational resource selection.

The remainder of this article is organized as follows. Section 2 presents an overview
of related work. In Section 3, we introduce the concepts of the Grid and Cloud model and
describe infrastructures indexed by Minersoft. In Section 4, we provide the definitions
for software files, software package, and Software Graph, and describe the proposed
algorithms to create the annotated Software Graph. Section 5 describes the Minersoft
architecture, implementation and its performance evaluation. Section 6 presents the
software retrieval evaluation. We conclude in Section 7, outlining the contributions
that this work makes to the Internet technology.

2. RELATED WORK

A number of research efforts [Linstead et al. 2009; Zaremski and Wing 1997] have
investigated the problem of software-component retrieval in the context of language-
specific software repositories and CASE tools (a survey of recent work can be found

3We have made this data-set available through the Web at http://www.grid.ucy.ac.cy/minersoft/.
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Table I. Existing Tools for Software Retrieval

Software files Retrieval
Searching Binaries/ Source code/ Software-description Binary

Approach paradigm Corpus scripts libraries documents libraries
GURU keyword-based Repository �
Suade software elements

(fields & methods)
Repository �

Exemplar APIs Repository � � �
Marakatu Keyword-based Repository �
SEC+ Keyword-based Repository �
Wumpus Keyword-based Repository �
Extreme
Harvesting

Keyword-based Web �

SPARS-J Keyword-based Internet repositories �
Sourcerer Keyword-based Internet repositories �
Koders Keyword-based Internet repositories �
Google Code Keyword-based Web �
Krugle Keyword-based Web �
Portfolio Keyword-based Repository �
Minersoft Keyword-based Grid, Cloud, Cluster,

Repository
� � � �

in Lucrédio et al. [2004]). One of the key distinguishing characteristics of these ap-
proaches is the corpus upon which the search is conducted. Table I presents a list of
tools for software retrieval and summarizes their key attributes.

2.1. Searching in Software Repositories

Perhaps the first effort to establish a keyword-based paradigm for the retrieval of source
code residing inside software repositories was presented in Maarek et al. [1991], with
the GURU system. GURU adopted the cosine similarity metric to match queries with
documented software files, and used probabilistic modeling (quantity of information) to
map documented software to terms. GURU provided results that included full and par-
tial matches. Like GURU, Exemplar [Grechanik et al. 2010] retrieves relevant software
components from different repositories by linking API help pages whose information
is of higher quality than ad hoc descriptions of components. Similar approaches have
been followed by Antoniol et al. [2002], Marcus and Maletic [2003], and Lucia et al.
[2007]. All these works exploit source-code comments and documentation files, repre-
senting them as term-vectors and using similarity metrics from information retrieval
(IR) to identify associations between software files. Results showed that such schemes
work well in practice and are able to discover links between documentation files and
source codes.

The use of folksonomy concepts has been investigated in the context of the Maracatu
system [Vanderlei and et al. 2007]. Folksonomy is a cooperative classification scheme
where users assign keywords (called tags) to software files. A drawback of this ap-
proach is that it requires user intervention to manually tag software. Finally, the use
of ontologies is proposed in Khemakhem et al. [2007]; however, this work provides little
evidence on the applicability and effectiveness of its approach. SEC+ is a more recent
search engine paradigm for discovering software components [Khemakhem et al. 2010];
an ontology is used to identify the software components. Consequently, the efficiency of
SEC+ is affected by how well the ontology describes the software packages. However,
the development of a well-defined ontology for software packages remains an open is-
sue, since there is a large number of “rules” in order to define which software resources
constitute a software package.
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The search for software can also benefit from extended file systems that capture file-
related metadata and/or semantics, such as the Semantic File System [Gifford et al.
1991], the Linking File System (LiFS) [Ames et al. 2005], or from file systems that
provide extensions to support search through facets [Koren et al. 2007], contextualiza-
tion [Soules and Ganger 2005], desktop search (e.g., Confluence [Gyllstrom et al. 2007],
and Wumpus [Yeung et al. 2007]). In the same context, SmartScan [Liu et al. 2010]
is a metadata crawl tool that exploits patterns in metadata changes to improve the
efficiency of support for file-system-wide metadata querying (e.g., like “which directory
subtrees consume the most space?”).

Although Minersoft could easily take advantage of the above file systems offering
advanced metadata support, in our current design we assume that we can exploit only
the metadata available in traditional Unix and Linux systems, which are common in
most Grid and Cloud infrastructures.

2.2. Software Retrieval on the Web

The Web has been used as a platform for storing and publishing software repositories.
Consequently, a number of research efforts and tools have focused on supporting topical
Web searches that target software files [Susan et al. 2010]. Hummel and Atkinson
[2004], described an approach for harvesting software components from the Web. The
basic idea is to use the Web as the underlying repository and to utilize standard
search engines, such as Google, as the means for discovering appropriate software
assets. Other approaches have developed software-specific crawlers that crawl CVS
and software repositories published through the Web, in order to build source-code
search engines (e.g., SPARS-J [Matsushita 2005] and Sourcerer [Linstead et al. 2009]).
At the time of this writing, four such software search engines are in operation on
the Web: Google Code,4 Krugle,5 Koders6 and Portfolio.7 Google Code Search is for
developers interested in Google-related open-source development; its users can search
for open source-code and for Google services that support public APIs. Koders and
Krugle support searching for open source code published on the Web. They enable
software developers to easily search and browse source code in thousands of projects
posted at hundreds of open source repositories. Portfolio [McMillan et al. 2011] is a
code search system that retrieves highly relevant functions and projects from a large
archive of C/C++ source code repositories.

Software applications can also be accessed and executed via the Web based on Web
services. To this end, Web services infrastructure rely primarily on WSDL (Web ser-
vices description language); SOAP (simple object access protocol); and UDDI (universal
description and discovery interface). Currently, UDDI is the main standard for Web
service discovery. However, it does not account for semantic information. To address
this, several approaches have been proposed to support semantic search for Web ser-
vices (METEOR-S,OWL-S, WOOGLE) [Brogi et al. 2008; Li et al. 2009; Toch et al.
2007]. The concept of Web services discovery is different from searching software files
in Grids and Clouds, since Web services provide to end-users an invocation model that
is different from Grid infrastructures or Cloud IaaS services. Specifically, the invoca-
tion model of Web services relies on standards like UDDI, WSDL, SOAP, and provide
special-purpose services through these standards. On the other hand, software files
installed on a Cloud/Grid infrastructure lie in the file-systems of the computational

4Google Code search engine: http://code.google.com/.
5Krugle: http://www.krugle.com.
6Koders search engine: http://www.koders.com.
7Portfolio:http://www.searchportfolio.net/.
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resources, are unstructured, and can be part of a software project, or even be executed
(binary files) in the target computational resource (e.g., a Cloud server).

2.3. Minersoft vs. Existing Approaches

Although we are not aware of any work that provides keyword-based searching for
software files on large-scale Grid/Cloud infrastructures, our work overlaps with prior
work on software retrieval [Antoniol et al. 2002; Grechanik et al. 2010; Vanderlei and et
al. 2007]. These works mostly focus on developing schemes that facilitate the retrieval
of software source files using the keyword-based paradigm. Minersoft differs from these
works in a number of key aspects.

—Minersoft supports searching for software installed in the file systems of distributed
computing infrastructures (Grids, Clouds, clusters), as well as in software reposito-
ries. The technical aspects are discussed in the next section.

—Minersoft supports searching not only for source codes but also for executables and
libraries stored in binary format, and metadata (software versions, timestamps,
permissions);

—Minersoft does not presume that file systems maintain metadata (tags, etc.) to sup-
port software search; instead, the Minersoft harvester generates such metadata
automatically by invoking standard file-system utilities and tools and by exploiting
the hierarchical organization of file systems;

—Minersoft introduces the concept of the Software Graph, a weighted, typed graph that
represents software files and their associations in a single data structure amenable
to further processing.

—Minersoft addresses a number of additional implementation challenges that are
particular to Grid and Cloud infrastructures.
(i) Software management is a decentralized activity; different machines in Grids

and Clouds may fall under different policies in software installation, directory
naming, and so on. Also, software entities on such infrastructures often come
in a wide variety of packaging configurations and formats. Therefore, solutions
that are language-specific or tailored to some specific software-component archi-
tecture are not applicable in the Minersoft context.

(ii) Harvesting the software files found in Grid and Cloud infrastructures is a com-
putationally demanding task. Therefore, this task should be distributed to the
computational resources available in the infrastructure, achieving load balanc-
ing and reducing data communication overhead between the search engine and
Grid or Cloud sites.

(iii) The users of a distributed computing infrastructure do not have direct access to
its servers. Therefore, a software harvester has to be either part of middleware
services (something that would require the intervention to the middleware) or
to be submitted for execution as a normal job through the middleware. In the
Minersoft architecture and implementation, we adopt the nonintrusive approach,
which facilitates the deployment of the system on different Grids and Clouds.

3. GRIDS AND CLOUDS

In this section we provide a brief overview of Grid and Cloud infrastructures where we
perform software retrieval.

3.1. Grid Infrastructures

Grid infrastructures typically comprise large numbers of heterogeneous resources
(computing, storage), distributed across multiple administrative domains (sites) and
interconnected through an open network. Coordinated sharing of resources that span
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multiple sites is made possible in the context of virtual organizations [Foster et al.
2001]. A virtual organization (VO) provides its members with access to a set of central
middleware services, such as resource discovery and job submission. Through those
services, the VO offers some level of resource virtualization, exposing only high-level
functionality to Grid application programmers and end-users. The conceptual archi-
tecture of a Grid system consists of four layers: fabric, core middleware, user-level
middleware, and Grid applications. The Grid fabric layer consists of the actual hard-
ware and local operating system resources. The core Grid middleware provides services
that abstract the complexity and heterogeneity of the fabric layer (i.e., remote process
management, storage access, information registration and discovery). The user-level
Grid middleware utilizes the interfaces provided by the low-level middleware so as
to provide higher abstractions and services, such as resource and storage managers,
schedulers, and application environments. Finally, the Grid applications layer utilizes
the services provided by user-level middleware so as to offer engineering and scientific
applications and software toolkits to Grid users.

Envisioning the existence of a software search engine for the EGEE infrastructure,
the software developer would submit a query for the linear algebra package using the
keyword “lapack” (a software for mathematical computation that stands for Linear
Algebra PACKage). In response to this query, the engine would search inside 300
Grid sites (several of which host well over 1 million software-related files) and return
software that matches the query’s keywords, along with additional textual descriptions
and a listing of computational resources where this software was located.

3.2. Cloud Computing

Cloud computing describes a recent trend in information technology (IT) that moves
computing and data away from desktop and portable PCs into large data centers that
provide on-demand services through the Internet on a “pay as you go” basis [Armbrust
et al. 2010]. The computing nodes of a Cloud, called Cloud virtual servers, are managed
by a single administrative domain. Typically, the service offerings of Cloud service
providers (Cloud providers) comprise access to computing and storage capacity to soft-
ware platforms for developing and deploying applications and to actual applications.
User access to Cloud services is achieved via SSH calls, Web services, or batch systems.

The main technical underpinnings of Cloud computing infrastructures and services
include elasticity, virtualization, service-oriented software, Grid computing technolo-
gies, management of large facilities, power efficiency, and so on Cloud service consumers
purchase Cloud services in the form of infrastructure-as-a-service (IaaS), platform-as-
a-service (PaaS), or software-as-a-service (SaaS) and sell value-added services (e.g.,
utility services) to end-users. Within the Cloud, the laws of probability give the ser-
vice provider great leverage through statistical multiplexing of workloads and easier
management, since a single software installation can cover the needs of many users.

Envisioning the existence of a software search engine for Cloud infrastructure, the
user would submit a query for identifying the Cloud virtual servers that have been
Hadoop-installed using the keywords “hadoop map-reduce.” In response to this query,
the engine would search inside virtual computational servers (e.g., 8,500 Amazon Ma-
chine Images, where each AMI comprises over 14,000 files) and return a list of software
that matches the query’s keywords, along with additional textual descriptions and a
listing of the Cloud virtual servers where this software was located.

3.3. Examples of Minersoft-Crawlable Infrastructures

Minersoft’s harvester crawls and locates software files lying on the filesystems of Grid
and Cloud infrastructures that provide services in an infrastructure-as-a-service man-
ner. Examples of such infrastructures are (i) Cloud infrastructures such as: Rackspace
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Cloud, Amazon EC2, Linode, etc; (ii) grid infrastructures that include (but are not lim-
ited to) EGEE/EGI, Grid5000, TeraGrid et al.; (iii) large-scale Enterprise Grids/Clouds
based on different batch systems (e.g. Condor, Blah). All the aforementioned infrastruc-
tures provide computing resources whose filesystem is accessible either (i) directly, with
a remote login access method (e.g., ssh, rsh) or (ii) through a job submission protocol
(e.g., Condor, gLite WMS, Blah). For example, in Amazon EC2, the computing resources’
access protocol is ssh. On the other hand, in EGEE/EGI, the computing resources are
accessible through the gLite WMS submission protocol. In both cases, Minersoft gains
access to the file systems of the computing resources. To hide the access protocols that
have to be used in each of the different infrastructures, Minersoft harvester builds an
abstraction layer on top of them. To be able to locate computing resources in different
infrastructures, Minersoft uses a unique URI for each resource. The URI’s first part
denotes the access protocol, and second denotes the name of the computing resource
that needs to be accessed. For example, the URI “egee://ce101.grid.ucy.ac.cy” refers to
the computing node ce101.grid.ucy.ac.cy, which can be accessed by the EGEE’s gLite
WMS submission protocol.

4. SOFTWARE GRAPH CONSTRUCTION AND INDEXING

A key responsibility of the Minersoft harvester is to construct a Software Graph (SG)
that represents the software installed on each computing site. In this section, we
provide a formal definition of the Software Graph and present the SG construction
algorithm.

4.1. Definitions

Definition 4.1. A Software file is a file that is installed on a machine and belongs
to one of the following categories: (i) executable (binary or script); (ii) software library;
(iii) source code written in some programming language; (iv) configuration file required
for the compilation and/or installation of code (e.g., makefiles); (v) unstructured or semi-
structured software-description document that provides human-readable information
about software, its installation, operation, and maintenance (manuals, readme files,
etc.).

Definition 4.2. A Software package is a collection of associated software files that
are installed and configured in order to function as a single entity that can accomplish
a computation or a group of related computations.

The identification of a software file and its categorization into one of the categories
mentioned above can be done heuristically by human experts (system administrators,
software engineers, advanced users). Human experts can also recognize the associa-
tions that establish the grouping of software files into a software package. Normally,
these associations are not represented through some common, explicit metadata for-
mat maintained in the file system. Instead, they are expressed implicitly by location
and naming conventions or hidden inside configuration files (e.g., makefiles, software
libraries). Therefore, the automation of software-file classification and grouping is a
nontrivial task. To represent the software files found in a file system and the associa-
tions between them, we introduce the concept of the Software Graph.

Definition 4.3. The Software Graph is a weighted, metadata-rich, typed graph
G(V, E). The vertex-set V of the graph comprises vertices that represent software files
found inside the file system of a computer (file vertices) and vertices that represent
directories of the file system (directory vertices). The edges E of the graph represent
structural and content associations between graph vertices.
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Permissions: owner=root group=root mask=655

Fig. 1. Software file metadata.

The Software Graph is “typed” because its vertices and edges are assigned to different
types (classes). Each vertex v of the Software Graph G(V, E) is annotated with the
following metadata attributes that describe its content and context:

—name(v) is the normalized name of the software file represented by v;
—type(v) denotes the type of v; a vertex can be classified into one of a finite number of

types (more details on this are given in the next sections);
—site(v) denotes the computing site where file v is located;
—path(v) is a string that represents the path-name that a software file v has in the file

system of site(v);
—version(v) denotes the version of v, where applicable;
—timestamp(v) denotes the last time that the file v was accessed; and
—permission(v) denotes the access permissions of file v.

In addition to the attributes above, each vertex v of the Software Graph G(V, E)
is annotated with a set of fields: f ieldl(v), l = 1, . . . , fv containing textual con-
tent (terms) associated to v. In particular: (i) f ield1(v) stores the terms extracted
from v’s own contents; (ii) f ield2(v) stores terms extracted from v’s file-system path;
(iii) f ield3(v), . . . , f ieldfv (v) store terms extracted from software documentation files
associated to v. The number of these files ( fv − 2) depends on the file-system organiza-
tion of site(v) and on the algorithm that discovers such associations (see the subsequent
section). Each f ieldl(v) is assigned a weight gl, such that

∑ fv
l=1 gl = 1. Field weights are

introduced to support weighted field scoring in the resolution of end-user queries. Fig-
ure 1 presents excerpts from the metadata fields produced by the Minersoft algorithm
for a particular software library.
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Fig. 2. Example of a software graph fragment.

The edges of the Software Graph represent structural and content associations be-
tween SG vertices. Structural associations correspond to “structural” properties among
software-related files and file-system directories. These relationships are derived from
file-system structure (e.g., directory containment); library dependencies, various other
conventions (e.g., location and naming of documentation files); and from configuration
files that describe the structuring of software packages (RPMs, tar files, etc.). Content
associations correspond to relationships derived by text similarity between software
files.

Each edge e of the graph has two attributes: e = (type, w), where type =
{structural, content} denotes the type of association represented by e, and w is a real-
valued weight (0 < w ≤ 1) expressing the degree of correlation between the edge’s
vertices. The values of w are assigned during the structural dependency mining phase
(see Section 4.3). Structural-based edges are further categorized as describes, depend-
sOn, and contains. Contains represents the relationship between a directory and its
associated files; describes represents the relationship between software description doc-
uments and associated software files; dependsOn represents the dynamic dependencies
that exist between binary executables and libraries. Content-based edges represent
associations between vertices corresponding to source-code files with a high content
similarity. Figure 2 presents a graphical representation of a sub-graph extracted from
a SG produced by Minersoft.

4.2. Minersoft Algorithm

FST construction. Initially, Minersoft scans the file system of a site and creates a
file-system tree (FST) data structure. The internal vertices of the tree correspond to di-
rectories of the file system; its leaves correspond to files. Edges represent containment
relationships between directories and subdirectories or files. All FST edges are assigned
a weight equal to one. During the scan, Minersoft ignores a stop list of files and directo-
ries that do not contain information of interest to software search (e.g., /tmp, /proc).
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Labeling and pruning. Names and pathnames play an important role in file
classification and in the discovery of associations between files. Consider the file
/usr/lib/libruby.so.1.8.7. The fullpath of the file consists of two parts: the path of the
directory in which the file is located (/usr/lib/) and the filename (libruby.so.1.8.7). The
filename of the library consists of three parts: the prefix “lib,” the main body “ruby,” and
the suffix “.1.8.7.” Accordingly, Minersoft normalizes filenames and pathnames of FST
vertices by identifying and removing suffixes and prefixes. The normalized names are
stored as metadata annotations in the FST vertices. Subsequently, Minersoft applies
a combination of system utilities and heuristics to classify each FST file-vertex into
one of the following categories: binary executable, source code (e.g., Java, C++ scripts),
library, software-description document (e.g., man-pages, readme files, html files), and
irrelevant files. Initially, Minersoft tries to classify all files by their filenames, since the
filename extensions usually denote the types of files. If this is not possible, it parses the
output of the file command for all the unclassified files. If both classification methods
fail, then the file is classified as irrelevant. For example, (by convention) the extension
“.java” denotes that it is a source code file written in Java language. However, in many
cases the file does not denote its type. For instance, the file /bin/bash (and most of the
binary executables in a Linux machine’s filesystem) does not have a filename exten-
sion. To classify this file, we use the Linux file command. Running the file command
against the file /bin/bash returns: /bin/bash: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked. Minersoft parses the output of the file command
looking for a set of keywords assigned to each file category (e.g., “LSB executable” is
associated with Linux executable files and “LSB shared object” is associated with Linux
libraries). According to the keywords that are returned, Minersoft classifies each file
accordingly. Minersoft prunes all FST leaves found to be irrelevant to software search,
also dropping all internal FST vertices that are left with no descendants. This step
results to a pruned version of the FST that contains only software-related file-vertices
and the corresponding directory-vertices.

Structural dependency mining. Subsequently, Minersoft searches for “structural” re-
lationships between software-related files (leaves of the file-system tree). Discovered
relationships are inserted as edges that connect leaves of the FST, transforming the
tree into a graph. The discovery of structural relationships is based on generalized rules
that can be categorized as follows: (i) File naming and location conventions of Linux are
used that represent expert knowledge about file-system organization. For instance, a
set of file naming conventions link man-pages to the corresponding binary executables;
Readme and html files are linked to related software files. (ii) Dynamic dependencies
that exist between binary executables and libraries. These dependencies are repre-
sented in the headers of libraries and executables. Also, libraries may depend on other
libraries. For instance, the library /usr/lib/libruby.1.8.7 depends on /lib/libpthread.so. To
support the identification of such dependencies, Minersoft uses ldd, a Linux command
that detects the dynamic dependencies of Linux executables/libraries. (iii) Dependen-
cies extracted from package management tools. Specifically, Minersoft makes use of
package information from the two major package managers, yum and apt, that contain
information from RPM and DEB package files, respectively. Minersoft detects packages
that are installed using those two package managers, and retrieves information about
the files already found in the filesystem of a computational resource during crawl-
ing. If a software description file and a software resource (binary executable, source
code or binary library) co-exist in the same package, Minersoft assumes that the soft-
ware description file refers to the software resources. Then, Minersoft adds edges to
the Software Graph connecting the software description file with each of the software
resources. All aforementioned heuristic rules require no human intervention during
the structural relationship mining process and have a low execution cost.
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The structural dependency mining step produces the first version of the SG, which
captures software files and their structural relationships. Subsequently, Minersoft
seeks to enrich file-vertex annotation with additional metadata and to add more edges
into the SG in order to better express content associations between software files.

Keyword scraping. In this step, Minersoft performs deep content analysis of each file-
vertex of the SG in order to extract descriptive keywords. This is a resource-demanding
computation that requires the transfer of all file contents from disk to memory to
perform content parsing, stop-word elimination, stemming, and keyword extraction.
Different keyword-scraping techniques are used for different types of files: for instance,
in the case of source code, we extract keywords from the comments inside the source.
Code mining techniques [McMillan et al. 2011] can be integrated in this step to extract
valuable content from the source code files. Binary executable files and libraries contain
strings that are used for printing out messages to the users, debugging information,
logging, and so on. All this textual information can be used to extract useful features
for these files. Hence, Minersoft parses the binary files byte-by-byte and captures the
printable character sequences that are at least four characters long and are followed
by an unprintable character. The extracted keywords are saved in the fields of the
file-vertices of the SG.

Keyword flow. Software files (executables, libraries, source code) usually contain
little or no free-text descriptions. Therefore, keyword scraping typically discovers very
few keywords inside such files. To enrich the keyword sets of software-related file-
vertices, Minersoft identifies edges that connect software-documentation file-vertices
with software file-vertices, and copies selected keywords from the former into the fields
of the latter.

Content association mining. Similar to Antoniol et al. [2002] and Marcus and Maletic
[2003], we further improve the density of SG by calculating the cosine similarity be-
tween the SG vertices of source files. To implement this calculation, we represent each
source-file vertex as a weighted term-vector derived from its source-code comments. To
improve the performance of content association mining, we apply a feature extraction
technique [Maarek et al. 1991] to estimate the quantity of information of individual
terms and to disregard keywords of low value. Source codes that exhibit a high cosine-
similarity value are joined through an edge that denotes the existence of a content
relationship between them.

Inverted index construction. To support full-text search for software files, Minersoft
creates an inverted index of software-related file-vertices of the SG. The inverted index
has a set of terms, with each term being associated to a “posting” list of pointers to
the software files containing the term. The terms are extracted from the fields and
the metadata (e.g., software version) of SG vertices. The terms from all the fields
of the vertices of the SG are tokenized, stemmed, and then passed to the full-text
indexer. Metadata from SG vertices are extracted and passed to Lucene’s full-text
indexer [Lucene 2009]. Note that metadata is not stemmed nor tokenized because they
have to remain intact. Every field of the vertices is stored in a Lucene field. More details
on the implementation of full-text indexing are presented in Section 5.2.2.

In the subsequent sections, we provide more details on the algorithms for finding
relationships between documentation and software-related files (Section 4.3), keyword
extraction, and keyword flow (Section 4.4), software version extraction (Section 4.5),
and content association mining between source-code files (Section 4.6).

4.3. Context Enrichment

During the structural dependency mining phase, Minersoft seeks to discover associa-
tions between documentation and software leaves of the file-system tree. These asso-
ciations are represented as edges in the SG and contribute to the enrichment of the
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context of software files. The discovery of such associations is relatively straightforward
in the case of Unix/Javadoc online manuals, since, by convention, the normalized name
of a file storing a manual is identical to the normalized file name of the corresponding
executable. Minersoft can easily detect such a connection and insert an edge joining
the associated leaves of the file-system tree. The association represented by this edge
is considered strong and the edge is assigned a weight equal to 1.

In the case of readme files, however, the association between documentation and
software is not obvious: software engineers do not follow a common, unambiguous
convention when creating and placing readme files inside the directory of some software
package. Therefore, we introduce a heuristic to identify the software files that are
potentially described by a readme, and to calculate their degree of association. The key
idea behind this heuristic is that a readme file describes its siblings in the file-system
tree; if a sibling is a directory, then the readme-file’s “influence” flows to the directory’s
descendants so that equidistant vertices receive the same amount of “influence,” and
vertices that are farther away receive a diminishing influence. If, for example, a readme-
file leaf vr has a vertex-set V r of siblings in the file-system tree, then:

—Each leaf vr
i ∈ V r receives an “influence” of 1 from vertex vr.

—The descendant nodes f of each internal node vr
k ∈ V r receive an “influence” of

1/(d − 1), where d is the length of the FST path from vr to f .

The association between software-file and readme-file vertices can be computed easily
with a simple linear-time breadth-first search traversal of the FST, which keeps track
of discovered readme files during the FST traversal. For each discovered association we
insert a corresponding edge in the SG; the weight of the edge is equal to the association
degree.

4.4. Content Enrichment

During the “keyword-flow” step, Minersoft enriches software-related vertices of the SG
with keywords mined from associated documentation-related vertices. The keyword-
flow algorithm is simple: for all software-related vertices v, we find all adjacent edges
ed = (w, v) in the SG that are labeled “Describes”. For each such edge ed, we create an
extra documentation field for v. Consequently, v ends up with an associated set of fields
f ield(v) = { f ieldv

3 , . . . , f ieldv
zv
}, where f ieldv

i , i = 3, . . . , zv correspond to keywords
extracted from documentation vertices adjacent to v. Recall that f ieldv

1 corresponds to
textual content extracted from v itself, and f ieldv

2 contains terms extracted from v’s
path-name.

Each field has a different degree of importance in terms of describing the content
of the software file of v. Thus, we assign to each f ieldv

i a different weight gi, which
is computed as follows: (i) For i = 1, namely for the field that includes the textual
content extracted from v itself, we set g1 = αv, where av is a constant (0 < αv ≤ 1).
(ii) Similarly, for i = 2, namely for the field that includes the textual content extracted
from pathname of file v itself, we set g2 = βv, where βv is a constant (0 < βv ≤ 1). (ii) For
each remaining field of v (i = 3 . . . , zv), gi is set to αv multiplied by the weight of the SG
edge that introduced f ieldv

i to v. The values of αv and βv are chosen so that
∑zv

i=1 gi = 1.
Figure 1 presents the fields that the Minersoft algorithm produced for a particular
software library. From this figure, we observe that the field, which includes the textual
content of the file itself (g1), has the largest value compared with the other fields.
The intuition behind this is that the fields that explicitly describe (textual content
field, pathname field) a file should take advantage from the other ones that describe it
implicitly.
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4.5. Software Version Extraction

Often, different versions of the same software library are found in a distributed com-
puting node. Minersoft tries to extract the library version information and enrich
software-file metadata accordingly. According to the file naming conventions of Linux,
every library has a special name called the “soname”. The soname has the prefix “lib,”
followed by the name of the library, the suffix “.so,” a period, and a version number
that is incremented whenever the library’s interface changes (e.g., libruby.so.1). A fully-
qualified soname includes as a prefix the directory that it is in (e.g., /usr/lib/libruby.so.1);
on a working system a fully-qualified soname is simply a symbolic link to the shared
library’s “real name”. The real name adds to the soname a period, a minor number,
another period, and the release number. The last period and release number are op-
tional. The minor number and release number support configuration control by letting
the user know exactly what version(s) of the library are installed. For example, ruby’s
interpreter library fully-qualified name is /usr/lib/libruby.so.1, which is a symbolic
link pointing to the “real name” of the library, that is, /usr/lib/libruby.so.1.8.7. The
real name of the ruby library denotes that the version number of the library is 1, the
minor version number is 8, and the release number is 7.

Minersoft extracts the library version information of a software file v (of type “li-
brary” only) by inspecting its filename and adds that information to a metadata field
(version(v)), thus incorporating it in the indexes and making it available to user queries.
However, it is quite common that developers and/or software packagers do not respect
the aforementioned file-naming conventions. In that case the filename of a library does
not necessarily denote its version. Due to the fact that library versioning accuracy is
very important to users, Minersoft extracts only version information from libraries that
follow file-naming conventions. To the best of our knowledge, there is no other method
for extracting version information about libraries without using platform-specific soft-
ware package managers (e.g.. rpm, deb). However, even in the case that a package is
used to install a library, there are cases where the package includes more than one
library. In that case the package version does not reflect the version of each individual
library in the package and makes it an unreliable source of version information.

4.6. Content Association Mining

Minersoft enriches the SG with edges that capture content association between source-
code files in order to support, later on, the automatic identification of software packages
in the SG.

To this end, we represent each source file s as a weighted term-vector
−→
V (s) in the

Vector Space Model (VSM). We estimate the similarity between any two source-code
files si and sj as the cosine similarity of their respective term-vectors:

−→
V (si) · −→

V (sj). If
the similarity score is larger than a specific threshold (for our experiments we have set
the threshold ≥ 0.05), we add a new typed, weighted edge to the SG, connecting si to
sj . The weight w of the new edge equals the calculated similarity score.

The components of the term-vectors correspond to terms of our dictionary. These
terms are derived from f ieldv

1 and their weights are calculated using a TF-IDF weighing
scheme. To reduce the dimensionality of the vectors and noise, we apply a feature-
selection technique in order to choose the most important terms among the keywords
assigned to the content fields of source-code files. Feature selection is based on the
quantity of information Q(t) metric that a term t has within a corpus, and is defined
by the following equation: Q(t) = −log2(P(t)), where P(t) is the observed probability
of occurrence of term t inside a corpus [Maarek et al. 1991]. In our case, the corpus is
the union of all content fields of SG vertices of source files. To estimate the probability
P(t), we measure the percentage of content fields of SG vertices of source files wherein
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t appears; we do not count the frequency of appearance of t in a content field, as this
would create noise.

Subsequently, we dropped terms with the quantity of information value less than
a specific threshold. The reason is that low-Q terms would be useful for identifying
different classes of vertices. In our case, however, we already know the class to which
each vertex belongs (this corresponds to the type of the respective file). Therefore, by
dropping terms that are frequent inside the source-code class, we maintain terms that
can be useful for discriminating between files inside a source-code class. The threshold
is set dynamically by the system. Specifically, the terms are sorted with respect to the
quantity of information value. We remove the 5% of the total terms that have the lowest
Q(t). For our experiments we remove the terms where Q(t) < 3.5. The feature-selection
process improves the SG structure (avoids having extra edges between files) and the
system’s performance (reduces the term vectors).

5. MINERSOFT ARCHITECTURE, IMPLEMENTATION AND PERFORMANCE EVALUATION

Creating an information retrieval system for software files that can cope with the scale
of emerging distributed computing infrastructures (Grids and Clouds) presents several
challenges. Fast crawling technology is required to gather the software files and keep
them up to date, without disrupting the normal operation of the infrastructure. Storage
space must be used efficiently to store indices and metadata. The indexing system must
process hundreds of gigabytes of data efficiently. For the efficient implementation of
Minersoft in a Grid and Cloud setting, we take advantage of various parallelization
techniques in order to do the following.

—Distribute the Minersoft computation to Grid and Cloud resource providers, exploit-
ing their computation and storage power to speed-up the file retrieval and indexing
processes in order to reduce the communication exchange between the Minersoft sys-
tem and resource-provider sites, and to achieve Minersoft’s scalability in the context
of an increasing number of resource-provider sites. Minersoft tasks are wrapped as
jobs that are submitted for execution to Grid and Cloud systems.

—Avoid overloading resource-provider sites by applying load-balancing techniques
when deploying Minersoft jobs.

—Improve the performance of Minersoft jobs by employing multithreading to overlap
local computation with input/output (I/O).

—Adapt to the policies put in place by different Grid and Cloud computing resource
providers regarding their limitations, such as the number of jobs that can be accepted
by their queuing systems, the total time that each of these jobs is allowed to run on
a given Grid site, and so on.

In the remainder of this section, we describe the architecture of Minersoft, which is
presented in Figure 3, its implementation and its performance evaluation.

5.1. Overview

Minersoft has a MapReduce-like architecture [Dean and Ghemawat 2004]; the crawl-
ing and indexing is done by several distributed multithreaded crawler and indexer
jobs, which run in parallel for improved performance and efficiency. Each crawler and
indexer is assigned for processing a number of splits, with each split comprising a
different set of files. Initially, a crawler job scans the filesystem of a grid site/Cloud
server in order to identify all the filenames of the files and divides the total list of files
into splits. The Minersoft system comprises a number of key software components (see
Figure 3).
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Fig. 3. Minersoft architecture.

(1) The job manipulator manages crawler and indexer jobs and their outputs. The
manipulator comprises four modules: the job manager, the job submitter, the data
retriever, and the monitor. The job manager undertakes the allocation of files into
splits and the scheduling of crawler and indexer jobs. The job submitter handles the
job submission and the data retriever retrieves the output of crawler and indexer
jobs from the infrastructure. The monitor module maintains the overall supervision
of Minersoft jobs. To this end, the monitor communicates with the job manager, the
data-store, and the underlying infrastructure.

(2) The datastore module stores the resulting Software Graphs and the full-text in-
verted indexes.

(3) The query engine module is responsible for providing quality search results in
response to user queries. The query engine module comprises the query processor
and the ranker. The former receives search queries and matches them against the
inverted indexes of Minersoft. The latter ranks query results in order to improve
user-perceived accuracy and relevance of replies.

5.2. Distributed Crawling and Indexing

5.2.1. Minersoft Crawler. The crawler is a multithreaded program that performs FST
construction, classification, and pruning, and structural dependency mining. To this
end, the crawler scans the file-system of a computing site and constructs the FST, iden-
tifies software-related files and classifies them into the categories described earlier (bi-
naries, libraries, documentation, etc.), drops irrelevant files, and applies the structural
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dependency mining rules and algorithms described earlier. The crawler terminates
after finishing with the processing of all splits assigned to it by the job manager.

The output of the crawler is the first version of the SG that corresponds to the
site assigned to the crawler. This output is saved as a metadata store file comprising
the file-id, name, type, path, size, and structural dependencies for all identified
software files. The metadata store files are saved at the storage services associated
with the computing site visited by the crawler, that is, at the local storage element of
a grid site or at the storage service of a Cloud service.

5.2.2. Minersoft Indexer. The Minersoft indexer is a multithreaded program that reads
the files captured in the metadata store files and creates full-text inverted indexes. To
this end, the indexer performs keyword scraping, keyword flow, and content association
mining in order to enrich the vertices of its assigned SG with keywords mined from
associated documentation-related vertices. The Minersoft indexer can optionally stem
terms before introducing them into its inverted indexes. The use of stemming has
the advantage of increasing recall by retrieving terms that have the same roots but
different endings. Also, stemming normally decreases the size of inverted indexes, since
several terms are stemmed into one common root. Minersoft uses the Porter stemming
algorithm [F 1997], which has been widely used in the literature.8

At the end of the indexing process, for each computing site (Grid site or Cloud virtual
server) there is an inverted index containing a set of terms, with each term associated
to a posting list of pointers to the software files containing the term. These terms are
extracted from the metadata attributes and the fields of SG vertices. Specifically, after
the keyword flow process, Minersoft creates an inverted index of the textual content
of the vertices of SG. Each vertex is inserted as a document in the index by extracting
the textual content of each of its fields and passing them to the indexer. Document
field-weights inherit their value from the value of field-weight that was previously
computed in the keyword scrapping and keyword flow steps.

5.2.3. Task Distribution and Load Balancing. The crawling and indexing of distributed com-
puting infrastructures requires the retrieval and processing of large parts of the file
systems of numerous sites. Therefore, this task needs to address various performance,
reliability, and policy, issues. In the Grid context, a challenge for crawler and indexer
jobs is to process all the software files residing within a Grid site without exceeding the
time constraints imposed by site policies. Jobs that exceed the maximum allowed exe-
cution time are terminated by the site’s batch system. The maximum wall-clock time
usually ranges between 2 and 72 hours. Similarly, in the Cloud context, the challenge
is to accomplish the crawling and indexing computation with the least possible cost
spent on computing, storing, and transferring data.

To allow for a flexible management of its tasks, Minersoft decomposes the file system
of each site into a number of splits, with the size of each split chosen so that the crawl-
ing can be distributed evenly and efficiently within the constraints of the underlying
computing infrastructure. The splits are assigned to crawler/indexer jobs on a contin-
uous basis: When a grid site or Cloud virtual server finishes with its assigned splits,
the monitor informs the job manager in order to send more splits for processing. If a
site becomes laggard, the monitor sends an alert message to the job manager, which
cancels the running jobs and reschedules them to run when the workload of the site
is reduced. Furthermore, if the batch system queue of a grid site is full and does not
accept new jobs, the monitor sends an alert signal and the job submitter suspends the
submission of new crawler/indexer jobs to that site until the batch system becomes
ready to accept more.

8Porter stemming algorithm. http://tartarus.org/martin/PorterStemmer/.
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Initially, Minersoft stores the data (indexes, SGs, etc.) on the storage facilities of the
infrastructures that are being crawled. When the crawling process completes, Min-
ersoft’s data retriever module fetches the metadata store files from all machines and
merges them into a file index. The file index comprises information about each soft-
ware file and is temporally stored in the datastore. The file index will be used to identify
the duplicate files during the indexing process; the duplication reduction policy is de-
scribed in the following section. When the indexing has been completed, the file index
is deleted. Then, the data retriever fetches the resulted inverted indexes and the indi-
vidual SGs from all sites. Both the full-text inverted indexes and the SGs are stored in
the datastore. This module is centralized and used for responding to users’ queries.

5.2.4. Privacy and Accessibility Issues. Minersoft crawls the filesystem of a grid resource
by running crawling threads submitted as regular computation jobs via a job sub-
mission service to that resource, and listing all readable files in its filesystem. The
ownership of the files differs according to the local privacy policies of each grid site.
For example, many grid sites make all the software files of a computational resource
available to all the users of the infrastructure. However, there is software that is kept
private because of licensing issues (e.g., matlab). That kind of software is not search-
able, since the Minersoft harvester jobs have no permissions to access the software files
and crawl them. In the case of Cloud virtual servers, Minersoft has full access to all
the files that the virtual servers contained (as it instantiates Cloud virtual servers and
logs in as root).

5.2.5. Duplication Reduction Policy. Typically, popular software applications and pack-
ages are installed on multiple sites of distributed computing infrastructures. Minersoft
tries to identify duplicate files in order to avoid duplication of indexing effort and im-
prove its performance. To this end, the system classifies as duplicates those files that
reside on different nodes but have the same name, path and size. Subsequently, the job
manager uses a duplicate reduction policy, which comprises the following steps.

(1) The file index is sorted in ascending order with respect to the count of the distributed
computing nodes where a file is found.

(2) Files that do not have any duplicate are directly assigned to the corresponding
distributed computing node.

(3) If a file belongs to more than one Grid site or Cloud virtual server, the file is assigned
to the site with the minimum number of assigned files.

5.3. Query Engine

The query engine computes a ranked result list for each user query. The engine com-
prises a query processor, which parses query expressions and translates a query into a
set of stemmed, lower-cased terms. The query processor also supports date and version
parsing and numeric formatting, as well as wildcard and phrase queries.

Ranking is especially important when queries result in large numbers of “relevant”
software files. The query engine comprises the ranker module, which uses the Lucene
relevance ranking algorithms [Lucene 2009]. The default scoring algorithms of Lucene
take into account factors such as the frequency of query-term appearance in the fields
of a software file and in the fields of all the software files inside the software graph.
Specifically, the score of a query for a software file correlates to the cosine-distance
between software file and query vectors in the vector space model (VSM) of information
retrieval. A software file whose vector is closer to the query vector in that model is scored
higher.

Minersoft users are not expected to be familiar with the file-system structure and/or
the structuring of software in the nodes of a distributed computing infrastructure.
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Therefore, we assume that a user inquiry has the form of a keyword-based query Q,
defined as follows.

Definition 5.1. Let k be a keyword phrase (one or more keywords), then a keyword
query Q is defined by the grammar Q ::=k | k metadata:Q. The first construct allows
a primitive concept in a query to be described by a set of one or more keywords (e.g.,
“statistical analysis software”). The second construct allows one to describe a software
file in terms of its metadata (e.g., ruby version : 1.8.∗).

Minersoft inherits the query language of the underlying full-text search library, Lucene.
Therefore, Minersoft supports queries that use Boolean operators (AND, OR, NOT) to
support queries like “apache AND Lucene” (return all documents that contain both
terms) or “apache OR Lucene” (return software files containing either of the terms).
The language also supports wildcard queries. For example “apach* lucene NOT jakarta”
returns all files that contain a term that starts with “apach,” contain the term “lucene,”
and do not contain the term “jakarta.” Minersoft supports fuzzy searches based on the
edit distance algorithms. A fuzzy search matches files containing terms that are similar
to a term of the query. For example, a query asking for “tex” can be used to search for
files containing “latex” or “texlive”. It also provides proximity queries (searching for
terms that reside close to each other in a file).

5.4. Implementation and Deployment

The crawler is written in Python. The Python code scripts are put in a tar file and
copied on a storage service node before job submission starts. The tar file is downloaded
and untarred to the target resource-provider site before the crawler execution starts.
Consequently, the size of the jobs’ input sandbox is reduced, thus job submission is
accelerated.

The indexer is written in Java and Bash and uses Apache’s open-source Lucene
library [Lucene 2009], which provides high performance full-text indexing and search
functionality. Minersoft stores its terms as unigrams in its indexes using the Lucene’s
standard analyzer class. Similarly to the crawlers, the indexer jobs are deployed for
execution to the distributed computing nodes of the Grid and Cloud infrastructures.

The job manager distributes the crawling and indexing workload before job submis-
sion begins. This is done by creating splits for each computing site that Minersoft has
to crawl and index. The input file for each split resides on a storage service node asso-
ciated to the target computing site, and is registered to a file catalog. The split input is
then downloaded from the storage service and used to start the processing of files. The
split input is a text file containing the list of files that have to be crawled or indexed.
After execution, the jobs upload their outputs on the storage service and register the
output files to a file catalog. The logical file names and the directories containing them
in the file catalog are properly named so that they implicitly state the split number
and the site that they came from or going to.

5.4.1. Cloud Infrastructures. The implementation of the job manager and monitor relies
upon the Ganga system [Brochu et al. 2009], which is used to create and submit jobs
as well as to resubmit them in case of failure. We adopted Ganga in order to have full
control of the jobs and their respective arguments and input files.

In a Cloud infrastructure, users have access to different virtual machine images
(VMIs). A VMI includes a filesystem that contains an operating system and (optionally)
extra software that the creator of the VMI has selected to include. A VMI can be
regarded as the hard disk of a computer. A hard disk can be connected to a computer
and the operating system that is contained in the hard disk can be booted. Following the
same paradigm, a VMI is instantiated (or booted or spawned) using the computational
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and storage infrastructure of a Cloud service provider. For a VMI to be crawled, it first
has to be instantiated (booted/spawned) so that Minersoft is able to access it. Cloud
providers provide scripts for initiating machines. After its instantiation, Minersoft is
able to log into the instantiated Cloud server and crawl/index its filesystem contents.
Thus, to be able to search the VMIs for installed software, Minersoft has to instantiate
all VMIs of interest and crawl/index them. Once crawling and indexing are over, the
VMI instance can be shutdown. The fact that VMI instantiation is immediate, stresses
the large difference in Grid and Cloud infrastructures. For a Grid infrastructure to
be crawled/indexed, the machines have to become free so that Minersoft sends jobs
to them, whereas in a Cloud infrastructure, crawling and indexing processes can be
done simultaneously and on demand. To that end, we have implemented a Ganga
plug-in that supports Cloud server instantiation as well as submission of jobs over
SSH.

5.4.2. Grid Infrastructures. In a Grid infrastructure, the machines that reside in a Grid
site are already booted. Thus, there is no need for their instantiation. The gLite Java
API is used for submitting jobs in a Grid infrastructure. The EGEE gLite middleware
is the de-facto standard for Grid job submission on all EGEE-related Grids. Minersoft
proceeds directly to crawling and indexing of their filesystem contents. The monitor
(through Ganga scripts) monitors the status of jobs after their submission and keeps
a list of resource-provider sites and their failure rates. If there are sites with a very
high failure rates, the monitor eventually puts them in a black list and notifies the job
manager to stop submitting jobs to them.

5.5. Crawling and Indexing Performance Evaluation

In this section, we present a brief performance evaluation study of the crawling and
indexing tasks of Minersoft. Our objective is to show that Minersoft works sufficiently
well on the large-scale Grid and Cloud testbeds of our study. More details about the per-
formance evaluation of Minersoft in Grid infrastructures can be found in Katsifodimos
et al. [2009].

5.5.1. Evaluation Testbed. To evaluate the effectiveness of Minersoft, we deployed and
operated the system on real production-rate testbeds. In particular, we used the Fol-
lowing:

—Ten sites of the EGEE infrastructure [EGEE 2010]. The EGEE (Enabling Grid for
E-sciencE) infrastructure is one of the largest Grid production services currently
in operation, and its objective is to provide researchers in academia and industry
with access to major computing resources, independent of their geographic locations.
In total, the Grid testbed used for Minersoft includes files with a total size of 1,5
terabytes.

—Six virtual servers of the Amazon Elastic Computing Cloud [AMAZON 2009] and four
virtual servers of the Rackspace Cloud [RACKSPACE 2009]. Amazon and Rackspace
are commercial providers that support scalable deployment of applications through
Web service interfaces. These services enable customers to create, configure, and
deploy virtual machines tailored to their computing needs.

For both testbeds, we perform data cleaning so as to remove the noisy data (e.g., temp
directories, log files, etc.). This is a typical process in large-scale IR systems. Tables II
and III present an overview of the file-system characteristics of Grid sites and Cloud
virtual servers after preprocessing.
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Table II. Grid Testbed

Grid Site # of Files Size (GB)
ce01.kallisto.hellasgrid.gr 3.541.403 (59%) 247,910(68%)
ce301.intercol.edu 97.906 (2%) 3,539 (1%)
grid-ce.ii.edu.mk 194.556 (3%) 3,731 (1%)
paugrid1.pamukkale.edu.tr 132.645 (2%) 10,347 (3%)
ce01.grid.info.uvt.ro 270.445 (5%) 2,693 (1%)
grid-lab-ce.ii.edu.mk 109.286 (2%) 18,634 (5%)
ce01.mosigrid.utcluj.ro 70.419 (1%) 61,880 (17%)
ce101.grid.ucy.ac.cy 1.278.851 (21%) 6,375 (2%)
ce64.phy.bg.ac.yu 150.661 (3%) 6,787 (2%)
testbed001.grid.ici.ro 125.028 (2%) 4,756 (1%)
Total 5.971.200 366,652

Table III. Cloud Testbed

Cloud Virtual Server # of Files Size (GB)
Amazon1 35.362 (10%) 0,644 (6%)
Amazon2 29.980 (9%) 0,656 (6%)
Amazon3 25.906 (8%) 1,020 (9%)
Amazon4 31.049 (9%) 1,327 (12%)
Amazon5 83.256 (24%) 2,102 (19%)
Amazon6 33.522 (10%) 0,789 (7%)
Rackspace1 24.035 (7%) 1,109 (10%)
Rackspace2 17.266 (5%) 0,661 (6%)
Rackspace3 13.589 (4%) 0,537 (5%)
Rackspace4 47.156 (14%) 2,306 (21%)
Total 341.121 11,156

5.5.2. Metrics and Evaluation Experiments. To evaluate the performance of crawler and
indexer jobs, we use the following metrics:

—runtime: the average wall-clock time that a crawler/indexer job spends on a site
including processing and I/O; this metric measures the average elapsed time that
Minersoft needs to process (crawl or index) a split;

—file rate: the number of files that Minersoft crawls/indexes per second on a site;
—data rate: the size of files in bytes that Minersoft crawls/indexes per second on a site.

In Minersoft, the crawling and indexing process is done by the nodes of computing
infrastructure (Grid/Cloud), bringing the computation close to the data. Thus, the
communication exchange between the Minersoft system and resource-provider sites is
reduced. In our experiments, each crawler and indexer job was configured to run with
five threads. We also ran experiments with different numbers of threads (e.g., 1, 5, 9,
and 13) and concluded that 5 threads per crawler/indexer job provide a good trade-off
between crawling/indexing performance and server workload. Smaller or larger num-
bers of threads per crawler/indexer job usually result in significantly higher runtimes,
due to poor CPU utilization or I/O contention. I the interest of space, we do not present
the results. In the experiments presented here, the maximum number of files in a split
is set to 100,000.

Figures 4 and 5 depict the per-job average run time for crawling and indexing Grid
sites and Cloud virtual servers. From these diagrams, we observe that the run time
of crawler jobs vary significantly across different sites. This imbalance is due to sev-
eral factors, including the hardware heterogeneity of the infrastructure, the dynamic
workload conditions of shared sites, and the dependence of crawler processing on site-
dependent aspects. For example, the crawler performs expensive “deep” processing of
binary and library files to deduce their types and extract dependencies. This is not
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required for text files. Consequently, the percentage of binaries/libraries found in each
site determines to some extent the corresponding crawling computation. Regarding the
crawling throughput (file rate) of Minersoft, our results show that it ranges from 60 to
just over 900 files per second. The data rate ranges from 4MB/sec to 23MB/sec.

As mentioned earlier, indexing entails “deep” parsing inside the content of all files.
This requires substantial I/O operations and renders indexing a more time-consuming
process than crawling. This observation is illustrated by Figures 4 and 5. Regarding the
duplicate reduction, our experiments show that, indeed, a large degree of software-file
duplication exists across the files of Grid and Cloud infrastructures, with about 11% of
files belonging to more than one Grid site and 32% of files belonging to more than one
Cloud Virtual Server.

Another interesting observation is that the duplicate reduction policy reduces signif-
icantly the total indexing time. This is achieved because the number of files that have
been assigned in a split is reduced. In some cases, the number of splits is also reduced.
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Compared with crawling, we observe that fewer splits are required for indexing than
for crawling, since the irrelevant files have already been deleted.

We also studied the throughput achieved by the Minersoft indexer on different Grid
sites and Cloud virtual servers. In the case of Grids, results showed that the perfor-
mance of indexing is affected by the hardware (disk seek, CPU/memory performance),
file types, and the workload of each site. In the case of Clouds, indexing is mainly af-
fected by file types and the current site workload. Specifically, the indexing throughput
(file rate) of Minersoft ranges from 16 to 100 files per second.

To sum up, our experiments resulted in the following empirical observations.

—Minersoft successfully crawled the Grid and Cloud infrastructure with crawling
throughput from 60 to just over 900 files per second and indexing throughput from
16 to 100 files per second.

—The performance of indexing was improved by about 11% in the Grid infrastructure
and 32% in Clouds by identifying duplicates and avoiding their processing.

—The crawling and indexing performance varies significantly across different sites,
and is affected by the hardware (local disk, shared file system), file types found, and
other workloads running simultaneously with Minersoft.

5.5.3. Open Issues for Research. The experimental results showed that Minersoft crawls
and indexes Grid sites/Cloud virtual servers in an efficient way. Despite this fact, the
crawling and indexing rates of Minersoft can be further improved by investigating
novel and efficient policies in terms of the following.

—Determining the size of splits. As mentioned earlier, the files of each computing node
are organized into a number of splits. The size of each split is chosen to ensure that
the crawling and indexing can be distributed evenly and efficiently. Considering that
in such an infrastructure the execution time and workload cannot be determined in
advance using historical data, the size of splits should be adapted to the state of the
computing nodes. To meet this challenge, the monitor should have a global view of
the system’s workload so as to dynamically rearrange the size of splits as well as
schedule them to Grid sites/Cloud virtual servers.

—Determining the number of threads per crawler/indexer jobs. To improve the effi-
ciency of crawling and indexing, Minersoft should enhance self-adaptive mechanisms
in order to assign a sufficient number of threads to Grid/Cloud resources. Grid/Cloud
monitoring systems provide information about resource utilization (CPU utilization,
memory utilization, disk utilization, etc.), and network connectivity in computing
nodes. Thus, if the current status of a computing node changes, the job manipula-
tor should modify the number of threads per crawler/ indexer jobs in the node. The
system should also support a failure mechanism that would inform the job manager
regarding the cause for failure.

—Detecting duplicate software files. Files that are exact duplicates of each other can be
identified by heuristics or check-summing techniques. In order to prevent duplicate
files, crawler jobs need to periodically communicate and coordinate with each other.
However, this communication may result in overhead. Can we minimize this commu-
nication overhead while maintaining the effectiveness of the crawler job? Cho and
Garcia-Molina [2002] dealt with this problem in the context of the Web. Another is-
sue is the identification of near-duplicate files. If we could successfully identify these
files, we could improve the performance of indexing, since a percentage of files will
be deleted. Manber [1994] has developed algorithms for near-duplicate detection to
reduce storage in large-scale file systems.

—Determining politeness in Grid infrastructures. Minersoft jobs should not obstruct
the normal operation of Grid sites. Minersoft should adhere to strict rate-limiting
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Table IV. Files Categories in Grid Sites of EGEE Infrastructure

Grid Site Binaries Sources Libraries Docs Irrelevant
ce01.kallisto.hellasgrid.gr 41.990 (1%) 1.407.701 (40%) 142.873 (4%) 1.672.246 (47%) 276.593 (8%)
ce301.intercol.edu 34.134 (35%) 8.972 (9%) 3.724 (4%) 23.536 (24%) 27.540 (28%)
grid-ce.ii.edu.mk 16.869 (9%) 69.915 (35%) 8.080 (4%) 61.469 (32%) 38.223 (20%)
paugrid1.pamukkale.edu.tr 7.383 (6%) 47.388 (26%) 7.935 (6%) 43.861 (32%) 26.078 (20%)
ce01.grid.info.uvt.ro 8.999 (3%) 40.442 (15%) 3.778 (1%) 42.652 (16%) 174.574 (66%)
grid-lab-ce.ii.edu.mk 7.703 (7%) 46.116 (42%) 2.983 (3%) 37.333 (34%) 15.151 (14%)
ce01.mosigrid.utcluj.ro 17.828 (25%) 12.475 (18%) 2.310 (3%) 18.091 (26%) 19.715 (28%)
ce101.grid.ucy.ac.cy 26.377 (2%) 433.115 (34%) 37.463 (3%) 672.211 (52%) 109.685 (9%)
ce64.phy.bg.ac.yu 6.047 (4%) 31.889 (21%) 7.672 (5%) 67.388 (45%) 37.665 (25%)
testbed001.grid.ici.ro 29.261 (23%) 22.961 (18%) 6.120 (5%) 28.239 (23%) 38.447 (31%)
Total 196.591 (3%) 2.120.974 (36%) 222.938 (4%) 2.667.026 (45%) 763.671 (12%)

Table V. Files Categories in Amazon and Rackspace Cloud Providers

Cloud Virtual Server Binaries Sources Libraries Docs Irrelevant
Amazon1 2.442 (7%) 6.358 (18%) 1.000 (3%) 19.546 (55%) 6.016 (17%)
Amazon2 2.328 (7%) 7.351 (25%) 1.075 (4%) 12.474 (41%) 6.752 (23%)
Amazon3 2.344 (9%) 5.708 (22%) 1.259 (5%) 8.066 (31%) 8.529 (33%)
Amazon4 3.229 (10%) 3.534 (11%) 1.480 (5%) 11.925 (38%) 10.881 (36%)
Amazon5 5.098 (6%) 25.076 (30%) 1.458 (2%) 27.777 (33%) 23.847 (29%)
Amazon6 1.562 (5%) 11.348 (34%) 1.087 (3%) 13.216 (39%) 6.309 (19%)
Rackspace1 2.900 (12%) 2.859 (12%) 963 (4%) 4.488 (19%) 12.825 (53%)
Rackspace2 2.498 (14%) 1.880 (11%) 798 (5%) 4.134 (24%) 7.956 (46%)
Rackspace3 2.347 (17%) 2.047 (15%) 684 (5%) 3.491 (26%) 5.020 (37%)
Rackspace4 2.963 (6%) 10.425 (22%) 1.950 (4%) 19.997 (42%) 11.821 (26%)
Total 27.711 (8%) 76.586 (22%) 11.754 (3%) 125.114 (37%) 99.956 (30%)

policies when accessing poorly provisioned (in terms of workload) Grid sites. To
address this issue, Minersoft should implement a flexible policy that would avoid
running multiple crawler jobs to overloaded Grid sites.

6. SOFTWARE RETRIEVAL EVALUATION

In this section, we present an evaluation study that examines the effectiveness of
the Minersoft search engine in software retrieval tasks. A difficulty in the evaluation
of such systems is that there are no widely accepted data collections dedicated to
benchmarking software search engines (like TREC and OHSUMED for text retrieval).
Therefore, we use the following methodology in order to evaluate the performance of
Minersoft:

—Data collection and filtering: Our dataset consists of the software installed in 10
Grid sites of the EGEE infrastructure (Table II) and 10 Cloud Virtual Servers from
Amazon Elastic Computing and Rackspace Cloud providers (Table III). The files
found by the crawlers to be irrelevant to software search are pruned from subsequent
processing. Our experiments show that a large percentage of content in most Grid
sites/Cloud virtual servers corresponds to software files. Specifically, on average 75%
(75% of total file size) and 70% (77% of total file size) of total files that exist in
Grid sites and Cloud virtual servers, respectively, are categorized as software files.
These findings confirm the need to establish advanced software retrieval in Grid
and Cloud infrastructures. Software-related files are further categorized according
to their detected type. We present a synopsis of this categorization in Tables IV and
V. As we can see from these tables, most software-related files in our testbed are
documentation files (man-pages, readme files, html files) and source-code programs
written in various programming or scripting languages.
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—Queries: We use a collection of 220 queries, which were either suggested by 50 par-
ticipants (EGEE users, software engineers, programmers), or extracted from real
user queries from the Sourcerer system [Linstead et al. 2009]. The dataset is avail-
able through the Web at http://www.grid.ucy.ac.cy/minersoft/. To further investigate
the sensitivity of Minersoft, we classified the queries into three categories: informa-
tional (72 queries), navigational (117 queries), and versional (31 queries). Informa-
tional queries represent searches for software programs based on short descriptions
of their functionality (e.g., log analyzer, rendering text, linear algebra package, Web
services). Navigational queries represent searches for a specific file or library based
on their names (e.g., jboss, rails ruby, mpich, autodock docking), whereas, versional
queries (e.g., spread library version:2.* libncurses version:5.4, libxml version:2.*)
represent searches for software with a particular version.

—Relevance judgment: A software file is considered relevant if it addresses the stated
information need and not because it just happens to contain all query keywords.
A software file returned by Minersoft in response to some query is given a binary
classification as either relevant or nonrelevant with respect to the user information
need for the query. Furthermore, each query result is rated according to three levels of
user satisfaction: “not satisfied,” “satisfied,” and “very satisfied”. These classifications
have been made manually by two expert administrators and software engineers. The
two judges evaluated relevance independently and their agreement was measured
afterwards. It turned out that the experts agreed on the relevance status of 95%
of the retrieved software (a total of 9,416 software files). The corresponding Kappa
statistic, which factors out the expected (chance) agreement, is 0.91. Consequently,
the interjudge agreement of relevance is high, and these classifications are referred
to as the gold standard for our experiments (relevance judgements for all queries
are available at http://www.grid.ucy.ac.cy/minersoft/).

6.1. Performance Measures

The effectiveness of Minersoft should be evaluated on the basis of how much it helps
users achieve their software searches efficiently and effectively. In this context, we
used the following performance measures.

—Precision@10 reports the fraction of software files ranked in the top 10 results that
are labeled as relevant. The relevance of the retrieved results is determined by
the gold standard. The results are ranked with respect to the ranking function of
Lucene [Lucene 2009], which is based on the TF-IDF metric, and has been used
extensively in the literature for the ranking of Web-search results [Bao et al. 2007;
Cohen et al. 2008]. In our case, the TF-IDF calculation is based on the fields asso-
ciated by Minersoft to software files. The maximum Precision@10 value that can be
achieved is 1.

—MRR (Mean reciprocal rank) is the average of the reciprocal ranks over a set of
queries, where the reciprocal rank of a query response is the multiplicative inverse
of the rank of the first correct answer. The maximum MRR value that can be achieved
is 1.

—NDCG (normalized discounted cumulative gain) is a retrieval measure devised
specifically for evaluating user satisfaction [Järvelin and Kekäläinen 2002]. For a
given query q, the top − K ranked results are examined in decreasing order of rank,
and the NDCG value is computed as

NDCGq = Mq ·
K=10∑

j=1

2r( j) − 1
log2(1 + j)

,
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where each r(j) is an integer relevance label (0=“not satisfied,” 1=“satisfied,” and
2=“very satisfied”) of the result returned at position j and Mq is a normalization
constant calculated so that a perfect ordering would obtain NDCG of 1.

—NCG (normalized cumulative gain) is the predecessor of NDCG, and its main differ-
ence is that it does not take into account the position of the results. For a given query
q, the NCG is computed as

NCGq = Mq ·
K=10∑

j=1

r( j).

A perfect ordering would obtain NCG of 1.

Cumulative gain measures (NDCG, NCG) and precision complement each other when
evaluating the effectiveness of IR systems [Al-Maskari et al. 2007; Clarke and et al.
2008]. In our evaluation metrics we do not consider the recall metric (the percentage
of the number of relevant results). Such a metric requires having full knowledge about
all the relevant software files with respect to a query. However, such knowledge is not
feasible in a large-scale networked environment.

6.2. Evaluation Scenarios

We calculate the metrics mentioned above for the 220 queries, with the searches being
performed against a set of different indexes representing alternative optimizations
implemented inside Minersoft. In particular, we estimate the effectiveness of Minersoft
in the following scenarios.

—Full-text. Inverted index terms are extracted from the full-text content (field 1) of
software-related files which are discovered in the examined testbed. Irrelevant files
are discarded from the index and posting lists. Full-text is used as a baseline for our
experiments.

—Path-enhanced. With path-enhanced search we study the impact of file-paths in soft-
ware retrieval. The terms of the inverted index are extracted from the content and
path fields of SG vertices (fields 1 and 2). Irrelevant files are discarded from the
index and posting lists.

—Context-enhanced. The files are categorized into file categories. Irrelevant files and
software-description documents are discarded from the index and posting lists. The
terms of the inverted index are extracted from the content and path fields of SG
vertices (fields 1 and 2) that correspond to software files only (libraries, sources, and
binaries). Context-enhanced shows the influence of file categorization in the software
retrieval process.

—Doc-enhanced. The terms of the inverted index are extracted from the content and
path of SG vertices (fields 1 and 2) as well as from the fields of linked documentation
files (i.e., man-pages and readme files, that is, fields 3 and beyond). Doc-enhanced
highlights the effectiveness of enriching software files with keywords extracted from
related documentation in the software retrieval process.

—Text-file enhanced. The terms of the inverted index are extracted from the content,
the path, related documentation files, and other text files of SG vertices with the same
normalized filename. Recall that Minersoft normalizes filenames and pathnames of
SG vertices by identifying and removing suffixes and prefixes.

Table VI summarizes the evaluation scenarios.
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Table VI. Evaluation Scenarios

Keyword-sources Files included in
for the index the postings lists

File Path Software Text Software Rest of
contents name descriptions files files files

Full-text
√ √ √

Path-enhanced
√ √ √ √

Context-enhanced
√ √ √

Doc-enhanced
√ √ √ √

Text-file enhanced
√ √ √ √ √
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Fig. 6. Precision@10 results.

6.3. Evaluation

Each evaluation scenario corresponds to a step towards the construction of Minersoft’s
inverted index (Section 4). Through this step-by-step construction and evaluation of
the inverted index, we illustrate the benefits of using the concept of fields to enrich
the textual content found inside software files. In our evaluation experiments, we
examine both average and median values of our metrics. Figures 6, 7, 8, and 9 present
the average results of the examined approaches with respect to the query types for
Precision@10, MRR, NDCG, and NCG. For completeness, we present the confidence
intervals (confidence level 0.95) and standard deviation values. The confidence interval
generates a lower and upper limit for the observed mean values. The interval estimate
gives an indication of how much uncertainty there is in our estimate of the true mean.
The narrower the interval, the more precise our estimate. Regarding their diversity,
we observe that the data for full-text, path-enhanced, and context-enhanced approaches
are spread out over a large range of values, whereas for the other examined approaches,
the data tends to be close to the average values. The highest diversity is observed for
versional queries. Median values are omitted for the sake of brevity, as they do not
present significant differences from the averages.

The general observation is that Minersoft significantly improves the Precision@10,
the MRR, and the examined cumulative gain measures compared with the baseline

ACM Transactions on Internet Technology, Vol. 12, No. 1, Article 2, Publication date: July 2012.



TOIT1201-02 ACM-TRANSACTION June 15, 2012 17:50

Minersoft: Software Retrieval in Grid and Cloud Computing Infrastructures 2:29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AVG STDEV AVG STDEV AVG STDEV AVG STDEV AVG STDEV

FULL-TEXT PATH-ENHANCED CONTEXT-ENHANCED DOC-ENHANCED TEXT-ENHANCED

M
R

R
TOTAL INFORMATIONAL NAVIGATIONAL VERSIONAL

Fig. 7. MRR results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AVG STDEV AVG STDEV AVG STDEV AVG STDEV AVG STDEV

FULL-TEXT PATH-ENHANCED CONTEXT-ENHANCED DOC-ENHANCED TEXT-ENHANCED

N
D

C
G

TOTAL INFORMATIONAL NAVIGATIONAL VERSIONAL

Fig. 8. NDCG results.

approach—full-text—for all types of queries. Specifically, Minersoft improves Preci-
sion@10 about 60%, MRR about 36%, and the cumulative gain measures (NDCG, NCG)
about 97% for NDCG and 84% for NCG with respect to the baseline approach.

Regarding the intermediate steps for the construction of SG, the greatest improve-
ment is observed with context-enhanced, explained by the fact that Minersoft has
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Fig. 9. NCG results.

classified the files into categories with respect to their types and that searching is
done only in these categories of files. Our findings also show that taking into account
the path name of software files results in improved search performance. In particular,
under path-enhanced search we see an improvement in the Precision@10 and MRR of
about 20% and the cumulative gain measures (NDCG, NCG) of about 40% with respect
to the baseline approach. This is an indication that the paths of software files include
descriptive keywords for software files.

The enrichment of software files with keywords from software description documents
through the keyword flow process increases precision as well as user satisfaction.
Specifically, doc-enhanced achieves higher Precision@10 and MRR (about 5% and 3%
respectivelly) and higher cumulative gain measures (on average about 5% for NDCG
and NCG) than the context-enhanced does. The improvements during the doc-enhanced
step are affected by the number of the executables and software libraries that exist in
the data set. Recall that this step enriches the executables and software libraries with
extra keywords. Consequently, the larger the number of these types of files, the better
the results that are obtained. Regarding types of queries, the major improvement is
observed for versional and navigational queries. Another interesting observation is that
Minersoft achieves high MRR for all types of queries. Specifically, for navigational and
versional queries, the MRR is close to 0.9 and 1, respectively, whereas for informational
queries, the MRR is about 0.7. The higher the position in which the result is found,
the higher the score for MRR. Regarding informational queries, Precision@10 is about
0.5. Although half of the retrieved results are relevant, MRR is close to 1, which means
that the first result is relevant to the user’s information needs.

Regarding the text-file enhanced, we observe that this approach slightly improves
search performance. Specifically, it achieves higher cumulative gain measures (on av-
erage about 2% for NDCG and NCG) than the doc-enhanced does while Precision@10
and MRR remain stable. Taking a deeper look at these results, we observe that text-file
enhanced search improves results for informational queries, whereas for versional and
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Table VII. Software Graph Statistics in Grid Sites

Grid Sites V E (total edges) ESD EC A

ce01.kallisto.hellasgrid.gr 3.264.810 1.291.884.123 9.540.597 1.282.343.526
ce301.intercol.edu 70.366 150.033 96.922 53.111
grid-ce.ii.edu.mk 156.333 1.659.309 322.495 1.336.814
paugrid1.pamukkale.edu.tr 106.567 1.195.702 223.529 972.173
ce01.grid.info.uvt.ro 95.871 1.465.779 199.537 1.266.242
grid-lab-ce.ii.edu.mk 94.135 179.127 158.733 20.394
ce01.mosigrid.utcluj.ro 50.704 158.451 86.249 72.202
ce101.grid.ucy.ac.cy 1.169.166 97.967.442 2.117.300 95.850.142
ce64.phy.bg.ac.yu 112.996 987.759 201.950 785.809
testbed001.grid.ici.ro 86.581 772.005 225.591 546.414
Total 5.207.529 1.396.419.730 13.172.903 1.383.246.827

navigational queries there is no improvement. This is explained by the fact that soft-
ware developers use similar file-names in their software packages, and, consequently,
the text-file enhanced does not improve the retrieval process. Another interesting ob-
servation is that although Minersoft performs very well (Precision@10 and MRR in
doc-enhanced and text-file enhanced) in responding to highly selective queries (queries
that require specific versions of software), the values of NCG and NDCG are lower.
This is explained by the fact that the results returned are not always 10 (in most cases,
2 to 5 results are returned to the queries).

Finally, we study the effects of stemming in software files. Although stemming typ-
ically improves recall and reduces index size, its use leads to a decrease in precision
and user satisfaction. What is the trade-off between stemming and no stemming in
software retrieval? Our findings show that stemming deteriorates Minersoft’s search
performance about 4%. Regarding the intermediate steps for the construction of SG,
the general observations of the evaluation scenarios are similar with those for no stem-
ming. In terms of storage, stemming decreases the size of inverted indexes by about 6%.
Specifically, the total indexing with and without stemming is 77.114GB and 81.916GB,
respectively. For brevity, we do not present these figures.

To sum up, the results show that Minersoft is a powerful tool because it is highly
effective for both types of queries. Specifically, our experiments conclude with the
following empirical observations.

—Minersoft improves significantly different metrics that assess search performance.
In particular, the Minersoft algorithm results in improvining of Precision@10 by
about 60%, for MRR by about 20%, and for cumulative gain measures (NDCG, NCG)
by more than 84% with respect to the baseline approach.

—Path-names of software-related files include descriptive keywords that carry seman-
tic meaning with respect to the functionality of the software. Therefore, taking key-
words extracted from path-names into account leads to improved software search.

—Stemming deteriorates about 4% software-search performance. On the other hand,
it decreases the size of inverted indexes about 6%.

—File-name similarity is not a good indication of relevance between software and text
files. Therefore, keywords extracted from text files to enrich software descriptions do
not result in improved software-search performance.

6.4. Software Graph Statistics

Tables VII and VIII present the statistics for the resulting SGs. Recall that Minersoft
harvester constructs a SG in each Grid site/virtual Cloud server. We do not present
further analysis of the SGs since it is out of the scope of this work. Of course, a
thorough study of the structure and evolution of SGs could lead to useful insights
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Table VIII. Software Graph Statistics in Cloud Virtual Servers

Grid Sites V E (total edges) ESD EC A

Amazon1 29.346 79.636 49.368 30.268
Amazon2 23.228 74.180 41.107 33.073
Amazon3 17.377 62.032 34.919 27.113
Amazon4 20.168 61.688 45.811 15.877
Amazon5 59.409 583.198 102.534 480.664
Amazon6 27.213 96.513 47.484 49.029
Rackspace1 11.210 30.236 24.221 6.015
Rackspace2 9.310 23.959 20.714 3.245
Rackspace3 8.569 21.181 17.968 3.213
Rackspace4 35.335 157.574 68.185 89.389
Total 241.165 1.190.197 452.311 737.886

for the software engineering community. In the literature, a large number of dynamic
large-scale networks have been extensively studied [Leskovec et al. 2007] in order to
identify their latent characteristics.

Here, we briefly present the main characteristics of these graphs. Tables VII and
VIII present the edges that have been added due to structural dependencies (ESD) and
content associations (EC A). Based on these statistics, a general observation is that the
SGs are not sparse. Specifically, we found that in the case of Grids most of them follow
the relation E = V α, where 1.1 < α < 1.36, whereas in case of Clouds, most of Cloud
virtual servers follow the relation E = V α, where 1.1 < α < 1.31; note that α = 2
corresponds to an extremely dense graph where each node has on average a number
of adjacent edges equal to a constant fraction of all SG nodes. Another interesting
observation is that most of the edges are due to content associations. However, most
of these edges have lower weights (0, 05 ≤ w < 0, 2) than the edges that are due to
structure-dependency associations.

7. CONCLUSION

In this article we present Minersoft—a tool that enables keyword-based searches for
software installed on Grid/Cloud computing infrastructures. The software design of
Minersoft enables the distribution of its crawling and indexing tasks to large-scale net-
worked environments. The results of Minersoft harvesting are encoded in a weighted,
typed graph, called the SG. The SG is used to automatically annotate the software files
with keyword-rich metadata. Using a real testbed, we present the performance issues
of crawling and indexing. Experimental results showed that SG represents in an effi-
cient way the software files, improving the search of software packages in large-scale
networked environments.
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