
10

CDNsim: A Simulation Tool for Content
Distribution Networks

KONSTANTINOS STAMOS
Aristotle University of Thessaloniki
GEORGE PALLIS
University of Cyprus
ATHENA VAKALI
Aristotle University of Thessaloniki
DIMITRIOS KATSAROS
University of Thessaly
and
ANTONIS SIDIROPOULOS and YANNIS MANOLOPOULOS
Aristotle University of Thessaloniki

Content distribution networks (CDNs) have gained considerable attention in the past few years.
Hence there is need for developing frameworks for carrying out CDN simulations. In this article
we present a modeling and simulation framework for CDNs, called CDNsim. CDNsim has been
designated to provide a realistic simulation for CDNs, simulating the surrogate servers, the TCP/IP
protocol, and the main CDN functions. The main advantages of this tool are its high performance,
its extensibility, and its user interface, which is used to configure its parameters. CDNsim pro-
vides an automated environment for conducting experiments and extracting client, server, and
network statistics. The purpose of CDNsim is to be used as a testbed for CDN evaluation and
experimentation. This is quite useful to both the research community (to experiment with new
CDN data management techniques), and for CDN developers (to evaluate profits on prior certain
CDN installations).

Categories and Subject Descriptors: I.6.5 [Simulation and Modeling]: Model Development; C.2.4
[Computer-Communication Networks]: Distributed Systems

General Terms: Design, Experimentation, Measurement

Additional Key Words and Phrases: Content distribution network, trace-driven simulation, ser-
vices, caching

Contact author’s address: Department of Informatics, Aristotle University of Thessaloniki, 54124,
Thessaloniki, Greece, email: kstamos@csd.auth.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1049-3301/2010/04-ART10 $10.00
DOI 10.1145/1734222.1734226 http://doi.acm.org/10.1145/1734222.1734226

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:2 • K. Stamos et al.

ACM Reference Format:
Stamos, K., Pallis, G., Vakali, A., Katsaros, D., Sidiropoulos, A., and Manolopoulos, Y. 2010.
CDNsim: A simulation tool for content distribution networks. ACM Trans. Model. Comput. Simul.
20, 2, Article 10 (April 2010), 40 pages.
DOI = 10.1145/1734222.1734226 http://doi.acm.org/10.1145/1734222.1734226

1. INTRODUCTION

Congested lines, obsolete backbones, multimedia content, and increasing user
population are all contributing to excessive Internet traffic. On a daily basis,
users use the Internet for “resource-hungry" applications which involve content
such as video, audio on-demand, and distributed data. For instance, the Inter-
net video site YouTube hits more than 100 million videos per day [YouTube].
Estimations of YouTube’s bandwidth go from 25TB/day to 200TB/day. At the
same time, more and more applications (such as e-commerce, e-learning, etc.)
are relying on the Web, but with high sensitivity to delays. A delay, even a few
milliseconds in a Web server content (e.g., the NASDAQ stock market), may be
intolerable [Bent et al. 2004].

Content distribution networks (CDNs) [Vakali and Pallis 2003] have been
proposed to meet such challenges by providing a secure, uniquely reliable, scal-
able, and cost-effective mechanism for accelerating the delivery of Web content.
A CDN is an overlay network across the Internet (an indicative CDN is depicted
in Figure 1), which consists of a set of surrogate servers distributed around the
world, routers, and network elements. Surrogate servers are the key elements
in a CDN, acting as proxy caches that serve directly cached content to clients.
They store copies of identical content, such that client requests are satisfied by
the most appropriate site. Once a client requests content on an origin server
(managed by a CDN), his request is directed to the appropriate CDN surro-
gate server. Detailed information about CDN mechanisms are presented in
Rabinovich and Spatsheck [2002] and Vakali and Pallis [2003].

CDNs play a key role in the Internet infrastructure because their high end-
user performance and cost savings have encouraged many Web entrepreneurs
to make contracts with CDNs [Market 2006]. Currently, CDNs invest in large-
scale infrastructure (surrogate servers, network resources, etc.), to provide high
data quality and increased security for theirs clients. CDNs continuously be-
come more competitive by offering novel services to the public. The development
of a new service usually includes high investments. Therefore it is necessary
to prototype, monitor, and predict the behavior of a service in a controlled
simulated environment, before and after its release to the public.

A wide range of techniques [Chen et al. 2003; Kangasharju et al. 2002;
Rabinovich and Spatsheck 2002; Venkataramani et al. 2002] has been devel-
oped, implemented, and standardized for improving the performance of CDNs.
However, most CDN providers do not take advantage of these techniques be-
cause the ones proposed have not been extensively evaluated by a detailed sim-
ulation testbed. Thus, the CDN administrators do not have a clear view on the
costs/gains of these techniques that are to be enhanced by a CDN provider. The
lack of efficient CDN simulation tools was highlighted in several works [Bent

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:3

Fig. 1. A typical content distribution network.

et al. 2004; Clark et al. 2007; Chen et al. 2003; Wang et al. 2002]. Further-
more, academic CDNs [Pierre and Steen 2006; CoDeeN; CORAL], based on real
testbeds like PlanetLab [Planetlab], are treated mostly as black boxes or require
the voluntary involvement of many individuals. Therefore, the development of
novel techniques in such environments is quite difficult or impossible.

Taking into account the high interest in CDNs [Pallis and Vakali 2006], it
is crucial to develop a realistic simulation environment for them. Specifically,
the goal of this work is to present a reliable and memory-efficient tool which
can simulate large-scale CDNs in great detail. Such a tool is essential for
software researchers and practitioners, since it would become a useful testbed
for evaluating and validating the performance of CDNs. The main article’s
contributions are summarized in

—developing an analytic simulation tool for CDNs, called CDNsim, taking into
account the characteristics of Internet infrastructure. CDNsim was designed
to support research in broad-coverage CDN services. It is a parallel discrete
event trace-driven network simulation package that provides utilities and
interfaces for content delivery on the Web. It also has the ability to simulate
peer-to-peer (p2p) services as well as various internetwork configurations.
CDNsim is scalable and robust so as to perform a wide range of CDN policies.

—providing a graphic user interface (window-based environment) for setting all
the parameters of the simulation and automating the simulation executions.

To the best of our knowledge there is no other complete suite simulating a CDN.
The challenge of this tool is to become an essential evaluation tool for both the
CDN scientific community, providing a simulation testbed for current research,
and development activities in this area. In particular, CDNsim enables users—
primarily researchers and software practitioners—to evaluate and validate
new policies and services under a realistic CDN infrastructure.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:4 • K. Stamos et al.

The remainder of this article is organized as follows: Section 2 reviews the
related work. Section 3 presents the main features of CDNsim. Section 4 de-
scribes the architecture of the proposed CDN simulator. Section 5 presents
some experimentae results for CDNsim. Section 6 presents the user interface
of CDNsim. Section 7 presents two use cases of CDNsim. Section 8 discusses
the value of CDNsim in practice, and Section 9 concludes.

2. RELATED WORK

CDNs have gained considerable attention in the past few years. The ear-
lier recent research on CDNs can be divided into the following four major
categories:

—Establishing theoretical models. Theoretical models can be used to efficiently
solve the resource allocation and management problems in a CDN [Bektas
and Ouveysi 2008]. In particular, mathematical models were proposed in
the literature to address several issues related to where to locate surrogate
servers [Qiu et al. 2001]; which content to outsource [Kangasharju et al.
2002]; to evaluate pricing models [Hosanagar et al. 2006]; and to request
routing mechanisms [Oliveira and Pardalos 2005; Bektas et al. 2008]. Math-
ematical modeling techniques can also be used to gain insight on a variety of
CDN problems that arise in practice and to determine what mitigating ac-
tions can be taken. For instance, Nguyen et al. [2005] use a Lagrangean-based
solution algorithm based on a mathematical model to evaluate the effect of
data clustering on the total revenue of a CDN provider. Moreover, theoret-
ical models facilitate the solution of CDN problems by providing a generic
framework on which efficient and exact solution algorithms can be devised,
which are also used as benchmarks to assess a variety of heuristic meth-
ods [Laoutaris et al. 2005]. However, all these models deal with the individ-
ual problems separately, without taking into account the possible interplays
between them. Therefore, while they provide valuable information, the need
for simulation is not tackled where all those problems can be aggregated.

—Developing policies for CDN infrastructure. Several issues are involved in
CDNs because there are different decisions related to the CDN framework
setup, content distribution and management, and request management
approaches. This category deals with identifying new policies for the these
issues. We do not provide any details for such methods, since this is beyond
the scope of this article. For readers who are interested in this subject, a
concrete paper is presented by Pallis and Vakali [2006].

—Developing academic CDNs. Instead of delegating the content delivery to
a commercial CDN provider, the Web content servers participate in an
academic CDN with low fees. Academic CDNs are real-world systems and
run in a wide-area environment, the actual Internet topology. A well-known
academic CDN, Globule [Pierre and Steen 2006], is an open-source CDN
operated by end-users. The Web content server participate in the Globule
by adding a module to their Apache server. Another academic CDN is the
CoralCDN [CORAL]. In order to use the CoralCDN, the Web content servers
that participate in this network, append .nyud.net:8080 to the hostname in

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:5

a URL. Through DNS redirection, the clients with unmodified Web browsers
are transparently redirected to nearby CORAL surrogate servers. Another
well-known academic CDN is the CoDeeN [CoDeeN]. In order to use the
CoDeeN, as previously, a prefix must be added to the hostname in a URL.
Regarding the academic performance of CDNs, they offer less aggregate
storage capacity than commercial CDNs and require wide adoption of the
system to bring substantial performance benefits to the end-users. However,
the existing academic CDNs cannot be used as testbed platforms to evaluate
the efficiency of novel CDN policies.

—Developing simulation testbed systems. This category deals with developing
a CDN simulation system, which will simulate a dedicated set of machines
to reliably and efficiently distribute content to clients on behalf of the origin
server. Such a testbed runs locally on a single machine, and contrary to the
academic CDNs, it is a simulated environment. In the following paragraphs,
we present the existing CDN simulation systems.

The CDN providers are real-time applications and are not used for research
purposes. Therefore, CDN simulators are valuable tools for researchers as well
as for practitioners in order to develop and evaluate CDN policies. In addition,
they are economical because they can carry out experiments without the actual
hardware. They are also flexible because they can, for example, simulate a link
with any bandwidth and propagation delay and a router with any queue size
and queue management policy. Finally, the simulation results are reproducible
and easy to analyze because the simulated network environment is free of other
uncontrollable factors (e.g., other unwanted external traffic), which researchers
may encounter when doing experiments on real networks. These factors may
also be simulated in order to maximize the realism of the simulated model.

Most existing CDN simulation systems [Bent et al. 2004; Chen et al. 2003;
Kangasharju et al. 2002; Wang et al. 2002] do not take into account several
critical factors, such as the bottlenecks that are likely to occur in the network,
the number of sessions that can serve each network element (e.g., router, sur-
rogate server), and so on. Thus, results may be misleading since they measure
the number of traversed nodes (hops) without considering the TCP/IP network
infrastructure. On the other hand, there is a wide range of network simula-
tors [Fall], but they cannot effectively simulate the Internet infrastructure.
For instance, the ns-2 simulator [NS] is a discrete-event simulation framework
commonly used to simulate the TCP/IP protocol, flow-control and congestion-
control mechanisms. However, it requires a huge amount of memory to simulate
large-scale internetwork infrastructures.

The insufficiency of existing network generators for simulating a CDN has
also been indicated by Wang et al. [2002] where the authors developed a CDN
simulation environment integrating two existing simulations: the ns-2 net-
work simulator (to simulate the Internet infrastructure) and the logsim simu-
lator (to simulate the surrogate servers disks). However, as the authors report,
this simulation model is not efficient for large-scale networks since it requires
2–6 GB of RAM, and generally takes 20 to 50 hours of wall-clock time. In order
to restrict these high memory requirements, Kulkarni et al. [2003] proposed

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:6 • K. Stamos et al.

Table I. Testbed Platforms for CDNs

Memory Experiments Execution
Testbed TCP/IP usage Reproducibility Scalability Availability Environment

CDN simulator
(ns2 &
logsim)

Yes High Yes Medium No simulated -
local

CDN simula-
tor [Bent
et al. 2004;
Chen et al.
2003]

No (hop-
based)

Medium Yes High No simulated -
local

CDN simulator
[Kulkarni
et al. 2003]

No (hop-
based)

Low
(bloom
filters)

Yes High No simulated -
local

CoDeeN Yes
(Plan-
etLab)

Low No Medium Restricted real - wide

CoralCDN Yes
(Plan-
etLab)

Low No Medium Restricted real - wide

Globule Yes Low No Low Free - Open
Source

real - wide

CDNsim Yes Low Yes High Free - Open
source

simulated -
local

to simulate the cache disks by using memory-efficient data structures, called
Bloom filters. Results have shown that a prudent use of Bloom filters may
achieve a considerable reduction in memory requirements for CDN simula-
tions. However, the use of Bloom filters limits the ability to efficiently manage
the storage space of surrogate servers by using cache replacement policies. Also,
all the previously mentioned testbeds are not freely available to the research
community for conducting simulations.

Some researchers experimented with their CDN policies on testbed plat-
forms [Wang et al. 2004]. Such a platform is the PlanetLab [Planetlab], specifi-
cally, it is a network of computers located at universities and other Institutions
around the world, forming a testbed for creating and deploying planetary-scale
services, massive applications that span a significant part of the globe. In this
context, both CoDeeN [CoDeeN] and CoralCDN [CORAL] are academic testbed
CDNs built on top of PlanetLab. This testbed CDN consists of a network of high-
performance proxy servers. The proxy servers have been deployed on many
PlanetLab nodes, which behave as surrogate servers. The major limitation of
such a platform is that it can be used by the users where their institutions are
members of the PlanetLab consortium. Another limitation is the fact that the
experiments are not reproducible on PlanetLab platform [Oppenheimer et al.
2004; Spring et al. 2005], since it does not provide a controlled environment.

From the above discussion it is evident that there are no free CDN simulation
suites available to the research community. This is our primary motivation for
designing CDNsim. A comparative table of the existing testbed platforms for
CDNs is presented in Table I.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:7

Table II. Main Features of CDNsim

CDN Framework Setup

CDN Organization Surrogate servers & network components
Servers Origin servers & Surrogate servers
Relationships Client → Surrogate servers (inter-proxy communication) →

Origin server
Interaction Mechanisms Network elements interaction; Inter-cache interaction
Content Service/Types Static content; Streaming media; Services
Content Distribution & Management

Surrogate Servers
Placement

Any policy

Content Selection and
Delivery

Any policy

Content Outsourcing Cooperative push-based; uncooperative push-based; cooperative
pull-based; uncooperative pull-based

Cache Organization On demand; Periodic update
Request Management

Request Routing
Mechanisms

DNS-based request routing

3. CDNSIM FEATURES

From the above discussion, it is obvious that there is a lack of a reliable and
scalable CDN simulator, since both CDN simulators and testbed platforms
have their own limitations. CDN simulators can only simulate real-world im-
plementations with limited detail (e.g., using a static estimate for the network
transfer time). The need for developing such a software tool has also been in-
dicated in Bent et al. [2004]. In general, the development of a complete CDN
simulator, including associated application programs and network tools, is a
time-consuming task because typical network or cache simulators cannot be
used to simulate a CDN.

The CDNsim was developed to overcome the above problems. CDNsim is
a public-source, modular and open-architecture parallel discrete-event trace-
driven CDN simulation system which is based on OMNeT++ [Varga a] simula-
tion environment and the INET framework. INET is an extension of OMNeT++
to provide network protocols like TCP/IP. The source code of CDNsim and its
documentation are available from http://oswinds.csd.auth.gr/∼cdnsim. In the
Appendix, the fundamental concepts for the OMNeT++ are presented. CDNsim
uses OMNeT++ only for the basic networking operations such as TCP/IP trans-
missions and for discrete-event scheduling. The request routing, content distri-
bution, and management, as well as all the CDN characteristics, are simulated
by CDNsim itself. In the following paragraphs, the main features of CDNsim
are discussed (Table II).

3.1 CDN Framework Setup

The main features of CDNsim framework setup can be categorized as
follows:

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:8 • K. Stamos et al.

—CDN organization. In CDNsim, both the surrogate servers (which are placed
at several places in the network) and the network components handle the
distribution of specific content types (e.g., Web content, streaming media,
and real-time video). A similar approach is also followed by most of the
commercial CDN providers such as AKAMAI and Limelight Networks for
CDN organization.

—Servers. In a CDN infrastructure, there are two types of servers: origin and
surrogate servers. The origin server (also known as Web server content)
stores the origin version of resources. A surrogate server holds a replica of
a resource and acts as an authoritative reference for client responses. The
origin server communicates with the distributed surrogate servers to update
the content stored in it. CDNsim may support in its infrastructure a large-
scale number of both surrogate and origin servers.

—Relationships. The complex distributed architecture of a CDN exhibits dif-
ferent relationships between its constituent components (clients, surrogate
servers, origin servers, and other network elements). In CDNsim, a client
communicates through the network’s elements with surrogate and origin
servers. The communication between a client and a surrogate server takes
place in a transparent way, where each surrogate server serves client re-
quests from its local cache or acts as a gateway to another surrogate server
or origin server. On the other hand, the surrogate servers can be simultane-
ously accessed and shared by many clients.

—Interaction mechanisms. Interaction mechanisms are used for interaction
among CDN components. Such interactions can be broadly classified into
two types: interaction among network elements (e.g., routers) and interac-
tion among surrogate servers. Regarding the networks element interaction,
CDNsim implements an approach for signaling between servers and the net-
work elements that forward traffic to them. This mechanism allows network
elements to perform load-balancing across a set of distributed servers and
redirection to other servers. From a technical point of view, it uses TCP as
the transport protocol, where each server establishes a TCP connection to
the network elements using a well-known port number. Messages can then
be sent bidirectionally between the server and network element. All the
messages consist of a fixed-length header containing the total data length
and a request followed by a reply or an acknowledgment. Regarding the
interaction among surrogate servers, CDNsim implements a powerful mech-
anism to eliminate redundancy and make better use of Internet server and
bandwidth resources. It supports peering between surrogate servers with-
out a request-response exchange taking place. Using this mechanism, we
accurately determine whether a particular surrogate server caches a given
object. From a technical point of view, it is currently performed via HTTP or
FTP.

—Content service/types. CDNsim supports a wide variety of Web content in-
cluding static content (HTML pages, images, documents, software patches,
audio and/or video files), streaming media (live or on-demand) and services
(e.g., e-commerce services).

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:9

3.2 Content Distribution and Management

Content distribution and management issues play a significant role in CDN
performance.

—Surrogate server placement. Determining the network locations for surro-
gate servers in a network topology (known as the Web server replica place-
ment problem) is critical for content outsourcing performance and the over-
all content distribution process. CDN topology should be built such that
the client-perceived performance is maximized and the infrastructure cost
is minimized. Therefore, effective surrogate server placement reduces the
number of surrogate servers needed and the size of the content (replicated
on them), in an effort to combine the high quality of services and low CDN
prices. CDNsim may support a wide range of placement algorithms (greedy,
which incrementally places replicas, hot spot, which places replicas near the
clients generating the greatest load, and tree-based replicas) [Li et al. 1998;
Qiu et al. 2001].

—Content selection and delivery. The choice of content that should be out-
sourced in order to meet client needs is known as the content selection
problem. Considering the huge amount of Web data, the challenge of the
content-selection problem is to find a sophisticated management strategy for
replication of Web content. CDNsim may support several Web data manage-
ment policies [Katsaros et al. 2008; Sidiropoulos et al. 2008].

—Content outsourcing. Under a CDN infrastructure with a given set of surro-
gate servers and a chosen content for delivery, it is crucial to decide which
content outsourcing practice to follow [Chen et al. 2003; Kangasharju et al.
2002; Pallis et al. 2005]. CDNsim supports four content outsourcing policies:
cooperative push-based, uncooperative push-based, cooperative pull-based,
and uncooperative pull-based. In a cooperative push-based policy, the content
is pushed (proactively) from the origin Web server to CDN surrogate servers.
Initially, the content is prefetched (loaded in cache before it is accessed) to
the surrogate server, and then the surrogate servers cooperate in order to
reduce the replication and update cost. In this scheme, CDNsim maintains a
mapping between content and surrogate servers, and each request is directed
to the closest surrogate server (that has the requested object); otherwise the
request is directed to the origin server. In the uncooperative push-based
scheme, the content is pushed (proactively) from the origin Web server to
the surrogate servers. The requests can be satisfied either at a local surro-
gate server or at the origin Web server, but not at a nearby surrogate server,
due to the lack of informed request redirection. In cooperative pull-based
approach, the clients requests are directed through DNS redirection to their
closest surrogate server. The key in the cooperative pull-based approach is
that the surrogate servers are cooperating with each other in case of cache
misses. Finally, in the uncooperative pull-based policy, the clients’ requests
are directed to their closest surrogate server. If there is a cache miss and
the requested content is not found, the request is directed to either a peer
surrogate server of the CDNsim or to the origin server. More specifically, the

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:10 • K. Stamos et al.

surrogate servers, which serve as caches, pull content from the origin server
when a cache miss occurs.

—Cache organization. In order to ensure content consistency and freshness,
CDNsim is ready to support either on-demand or periodic updates. In the on-
demand update, the latest copy of a document is propagated to the surrogate
server based on a prior request for that content. In the periodic update, the
CDNsim configures its origin Web servers content to provide instructions to
caches about what content is cacheable, how long different content is to be
considered fresh, and when to check back with the origin server for updated
content. With this approach, caches are updated in a regular fashion. How-
ever, any developer could also build its own policy or use some heuristics to
deploy-organization specific caching policies [Laoutaris et al. 2005; Stamos
et al. 2006].

3.3 Request Management

In a CDN, there is a mechanism that redirects the clients’ requests to the most
appropriate surrogate server. This mechanism is responsible for routing the
clients’ requests to a specific surrogate server for the delivery of content. It has
a global awareness of the network topology and the surrogate server content.

—Request-routing mechanisms. Request-routing mechanisms inform the client
about the selection of a surrogate server, generated by the request-routing
algorithms. CDNsim supports DNS-based request-routing mechanism. In
this approach, the content distribution services rely on the modified DNS
servers to perform the mapping between a surrogate server’s symbolic name
and its numerical IP address. In DNS-based request-routing, a domain name
has multiple IP addresses associated to it. When a client’s request comes,
the DNS server of the CDNsim returns the IP addresses of servers holding the
replica of the requested object. The client’s DNS resolver probes the surrogate
servers and chooses the surrogate server with respect to the response times
to these probes. The performance and effectiveness of DNS-based request-
routing has been examined in a number of recent studies [Alzoubi et al.
2007]. The advantage of this approach is the transparency, as the services
are referred to by means of their DNS names, and not their IP addresses.

3.4 Security Vulnerability Issues

CDN systems may face attacks such as botnets and puppetnets [Lam et al.
2006] that create flash crowd events [Ramamurthy et al. 2007], which could
lead to denial of service [AkamaiReport 2008]. Specifically, flash crowds are
sudden, unanticipated surges in traffic volume of request rates towards partic-
ular Web server content. Such attacks occur quite often and present significant
problems to Web server content owners. For instance, in commercial Web server
content, a flash crowd can lead to severe financial losses, as clients often decline
to purchase the goods and search for other, more accessible Web server content.
We refrain from modeling each and every type of security vulnerability, since
they all create surges of requests. Instead, we provide flexibility in modeling

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:11

flash crowds. Thus, it is important to evaluate such attacks. More details about
how flash crowds are incorporated in CDNsim are given in Section 7. Other
attacks (e.g., routing attacks), which usually face most networking systems,
are not common in CDN systems; CDNs provide monitoring services [Zhang
et al. 2007] to detect such attacks.

4. CDNSIM ARCHITECTURE

The architecture of CDNsim is presented in this section. We define an abstract
service-oriented architecture and show how this architecture is used to imple-
ment the CDNsim features which were discussed in the previous section.

4.1 Abstract Design

In a CDN topology we identify the following network nodes which are intercon-
nected via network links: surrogate servers, origin servers, clients, routers, and
DNS redirection servers. Each network node provides a set of services that are
available to others, specifically, we identify the following two types of services:

—The client-server service. It covers the case of internode communication/
interaction. For instance, the client interacts with the DNS server to retrieve
the IP address of the surrogate server to which it should send a request.

—The daemon service. It runs on the system locally and does not fit the client-
server approach. For instance, a surrogate server needs a service that periodi-
cally frees up cache space by removing unwanted objects from the local cache.

The nodes of the network topology have a common behavior; they all run a set
of services. Therefore, they can be modeled by an abstract node of which all the
network nodes are considered as subclasses. The abstract node provides a base
for services for hosting. The individual nodes are differentiated by implement-
ing different services. Each service either exchanges some kind of information
(i.e., videos) between nodes or affects a local repository of information (i.e.,
local cache). All the communications are performed by exchanging messages.
Hence, these observations lead us to formally define the following architectural
components.

—Information unit. It models in an abstract way any kind of information frag-
ment that can be stored and transmitted. By using agglomerations of infor-
mation units in an hierarchical form, CDNsim may represent any type of
content (e.g., video files, audio, packets of media streams, text, Web pages).
In a client-server type service, information units are served to the client by
the server.

—Information set. This component acts as a storage manager of information
units. A set of policies are offered as an interface to manipulate them.

—Message. Messages can be considered as envelopes that contain information
that has to be exchanged between components. The information carried may
be information units or any other instructions (such as reply ports) that can
be interpreted by the receiver of a message.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:12 • K. Stamos et al.

Fig. 2. Generic node and internals.

—Peer service. Peer service is a component used to represent both service types
(client-server and daemon). Regarding the client-server type, we may identify
three distinct expressions: (a) client, (b) server, and (c) mixed. The first case
is when only the client side of a service is implemented (i.e., ftp client).
The second case covers the server side implementation of a service (i.e., ftp
server). The last one covers the case where both (a, b) expressions coexist;
imagine a p2p network (like eMule) where users may both download and
serve files. This case exists in a CDN infrastructure where surrogate servers
serve content but also download content from other servers. The client and
server are implemented by two components which are called, respectively,
consumer and serving unit. Both consumer and serving unit are wrapped by
peer service. As far as the daemon service type is concerned, it is implemented
by the daemon unit. Using daemon units, we may cause periodic events such
as requests generation, bookkeeping procedures, cache cleaning and so on.
Information sets, optionally, may be shared (taking into account possible
deadlocks) among many peer services.

—Generic node. This component can be extended to represent any network
node such as surrogate servers, origin servers, and clients. Figure 2 depicts
its internal structure and the component hierarchy. It provides the appro-
priate environment for hosting services. It wraps all the peer services and
information sets and forwards incoming messages to the appropriate peer
service according to the requested service type. Moreover, it provides the
necessary network protocol interfaces for packets transmission, since the

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:13

Fig. 3. The network topology.

Fig. 4. The client generic node.

generic nodes are directly connected to the physical network through links.
This design approach enables us to implement an extensible service-oriented
CDN, where we can plug any number of new services into a surrogate server.

4.2 CDNsim Implementation

CDNsim is implemented by extending the preceding architectural components.
In this section we present the network topology modeling and the available
CDN services.

4.2.1 CDNsim Network Topology Modeling. The network topology of
CDNsim consists of a set of nodes (generic nodes) which are interconnected
via network links, as shown in Figure 3. Each node contains a compilation
of services (details about them are presented in the next section) where the
internal structure of each node is described as follows:

—Client. The client, depicted in Figure 4, is the initiator of requests to CDN.
It contains the request-generation service (indicated in the figure by a wall

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:14 • K. Stamos et al.

Fig. 5. The surrogate server generic node.

Fig. 6. The origin server generic node.

clock) which preloads the clients’ requests. The requests are fulfilled and the
serviced content is retrieved using the consumer unit of the content-transfer
service. Clients are assigned to surrogate servers in order to submit their
requests using the client-redirection service.

—Surrogate server. Figure 5 illustrates the surrogate server, which contains
the mixed content-transfer service because it acts both as server and client.
Additionally, it includes the surrogate server-redirection service for detecting
alternative servers to pull content and a local cache of finite capacity.

—Origin server. The origin server, shown in Figure 6, wraps the serving unit
of the content-transfer service and a cache that contains all the available
content.

—DNS redirector. The DNS redirector, which is shown in Figure 7, includes the
serving units of all the redirection services.

The intermediate router nodes are provided by INET (they are excluded from
the generic node architecture). When routers are configured, they are used
as “black boxes,” which retransmit network packets according to the current
network protocol. The INET library includes options for retry timeouts, retry
counts, delays concerning the Address Resolution Protocol (ARP), network

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:15

Fig. 7. The DNS redirector generic node.

datagram sizes, and so on. It should be noted that network nodes are not
aware of the content of the packets. We make use of the NED language, which
is suitable for modeling node hierarchy and connections, essentially building
a network topology. Thus, the surrogate servers and client placement in the
network is a matter of providing the desired configuration using NED. De-
tailed information about the NED language can be found in the OMNeT++
manual [Varga b]. The speed and propagation delay for each link can be modi-
fied (the user may use either real or artificial measurements [Sripanidkulchai
et al. 2004]), and it is simulated by the INET framework. TCP/IP is the main
protocol used to perform communications between services. TCP/IP and all
lower-level protocols (i.e., network layer) are provided by the INET framework.
An in-depth presentation of TCP/IP in INET along with tests and benchmarks
can be found in Idserda [2004]. Although there are default options for the
TCP/IP options, the advanced user may choose the appropriate TCP algorithm
(TCPTahoe/TCPReno/TCPNoCongestionControl/DumbTCP), advertised win-
dow, maximum segment size, TTL and so on.

4.2.2 CDNsim Services. The CDNsim implementation supports the fol-
lowing CDN services:

—Client redirection service. This service manages the client redirection process.
The clients are redirected to the nearest surrogate server in terms of network
distance. This distance metric is based on the Dijkstra algorithm [Dijkstra
1959], but it can be extended to include more sophisticated methodologies
(such as MyXDNS [Alzoubi et al. 2007]) that include information about the
load of each server. The client side of this service runs at the clients, while the
server side runs at the DNS redirector. Upon a request, the client is redirected
by the DNS redirector to the appropriate surrogate server by advertising the
IP address and listening port.

—Surrogate server (cooperative/noncooperative) redirection service. This ser-
vice takes place during a cache miss. Specifically, the surrogate servers
use one of the two instances (cooperative/noncooperative) of this service.
If the cooperative service is activated, the surrogate servers are redirected
through the DNS redirector to the closest surrogate server that contains
the requested object. But when the noncooperative service is activated, the

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:16 • K. Stamos et al.

surrogate servers are directed through the DNS redirector to the origin
server.

—Request-generation service. This daemon service runs at the clients. At the
beginning of the simulation it loads the corresponding trace file containing
the requests to be made. The requests are sorted by timestamp, and each
one is scheduled appropriately. The scheduled requests are performed by the
clint’s content-transfer service. CDNsim does not generate traffic according
to some specific methodology or algorithm. The traffic patterns are defined
in the trace file which can be real (i.e., Apache logs) or artificially generated
by a third party tool such as Medisyn [Tang et al. 2003]. CDNsim executes
the user-specified traffic.

—Content-transfer service. This service manages the requests for content (i.e.,
video, audio, text, HTML pages, etc). The clients send requests to the CDN
while surrogate servers attempt to satisfy them. This service implements
a set of TCP applications responsible for uploading and downloading files.
The number of these applications set the connection capacity of the ser-
vice, and thus the “strength” of a surrogate server. A generic interface is
offered that can be tweaked in order to support services such as VOIP and
streaming media. The CDNsim user could use TCP dumps that contain all
the TCP traffic of streaming services between peers in the form of a trace
file. A TCP dump must be preprocessed in order to fit the CDNsim assump-
tions and message transmission logic. Such TCP dumps are available at
http://content.lip6.fr/traces/trace/viewer/1.

5. RESOURCES SCALING UNDER CDNSIM

This section presents a set of experiments conducted by CDNsim in order to
address software bugs and performance issues. The primary goals of CDNsim
implementation are to provide a bug-free environment with reasonable memory
footprint and execution time.

5.1 Software Bugs

Security vulnerabilities in a simulation system may result from software bugs.
Thus, it is important to ensure that CDNsim is free of software bugs. Taking
into account that CDNsim is a desktop application and does not make use
of any real networking, we focus on errors related to memory leaks and in-
valid memory accesses. To address these issues we evaluated CDNsim using
Valgrind [Armour-Brown et al. ; Nethercote and Seward 2007], an open-source
memory debugger. Valgrind is a binary-code dynamic checker that detects
general memory-related bugs such as memory leaks, memory corruption, and
buffer overflow. Simulating every single instruction of a program, it finds errors
not only in programs but also in all supporting dynamically-linked libraries. All
detected errors are reported. In CDNsim, the Valgrind report does not report
any errors.

Figure 8 shows the memory variations during the execution of the sim-
ulation. The x-axis represents the elapsed CPU time measured in seconds,
whereas the y-axis represents the RAM consumption measured in MB. The

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:17

Fig. 8. Memory usage during simulation.

network contains 1008 routers, 100 surrogate servers, and 955904 requests
have been served. An expected increment in memory is observed at the be-
ginning of the simulation while the simulation environment is being built and
the network is filled with network packets. After this short time period, the
simulation memory footprint remains stable to the end of the simulation. This
is an indication that there are no memory leaks; otherwise we would observe
an increasing memory curve as more and more memory chunks would remain
in the system unfreed.

5.2 Performance Issues

Here, we investigate how CDNsim performance is affected by varying the
following:

—Network size. CDNsim can be used to model large-scale network topologies.
Figure 9 depicts how memory scales while increasing the network size. In
our experiments, we used a Web site of 3000 objects and a request stream
of 50000 requests. The x-axis represents the network size in nodes, whereas
the y-axis represents the RAM consumption measured in MB. Using 50,
1008, and 3037 routers, we observe an almost linear increment in memory
consumption as the number of nodes increases. We should note that for 3037
nodes we need about 500 MB of RAM, while using ns2 we built the same
3037 node-TCP/IP network, and we needed up to 2GB, which means four
times more memory consumption than CDNsim.

—Network topology. Using the GT-ITM [Zegura et al. 1996] internetwork
topology generator, we generated various network topologies (pure ran-
dom, Transit-stub and AS). The Transit-stub generates internetwork topolo-
gies composed of interconnected transit-stub domains. An AS-level Internet

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:18 • K. Stamos et al.

Fig. 9. Memory usage vs network size.

topology uses BGP routing data collected from a set of geographically-
dispersed BGP peers. The generated topologies are the backbone of the net-
work topology where the surrogate servers, intermediate routers, clients,
and origin server are attached. The intermediate routers are simulated by
using a module of the INET library that implements the necessary inter-
faces for Ethernet, MAC, and the various OSI layers. This module includes
options about retry timeouts, retry counts, delays concerning the Address
Resolution Protocol (ARP), network datagram sizes, and so on. More de-
tails can be found in the OMNeT++ manual [Varga b]. A summary of the
network parameters is recorded in Table III. In our experiments we used
1000000 requests in order to observe the long-term behavior of CDNsim. As
expected, we observe an increasing memory consumption as the number of
nodes (routers) increased. Regarding the CPU time, we observe only small
fluctuations to the recorded values. This happens because the Internet topol-
ogy exhibits small world properties introduced by Watts and Strogatz [1998].
Specifically, studies have shown that the average number of hops between
the nodes in the AS-level Internet topology is small, and does not change as
the network grows in size [Dhamdhere and Dovrolis 2008]. Another obser-
vation is that the dominant factor regarding memory consumption between
the different types of topology is the number of edges (network links). At this
set, it happens that the pure random topology had the most edges, following
Transit-stub and AS.

—Number of user requests. The simulation of a CDN is highly compute-
intensive, arises from the need to simulate a large number of end-user re-
quests and various inter-proxy and proxy-server interactions. In general, the
larger the number of end-user requests and the scale of CDN, the greater the
computational requirements. Figure 10 depicts the performance of CDNsim

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:19

Table III. Network Topology Flavors

Random Memory (MB) CPU time (sec)
3037 routers, 23277 links 1895.93 25964
4037 routers, 41069 links 3154.98 25712
5037 routers, 63687 links 4578.79 25483
6037 routers, 91110 links 6308.37 26706
AS Memory (MB) CPU time (sec)
3037 routers, 4789 links 1046.44 32122
4037 routers, 6720 links 1653.16 33854
5037 routers, 8768 links 2331.57 35858
6037 routers, 10931 links 3142.44 36128
Transit stub Memory (MB) CPU time (sec)
3192 routers, 6776 links 1557.77 42666
4104 routers, 8638 links 2377.88 39459
5256 routers, 12062 links 3548.08 41701
6642 routers, 15169 links 5206.1 43059

Fig. 10. CPU time vs number of requests.

regarding CPU time in terms of increasing the number of requests. The
x-axis represents the number of requests, whereas, the y-axis represents
the CPU time measured in seconds. CDNsim is able to execute up to one
million requests in a network of 1000 nodes in about four hours using a
Pentium IV 3.2 GHz. This CPU time is satisfactory, given the fact that Wang
et al. [2002] needed up to 50 hours for such a simulation. Moreover, by in-
creasing the number of requests, the execution time increases as well in
an absolutely linear way, indicating that CDNsim scales efficiently as the
number of requests increases.

—User-demand models. To produce different user-demand models, we used
a client-request stream generator that captures the main characteristics

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:20 • K. Stamos et al.

Table IV. Request Stream Parameters

Distinct
Requests Objects Zipf Pareto Objects % Memory (MB) CPU Time (Sec)
985810 100000 0.75 1.2 10 1416.61 6509.07
990792 300000 0.75 1.2 30 3253.33 7871.14
920694 800000 0.75 1.2 80 7887.69 9032.77
970446 300000 0.01 1.2 30 3254.27 8920.26
965839 300000 0.25 1.2 30 3252.95 7862.26
954703 300000 0.5 1.2 30 3247.24 7414.79
990792 300000 0.75 1.2 30 3253.33 7871.14
950211 300000 1 1.2 30 3255.18 6787.9
990792 300000 0.75 1 30 3234.03 7659.38
990792 300000 0.75 1.2 30 3253.33 7871.14
990792 300000 0.75 2 30 3256.06 7144.15

of Web users, behavior [Katsaros et al. 2008]. This generator produces a
synthetic workload by using mathematical models and stochastic processes.
Here, we produced different user-demand models by varying the following
parameters: Zipf slope of the popularity distribution, the Pareto heavy-tail
index of the size distribution, and the percentage of unique objects inside the
request stream. These parameters usually have a significant impact on work-
load generation. For the experiments, we used a topology of 1008 routers, 100
surrogate servers, and the LRU (least-recently-used) cache replacement pol-
icy in CDNsim surrogate servers. The summary of results is recorded in
Table IV. For the percentage of distinct documents of the total number of re-
quests, we used the values 10%, 30%, and 80%. As the percentage increases,
we observe an increment in the CPU time. This is expected because LRU
policy suffers from a high miss ratio. The cache misses lead to intersurro-
gate server traffic and, consequently, high CPU time. Moreover the memory
increases as the number of objects increases. For the Zipf slope, we used a
variety of values from 0.01 up to 1. In general, a steep slope favors the LRU;
the best CPU time is observed at the maximum value of Zipf. On the contrary,
for value 0.01 we have the most CPU time, while the intermediate values do
not show any significant fluctuation. The memory consumption appears to
be the same. Finally, the Pareto distribution does not seem to affect memory
consumption or CPU time. To sum up, the dominant factor that increases
memory usage in CDNsim is the number of objects, while the CPU time is
affected by the performance of the cache replacement policy.

—Redirection policies. CDNsim offers the following request redirection poli-
cies: cooperative closest server, cooperative server load-balance, cooperative
random server selection, and noncooperative. These policies can be combined
with the options of having a pull- or push-based outsourcing scheme given the
intial surrogate server content. Table V summarizes the memory usage and
CPU time of the experiments conducted with all the redirection policies. We
used 1000 routers, 100 surrogate servers, 50000 clients, 1000000 requests,
and a Web site of 3000 objects; the surrogate server caches were initially
empty (pull-based) while running LRU. From the experiments it seems that
the observed values for memory consumption are quite similar for all the

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:21

Table V. Redirection Policies

Redirection Policy Memory (MB) CPU Time (Sec)
Cooperative closest server 563 18323
Cooperative server load balance 556 26461
Cooperative random server selection 569 29885
Non-cooperative 557 19322

policies. However, this is not the case for the CPU time. The random server
selection has the highest execution time, since the requests are shared with-
out the logic causing network traffic. The load-balance policy is the second
highest; at every request, a search is performed for the least loaded server.
The best time is observed for the closest surrogate policy, since all the inter-
surrogate server distances are precalculated, thus speeding up the search
for the closest surrogate server. The noncooperative policy does not include
any search; it redirects every request to the origin server upon a cache miss,
leading to high traffic close to the origin server.

5.3 Summary

The simulation of a large-scale CDN is a memory and compute-intensive task.
Its memory-intensive nature arises from the need to simulate a disk cache
at each surrogate server. The larger the number of objects, the greater the
memory requirements. This also happens to the network size. A larger network
requires more memory. Finally, memory usage is also depended on the number
of requests, since they are loaded into memory to speed up their retrieval.

The main factors that dominate the CPU requirements can be summarized
as follows:

—The event-scheduling. The basic simulation element that advances simulated
time (not wall-clock time) in OMNeT++ and, consequently, in CDNsim, is the
message. Messages are considered events in simulation terminology. All the
information passing, signaling, and object transmission is performed in the
form of a message. OMNeT++ is responsible for scheduling the messages ac-
cording to their timestamps and priorities. During a typical CDNsim simula-
tion, several million messages are generated. It is evident that the scheduler’s
complexity can easily be a bottleneck for efficient performance. OMNeT++
implements the binary heap structure for future event set (FES) scheduling,
which is a standard structure in discrete-event simulation systems, demon-
strating the best performance in most cases.

—Client-request scheduling. Each client maintains a queue of waiting requests
to be performed. The requests are sorted by their timestamps, once at the
beginning of the simulation. Every new request (i.e., retry) is added at the
head of the queue. Therefore, the complexity of removing/adding a single
request is O(1). The overall time scales linearly as the number of requests
increases.

—Request life-cycle. By the time a new request is generated, it was processed
by many modules. The goal of CDNsim is to handle millions of requests

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:22 • K. Stamos et al.

Fig. 11. CDNsim: From the user’s perspective.

efficiently. Therefore, each request is passed only by references between mod-
ules, avoiding redundant copies (memory and CPU friendly). Each module is
responsible for moving the request to the next processing module.

—Cache management. The surrogate server caches are usually hot-spots, since
millions of accesses are performed. The performance of the cache depends
on the cache management algorithms implemented and the respective data
structures. CDNsim uses priority queues for the major cache replacement
algorithms (LRU, LFU, SIZE).

To sum up, our experiments have shown that CDNsim scales linearly in terms
of network size and number of requests. Using a common commercial PC with
2 GB of RAM, the user is able to run simulations with more than 5000 nodes
and several millions of requests within a few hours.

6. CDNSIM: FROM THE USER’S PERSPECTIVE

CDNsim provides a set of utilities for preparing and executing the simulation
environment. The simulation environment includes all the necessary input
files, configurations, libraries, and executables to perform a simulation. Fur-
thermore, CDNsim provides utilities for extracting statistical results. Figure 11
depicts the phases that a user may follow in order to simulate a CDN. These
phases are described in detail in the following sections.

6.1 Phase 1. Simulation Environments Preparation

During the first phase, the user is driven by a wizard to prepare the simulation
environments to be executed, which are all bundled into a compressed archive,
the so-called bottle. Bottles are self-contained simulation environments ready
to be executed. However, the procedure of manually creating input for the sim-
ulator is a cumbersome task because a lot of parameters and files are involved.
The CDNsim wizard saves significant time by organizing the basic parameters
and by validating user input making the bottles creation an easy task. The
wizard is written in Python (http://www.python.org/) and the GUI components
in wxPython (http://www.wxpython.org/), a blending of the wxWidgets C++
class library(http://wxwidgets.org/) with the Python programming language.
Figures 12 to 16 depict the CDNsim wizard running on Linux with KDE 4.0.1.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:23

Fig. 12. CDN policy management.

In the first step (Figure 12), the user selects whether the CDN surrogate
servers will cooperate or not with others upon cache misses. There are four
different flavors concerning the cooperative policy namely “closest surrogate,”
“random surrogate,” and “surrogate load balance”. In the second step, depicted
in Figure 13, the network topology is defined. The user provides a graph file
describing the network backbone and the link speed in Mbps [Zegura et al.
1996]. The user may further tune the placement of the surrogate servers in
the network by altering the corresponding network NED file. There are options
concerning the number of connections for consuming services (outgoing) and
the number of connections for serving (incoming). Moreover, the user may op-
tionally define how the clients should behave upon a denial of service, that is,
whether to retry or not. Network topology parameters can be tuned further, in-
cluding TCP/IP options, by modifying the appropriate configuration files inside
the bottle. The user is not limited to a specific network type since any network
flavors can be used as input.

In the next step (Figure 14), the user should input a file that describes the
object attributes and a file that represents the traffic generated by the clients
during the simulation. The first one includes information such as the size of an
object, while the second includes the timestamps of the clients’ requests. These
files can be either real (i.e., Apache logs and a real Web site) or artificially
generated by any third-party tool (e.g., Medisyn [Tang et al. 2003]).

In the forth step, the surrogate servers cache attributes are configured. The
user inputs a configuration file that describes the content, capacity, and cache
outsourcing policy (push/pull) of each surrogate server. This enables a user
to configure a CDN simulation setup with multiple outsourcing policies. As
shown in Figure 16, the path of CDNsim libraries, OMNeT++ and INET instal-
lations are required. CDNsim libraries model all the CDN infrastructure and
are loaded at runtime by the INET’s main executable along with the OMNeT++
libraries. Furthermore, the output directory must be set and a representative
name for the bottle is created. By pressing the “CREATE BOTTLE” button, all
the input is verified and a bottle is created.

To sum up, these four steps can be followed many times in order to create a
set of bottles. Advanced tuning of simulation can be performed by editing the
bottles’ content.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:24 • K. Stamos et al.

Fig. 13. Network topology management.

Fig. 14. Datasets.

6.2 Phase 2. Simulation Environments Execution

Assuming that we have created a large number of bottles, we need to execute
each one to get the simulations results. This task is too time-consuming to be
performed manually by the user. To increase the user’s productivity, we offer
a shell script, which sequentially processes all the bottles with the following

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:25

Fig. 15. Content management.

Fig. 16. Bottles’ creation.

procedure: each bottle is uncompressed, the respective simulation is executed,
and the bottle is recompressed, including the simulation output. Using this
script the user is able to execute a large number of unattended simulations. All
the script activities are kept in log files.

CDNsim also offers developers a way to inspect the simulator internals for
debugging as well as an attractive way to present a model. This is supported by
the graphical environment that is provided by OMNeT++. A sample is depicted
in Figure 17. The user is able to start, pause, and speed up a simulation or
down. The network is depicted as interconnected nodes, whose the internal
operations could be inspected. Network activity is animated, so the user is able
to watch the packet transmissions and examine the content of each packet,
bandwidth consumption, and so on. Further information can be found in the
OMNeT++ manual.

6.3 Phase 3. Statistics Extraction

The final phase includes the extraction of statistics. Once a bottle is executed,
the simulation log is recorded. The log can be considered as a flat file containing
raw information about the state of the simulator at various timestamps and
events. The resulting log is parsed by the appropriate utility to produce the
statistics at the end of the simulation. Since we deal with raw data, we may

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:26 • K. Stamos et al.

Fig. 17. Simulation visualization.

produce statistics other than the defaults provided by the tool, or even apply
data-mining techniques. The default statistics are summarized in the following
paragraphs.

Client-side statistics. These statistics refer to the clients’ activities, that is,
requests for objects. These are:

—Number of satisfied requests. This is the total number of client-to-CDN re-
quests that are served successfully. Not all requests are satisfied due to denial
of service caused by increased surrogate server loads.

—Number of failed requests. This is the number of client-to-CDN requests
that have not been served. To reduce this number, we may reduce the mean
interarrival time of the requests, increase the surrogate server connections,
and increase the network speed.

—Mean response time. This is a measurement that indicates how fast a client is

satisfied. It is defined as
∑N−1

i=0 ti
N , where N is the number of satisfied requests

and ti is the response time of ith request. The response time starts at the
timestamp when the request begins and ends at the timestamp when the
connection is closed.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:27

—Response time CDF. The cumulative distribution function (CDF) denotes the
probability of having response times lower or equal to a given response time.
The goal of a CDN is to increase the probability of having response times
around the lower bound of response times.

—Request distribution through time. This is a representation of the request
response times through time. The x axis represents the requests sorted by
their start timestamps. The y axis is the response time of the corresponding
requests. This is especially useful, since we may detect time-related phenom-
ena and easily observe problematic behaviors during a flash crowd event.

—Mean retries. Upon a denial of service, the client should perform an action.
Either the denied request is considered as failed or a retry is performed
according to the configuration (Figure 13). The mean retries are defined as
∑C−1

i=0 ri

C , where C is the number of clients and ri is the number of retries that the
ith client performed. Values above zero suggest network performance issues.

—Mean waiting time. Between retries, the clients wait for a specified amount
of time according to an exponential distribution configured by the wizard
(Figure 13). This emulates a client that “hits” the reload button of the Web
browser randomly when the connection timesout. The mean waiting time is

defined as
∑C−1

i=0 wi

C , where wi is the total waiting time of the ith client.

Server-side statistics. These statistics are focused on the operations of the
surrogate and origin servers. In summary:

—Hit ratio. This is the percentage of the client-to-CDN requests that resulted
in a cache hit. High values indicate high-quality content placement of the
surrogate servers.

—Byte hit ratio. This is the hit ratio expressed in bytes, meaning that instead
of requests we count the corresponding bytes of the requests. High values
indicate optimized space usage and lower network traffic.

—Load. This refers to the average percentage of connections that are active in
serving clients. Each network element has a finite connections capacity, that
is, the number of clients that can be served simultaneously. Values close to
0.9 indicate an unstable system.

—Origin requests percentage. This refers to the percentage of satisfied requests
that redirected to the origin server. Low values indicate good CDN perfor-
mance and accurate content selection.

Network statistics. All network operations run on top of TCP/IP, so several
measurements can be extracted concerning network topology. Specifically:

—Handshake time. This is the time required for a connection to be opened. It
includes the classic three-way handshake. During a flash crowd event, the
values are significantly higher.

—Bit error rate. CDNsim is able to simulate transmissions including packet er-
rors. This adds to the realism of the model, and can be recorded for statistical
analysis.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:28 • K. Stamos et al.

—Network delay. This is the amount of time the arrival of a message is delayed
when it travels through a channel. Propagation delay is specified in seconds.

—Data rate. The data rate is specified in bits/second, and it is used to calculate
transmission delay. The sending time of the message normally corresponds
to the transmission of the first bit, and the arrival time of the message
corresponds to the reception of the last bit.

—Net utility. This is a value that expresses the relation between the number
of bytes of the content served against the number of bytes of the pulled con-
tent (from origin or other surrogate servers) [Mortazavi and Kesidis 2006]. It
is bounded to the range [0, 1] and provides an indication about CDN perfor-
mance. High net utility values indicate a good content outsourcing policy and
improved mean response times for the clients. Further details are available
in the next section.

7. CDNSIM: USE CASES

7.1 Flash Crowd Event

In this section we demonstrate a flash crowd event simulated by CDNsim, along
with the respective results and model behavior. In general, during a flash crowd
event, significantly higher response times are expected. CDNsim captured this
behavior correctly. In this context, we built an AS network topology consisting
of 100 surrogate servers, 1 origin server, 3037 routers, and 39847 clients. The
network links were 1 Gbps. The trace file contained 286758 requests. More
specifically, the trace file was equally split into three consecutive parts, that is,
epochs. The first epoch (preflash crowd event) contained requests with a mean
interarrival time of 0.6 seconds. The second epoch (flash crowd event) contained
requests with mean interarrival time of 0.6

100 seconds, effectively causing a mas-
sive wave of requests for the CDN. The third epoch (postflash crowd event)
reflected the relaxation phase right after the flash crowd event. The mean
interarrival time was 0.6 sec.

Figure 18 depicts the evolution of a flash crowd event through time. The x
axis represents the requests sorted by their timestamps (the time a request
was submitted to CDN), while the y axis is the respective response time. As
time progresses during the flash crowd event (epoch 2), the observed response
times become greater and unstable. A peak is reached in the middle of the
flash crowd event. The system becomes less loaded, reaching stability again
upon entering the third epoch, showing normal activity as in the first epoch.
The CDF of the response time is illustrated in Figure 19. The x axis refers to
the response time, while the y axis refers to the probability of having a lower
response time than a given value in the x axis. The continuous line shows the
pathological behavior of the network, as the probability of having low response
time is quite lower than epochs 1 and 3.

Another characteristic of flash crowd events is the increased time for estab-
lishing connections. This measurement is available through the TCP sockets
used by the clients to connect with the CDN. Figure 20 illustrates the hand-
shake times for CDF. The x axis refers to the handshake time, while the y

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:29

Fig. 18. Flash crowd event through time.

Fig. 19. Response time CDF.

axis to the probability of having lower handshake times than a given value in
the x axis. As expected, the probability of estabilishing a quick connection is
significantly lower during epoch 2. CDNsim managed to capture this network
behavior.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:30 • K. Stamos et al.

Fig. 20. Handshake time CDF.

7.2 CDN Pricing

In this section, we present a scenario where a CDN has a contract with a Web
content provider. The CDN outsources content on behalf of a content provider
and charges according to usage based on pricing function. The ultimate goal is
to identify the final cost for the content provider under a CDN infrastructure. In
this context, we are mainly focused on capturing the CDN usage via a net utility
measure. Then, the respective net utility of the CDN can be easily translated
into a price for the services offered.

The monetary cost of the Web content provider is defined in Hosanagar
et al. [2006] using Eq. (1) below, where UCDN is the final cost of a Web content
provider under a CDN infrastructure; V(X) is the benefit to the content provider
by responding to the whole request volume X; τ (N) is the benefit per request
from faster content delivery through a geographically distributed set of N CDN
surrogate servers; Co is cost of outsourcing content delivery; P(u) is the usage-
based pricing function; and u is the CDN net utility.

UCDN = V(X) + τ (N) × X − Co − P(u) (1)

Regarding the usage-based pricing function, we should define the CDN net
utility. We quantify a net utility ui of a CDN surrogate server i by using Eq. (2),
see, for example, Mortazavi and Kesidis [2006] for a similar utility for a p2p
system. The intuition in this metric is that a surrogate server is considered
useful (high net utility) if it uploads content more than it downloads, and vice
versa. The parameter ξ is the ratio of the uploaded bytes to the downloaded
bytes. The resulting net utility ranges to [0, 1]. The value ui = 1 is achieved if
the surrogate server uploads only content (ξ = ∞). On the contrary, the value
ui = 0 is achieved if the surrogate server downloads only content (ξ = 0). In
the case of equal upload and download (ξ = 1) , the resulting value is ui = 0.5.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:31

Fig. 21. Net utility of a surrogate server through time.

Finally, the CDN net utility u can be expressed as the mean of the individual
utilities of each surrogate server.

ui = 2
π

× arctan(ξ) (2)

In order to observe the net utility in action, we set up a simulation with 100
surrogate servers, 1008 routers, a Web content provider with 300000 pages,
and 1000000 requests. The redirection policy was set to the cooperative clos-
est surrogate server, and the caches were, initially, all empty, running LRU.
Figure 21 records the net utility of a surrogate server through time. The x axis
represents the order of the requests sorted by their time of arrival, while the
y is the respective net utility using Eq. (2). As expected, there is a warm-up
phase at the beginning of the curve where the cache starts to fill with objects.
The initial net utility is 0.5, as no content was uploaded or downloaded, and for
a short time period it was below 0.5, reflecting the initial content pull to fill the
cache. As time progressed, the net utility improved, since the cache hit ratio
improved, leading to fewer downloads. The curve reaches a plateau at 0.77,
indicating performance limits, given the current configuration and traffic. The
CDN net utility is the mean of all the measurements of all surrogate servers,
and in our case it is 0.5859 with standard deviation of 0.0340.

8. CDNSIM IN PRACTICE

CDNsim can be used to evaluate the performance of a CDN infrastructure.
Its simulation environment allows researchers and software practitioners to
develop state-of-the-art policies as well as address new research pathways in
the area of CDNs. Moreover, the analysts of a real CDN provider are able to
inspect a content service during its pre- and postservice release life-cycle.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:32 • K. Stamos et al.

8.1 CDNsim Validation

According to Sargent [2005], in order to validate a simulated model, it should
be compared with another reference model either real or simulated (provided
that it is validated). In the context of CDNs, several measures should be consid-
ered for benchmarking, such as mean response time, cache hit ratio, and byte
hit ratio. Advanced network monitoring should also be performed, including
TCP/IP traffic, DNS redirection, and internode interaction.

Considering that there is no CDN simulation model in the literature (more
details in Section 2) that shares common characteristics with CDNsim (e.g.,
supports TCP/IP networking), no validation can be performed. Another ap-
proach is to validate CDNsim with the existing academic CDNs (CoDeeN,
CoralCDN, Globule). As we mentioned in Section 2 on related work, the
CoDeeN and CoralCDN infrastructures are built upon Planetlab. However,
these testbeds cannot be used to validate CDNsim, since we do not have full
knowledge of the Planetlab network topology. Specifically, there cannot be a
precise bandwidth measurement and network topology structure mapping for
the Planetlab infrastructure. This problem is an open research issue [Lee et al.
2005], and is out of the scope of this article. Hence, both CoDeeN and CoralCDN
are treated as “black boxes”; we are not aware of DNS redirections, cache hits
and misses, or even details such as the maximum connections per node. Globule
is also treated as a “black box,” since it was implemented as a third-party mod-
ule for the Apache HTTP server. Globule requires individuals to voluntarily
install the module in their machines. Moreover, we are still not able to ex-
tract a precise network topology from the Globule CDN. Hence, no comparison
with CDNsim can be performed due to insufficient knowledge of the reference
system.

Thus, CDNsim was validated by the OMNeT++ community [Varga a], since
CDNsim was built upon the OMNeT++ framework. Actually, it was announced
by the official site of OMNeT++. CDNsim’s reliability is also reflected by the
fact that there are a growing number of publications1 that use CDNsim in
their experimentation. Therefore, we believe that CDNsim has reached a level
of maturity that enables researchers to use it for production.

8.2 From the Perspective of Researchers

CDNsim has been used in the following CDN research issues to provide new
insights and perspectives:

—Content delivery practices. Several issues are involved in CDNs because there
are different decisions related to where to locate surrogate servers, which
content to outsource, and which practice to use for (selected content) out-
sourcing. It is obvious that each decision made about these issues results in
different costs and constrains for CDN providers. In this framework, CDNsim
has been used to evaluate a wide range of policies [Pallis et al. 2005, 2006;
Sidiropoulos et al. 2008]. Furthermore, CDNsim has been used to explore the

1A list of publications where CDNsim is involved can be found in http://oswinds.csd.auth.gr/∼
cdnsim/#Publications.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:33

benefits of caching in a CDN infrastructure [Stamos et al. 2006]. With such
an approach, the surrogate servers may act simultaneously, both as proxy
servers and content replicators.

—Pricing CDN services. Pricing CDN services is a challenging problem faced
by managers and CDN providers. Deployment of new services, such as Edge-
suite, are accompanied by open questions regarding pricing and service adop-
tion. Hosanagar et al. [2006] developed an analytic model to analyze optimal
pricing policies for CDNs. This model extracts useful conclusions for the in-
frastructure of CDNs. In Hosanagar et al. [2006], CDNsim was used in order
to prove that the conclusions above can be validated in a realistic simulation
environment.

—Peering for CDNs. Peering for CDNs is gaining popularity among researchers
in the scientific community. Several approaches are being explored ways to
find peer CDNs. However, several critical issues (i.e., When to peer? How to
peer?) should be addressed. Pathan [2007], presents a novel architecture of a
virtual organization (VO)-based model for forming peering CDNs. CDNsim is
used to demonstrate the behavior and effectiveness of the developed policies
to ensure effective peering among CDNs. It can also be utilized to evaluate
the best practices and new techniques for load measurement, request redi-
rection, and content replication in the proposed framework for peering CDNs.
According to the authors, CDNsim is suitable for simulating the peering CDN
framework under realistic traffic, workload and replication conditions.

CDNsim might also offer new perspectives for researchers in order to evaluate
and validate their proposed approaches. Some applications that indicate where
CDNsim could be used as a simulation testbed may be the following:

—Security of CDNs. The rapid growth of business transactions conducted on
the Internet has drawn much attention to the problem of data security of
CDNs [Yao et al. 2007]. In this context, secure content delivery protocols
should be proposed in order to maintain content integrity (the delivered
content modified by unauthorized entities should not be accepted) and confi-
dentiality (the delivered contents cannot be viewed by unauthorized entities,
including unauthorized proxies and other users besides the requester). The
high extensibility of CDNsim allows researchers to adapt the proposed pro-
tocols (e.g., iDeliver [Yao et al. 2007]) into its infrastructure.

—CDNs on the sensor Web. Content delivery on the sensor Web is a topic of
emerging interest and importance in the academic and industrial commu-
nities [Balazinska et al. 2007]. In general, the sensor Web is a distributed
sensing system in which information is globally shared and used by wired
and wireless platforms. Considering that the CDN infrastructure may be
either wired or wireless, CDNs or CDN-like overlay networks will play a key
role in the evolution of large-scale sensor network deployments. Specifically,
the worldwide sensor Web requires a distributed data management infras-
tructure, such as a CDN, since sensors are geographically distributed and
produce data at high rates. Sensor data will be stored near its source, and
data processing and filtering will be pushed to the edges. Thus, such overlay

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:34 • K. Stamos et al.

network structures may facilitate and optimize the management and deliv-
ery of static or streaming content over the sensor Web. In addition, such an
architecture will reduce bandwidth requirements, enable parallel process-
ing of sensor feeds, and finally achieve a delicate balance among the load of
sensors.

—Mobile CDNs. The recent advances in mobile content networking (e.g.,
GSM/3G, WiFi, etc.) enable the wireless network infrastructures to support
bandwidth-intensive services such as streaming media, mobile TV, and so on.
Taking into account that mobile user appetites for information is expected to
keep growing, we need innovative techniques that can improve information
dissemination. In this context, mobile CDNs are deployed within the range
of a wireless network (e.g., cellular network, WiFi) and offer high-quality
services for delivering dynamic data and rich multimedia content to mo-
bile devices [Eriksson et al. 2008; Loulloudes et al. 2008]. Specifically, the
network infrastructure in mobile CDNs is de-composed into the two follow-
ing components: (a) the wired network infrastructure, and (b) the wireless
network infrastructure. The former is an infrastructure responsible for the
wired environment of the CDN; it provides the communication links that
connect origin servers with surrogate servers and surrogate servers with net-
work elements (e.g., switches, routers, 3G/GSM-enabled base stations (BS),
Wi-Fi enabled access points (AP)). On the other hand, the wireless network
infrastructure is responsible for enabling communication and information
dissemination among static and mobile users in the wireless environment of
mobile CDN. CDNsim can be used as a testbed for simulating the wired net-
work infrastructure of a mobile CDN. CDNsim can also be extended through
the development of new add-on modules that will allow the support of mobile
CDNs. For instance, there are various mobile, ad-hoc and sensor simulation
frameworks based on OMNeT++.

—P2P, GRID and agent technologies in CDNs. Since CDNs are complex large-
scale distributed systems, their development may be supported by the new
emerging technologies of P2P, GRID, and Agents, which, respectively, offer
dynamism, robustness, and intelligence [Fortino and Russo 2007]. The inte-
gration of such technologies is a challenging issue, which is being undertaken
in several Web application domains, such as distributed information retrieval
and data mining [Luo et al. 2007]; large-scale service-oriented systems for the
semantic Web [Li et al. 2004], and provision of multimedia services [Bruneo
et al. 2005]. The successful exploitation and integration of these paradigms
and technologies under a CDN infrastructure would provide an efficient way
to cope with the aforementioned issues and would contribute significantly
to the development of more efficient CDNs. The CDNsim architecture can
easily enhance the aforementioned emerging technologies.

8.3 From the Perspective of Software Practitioners

CDN providers are interested in maximizing the benefit of their network in-
frastructure. To achieve this, the software practitioners design proprietary al-
gorithms that manage the content effectively. The natural derivative of such

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:35

activity is the creation of a new product. In the context of CDNs, the product is
usually a new content delivery service, like streaming video, large files delivery.
Although each service2 may differ from the others in terms of functionality, a
common set of periods in the lifetime of every service can be identified, where
CDNsim can be of use:

—Before service release. This period includes the development process of the
service before its release to the users. CDNsim could be of use at the early
development stages. It can be used to design and implement prototypes that
give shape to the initial product ideas. Once the prototyping is done, it can be
used to perform an in vitro evaluation of performance and behavior under var-
ious network configurations and traffic patterns. CDNsim could significantly
reduce the infrastructure investments during the testing and prototyping
stages until a certain level of maturity is reached. Then, evaluation is per-
formed at the real CDN infrastructure. A real-world example of the concept
of prototyping and testing that could potentially be performed by CDNsim
is the recent high definition video streaming by AKAMAI. Another tool that
can be used to predict the performance and execution time of a distributed
application is P2PPerf [Ernst-Desmulier et al. 2007].

—After service release. By the time of its release to the wider public, a ser-
vice should have passed a set of testing suites. Additionally, there is a set
of documented conclusions about its behavior and performance. However, as
the product is being used under untested circumstances, its behavior may
divert from the initial conclusions. CDNsim may be used to reproduce a
problematic or unexpected situation, aiding the analysts to explain why an
observed behavior is reached. Therefore, CDNsim could be used for contin-
uous evaluation without disrupting the deployment of the service. Since the
environment in which a service runs is not static, CDNsim might act as
a mechanism for preventing unwanted situations before they happen. For
instance, the necessity for predicting behavior and preventing disaster was
apparent before a worldwide broadcast of a world soccer championship by
Limelight Networks [LimeLight].

—Service evolution in time. Eventually, a service will reach a certain level of
maturity, stability, and correctness. However, the “habitat” of the service
(network configurations, typical user populations, current technologies) is
constantly evolving. A representative example is the increment in fast In-
ternet connections and the fact that IPv6 will become a necessity since the
available IP addresses are shrinking. CDNsim could be used to perform a
what-if analysis. How does the service scale with larger user populations?
Can the service and the existing infrastructure keep up with much faster
connections that currently are not available? These questions could be ad-
dressed by setting up the respective network configurations in CDNsim.
Failing to predict the long-term evolution could result in loss of clients due
to not investing in an upgraded infrastructure in time.

2We use the term service to refer to any content delivery service.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:36 • K. Stamos et al.

9. CONCLUSION

With the emergence of the Web, the leading use of the Internet has become
content delivery. In this context, CDNs appear to provide a delicate balance
between costs (for Web content providers) and quality of services (for Web
customers). Considering that CDNs are in an early development phase, a vast
amount research has mainly focused on developing Web data management poli-
cies on the infrastructure of CDNs. However, a reliable, efficient, and scalable
simulation system which will simulate in great detail, the CDN infrastructure
has not been developed as yet. Thus, this work intends to cover this gap, by
presenting an efficient simulation tool for CDNs.

To sum up, CDNsim opens new perspectives to the research community be-
cause it is the first simulation tool for CDNs. Specifically, CDNsim is designated
to provide a realistic simulation for CDNs, simulating the surrogate servers,
the TCP/IP protocol, and the main CDN functions. The main advantages of this
tool are its high performance, its extensibility, and its user interface used to
configure its parameters.

APPENDIX: THE OMNET++ FRAMEWORK

The objective modular network test-bed in C++ (OMNeT++) is a public-source,
component-based, modular simulation framework. It has been used to simulate
communication networks and other distributed systems. The OMNeT++ model
is a collection of hierarchically nested modules. The top-level module is called
system module or network. This module contains one or more submodules
each of which could contain other submodules. The modules can be nested
to any depth, and hence it is possible to capture complex system models in
OMNeT++.

Modules are distinguished as being either simple or compound. A simple
module is associated with a C++ file that supplies the desired behaviors that
encapsulate algorithms. Simple modules form the lowest level of the module
hierarchy. Users implement simple modules in C++ using the OMNeT++ simu-
lation class library. Compound modules are aggregates of simple modules, and
are not directly associated with a C++ file that supplies behaviors.

Modules communicate by exchanging messages. Each message may be a
complex data structure. Messages may be exchanged directly between sim-
ple modules (based on their unique IDs) or via a series of gates and connec-
tions. Messages represent frames or packets in a computer network. The local
simulation time advances when a module receives messages from another mod-
ule or from itself. Self-messages are used by a module to schedule events at
a later time. The structure and interface of the modules are specified using
a network description language. They implement the underlying behaviors of
simple modules. Simulation executions are easily configured via initialization
files, which track the events generated and ensure that messages are delivered
to the right modules at the right time.

To take the advantage of the preceding features of OMNeT++, we have
chosen it as the framework for the CDNsim. Its salient features include the

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:37

following:

—It allows the design of modular simulation models, which can be combined
and reused in a flexible way. This allows the modeling of various client types
and network elements in CDNsim.

—It composes models with any granular hierarchy. This enables a detailed
modeling of the various network elements, such as surrogate server caches
and services.

—The object-oriented approach of OMNeT++ allows the flexible extension of
the base classes provided in the simulation kernel. Following the same ap-
proach in CDNsim, a generic architecture is defined and all customized CDN
elements are subclasses.

—Model components are compiled and linked with the simulation library, and
one of the user interface libraries, to form an executable program. One user
interface library is optimized for command line and batch-oriented execution,
while the other employs a graphical user interface (GUI) that can be used to
trace and debug the simulation. This enables CDNsim to be used for mass
experimentation, and careful step-by-step system monitoring.

—It offers an extensive simulation library that includes support for in-
put/output, statistics, data collection, graphical presentation of simulation
data, random number generators, and data structures.

—OMNeT++ simulation kernel uses C++, which makes it possible to be em-
bedded in larger applications.

—OMNeT++ models are built with the NED language and omnetpp.ini and do
not use scripts, which makes it easier for various simulations to be config-
ured.

—INET, which is an extension of OMNeT++, offers a large suite of network
protocols such as TCP/IP. Thus, we are able to design a CDN simulation
environment as an overlay network on top of an Internet topology, just like
the actual CDNs.

ACKNOWLEDGMENTS

The authors appreciate and thank the anonymous reviewers and CDNsim users
for their valuable comments and suggestions, which have considerably con-
tributed in improving CDNsim.

REFERENCES

AKAMAI REPORT. 2008. The state of the Internet. 1, 2, 2nd quarter 2008.
http://www.akamai.com/stateoftheinternet/.

ALZOUBI, H. A., RABINOVICH, M., AND SPATSCHECK, O. 2007. MyXDNS: A resquest routing DNS
server with decoupled server selection. In Proceedings of the 16th International Conference on
the World Wide Web. 351–360.

ARMOUR-BROWN, C., FITZHARDINGE, J., HUGHES, T., NETHERCOTE, N., MACKERRAS, P., MUELLER, D., SE-
WARD, J., ASSCHE, B.V., WALSH, R., AND WEIDENDORFER, J. Valgrind instrumentation framework for
building dynamic analysis tools. http://valgrind.org/.

BALAZINSKA, M., DESHPANDE, A., FRANKLIN, M.J., GIBBONS, P. B., GRAY, J., HANSEN, M., LIEBHOLD, M.,
NATH, S., SZALAY, A., AND TAO, V. 2007. Data management in the worldwide sensor Web. IEEE
Pervasive Computi. 6, 2, 30–40.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:38 • K. Stamos et al.

BEKTAS, T., CORDEAU, J.-F., ERKUT, E., AND LAPORTE, G. 2008. Exact algorithms for the joint object
placement and request routing problem in content distribution networks. Comput. Oper. Res. 35,
12, 3860–3884.

BEKTAS, T. AND OUVEYSI, I. 2008. Mathematical models for resource management and allocation
in CDNs. Lecture Notes in Electrical Engineering, vol. 9, Springer, Berlin, 225–250.

BENT, L., MICHAEL, R., GEOFFREY, V. M., AND ZHEN, X. 2004. Characterization of a large Web
site population with implications for content delivery. In Proceedings of the 13th International
Conference on the World Wide Web. 522–533.

BRUNEO, D., ZAIA, A., AND PULIAFITO, A. 2005. Agent-based middleware to access multimedia
services in a Grid environment. Multiagent Grid Syst. 1, 1, 41–59.

CHEN, Y., QIU, L., CHEN, W., NGUYEN, L., AND KATZ, R. H. 2003. Efficient and adaptive Web repli-
cation using content clustering. IEEE Select. Areas Comm. 21, 6, 979–994.

CLARK, D., SHENKER, S., AND FALK, A. 2007. Global environment for network innovations. Tech.
rep., Geni.

CODEEN. CoDeeN : A CDN for PlanetLab. http://codeen.cs.princeton.edu.
CORAL. CORAL CDN. http://www.coralcdn.org.
DHAMDHERE, A. AND DOVROLIS, C. 2008. Ten years in the evolution of the internet ecosystem. In

Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement (IMC’08). ACM,
New York, 183–196.

DIJKSTRA, E. W. 1959. A note on two problems in connection with graphs. Numer. Math. 1, 1,
269–271.

ERIKSSON, J., BALAKRISHNAN, H., AND MADDEN, S. 2008. Cabernet: Vehicular content delivery us-
ing WiFi. In Proceedings of the 14th ACM International Conference on Mobile Computing and
Networking (MobiCom’08), ACM, New York.

ERNST-DESMULIER, J.-B., BOURGEOIS, J., AND SPIES, F. 2007. P2PPerf: A framework for simulating
and optimizing peer-to-peer-distributed computing applications. Concurrency Comput. Pract.
Exper. 20, 6, 693–712.

FALL, K. Network simulators. http://www-nrg.ee.lbl.gov/kfall/netsims.html.
FORTINO, G. AND RUSSO, W. 2007. Using P2P, GRID and Agent technologies for the development

of content distribution networks. Future Generation Comput. Syst. 24, 3 (March), 180–190.
HOSANAGAR, K., CHUANG, J., KRISHNAN, R., AND SMITH, M. 2006. Service adoption and pricing of

content delivery network (CDN) services. Tech. Rep., Social Science Research Network.
IDSERDA, J. 2004. TCP/IP modelling in OMNeT++. Tech. Rep., University of Twente, The

Netherlands.
KANGASHARJU, J., ROBERTS, J., AND ROSS, K. W. 2002. Object replication strategies in content

distribution networks. Comput. Comm. 25, 4, 367–383.
KATSAROS, D., PALLIS, G., STAMOS, K., VAKALI, A., SIDIROPOULOS, A., AND MANOLOPOULOS, Y. 2008.

CDNs content outsourcing via generalized communities. IEEE Trans. Knowl. Data Eng. 21, 1.
KULKARNI, P., SHENOY, P. J., AND GONG, W. 2003. Scalable techniques for memory-efficient CDN

simulations. In Proceedings of the 12th International World Wide Web Conference. 609–618.
LAM, V. T., ANTONATOS, S., AKRITIDIS, P., AND ANAGNOSTAKIS, K. G. 2006. Puppetnets: Misusing

Web browsers as a distributed attack infrastructure. In Proceedings of the ACM Conference on
Computer and Communications Security. A. Juels, et al., Eds., ACM, New York.

LAOUTARIS, N., ZISSIMOPOULOS, V., AND STAVRAKAKIS, I. 2005. On the optimization of storage capacity
allocation for content distribution. Comput. Netw. 47, 409–428.

LEE, S., SHARMA, P., BANERJEE, S., BASU, S., AND FONSECA, R. 2005. Measuring bandwidth between
PlanetLab nodes. Tech. rep., HP Labs.

LI, B., DENG, X., GOLIN, M. J., AND SOHRABY, K. 1998. On the optimal placement of Web proxies in
the Internet: The linear topology. In Proceedings of the IFIP TC-6 8th International Conference
on High Performance Networking (HPN’98). Kluwer, Amsterdam, The Netherlands, 485–495.

LI, M., VAN SANTEN, P., WALKER, D. W., RANA, O. F., AND BAKER, M. A. 2004. SGrid: A service-oriented
model for the semantic grid. Future Generation Comput. Syst. 20, 1, 7–18.

LIMELIGHT. limelightnet. http://www.limelightcompany.com/.
LOULLOUDES, N., PALLIS, G., AND DIKAIAKOS, M. D. 2008. Information dissemination in mobile

CDNs. In Content Delivery Networks: Principles and Paradigms. R. Buyya et. al., Eds. Springer,
Berlin.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

CDNsim: A Simulation Tool for Content Distribution Networks • 10:39

LUO, J., WANG, M., HU, J., AND SHI, Z. 2007. Distributed data mining on agent grid: Issues,
platform and development toolkit. Future Generation Comput. Syst. 23, 1, 61–68.

MARKET. 2006. Content delivery networks, market strategies and forecasts (2001-2006). Tech.
Rep., AccuStream iMedia Research.

MORTAZAVI, B. AND KESIDIS, G. 2006. Model and simulation study of a peer-to-peer game with a
reputation-based incentive mechanism. In Proceedings of the Information Theory and Applica-
tions Workshop.

NETHERCOTE, N. AND SEWARD, J. 2007. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’07). ACM, New York, 89–100.

NGUYEN, T. V., SAFAEI, F., BOUSTEAD, P., AND CHOU, C. T. 2005. Provisioning overlay distribution
networks. Comput. Netw. 49, 1, 103–118.

NS. The network simulator - ns-2. http://www.isi.edu/nsnam/ns.
OLIVEIRA, C. A. S. AND PARDALOS, P. M. 2005. A survey of combinatorial optimization problems in

multicast routing. Comput. Oper. Res. 32, 8, 1953–1981.
OPPENHEIMER, D., ALBRECHT, J., PATTERSON, D., AND VAHDAT, A. 2004. Distributed resource discovery

on PlanetLab with SWORD. In Proceedings of the 1st Workshop on Real, Large Distributed
Systems.

PALLIS, G., STAMOS, K., VAKALI, A., KATSAROS, D., SIDIROPOULOS, A., AND MANOLOPOULOS, Y.
2006. Replication based on object load under a content distribution network. In Proceed-
ings of the 2nd International Workshop on Challenges in Web Information Retrieval and
Integration.

PALLIS, G. AND VAKALI, A. 2006. Insights and perspectives for content delivery networks. Comm.
ACM 49, 1, 101–106.

PALLIS, G., VAKALI, A., STAMOS, K., SIDIROPOULOS, A., KATSAROS, D., AND MANOLOPOULOS, Y. 2005. A
latency-based object placement approach in content distribution networks. In Proceedings of the
3rd Latin American Web Congress.

PATHAN, A.-M. K. 2007. Coordinated management and peering of content delivery networks.
Tech. draft, Grid Computing and Distributed Systems Laboratory, University of Melbourne,
Australia.

PIERRE, G. AND STEEN, M. 2006. Globule: A collaborative content delivery network. IEEE Comm.
Mag. 44, 8, 127–133.

PLANETLAB. http://www.planet-lab.org/.
QIU, L., PADMANABHAN, N. V., AND VOELKER, M. G. 2001. On the placement of Web server replicas.

Tech. rep.
RABINOVICH, M. AND SPATSHECK, O. 2002. Web Caching and Replication. Addison Wesley, Reading,

MA.
RAMAMURTHY, P., SEKAR, V., AKELLA, A., KRISHNAMURTHY, B., AND SHAIKH, A. 2007. Using

mini-flash crowds to infer resource constraints in remote Web servers. In Proceedings of
the SIGCOMM Workshop on Internet Network Management (INM’07). ACM, New York,
250–255.

SARGENT, R. G. 2005. Verification and validation of simulation models. In Proceedings of the 37th
Winter Simulation Conference. 130–143.

SIDIROPOULOS, A., PALLIS, G., KATSAROS, D., STAMOS, K., VAKALI, A., AND MANOLOPOULOS, Y. 2008.
Prefetching in content distribution networks via Web communities identification and outsourc-
ing. World Wide Web J. 11, 1, 39–70.

SPRING, N., PETERSON, L., BAVIER, A., AND PAI, V. 2005. Using PlanetLab for network research:
Myths, realities, and best practices. In Proceedings of the 2nd Workshop on Real, Large Dis-
tributed Systems. 17–24.

SRIPANIDKULCHAI, K., GANJAM, A., MAGGS, B., AND ZHANG, H. 2004. The feasibility of supporting
large-scale live streaming applications with dynamic application end-points. In Proceedings of
the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication. ACM, New York.

STAMOS, K., PALLIS, G., THOMOS, C., AND VAKALI, A. 2006. A similarity-based approach for integrated
Web caching and content replication in CDNs. In Proceedings of the 10th International Database
Engineering and Applications Symposium. 239–242.

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

10:40 • K. Stamos et al.

TANG, W., FU, Y., AND CHERKASOVA, L. 2003. MediSyn: A synthetic streaming media service
workload generator. In Proceedings of 13th International Workshop on Network and Operating
System Support for Digital Audio and Video. 12–21.

VAKALI, A. AND PALLIS, G. 2003. Content delivery networks: Status and trends. IEEE Internet
Computi. 7, 6, 68–74.

VARGA, A. OMNeT++. http://www.omnetpp.org/.
VARGA, A. OMNeT++ object-oriented discrete event simulation system user manual.

http://www.omnetpp.org/doc/manual/usman.html/.
VENKATARAMANI, A., YALAGANDULA, P., KOKKU, R., SHARIF, S., AND DAHLIN, M. 2002. The potential

costs and benefits of long term prefetching for content distribution. Comput. Commun. 25, 4,
367–375.

WANG, L., PAI, V., AND PETERSON, L. 2002. The effectiveness of request redirection on CDN robust-
ness. In Proceedings of the 5th Symposium on Operating System Design and Implementation.
345–360.

WANG, L., PARK, K., PANG, R., PAI, V., AND PETERSON, L. 2004. Reliability security in the CoDeeN
content distribution network. In Proceedings of the USENIX Annual Technical Conference.

WATTS, D. J. AND STROGATZ, S. H. 1998. Collective dynamics of ‘small-world’ networks. Nature
393, 6684, 440–442.

YAO, D., KOGLIN, Y., BERTINO, E., AND TAMASSIA, R. 2007. Decentralized authorization and data
security in Web content delivery. In Proceedings of the ACM Symposium on Applied Computing,
ACM, New York, 1654–1661.

YOUTUBE. http://www.youtube.com/.
ZEGURA, E. W., CALVERT, K. L., AND BHATTACHARJEE, S. 1996. How to model an internetwork.

In Proceedings of the 15th Annual Joint Conference on Computer Communications. IEEE and
Computer and Communications Society, 594–602.

ZHANG, Y., ZHANG, Z., MAO, Z. M., HU, C., AND MAGGS, B. M. 2007. On the impact of route mon-
itor selection. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement
(IMC’07). ACM, New York, 215–220.

Received March 2008; revised November 2008; accepted February 2009

ACM Transactions on Modeling and Computer Simulation, Vol. 20, No. 2, Article 10, Publication date: April 2010.

