
Available online at www.sciencedirect.com
Computers and Electrical Engineering 34 (2008) 309–323

www.elsevier.com/locate/compeleceng
A clustering-based prefetching scheme on a Web
cache environment

George Pallis a,*, Athena Vakali a, Jaroslav Pokorny b

a Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
b Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

Received 19 April 2006; received in revised form 12 February 2007; accepted 27 April 2007
Available online 5 September 2007
Abstract

Web prefetching is an attractive solution to reduce the network resources consumed by Web services as well as the
access latencies perceived by Web users. Unlike Web caching, which exploits the temporal locality, Web prefetching utilizes
the spatial locality of Web objects. Specifically, Web prefetching fetches objects that are likely to be accessed in the near
future and stores them in advance. In this context, a sophisticated combination of these two techniques may cause signif-
icant improvements on the performance of the Web infrastructure. Considering that there have been several caching pol-
icies proposed in the past, the challenge is to extend them by using data mining techniques. In this paper, we present a
clustering-based prefetching scheme where a graph-based clustering algorithm identifies clusters of ‘‘correlated’’ Web pages
based on the users’ access patterns. This scheme can be integrated easily into a Web proxy server, improving its perfor-
mance. Through a simulation environment, using a real data set, we show that the proposed integrated framework is
robust and effective in improving the performance of the Web caching environment.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Web prefetching; Web data clustering; Web caching; Users’ access patterns; World Wide Web
1. Introduction

The Web has evolved rapidly from a simple information-sharing mechanism offering only static text and
images to a rich assortment of dynamic and interactive services, such as video/audio conferencing, e-com-
merce, and distance learning. The explosive growth of the Web has imposed a heavy demand on networking
resources and Web servers. Users often experience long and unpredictable delays when retrieving Web pages
from remote sites [21]. Hence, an obvious solution in order to improve the quality of Web services would be
the increase of bandwidth, but such a choice involves increasing economic cost. However, the higher band-
width would solve temporarily the problems since it would ease the users to create more and more
0045-7906/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compeleceng.2007.04.002

* Corresponding author. Tel.: +30 2310 991927; fax: +30 2310 998419.
E-mail address: gpallis@ccf.auth.gr (G. Pallis).

mailto:gpallis@ccf.auth.gr


310 G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323
resource-hungry applications, bunching again the network. Therefore, the network limitations will remain or
worsen unless effective software solutions are also provided.

1.1. The Web caching approach

Caching proved itself as an important technique to optimize the way the Web is used [26]. In particular,
many of the Web caching aspects are originated from the caching idea implemented in various computer
and network systems whereas Web caching introduces new issues in Web objects management and retrieval
across the network. Specifically, Web caching is implemented by proxy server applications developed to sup-
port many users. Proxy applications act as an intermediate between Web users and servers. Users make their
connection to proxy applications running on their hosts. The proxy connects the server and relays data
between the user and the server. At each request, the proxy server is contacted first to find whether it has a
valid copy of the requested object. If the proxy has the requested object this is considered as a cache hit, other-
wise a cache miss occurs and the proxy must forward the request on behalf of the user. Upon receiving a new
object, the proxy services a copy to the end-user and keeps another copy to its local storage.

From the above discussion follows that Web caching reduces bandwidth consumption, network congestion,
and network traffic because it stores the frequently requested content closer to users. Also, because it delivers
cached objects from proxy servers, it reduces external latency (the time it takes to transfer objects from the
origin server to proxy servers). Finally, caching improves reliability because users can obtain a cached copy
even if the remote server is unavailable. As far as concerned the performance of a Web proxy caching scheme,
it is mainly dependent on the cache replacement algorithm [25] (identify the objects to be replaced in a cache
upon a request arrival) which has been enhanced by the underlying proxy server. However, cache hit rates
have not improved much with these schemes. Particularly, a Web caching scheme has three significant draw-
backs: If the proxy is not properly updated, a user might receive stale data, and, as the number of users grows,
origin servers typically become bottlenecks. For instance, when numerous users access a Web site simulta-
neously – such as when ‘‘flash crowds’’ flooded popular news sites with requests in the wake of the September
2001 terrorist attack in the US – serious caching problems result and sites typically become unavailable [1].
Finally, several factors diminish the ideal effectiveness of Web caching. The obvious factors are the limited
system resources of cache servers (i.e., memory space, disk storage, I/O bandwidth, processing power, and net-
working resources). However, even if the cache space is unlimited, there are significant problems that cannot
be avoided by such an approach. Specifically, large caches are not a solution because, the problem of updating
such a huge collection of Web objects is unmanageable. Therefore, we must resort to an approach, which will
predict the future users’ requests and retain in cache the most valuable objects.

1.2. The Web prefetching approach

Prefetching attempts to overcome these limitations by pro-actively fetching content before users actually
request it [11]. Web prefetching is the process of deducing user’s future requests for Web objects by locating
popular requested objects into the cache prior to an explicit request for them. Unlike Web data caching, which
exploits the temporal locality, the Web prefetching schemes are based on the spatial locality of Web objects. In
particular, the temporal locality refers to repeated users’ accesses to the same object within short time periods,
whereas, the spatial one refers to users’ requests where accesses to some objects frequently entail accesses to
certain other objects. Typically, the main benefits of employing prefetching is that it prevents bandwidth
underutilization and reduces the latency. Therefore, bottlenecks and traffic jams on the Web are bypassed
and objects are transferred faster. Thus, the proxies may effectively serve more users’ requests, reducing the
workload from the origin servers. Consequently, the origin servers are protected from the flash crowd events
as a significant part of the Web traffic is dispersed over the proxy servers. On the other hand, the main draw-
back of systems which have enhanced prefetching policies is that some prefetched objects may not be eventu-
ally requested by the users. In such a case, the prefetching scheme increases the network traffic as well as the
Web servers’ load. In order to overcome this limitation, high accuracy prediction models have been used [32].

From the above it occurs that caching and prefetching complement each other in order to reduce the notice-
able response time perceived by users [16]. Table 1 presents the main difference between Web caching and Web



Table 1
Caching vs. prefetching

Approach Locality Architecture Objects’ placement

Caching Temporal Pull-based Reactive
Prefetching Spatial Push-based Proactive

G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323 311
prefetching. In this paper, we propose a scheme which integrates efficiently caching and prefetching
approaches. Specifically, the potential main advantage of adopting prefetching policies over a proxy cache ser-
ver is that we manage effectively the Web content by exploiting both the temporal and the spatial locality of
objects. Another important feature in this paper is that we represent the Web users’ requests using a Web nav-
igational graph. The rest of this paper is organized as follows: Section 2 reviews the related work and outlines
the motivation and contribution of this work. Section 3 describes the proposed framework, which is the clus-
tering algorithm and how it is adapted in the prefetching scheme. Section 4 provides the experimental results
and finally, Section 5 concludes the paper.

2. Related work and paper’s contribution

Prefetching and caching are two well-known approaches for improving the performance of the Web and
have become essential components of the Web infrastructure. The benefits of these technologies have given
rise to new industries, including equipment and service vendors that supply cache servers that offer caching
and prefetching services to consumers and providers of Web resources. Nowadays, a number of commercial
systems implement some form of prefetching. For example, a number of browser extensions for FireFox [9],
Netscape and Microsoft Internet Explorer as well as some personal proxies that perform prefetching of links
of the current page. In this section, we provide a classification of the existing prefetching policies and we fur-
ther present the motivation and contribution of this work.

2.1. Web prefetching

The Web prefetching approaches can be characterized according to its short-term and long-term benefits.
In this context, we categorize the existing prefetching policies as follows:

• Short-term prefetching policies: Future requests are predicted to the cache’s recent access history. Based on
these predictions, clusters of Web objects are pre-fetched [4]. In this context, the short-term prefetching
schemes use Dependency Graph (DG), where the patterns of accesses are held by a graph and Prediction
by Partial Matching (PPM), where a scheme is used, adopted from the text compression domain [3,24]. In
addition, several short-term prefetching policies [6,19] are based on Markov models, which are used for
modeling and predicting user’s browsing behavior over the Web.

• Long-term prefetching policies: Global object access pattern statistics (e.g., objects’ popularity, objects’ con-
sistency) are used to identify valuable (clusters of) objects for prefetching. In this type of scheme, the objects
with higher access frequencies and no longer update time intervals are more likely to be prefetched [30].

The existing Web caching schemes use the short-term prefetching policies, by prefetching objects which are
likely to be referenced in the near future. On the other hand, the long-term prefetching scheme may be applied
on replication schemes (such as a Content Distribution Network (CDN) platform) [21] as well as on mobile
computing environments [7,17]. Here, we deal with short-term prefetching policies which are applied on a Web
caching environment.

2.2. Motivation and paper’s contribution

Short-term prefetching helps on reducing the user-perceived latency, however, it suffers from two
drawbacks. First, without a carefully designed prefetching policy, a prefetching scheme may cause excessive



312 G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323
network traffic. For instance, an aggressive one has as result that several documents (which have been pre-
fetched by the proxy) are not used by the user at all. On the contrary, if the prefetching control is strict, a
proxy will tend to discard some beneficial hints provided by the Web servers. Second and foremost, the cache
space is not used optimally. Considering that the cache space is limited, the challenge is to integrate Web cach-
ing and Web prefetching in order to improve the Web cache performance.

Motivating by the wealth of research in Web caching [13,25,28,32] as well as the benefits of Web prefetching
[16,26,28], the idea of this paper is to integrate these approaches. We extend the most popular cache replace-
ment policies which have been adopted by proxy servers (e.g., Squid1) by inserting a prefetching mechanism.
More precisely, we present a clustering-based prefetching scheme where a number of clusters of ‘‘correlated’’
Web pages based on the users’ access patterns is identified. These pages may belong to different Web sites.
According to the user’s request, one of the resulted clusters is selected to be fetched by the proxy cache, where
each proxy manages its content by a cache replacement policy.

There is a wide range of Web data clustering schemes in the literature [29], where most of them cluster Web
pages which belong in the same Web site (intra-site Web pages). However, due to the complex nature of the
Web, most clustering schemes have low performance if they are applied to grouping inter-site Web pages (Web
pages which belong in different Web sites). Furthermore, the content of the resulted clusters should be adapted
to changes in the Web users’ patterns, which are rather natural in the Web. Thus, the Web log file is repre-
sented by a Web navigational graph and we use graph partition techniques [27], which have been inspired
by the graph theory, in order to construct efficient clusters of Web pages. The present paper makes the follow-
ing contributions:

• We present an integrated approach which combines effectively caching and prefetching. Specifically, Web
caching and prefetching can complement each other since the first one exploits the temporal locality
whereas the second one utilizes the spatial locality of the Web objects.

• We represent the proxy traces (users’ requests) using a Web navigational graph. Then, we effectively man-
age it by using graph mining techniques.

• We introduce an algorithm for clustering inter-site Web pages, called clustWeb. According to this algo-
rithm, the clusters have been resulted by partitioning the Web navigational graph using association rule
mining techniques. The efficiency of the algorithm is that the resulted clusters are based on the connectivity
among Web pages in a Web navigational graph.

• We develop a simulation environment to test the efficiency of the proposed integrated scheme. Specifically,
we provide a clustering based short-term prefetching scheme, called clustPref, which can be easily adapted
on a Web cache environment, integrating in a sufficient way both caching and prefetching. According to
this scheme, each time a user requests an object, the proxy fetches all the objects which are in the same clus-
ter with the requested object. Using real data, we show the robustness and efficiency of the proposed
method.
3. Clustering towards prefetching

In the next paragraphs, we present the process which we follow in order to determine which objects to select
for prefetching in the Web caching environment as well as the proposed prefetching scheme.
3.1. Preprocessing proxy logs

A Web user may visit several Web sites from time to time and spend arbitrary amount of time between
consecutive visits. To deal with the unpredictable nature of Web browsing, we should analyze the Web proxy
log file. In particular, the Web proxy access log is a sequential file with one user access record per line. Con-
sidering that each Internet Service Provider (ISP) has a proxy server cache, the Web proxy log files provide
1 Squid Web Proxy Cache: http://www.squid-cache.org/.

http://www.squid-cache.org/


Fig. 1. A sample access log file.

G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323 313
information about activities performed by a user from the moment the user logs in to the ISP to the moment
the same user logs out from it. An access proxy log entry usually consists of the following fields:

• Time: A Unix timestamp of the date and time of the request with a millisecond resolution.
• Duration: The elapsed time considers the milliseconds that the transaction busied the cache.
• Client address: The user IP address of the request.
• Result codes: The cache result of the request contains information on the kind of request, how it was sat-

isfied, or in what way it failed.
• Bytes: The size is the amount of data delivered to the user.
• Request method: The request method to obtain an object.
• URL: This column contains the URL requested.
• rfc931: It contains the ident lookups for the requesting user.
• Hierarchy code: The IP address or hostname where the request (if a miss) was forwarded.
• type: The content type of the object as seen in the HTTP reply header.

More details for the Squid log files can be found in the official Web site of the Squid proxy server (http://
www.squid-cache.org/). An example of a Web proxy server log file is given in Fig. 1.

Then, these data are undergone a certain pre-processing [33], such as invalid data cleaning. Data cleaning
removes those requests that are obviously generated by programs running on a user. In addition, we remove
the uncacheable requests (i.e., queries with ? in the URLs and cgi-bin requests).

The next step is to group the IPs into different categories, according to their domains. The process of group-
ing the IPs into categories improves the data management and in addition it eliminates the complexity of the
underlying problem (as the number of domains is smaller than the number of individual IPs) [22]. Further-
more, with such an approach, we avoid erroneous assumptions since in proxy logs, the real-world individual
users cannot be uniquely identified (several records of proxy log files come from crawlers, Web accelerators,
etc.) and thus multiple users may be mapped into one IP address.

3.2. The clustering approach

Since we have identified what objects have been requested by each client group (we group the users based
on their domains), the next step is to assign, for each client group, these objects into clusters.2 One simplistic
solution to this problem is to cluster for each client group the most popular objects. However, authors in [4]
report that the popularity of each object varies considerably. In addition, the use of administratively tuned
parameters to select the most popular objects, or decide the number of clusters causes additional headaches,
since there is no at priori knowledge about where to set the popularity threshold or how many clusters of
objects exist. Refraining from the above limitations, we present a graph-based approach in order to cluster
in an efficient way the Web pages.
2 The clustering problem is about partitioning a given data set into clusters (groups) such that the data points in the same cluster are
more similar to each other than points in different clusters.

http://www.squid-cache.org/
http://www.squid-cache.org/


Fig. 2. The Web navigational graph.

314 G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323
3.2.1. Web navigational graphs

The requests of each client group are represented by a weighted directed Web graph G(u,v), where each node
u represents a Web page and each edge v represents a set of users’ transitions from one Web page to another.
The weight of each edge is proportional to the number of transitions in the set. An illustration example of
constructing such graphs is given in Fig. 2.

However, due to the vast amount of Web pages, the resulting Web graphs, which have been occurred by the
users’ access patterns, become frequently incomprehensible and unmanageable. Therefore, association rule
mining techniques should be used in order to create sub-graphs [12,18], since the nodes and the edges can
be considered as binary association rules. In this work, the edges are filtered out by their weight. More spe-
cifically, we remove the edges where the connectivity between two pages is lower than a pre-specified thresh-
old, whereas the connectivity between two pages is determined by two parameters: support and confidence.

Definition 1. Let v:hui,uji be an edge from node ui to node uj, the support of G, denoted by freq(ui,uj), is defined
as the frequency of navigation steps between ui to uj. The confidence of G is defined as

freqðui;ujÞ
popðuiÞ , where pop(ui) is

the popularity of ui.

According to this definition, it occurs that the support value of the edge hu2,u3i for the client group 1 in Fig. 2 is

freq(u2,u3) = 1, whereas its confidence value is freqðu2;u3Þ
popðu2Þ ¼ 0:25, since pop(u2) = 4. In particular, if the support

threshold is low, the resulted sub-graphs may include too many spurious Web pages involving transitions with
substantially different support levels. If the support threshold is high, we may miss many interesting transitions
occurring at low levels of support. This suggests that the confidence value is also important for capturing tran-
sitions containing Web pages which are strongly related with each other. Therefore, in order to measure the
overall affinity among transitions within a Web graph, both support and confidence thresholds should be used
[12].

3.2.2. The clustWeb algorithm

Here, we describe our algorithm in order to cluster inter-site Web pages. We use a weighted directed Web
graph G(u,v) which represents the access patterns of a client group. Then, we partition the graph into sub-
graphs by filtering out some edges (edges with low support and confidence values). The nodes in each con-
nected sub-graph in the remaining navigational graph identify a cluster.

The detailed algorithm is described in pseudocode in Fig. 4. More specifically, the input to clustWeb con-
sists of the following information: the Web navigational graph, the number of client groups, a confidence



Fig. 3. The BFS algorithm.

G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323 315
threshold, and a support threshold. All edges with support or confidence value less than the corresponding
threshold values will be removed from the graph (procedures CutWithConfidence and CutWithSupport). It
should be noted that these values are critical in specifying the particular cluster size.3 Then, we apply the
BFS (Breadth First Search) algorithm on the above navigational graph (procedure TraverseWithBFS). Specif-
ically, BFS takes a graph and a node in the graph known as the source, and visits each node that can be
reached from the source by traversing the edges. In doing so, it outputs a sub-graph which consists of the
nodes that can be reached from the source. Note, that all the nodes which BFS traverses are marked. This
procedure iterates until BFS has been traversed all the nodes of the initial graph (at the last iteration no-
one node of the initial graph remains unmarked). The pseudocode of BFS is depicted in Fig. 3. The nodes
in each connected sub-graph in the remaining graph constitute a Web page cluster. Thus, each client group
has a separate number of clusters.

In view of this, a benefit of the clustWeb (in comparison with the hierarchical and partitional clustering
schemes) is that it exploits the users’ access patterns (Web proxy log file), with no need to determine the num-
ber of clusters in advance either randomly (naive approach) or by heuristic techniques. In clustWeb, the num-
ber of clusters is dynamically estimated by the confidence and support measures. Specifically, the clustWeb is
not guided by the number of clusters but it is rather guided by how strong the connectivity among Web pages
is in the Web navigational graph.

Concerning the complexity of the proposed scheme, it should be noted that the graph partitioning problem
is, generally, an NP complete problem [10]. The clustWeb is an heuristic approach where its complexity is
affected by the BFS complexity. Specifically, as it is depicted in Fig. 3, the BFS has to consider all paths to
all possible nodes of the graph. Thus, the time complexity of BFS is O(juj + jvj) where juj is the number of
nodes and jvj the number of edges in the graph [5]. In clustWeb, the BFS, in the worst case, would be repeated
Kjuj times, where K is the number of client groups.

3.3. The clustPref scheme

Here, we describe how the proposed clustering scheme can be adapted in a Web prefetching scheme, the so-
called clustPref. Fig. 5 depicts the proposed prefetching scheme. In particular, the following steps are taken
place:

Step 1: A Web user requests an object in a particular time.
Step 2: The proxy identifies the Web user, according to its IP address, and assigns it to one of the client

groups. In that framework, given that the clusters of Web objects are known, the proposed prefetching
3 The total size of objects in a cluster should not exceed the total cache size.



Fig. 4. The clustWeb algorithm.

Fig. 5. The ClustPref scheme.

316 G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323
scheme works as follows: The proxy searches inside the existing clusters to find in which of them the
requested Web object exists.



G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323 317
Step 3: The proxy prefetches from the origin servers all the objects that exist in the cluster which is selected in
the previous step. Then, these objects are managed by the proxy’s cache replacement policy.

Step 4: The proxy sends the requested object to user.

From the above, it is obviously, that the clustPref scheme is strongly dependent on the content of clusters. If
each cluster contains a large amount of objects, it will result in an overaggressive prefetching policy. On the
contrary, if each cluster contains only a few objects, then the clustPref will not have a significant effect on the
performance of the Web caching environment. Regarding it, the most critical issue is the selection of support
and confidence values, which determine the quality of clusters as well.

Another issue that should be addressed is the cache consistency, which tackles the problem of staleness in
cached objects. In this context, considering a study [20], which showed that the probability of requesting a
stale object is very small, we assume that we have strong consistency (accessed objects are always up to date).

4. Performance evaluation

In this section, we study the performance of the clustWeb in the proposed integrated environment.

4.1. Examined cache replacement policies

Whenever the cache is full and the proxy needs to cache a new object, it has to decide which object to evict
from the cache to accommodate the new object. As we have seen above, the policy used for the eviction deci-
sion is referred to as the replacement policy. Here, we evaluate the gains of the proposed integration approach
(clustPref) comparing with cache replacement policies. It should be noted that we do not compare the clust-
Pref approach with other prefetching schemes (such as PPM) since it is beyond the scope of this paper. Our
objective is to show how the performance of the proxy cache could be improved by enhancing a clustering-
based short-term prefetching scheme. Furthermore, we do not compare the efficiency of the clustWeb algo-
rithm with other clustering schemes because the existing graph partitioning tools (such as METIS [14,27])
require the number of clusters to be given in advance. However, such an approach cannot be applied on
our scheme since there is not knowledge about how many clusters of Web pages exist. Therefore, clustWeb
algorithm is used as an indicative one in order to test the proposed integrating scheme. In this framework,
we examine the most indicative and popular policies that have been adopted by the majority of Web cache
environments as well as some hybrid policies:

• LRU: It evicts from the cache the least recently referenced object. LRU has been applied in several proxy
caching servers, such as Squid [25].

• LRU-Prefetching: It is the standard LRU, when it is adapted with the clustPref scheme.
• LFU: It removes from the cache the least frequency requested object [25].
• LFU-Prefetching: It is the standard LFU, when it is adapted with the clustPref scheme.
• FRES-CAR: It identifies the objects that should be evicted by considering together three important criteria:

object’s frequency, recency and size [23].
• FRES-CAR-Prefetching: It is the FRES-CAR, when it is adapted with the clustPref scheme.
• CRF: The CRF’s decisions for replacement are based on a combination of the recency and frequency cri-

teria [15].
• CRF-Prefetching: It is the CRF, when it is adapted with the clustPref scheme.
• SIZE: The large objects are evicted first from the cache [25].
• SIZE-Prefetching: It is the standard SIZE, when it is adapted with the clustPref scheme.
4.2. Experimental results

The algorithms are simulated and experimented under a real workload of Web cache traces provided by a
major (Squid) proxy cache server installation. The Squid proxy server has been installed in many academic
institutions such as the Aristotle University (AUTH) and it is one of the top proxy servers in the Greek



318 G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323
Universities. Traces collected by the proxy servers, referred to as proxy logs or proxy traces, contain informa-
tion about Web document accesses by many users against many Web sites. In our experiments, the proxy
traces refer to the period from February 2001, regarding a total of almost 2,000,000 requests, of more than
26 GB (dynamic and static) content. Table 2 summarizes the details of this data set.

In order to create the clusters, we select the first (ordering by time) of the 70% of the total requests as train-
ing data set and the rest as testing data set for testing the proposed approach. Regarding the size of the cache,
it is expressed in terms of the percentage of the total number of bytes of all objects in a Web log file [31]. In our
experiments, we consider that the default value of cache size is defined as the 1.5% of bytes of all objects in a
Web proxy log.

4.2.1. Performance metrics

In order to evaluate the proposed scheme, we use two performance rates:

• Hit Rate (HR): is the percentage of the number of requests that are served by the cache over the total num-
ber of requests;

• Byte Hit Rate (BHR): is the percentage of the number of bytes that correspond to the requests served by
the cache over the total number of bytes requested.

A high HR indicates the user’s satisfaction and defines an increased user servicing. On the other hand, a high
BHR improves the network performance and reduces the user-perceived latency (i.e., bandwidth savings, low
congestion etc.).

4.2.2. Impact of confidence and support thresholds

We tested the competing algorithms with varying the confidence and support thresholds. In our experi-
ments we tested a wide range of confidence and support values. The results are reported in Tables 3–10. Con-
sidering that all the prefetching algorithms are imperfect, since fetch some content that is not requested by the
users, results in high bandwidth usage. Thus, we expect that the prefetching schemes would have lower BHR
than the caching schemes. To our surprise, Tables 7–10 depict that the clustPref presents in the most cases
better performance with respect to BHR. On the other hand, the integration of caching and prefetching does
not improve significantly the HR. In view of Tables 3–6, we observe that the prefetching algorithms exhibit
quite similar performance with respect to HR when they are compared with the caching schemes.
Table 2
Data set details

Data set Time period Number of requests

Access logs data from the proxy server of AUTH 2/4/2001–2/14/2001 2,000,000

Table 3
A comparison of hit rates for support = 2

Policies Sup = 2 Sup = 2 Sup = 2 Sup = 2

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 41.5 41.5 41.5 41.5
LRU-Prefetching (%) 42.5 42.5 42.5 42.5
LFU (%) 40.3 40.3 40.3 40.3
LFU-Prefetching (%) 41.3 41.3 41.3 40.4
FRES-CAR (%) 43.7 43.7 43.7 43.7
FRES-CAR Prefetching (%) 43.8 42.8 42.5 42
CRF (%) 9.4 9.4 9.4 9.4
CRF-Prefetching (%) 14 14 14 14
SIZE (%) 49.7 49.7 49.7 49.7
SIZE-Prefetching (%) 49.8 49.8 49.2 49.2



Table 4
A comparison of hit rates for support = 4

Policies Sup = 4 Sup = 4 Sup = 4 Sup = 4

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 41.5 41.5 41.5 41.5
LRU-Prefetching (%) 41.6 41.6 41.6 41.6
LFU (%) 40.3 40.3 40.3 40.3
LFU-Prefetching (%) 40.3 40.3 40.3 40.3
FRES-CAR (%) 43.7 43.7 43.7 43.7
FRES-CAR Prefetching (%) 42.4 42.4 42 42
CRF (%) 9.4 9.4 9.4 9.4
CRF-Prefetching (%) 13 11 13 9.4
SIZE (%) 49.7 49.7 49.7 49.7
SIZE-Prefetching (%) 49.3 49.3 49.3 49.3

Table 5
A comparison of hit rates for support = 6

Policies Sup = 6 Sup = 6 Sup = 6 Sup = 6

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 41.5 41.5 41.5 41.5
LRU-Prefetching (%) 41.6 41.6 41.6 41.6
LFU (%) 40.3 40.3 40.3 40.3
LFU-Prefetching (%) 40.3 40.3 39.8 39.8
FRES-CAR (%) 43.7 43.7 43.7 43.7
FRES-CAR Prefetching (%) 42.4 42.4 42.4 42.4
CRF (%) 9.4 9.4 9.4 9.4
CRF-Prefetching (%) 11.3 10.4 10.4 9.5
SIZE (%) 49.7 49.7 49.7 49.7
SIZE-Prefetching (%) 49.3 49.3 48.8 48.8

Table 6
A comparison of hit rates for support = 8

Policies Sup = 8 Sup = 8 Sup = 8 Sup = 8

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 41.5 41.5 41.5 41.5
LRU-Prefetching (%) 41.6 41.6 41.6 41.6
LFU (%) 40.3 40.3 40.3 40.3
LFU-Prefetching (%) 40.4 40.4 40.4 40.4
FRES-CAR (%) 43.7 43.7 43.7 43.7
FRES-CAR Prefetching (%) 42.4 42.4 42.4 42.4
CRF (%) 9.4 9.4 9.4 9.4
CRF-Prefetching (%) 10.4 9.8 9.8 9
SIZE (%) 49.7 49.7 49.7 49.7
SIZE-Prefetching (%) 48.8 48.8 48.8 48.8

G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323 319
Regarding the HR, as the confidence threshold is increasing, we observe a decrease of it for some cache
replacement algorithms. This can be explained by the fact that as long as the confidence threshold increases,
more clusters are being created for every single client group and thus, each cluster contains a very small num-
ber of Web pages. In the same context, FRES-CAR-prefetching shows better performance than the FRES-
CAR (with respect to HR) for low values of confidence and support (Table 3). This is due to the fact that
the FRES-CAR partitions the cache in several segments and thus avoids overflowing the cache with large-
scale objects. Therefore, high values of confidence create large clusters which cannot be managed by



Table 7
A comparison of byte hit rates for support = 2

Policies Sup = 2 Sup = 2 Sup = 2 Sup = 2

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 20.8 20.8 20.8 20.8
LRU-Prefetching (%) 21.6 22.8 22.8 22.8
LFU (%) 23.1 23.1 23.1 23.1
LFU-Prefetching (%) 23.9 23.9 23.9 23.9
FRES-CAR (%) 13.9 13.9 13.9 13.9
FRES-CAR Prefetching (%) 13.7 13.7 13.9 13.9
CRF (%) 5.8 5.8 5.8 5.8
CRF-Prefetching (%) 7 7.2 7.2 6.8
SIZE (%) 11.1 11.1 11.1 11.1
SIZE-Prefetching (%) 11.4 11.7 12.1 12.1

Table 8
A comparison of byte hit rates for support = 4

Policies Sup = 4 Sup = 4 Sup = 4 Sup = 4

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 20.8 20.8 20.8 20.8
LRU-Prefetching (%) 21.6 21.6 21.6 21.6
LFU (%) 23.1 23.1 23.1 23.1
LFU-Prefetching (%) 23.9 24.4 24.6 24.6
FRES-CAR (%) 13.9 13.9 13.9 13.9
FRES-CAR Prefetching (%) 13.9 13.9 13.9 13.9
CRF (%) 5.8 5.8 5.8 5.8
CRF-Prefetching (%) 7.2 6.8 7.2 6.4
SIZE (%) 11.1 11.1 11.1 11.1
SIZE-Prefetching (%) 11.6 11.6 11.9 11.6

Table 9
A comparison of byte hit rates for support = 6

Policies Sup = 6 Sup = 6 Sup = 6 Sup = 6

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 20.8 20.8 20.8 20.8
LRU-Prefetching (%) 21.6 22 22 22
LFU (%) 23.1 23.1 23.1 23.1
LFU-Prefetching (%) 23.9 23.9 23.9 23.9
FRES-CAR (%) 13.9 13.9 13.9 13.9
FRES-CAR Prefetching (%) 13.7 13.7 13.7 13.7
CRF (%) 5.8 5.8 5.8 5.8
CRF-Prefetching (%) 6.8 7.2 7 6.8
SIZE (%) 11.1 11.1 11.1 11.1
SIZE-Prefetching (%) 11.5 11.5 11.5 11.5

320 G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323
FRES-CAR. Concerning the BHR, we observe that LRU-prefetching, LFU-prefetching, CRF-prefetching
and SIZE-prefetching outperform the LRU, LFU, CRF and SIZE, respectively, (consistently around 3–
22% absolute improvement), regardless of the values of confidence and support (Tables 7–10).

As far as concerned the value of support threshold, as depicted from the Tables 3–10, we observe that the
different values of it (while the confidence threshold remains stable) do not impact significantly the perfor-
mance of the proxy cache. Although our experiments show that the behavior of clustPref is not very sensitive
on the value of support, we include both the confidence and the support as indicators of the connectivity
among two pages. The reason is that the distribution of page references on the Web has been proven that



Table 10
A comparison of byte hit rates for support = 8

Policies Sup = 8 Sup = 8 Sup = 8 Sup = 8

Conf = 0.1 Conf = 0.3 Conf = 0.6 Conf = 0.9

LRU (%) 20.8 20.8 20.8 20.8
LRU-Prefetching (%) 21.6 21.6 21.6 21.6
LFU (%) 23.1 23.1 23.1 23.1
LFU-Prefetching (%) 23.9 24.2 24.2 24.2
FRES-CAR (%) 13.9 13.9 13.9 13.9
FRES-CAR Prefetching (%) 13.7 13.7 13.7 13.7
CRF (%) 5.8 5.8 5.8 5.8
CRF-Prefetching (%) 6.8 6.8 6.6 6.2
SIZE (%) 11.1 11.1 11.1 11.1
SIZE-Prefetching (%) 11.3 11.3 11.5 11.5

G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323 321
it is highly skewed [8]. Thus, if we have used only the support will result in a large number of pages to be clus-
tered together by some popular Web pages erroneously. For instance, it is assumed that the average number of
accesses to one Web page for a not popular Web site is three times per day and a Web page from a popular
Web site can actually have more than 10,000 accesses. In such a case, large values of support for most pages,
which are linked to a popular Web page, will be obtained, affecting both the number and the content of
clusters.

Summarizing the above results, we make the following remarks:

• Efficient clusters lead to an effective prefetching policy.
• The prefetching scheme, clustPref, improves significantly the network performance since it achieves higher

BHR than the other approaches.
• The clustPref is a realistic scheme, which can be adapted easily to a Web cache environment, bridging the

performance gap between BHR and the percentage of the requests satisfied by the proxy cache.
• The number of clusters does not affect in most cases the efficiency of the proposed prefetching scheme, since

the prefetching policies present quite similar performance regardless of the values of confidence and
support.

• Our approach is characterized by its adaptiveness to changes in the Web users’ patterns, which are rather
natural in the Web. This is due to the fact that the proposed scheme is parametric with respect to the Web
data clusters, which can be recomputed periodically in order to keep track of the recent past.
5. Conclusions—future work

In this paper, we addressed the short-term prefetching problem on a Web cache environment using an algo-
rithm (clustWeb) for clustering inter-site Web pages. The proposed scheme efficiently integrates Web caching
and prefetching. According to this scheme, each time a user requests an object, the proxy fetches all the objects
which are in the same cluster with the requested object. Specifically, the proxy traces are represented by a Web
navigational graph. Then, the clusters have been resulted by partitioning this graph, where the number of clus-
ters is not determined at priori but it is dynamically estimated by the confidence and support measures. Using
real data, we show the robustness and efficiency of the proposed method. It should be noticed that the pro-
posed scheme may also have a number of practical applications in information management and e-commerce
(recommending new products to Web site visitors [2]).

For the future, we plan to further investigate the efficiency of the clustWeb to a wide range of applications,
such as discovering usage patterns and profiles, detecting copyright violations, and reporting search results.
Furthermore, another future work is to compare the proposed prefetching scheme with other clustering algo-
rithms [14,27]. As we referred above, the clustWeb algorithm is used as an indicative one in order to test the
proposed integrating scheme. Finally, research efforts are underway towards extending the clustPref scheme
under a Content Distribution Network (CDN).



322 G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323
Acknowledgements

The authors appreciate and thank the anonymous reviewers for their valuable comments and suggestions,
which have considerably contributed in improving the paper’s content, organization and readability.

References

[1] Ari I, Hong B, Miller EL, Brandt SA, Long DDE. Managing flash crowds on the Internet. In: Proceedings of the MASCOTS
2003. Orlanto, USA: IEEE Press; 2003. p. 246–9.

[2] Berendt B, Spiliopoulou M. Analysing navigation behaviour in web sites integrating multiple information systems. VLDB J Special
Issue on Databases and the Web 2000;9(1):56–75.

[3] Chen X, Zhang X. Popularity-based PPM: an effective web prefetching technique for high accuracy and low storage. In: Proceedings
of the international conference on parallel processing. Canada, Vancouver; 2002.

[4] Chen Y, Qiu L, Chen W, Nguyen L, Katz RH. Efficient and adaptive Web replication using content clustering. IEEE J Selected Areas
Commun 2003;21(6):979–94.

[5] Cormen TH, Leiserson E, Rivest R, Stein C. Introduction to algorithms. 2nd ed. MIT Press and McGraw-Hill; 2001, ISBN 0-262-
03293-7.

[6] Deshpande M, Karypis G. Selective Markov models for predicting Web-page accesses. In: Proceedings of the 1st SIAM international
conference on data mining. Chicago, USA; 2001.

[7] Drakatos S, Pissinou N, Makki K, Douligeris C. A context-aware prefetching strategy for mobile computing environments. In:
Proceedings of the 2006 international conference on communications and mobile computing. Vancouver, British Columbia,
Canada: ACM Press; 2006. p. 1109–16.

[8] Faloutsos C, Faloutsos P, Faloutsos M. On power-law relationships of the Internet topology. In: Proceedings of the ACM
SIGCOMM conference on network architectures and protocols. Cambridge, USA; 1999.

[9] Fisher D, Saksena G. Link prefetching in Mozilla: a server-driven approach. In: Proceedings of the WCW; 2003.
[10] Garey M, Johnson D. Computers and intractability – a guide to the theory of NP-completeness. W.H. Freeman; 1979.
[11] Jiang Y, Wu M, Shu W. Web prefetching: costs, benefits and performance. In: Proceedings of the 7th international workshop on web

content caching and distribution (WCW2002). Boulder, Colorado; 2002.
[12] Jiang N, Gruenwald L. Research issues in data stream association rule mining. SIGMOD Record 2006;35(1):14–9.
[13] Jung J, Lee D, Chon K. Proactive Web caching with cumulative prefetching for large multimedia data. Comput Networks 2000;

33(1–6):645–55.
[14] Karypis G. Cluto: software for clustering high dimensional data sets. <www.cs.umn.edu-karypis>, 2005.
[15] Katsaros D, Manolopoulos Y. Caching in Web memory hierarchies. In: Proceedings of the ACM symposium on applied computing

(ACM SAC). Nicosia, Cyprus: ACM Press; 2004. p. 1109–13.
[16] Kroeger TM, Long DDE, Mogul JM. Exploring the bounds of web latency reduction from caching and prefetching. In Proceedings

of the USENIX symposium on Internet technologies and systems. Monterey, California, USA; 1997.
[17] Kuenning GH, Popek GJ. Automated hoarding for mobile computers. In: Proceedings of the 16th ACM symposium on operating

system principles. Malo, France; October 1997. p. 264–75.
[18] Lou W, Liu G, Lu H, Yang Q. Cut-and-pick transactions for proxy log mining. In: Proceedings of the 8th international conference on

extending database technology (EDBT 2002). Prague, Czech Republic; 2002. p. 88–105.
[19] Padmanabhan V, Mogul JC. Using predictive prefetching to improve World Wide Web latency. ACM SIGCOMM Comput

Commun Rev 1996;26(3):22–36.
[20] Padmanabhan V, Qiu L. The content and access dynamics of a busy Web site: findings and implications. In: Proceedings of the ACM

SIGCOMM conference on applications, technologies, architectures, and protocols for computer communication. Stockholm,
Sweden; 2000. p. 111–23.

[21] Pallis G, Vakali A. Insight and perspectives for content delivery networks. Commun ACM (CACM) 2006;49(1):101–6.
[22] Pallis G, Angelis L, Vakali A. Validation and interpretation of Web users’ sessions clusters. Information Processing and Management

2007;43(5):1348–67.
[23] Pallis G, Vakali A, Sidiropoulos E. FRES-CAR: An adaptive cache replacement policy. In: Proceedings of the 1st IEEE international

workshop on challenges in Web information retrieval and integration (WIRI’05) in cooperation with the 21st IEEE conference on
data engineering ICDE 2005. Tokyo, Japan; 2005.

[24] Palpanas T, Mendelzon A. Web prefetching using partial match prediction. In: Proceedings of the 4th international web caching
workshop; 1999.

[25] Podlipnig S, Boszormenyi L. A survey of Web cache replacement strategies. ACM Comput Surveys 2003;35(4):374–98.
[26] Rabinovich M, Spatsheck O. Web caching and replication. Addison Wesley; 2002.
[27] Schloegel K, Karypis G, Kumar V. Parallel multilevel algorithms for multi-constraint graph partitioning. In: Proceedings of 6th

international Euro-Par conference. September 2000. p. 296–310.
[28] Teng WG, Chang CY, Chen MS. Integrating Web caching and Web prefetching in client-side proxies. IEEE Trans Parallel

Distributed Syst 2005;16(5):444–55.
[29] Vakali A, Pokorny J, Dalamagas T. An overview of Web data clustering practices. In: Proceedings of the EDBT Workshops 2004.

Heraklion, Crete; 2004. p. 597–606.

http://www.cs.umn.edu-karypis


G. Pallis et al. / Computers and Electrical Engineering 34 (2008) 309–323 323
[30] Venkataramani A, Yalagandula P, Kokku R, Sharif S, Dahlin M. The potential costs and benefits of long term prefetching for
content distribution. Comput Commun 2002;25(4):367–75.

[31] Yang Q, Zhang HH. Web-log mining for predictive web caching. IEEE Trans Knowledge Data Eng 2003;15(4):1050–3.
[32] Yang Q, Zhang H. Integrating Web prefetching and caching using prediction models. World Wide Web 2001;4(4):299–321.
[33] Xing D, Shen J. Efficient data mining for web navigation patterns. Inform Software Technol 2004;46(1):55–63.

George Pallis received his B.Sc. and Ph.D. degree in Department of Informatics of Aristotle University of
Thessaloniki (Greece). His current research interests include Web data caching, content distribution networks,
and Web data clustering. He is co-editor of the book ‘‘Web Data Management Practices: Emerging Techniques
and Technologies’’ published by Idea Group Publishing.
Athena Vakali received a B.Sc. degree in Mathematics from the Aristotle University of Thessaloniki, Greece, a
M.Sc. degree in Computer Science from Purdue University, USA (with a Fulbright scholarship) and a Ph.D.
degree in Computer Science from the Department of Informatics at the Aristotle University of Thessaloniki. Since
2002, she is Assistant Professor of the Department of Informatics, Aristotle University of Thessaloniki, Greece.
She is recently working on Web data management and she has focused on Web data caching, content delivery and
Web data clustering. She has published over 90 papers in international journals and conferences. She is co-editor
of the book ‘‘Web Data Management Practices: Emerging Techniques and Technologies’’ published by Idea
Group Publishing.
Jaroslav Pokorny received the Ph.D. degree in theoretical cybernetics from the Charles University, Prague,
Czechoslovakia, in 1984. Currently he is a professor of computer science at the Faculty of Mathematics and
Physics at Charles University and the head of its Department of Software Engineering. J. Pokorny has published
more than 200 papers and books on data modelling, relational databases, query languages, file organization,
XML. His research interests include also database design, information retrieval, and Semantic Web. He is a
member of ACM and IEEE.


	A clustering-based prefetching scheme on a Web cache environment
	Introduction
	The Web caching approach
	The Web prefetching approach

	Related work and paper ' s contribution
	Web prefetching
	Motivation and paper ' s contribution

	Clustering towards prefetching
	Preprocessing proxy logs
	The clustering approach
	Web navigational graphs
	The clustWeb algorithm

	The clustPref scheme

	Performance evaluation
	Examined cache replacement policies
	Experimental results
	Performance metrics
	Impact of confidence and support thresholds


	Conclusions-future work
	Acknowledgements
	References


