
Caching Techniques on CDN Simulated

Frameworks

Konstantinos Stamos, George Pallis, and Athena Vakali

1 Introduction

It is evident that in the new Web era, content volume and services availabil-
ity play a major role, leaving behind typical static pages which have solely
text and images. The majority of the business oriented service providers are
concerned for the Quality of Services (QoS), in terms of content delivery. In
this context, proxy servers and Content Delivery Networks (CDNs) have been
prosposed as different technologies, dealing with this concern. Their common
goal is to bring content close to the users, reducing the response time.

Both technologies demonstrate different advantages and disadvantages.
CDNs are characterized by robustness in serving huge amounts of requests
and content volumes. However, their main shortcoming is that due to repli-
cation and distribution cost, replica placements should be static for a large
amount of time. This leads to unoptimized storage capacity usage since the
surrogate servers would contain redundant, possibly outdated, or unwanted
content. On the other hand, proxy servers adapt content caching according to
varying access patterns, using cache replacement algorithms. However, proxy
servers do not scale well for serving large volumes of data or user popula-
tions. In an effort to combine the advantages of both, earlier recent work
[2, 20, 29, 30] investigated different approaches that enable Web caching in
CDNs, taking proxy servers’ characteristics into account. As new caching
ideas emerge, the need for a CDN testbed, suitable for performance evalu-
ation and stress testing, becomes evident. Such a testbed should provide a

Konstantinos Stamos and Athena Vakali
Department of Informatics, Aristotle University of Thessaloniki, e-mail: {kstamos,
avakali}@csd.auth.gr

George Pallis
Department of Computer Science, University of Cyprus, e-mail: gpallis@cs.ucy.ac.cy

networking environment incorporating CDN components, clients, traffic, and
sufficient support for caching schemes deployment.

While the ideal case would be to examine caching schemes in real networks
and CDNs, this is not always feasible or appropriate. Setting up a real CDN
environment from scratch is unfeasible since it introduces high infrastructure
cost. Moreover, its configuration is a cumbersome task because it involves
many parameters (traffic patterns, link speeds, network topologies, and pro-
tocols). Incorporating a new caching scheme requires large scale modifications
to the execution environments of the various network elements. Furthermore,
commercial CDNs are of proprietary nature and they are not usually ac-
cessible for research purposes. Finally, it is not straightforward to carry out
experimentation in a real world framework, since it involves uncontrollable
events (such as random noise and external network traffic), rendering the
experiments unreproducible.

To overcome the difficulties imposed by the real world models, one may
build simulated models. A simulated model, in our case a Web caching en-
abled CDN, introduces a new set of challenges. Dealing with the model itself,
balance between accurate real world model representation and reasonable
resources management (execution times and memory consumption) must be
achieved. Furthermore, the model should provide base for incorporating CDN
components, clients, traffic, services, content types, and especially caching
schemes. The variety of possible network configurations and diversity of the
caching schemes impose a large tree of implementation cases. Therefore the
best choice is to adopt an open architecture, by maintaining a reasonable
level of abstraction in the simulated entities.

Currently, there is quite limited number of CDN simulation environments
and there is no standard roadmap for a practitioner to design and implement
such a complex environment. The motivation of this chapter originates to
these difficulties which emphasize the need for developing widely available and
open CDN simulation environments. More specifically, the core contributions
of this chapter are:

• To provide sufficient background for issues related to Web caching in the
context of CDNs;

• To identify the simulation requirements of a Web caching enabled CDN;
• To analyze and model the simulation of various caching schemes in an

actual CDN simulator; and
• To suggest a roadmap for the practitioner who would like to clarify per-

formance issues related to such simulated frameworks.

In summary, the main goal of this chapter is to offer a solid design method-
ology and share implementation experiences, while covering most of the topics
related to Web caching in a CDN simulation framework.

The rest of this chapter is structured as follows: we start by presenting
issues related to the content delivery in Web via CDNs and proxy servers.
Then, the potential of integrating caching characteristics of both CDNs and

proxy servers are examined. A categorization of dynamic content along with
several techniques are provided, followed by solutions to the problem of cache
consistency. We continue with an in depth examination on how the mentioned
caching schemes can be modeled and implemented in a simulated environ-
ment.

2 Content Delivery on the Web

Distributing information to users over the Internet in an efficient and cost-
effective manner is a challenging problem. Web data caching and replication
techniques have become key practices for addressing this problem, due to their
ability to offer increased scalable solutions [25]. Web caching is mainly im-
plemented by proxy servers, whereas content replication is the main practice
on CDNs. Broadly speaking, the intention of Web caching and content repli-
cation is to shift the workload away from overloaded content providers and
satisfy user requests from the intermediaries (proxy servers or CDN servers).
Internet Service Providers (ISPs) use proxies to store the most frequently
or most recently requested content. In addition, Web content providers may
sign a contract with a CDN provider (e.g. Akamai) in order to offer their sites
content over the CDN servers. In the following subsections, we overview the
main characteristics of these two intermediary infrastructures for the Web.

2.1 Proxy Servers

Proxy servers are deployed by ISPs to deal with increased Web traffic and
optimize the content delivery on the Web [33]. In particular, proxy servers
act as an intermediator between users and content providers, serving user
requests from local storage. Users make their connections to proxy applica-
tions running on their hosts. At each request, the proxy server is contacted
first to find whether it has a valid copy of the requested object. If the proxy
has the requested object and it is updated, this is considered as a cache hit;
otherwise a cache miss occurs and the proxy must forward the request on
behalf of the user. Upon receiving a new object, the proxy services a copy to
the end user and keeps another copy to its local storage.

Thus, the intermediate caching of objects reduces bandwidth consumption,
network congestion, and network traffic. Also, because it delivers cached ob-
jects from proxy servers, it reduces external latency (the time it takes to trans-
fer objects from the origin server to proxy servers). Finally, proxy caching
improves fault-tolerance because users can obtain a cached copy even if the
remote server is unavailable or uncacheable.

On the other hand, using a shared proxy cache has three significant draw-
backs: If proxy is not properly updated, a user might receive stale data, and,
as the number of users grows, content providers typically become bottlenecks.
Furthermore, caching is problematic in terms of not improving availability
during “flash crowd” events. The third drawback is related to the limited
system resources of cache servers (i.e. memory space, disk storage, I/O band-
width, processing power, and networking resources).

The above problems stem from the fact that proxy servers have been de-
signed to work on a local basis. Thus, when a proxy server cannot satisfy a
user request (cache miss), it should connect with the underlying Web con-
tent provider in order to fetch the requested content. However, this may lead
to Denial of Service (DoS), since Web content provider cannot serve a huge
amount of requests (each Web content provider supports a limited number of
HTTP connections). Moreover, the communication between a Web content
provider and a proxy server may cause increased latency. For instance, con-
sider the scenario where a user from Australia requests a Web page, and its
Web content provider is located in USA. In such a case, a large number of
TCP connections should be setup in order to communicate the proxy server
with the content provider.

Fig. 1 Content Delivery on the Web.

2.2 Content Delivery Networks

Fig. 1 depicts how content is delivered on the Web using proxy and CDNs
infrastructure. In case of cache misses, the proxy servers communicate with
CDN servers in order to fetch the requested content. Specifically, a CDN
maintains multiple Points of Presence (PoP) with Web server replicas (called
surrogate servers) that store copies of the same content, and uses informa-
tion about the user and the content requested to “route” the user request to
the most appropriate site. The customers of a CDN are organizations that
wish to offer their site content to a geographically distributed and poten-
tially large audience. A CDN usually co-locates its surrogate servers within
strategic data centers, using multiple network providers, on a globally dis-
tributed basis. Table 1 summarizes the main difference between proxy servers
and CDNs. A comprehensive taxonomy with a broad coverage of CDNs in
terms of organizational structure, content distribution mechanisms, request
redirection techniques, and performance measurement methodologies can be
found in Chapter 2 of this book.

Features Proxy Server CDN

Key practice Web caching content replication
Cached content dynamically changes; content

requested by users of an ISP
predefined content from
the CDN-supported content
providers

Scalability low high
Performance vulnerable to flash crowd

events
stable; suitable for resource-
hungry applications (e.g.
streaming media)

Table 1 Proxy Servers vs. CDNs.

3 Emerging Web Data Caching Techniques in CDNs

CDNs host distributed global information resources which are related to a
large spectrum of applications. Users interact with (or within) companies, or-
ganizations, governmental agencies, and educational or collaborative environ-
ments. The popularity of the CDNs originates from its potential to efficiently
deliver dynamic, distributed, heterogeneous, and unstructured data all over
the world. Therefore, the need of various Web data caching techniques and
mechanisms on CDNs has become obligatory towards improving information
delivery over the Web.

3.1 Caching in CDNs

As we mentioned in the previous Section, Web caching and content replica-
tion have been developed as two distinct approaches in order to meet the
increasing demand of user requests:

• Web caching approach: Proxy servers store the Web objects into their
caches. However, the cached objects are determined by a cache replacement
policy. The cache replacement policies refer to deciding which objects will
evict from the cache to accommodate new objects. In such a policy, each
object is defined by a “value”, the so-called cache utility value (CUV).
The objects with the smallest utility outcome will be the first candidates
to evict from the cache. Podlipnig and Bszrmenyi in [23] conducted an
extended survey of the existing cache replacement strategies.

• Content replication approach: Surrogate servers keep replicas of the Web
objects on behalf of content providers. Contrary to proxy servers, the repli-
cated content in CDNs remains static.

Fig. 2 Integrating caching in a CDN.

However, content replication practices of CDNs include inherent limita-
tions. The major limitation is that a CDN infrastructure does not manage
the replicated content in an efficient way. Moreover, replica placement is
static for a considerable amount of time. The static nature of the outsourced
content leads to inefficient storage capacity usage since the surrogate servers
cache may contain unnecessary objects after a period of time. As a result, if

user access patterns change, the replicas in surrogate servers could not satisfy
the user requests.

A solution to the above issue would be to integrate both caching and
replication policies to the storage space of surrogate servers. The experimen-
tal results reported by Stamos et al. [30] show that an integration scheme
outperforms the stand-alone Web caching and static content replication im-
plementations.

To formally define the integration approach, consider a Web site repre-
sentative W who has signed a contract with a CDN provider. The Web site
contains N objects initially located only at the content provider (outside of
the CDN). The total size of W is W s and is given by the following equation:

W s =

N∑

k=1

Us

k
(1)

where Us

k
is the size of the k-th (1 ≤ k ≤ N) object.

Let M be the number of surrogate servers consisting the CDN. Each surro-
gate server Mi (1 ≤ i ≤ M) has a total cache size M s

i
dedicated for replicating

the content of W . The original copies are located in the content provider. For
simplicity, we consider that the surrogate servers are homogeneous (same
storage capacity M s

i
= M s (1 ≤ i ≤ M)) and do not contain content from

other Web sites.
As depicted in Fig. 2, the cache of surrogate server could be partitioned

into two partitions:

• Static cache partition: Dedicated for static content replication. To formally
define the static cache partition, we consider that its size is a percentage
r (r ∈ [0..1]) of M s. Therefore, the replicated objects, in static cache of a
surrogate server, obey the following constraint:

N∑

k=1

(fikUs

k
) ≤ rM s (2)

where fik is a function denoting whether an object k exists in the cache
of surrogate server i. Specifically, fik = 1, if the k-th object is placed
at the i-th surrogate server and fik =1, otherwise. The content of the
static cache is identified by applying a content replication algorithm. A
wide range of content replication algorithms have been proposed in litera-
ture [12, 19, 21, 32, 37]. Kangasharju et al. [12] use four heuristic methods:
1) random, 2) popularity, 3) greedy-single, and finally 4) greedy-global.
The experiments show that the greedy-global outperforms all other ap-
proaches. However, the greedy approaches are not feasible to implement
on real applications due to their high complexity. Tse [32] study the con-
tent placement problem from another point of view. Specifically, the author
presents a set of greedy approaches where the placement is occurred by bal-
ancing the loads and sizes of the surrogate servers. A quite similar approach

is also presented in Zhuo et al. [37]. Pallis et al. [21] present a self-tuning,
parameterless algorithm (called Lat-cdn) for placing outsourced objects in
CDN surrogate servers, which is based on network latency. Finally, in [19],
Pallis et al. partition the content placement placement problem into two
sub-problems. The first one defines the pairs of outsourced object - surro-
gate server which achieve the lowest latency. The second one determines
which objects to replicate based on the users workload. This approach is
called il2p.

• Dynamic cache partition: Reserved for Web caching using cache replace-
ment policies. To formally define the dynamic cache partition, we consider
that the size reserved for dynamic caching is a percentage c, (c ∈ [0..1])
of M s. More specifically, the stored objects respect the following storage
capacity constrain:

N∑

k=1

(fikUs

k) ≤ cM s (3)

Initially, the dynamic cache is empty since it is filled with content at run-
time according to the selected cache replacement policy. Thus, the surro-
gate servers would have the replicas with the best CUV in their dynamic
cache partition. Other than the traditional cache replacement policies (e.g.
LRU, LFU), Aioffi et al. [1] use an on-line heuristic algorithm in order to
decide whether to add a new content replica or remove an existing one.
The proposed algorithm (called on-line MDCDN) is based on a statistical
forecasting method, called Double Exponential Smoothing (DES). Taking
the user demand variations into account, MDCDN predicts the future de-
mand at each surrogate server. These predictions determine the CUV of
the the cached objects. Chen et al. [6] use an application-level multicast
tree as a cache replacement policy for each CDN surrogate server. Presti et
al. [24] determine the CUV of replicas by a non-linear integer programming
formulation. In [3], Bartolini et al. decide whether to add a new content
replica or remove an existing one using a semi-Markov decision process.

Given the above cache segmentation scheme, the percentages (r, c) must
obey is the following:

r + c = 1 (4)

The challenge for such an approach is to determine the surrogate server size
which would be devoted to caching and replication as well. In other words, we
should determine the percentages (r, c). Considering that this problem is NP
complete [2], several heuristic approaches have been considered to efficiently
integrate static and dynamic cache in CDN surrogate servers. Bakiras and
Loukopoulos [2] propose a greedy hybrid algorithm that combines an LRU
cache replacement policy with static content replication on a CDN. More
specifically, initially the storage capacity of each surrogate server is reserved

for Web caching and at each iteration of the algorithm, objects are placed
to surrogate servers maximizing a benefit value. The hybrid gradually fills
the surrogate servers caches with static content at each iteration, as long as
it contributes to the optimization of response times. Stamos et al. [29] have
developed a placement similarity approach (the so called SRC) evaluating
the level of integration of Web caching with content replication. According
to this approach, a similarity measure is used to determine the surrogate
server size which would be devoted to caching and replication. Finally, Pallis
et al. [20] use a logistic sigmoid function in order to classify the surrogate
server cache into two parts. The proposed approach, called R-P, classifies the
replicas with respect to their quality values. In particular, the quality value
of each replica is expressed by the users interest (increasing its value) or the
lack of users interest (decreasing its value) for the underlying replica.

3.2 Caching Dynamic Content

Dynamic content can be classified into three categories, as depicted in Fig. 3,
based on how frequently Web objects change and whether these changes
can be predicted. The periodic-update category includes objects that the
content provider updates at specified time intervals. For instance, consider
a news Web page which is updated in every 5 minutes. The on-demand-
update category consists of objects which are generated on demand and may
have different attributes depending on the requesting user (e.g. the query
forms). The unpredictable-update category includes objects that change un-
predictably. The objects in periodic-update and unpredictable-update cate-
gories can be cached, whereas, the objects in the on-demand-update category
are uncacheable.

Efficient distribution of dynamic content to end users is an important issue
due to the growing number of dynamic data on the Web. A wide range of
caching techniques have been proposed in order to accelerate the delivery of
dynamic content to users [5, 27]. Fragment caching is an effective technique
to accelerate current Web applications which usually generates heterogeneous
contents with complex layout.

A fragment can be defined as a portion of a Web page which has a specific
theme or functionality and is distinguishable from the other parts of the page.
A Web page has references to these fragments, which are stored independently
on the content provider or the surrogate servers. Challenger et al. [5] represent
the relationships between Web pages and fragments by object dependence
graphs.

The fragment-based approach has also been implemented in commercial
CDN providers. For instance, the EdgeSuite network of Akamai is based
on a fragment-based policy using the ESI (Edge Side Includes) specification
accepted by the World Wide Web consortium. Specifically, the ESI specifi-

Fig. 3 Categorization of dynamic content.

cation defines an XML-based mark-up language for defining templates and
identifying page fragments. A fragment-based policy is also used by the IBM
Websphere [5], where the Web pages can be decomposed into a hierarchy of
complex, atomic fragments.

Fragment-based approaches cannot be effectively applied on the objects
which belong to the on-demand-update category, since these objects cannot
be cached. Specifically, they perform well if the temporal locality of requests
is high and if the underlying database is updated rarely. Applications that do
not exhibit these behavior require more sophisticated techniques [28]. There-
fore, instead of caching fragments of Web pages, another approach is to repli-
cate a full copy of the application code at the surrogate servers [26]. In such
an approach (known as Edge Computing), each surrogate server may connect
with a centralized database. So, all database queries are forwarded to the
content provider. Although this technique allows to distribute the computa-
tions to generate pages, it is limited by the latency incurred for each query,
and by the throughput bottleneck of the origin database [28]. To address this
issue, another approach is to keep a partial replica of the database (known as
Content-Aware Caching (CAC) approach). In such an approach, the appli-
cation programmers can choose the data replication that are best suited for
the application. This approach can yield considerable gains in performance
and availability, provided that the selected strategies are well suited for the
application [28]. However, this is quite difficult since it requires significant
insight of the application programmers in domains such as fault-tolerance
and weak cache consistency. In this context, another technique (known as
Content-Blind query Caching (CBC)) has been proposed to cache the results
of database queries at the surrogate servers. Consistency of cached results
must be maintained when the underlying database is updated. This tech-
nique allows to reduce the database query latency since a number of queries

can be answered locally. The total system throughput is also increased be-
cause less queries are addressed to the content provider [28].

3.3 Cache Consistency Mechanisms

Considering the dynamic nature of Web content, an important issue that
must be addressed by CDNs is the consistency maintenance [36]. To prevent
stale content from being transmitted to end users, the surrogate server must
ensure that the locally cached data is consistent with that stored on servers.
The exact cache consistency mechanism and the degree of consistency em-
ployed by a CDN depends on the nature of the cached data. Consequently, a
CDN should ensure the consistency of replicas with the content provider by
employing suitable mechanisms.

The problem of consistency maintenance has been well studied in the con-
text of proxy servers. Particularly, in proxy servers the Time to Live (TTL)
concept is widely used [26]. According to this, the content provider, when
serving a cacheable object to the proxy, supplies an explicit TTL value.
Then, the proxy considers that object valid during its TTL period. In the
context of a CDN, the TTL concept should be employed in each individ-
ual surrogate server. In such a case, each surrogate server is responsible for
maintaining consistency of data stored in its cache. Therefore, each one inter-
acts with the content provider to do so independently of the other surrogate
servers. However, this approach is impractical/unfeasible to be implemented
in a large-scale network infrastructure. Considering that a typical CDN usu-
ally consists of a large number of surrogate servers (i.e. the Akamai - the
leading CDN provider - has more than 25,000 surrogate servers around the
world), the content provider will need to individually interact with a large
number of surrogate servers. Thus, such an approach is not scalable from the
perspective of the content providers.

To formally define the degree of consistency that a CDN can support, let
CP t

k
and St

k
denote the version of the object k at the content provider and

the surrogate server respectively at time t. In this context, an object k is said
to be:

• Strongly consistent with that at the content provider if the version at
the surrogate server is always up-to-date with the content provider. That
is, ∀t, CP t

k
= St

k
. Strong consistency ignores network delays incurred in

propagating updates to the surrogate server.
• Delta consistent with that at the content provider if the version at the

surrogate server is identical for ∆ time units, where ∆ is a configurable
parameter. That is, ∀t, ∃τ 0 ≤ τ ≤ ∆ such that CP t−τ

k
= St

k
.

• Weak consistent with that at the content provider if the version at the
surrogate server is not always up-to-date with the content provider.

A consistency degree may also be defined for multiple objects; it is known
as mutual consistency. To formally define this degree of consistency, consider
two objects a and b that are related to each other. Cached versions of objects a

and b at time t (St
a

and St

b
respectively) are defined to be mutually consistent

in the time domain (Mt-consistent) if the following condition holds: If CP t
a =

St1
a

and CP t

b
= St2

b
then |t1 − t2| ≤ δ, where δ is the tolerance on the

consistency guarantees. For δ = 0, it requires that the objects should have
simultaneously existed on the content provider at some point in the past.

There exist a wide range of mechanisms [16, 17, 31] that have been used to
provide efficient cache consistency in CDNs. These can be broadly categorized
as follows:

• Server-driven consistency (also referred to as server-based invalidation):
the content provider notifies the surrogate servers when the content
changes. This approach substantially reduces the number of control mes-
sages exchanged between the content provider and the surrogate server
since messages are sent only when an object is modified. However, this
results in inefficient usage of the distribution network for content delivery
and inefficiency in managing consistency at surrogate servers, since the
content provider should maintain a list of all surrogate servers that cache
the object. Several new protocols have been proposed recently to pro-
vide consistency using server-based invalidation. Web cache invalidation
protocol (WCIP) [14] is one such proposal for propagating server invalida-
tion using application-level multicast. Web Content Distribution protocol
(WCDP) [31] is another proposal that enables server-driven consistency.
Using the WCDP, the content provider can dynamically control the prop-
agation and visibility of an object update. WCDP supports different levels
of consistency (i.e. strong, delta, weak, and mutual).

• Client-driven consistency (also referred to as client polling): the updated
version of a Web object is delivered to all the surrogate servers when-
ever a change is made to the object at the content provider. The advan-
tage is that it does not require any list to be maintained at the content
provider. However, such an approach may generate significant levels of un-
necessary traffic if the objects are updated more frequently than accessed.
Mikhailov and Wills [16] proposed a client-driven consistency approach,
called MONARCH (Management of Objects in a Network using Assembly,
Relationships and Change cHaracteristics). The MONARCH guarantees
the cache consistency by collecting snapshots of content from sites of in-
terest. This content is then used as input to a simulator to evaluate several
cache consistency policies over a range of access patterns.

• Leases approach: Consistency is achieved by associating leases with each
object that get replicated to surrogate servers. Specifically, lease is a time
period where its duration denotes the interval of time during which the
content provider agrees to notify the surrogate server if the object is mod-
ified. After the expiration of the lease, the surrogate server must send
a message requesting renewal of the lease. This approach is a combina-

tion of server-driven and client-driven consistency. If the lease duration
is zero, the cache consistency scheme degenerates into pure client-driven
consistency. On the other hand, if the lease duration is infinite, the cache
consistency scheme degenerates into a pure server-driven consistency. The
concept of a lease was first proposed in the context of cache consistency
in distributed file systems [10]. The use of leases for Web proxy caches
was first presented in [15]. Duvvuri et al. in [8] present extensions to the
HTTP protocol in order to incorporate leases. Ninan et al. [17] presented
a variation of the lease approach for CDNs, called cooperative leases, by
using ∆-consistency semantics. Specifically, ∆-consistency requires that a
cached version of an object is never out-of-date by more than ∆ time units
with its server version. The value of ∆ determines the nature of the pro-
vided guarantee. Therefore, the larger the value of ∆ is, the weaker the
consistency is.

4 Caching Techniques on CDNsim

This section is focused on introducing cache replacement policies in CDNs
by using an actual CDN simulator. For this purpose we use CDNsim 1 as the
main paradigm. First of all, the necessity of such a simulated environment
is investigated, along with other simulation solutions. Then the requirements
of a simulated cache, in terms of scientific issues and resource requirements,
are defined. Finally, several issues related to the actual development of such
caching framework are discussed.

4.1 The Need for CDN Simulated Environments

There have been several attempts to create private academic CDNs such as
CoDeeN [18], Coral [9], and Globule [22] for research and every day pur-
poses. However, the reproducibility of a given experiment is impossible since
we are dealing with real networks. Moreover, it is hard to implement and
evaluate new policies due to the required large scale alterations of the whole
system. Consequently, the necessity of a simulation environment for perform-
ing experiments, still remains. Towards this direction, there have been several
implementations of a simulated CDN [4, 7, 12, 34] which fit the individual
needs of each research work. Most of them do not take several critical factors
into account, such as the bottlenecks that are likely to occur in the network,
the number of sessions that each network element can serve (e.g. router,
surrogate server) and ignore the TCP / IP protocol. Finally, the most impor-

1 http://oswinds.csd.auth.gr/∼cdnsim

tant disadvantage is the unavailability of a platform for examining caching
techniques in CDNs.

Filling this gap, CDNsim is developed as a general purpose CDN simula-
tor. It is extensible and open source, written in C++ using the OMNET++
and INET libraries 2. It is a parallel discrete event trace driven network sim-
ulation package that provides libraries, utilities, and interfaces for content
delivery on the Web. CDNsim models a CDN including basic network compo-
nents such as users, surrogate servers, content providers, and routers. It takes
the characteristics of Internet infrastructure into account by simulating the
TCP/IP. CDNsim has been designed to support research in broad-coverage
CDN services. It has also the ability to simulate Peer-to-Peer (P2P) services
as well as various internetwork configurations. The experience gained from
the development of such a tool is reported in the following paragraphs.

4.2 CDNsim’s Caching Framework Requirements

This subsection includes the specifications of the surrogate servers’ caches
in CDNsim which are taken into account at design time, and both research
and performance issues are addressed. A requirement is to support the in-
tegrated caching schemes as reported in these works [2, 20, 29, 30]. Cache
consistency mechanisms must also be supported. Moreover, it is required to
support complex content types such as video, and treat dynamic content by
fragmentation. Finally, support for non cacheable content should be enabled.

The diversity of cache replacement algorithms leads to confusing branches
of implementation cases. For instance, LFU and SIZE use different attributes
for replacing objects. Therefore the detection of a common denominator is
necessary. More specifically, given a set of primitive generic operations and
content types one should be able to implement any flavor of the mentioned
methodologies. Therefore, a strict requirement is to prepare a set of interfaces
that can be used as building blocks of the various caching schemes. An ap-
propriate exposure of the cache content to the network should be considered.
This would enable both user access for downloading content and CDN access
for management.

The execution of a CDN simulation includes high activity in the surro-
gate servers’ caches. A typical simulation scenario involves a set of users
performing requests for objects (Web pages, multimedia content, etc) to the
CDN. The surrogate servers manage the content of their caches and attempt
to satisfy the requests. By increasing the number of requests, the required
CPU time (of the host running the simulation) is increased as well. Moreover,
an increment to the caches’ capacity leads to more objects being stored and
thus to higher RAM requirements. It is evident that depending on the various

2 http://www.omnetpp.org/

simulation scenarios and configurations the caches may become performance
bottlenecks.

The primary performance concern is to optimize the cache function in
terms of CPU requirements. In order to define a satisfactory performance
threshold, the available operations of a cache need to be identified:

• Search: This operation involves the procedure of browsing though the
cache’s contents until a specified object is found. For instance, a user re-
quests a Web page and the surrogate server examines the cache to check
whether it is stored or not. The performance penalty of such operation de-
pends on the organization of the content. Generally, the search complexity
at an average case should always be better than O(n), where n refers to the
number of objects residing in cache. This is critical since the search opera-
tion may be executed several million times during a simulation, involving
caches with several thousands of objects.

• Insertion: This operation refers to the procedure of inserting a new object
in cache. It is responsible to maintain the proper organization of the cache
and update other attributes such as the remaining storage space. Like-
wise, it must perform better that O(n). Every cache replacement policy
includes insertion operations as part of their algorithm. It is expected to
be executed many times during a simulation and therefore it is an essential
optimization parameter.

• Deletion: It is the procedure to remove a specific object from the cache.
Every cache replacement algorithm replaces objects by performing deletion
operations to free up storage space. Therefore, O(n) performance should
be upper bound.

• Update: The case of an object’s update can be expressed as a combination
of deletion of the previous version object and insertion of the updated ob-
ject. The update. operation takes place when cache consistency is applied.

Summarizing, the cache speed is closely related to the content organization
in the RAM of the host. Most of the cache replacement algorithms include
the Search-Insertion-Deletion-Update (SIDU) operations. Therefore, the op-
timization requirement is the design of efficient content manipulation opera-
tions.

The secondary performance concern is the optimization of the memory
footprint. It is important that the simulation’s execution environment fits in
RAM. Absolutely no memory must be swapped to the hard drive of the host,
or else the execution performance will be reduced. Therefore, it is required
to adopt a conservative design that saves memory. Simulating large networks
with many surrogate servers, caches, and objects require several gigabytes
of RAM. However, the memory optimization is usually a secondary require-
ment because the aforementioned problem can be easily solved with sufficient
RAM.

4.3 CDNsim’s Cache Architecture

In order to meet the previously discussed requirements, we define an architec-
tural design. This design is used for the actual implementation of CDNsim. It
is an effort to shape an abstraction to the real entities in a CDN. More specif-
ically we model the cache organization of a CDN as a 3-level architectural
component, depicted in Fig. 4.

Fig. 4 3-level cache organization.

The first level deals with the notion of content by ignoring all the special
characteristics that identifies it. Cacheable content, in general, is considered as
raw fragments, namely objects. The objects are stored into the cache, which is
merely a storage medium that keeps up-to-date information such as available
storage capacity and provides the SIDU interface, as discussed previously. The
objects can be classified into two categories: a) volatile objects and b)non-
volatile objects. The first term refers to the objects that are stored inside the
cache suggesting static caching, while the later defines the objects devoted
for cache replacement algorithms. By flagging the objects, the integrated
static and dynamic caching algorithms described in [2, 20, 29, 30] can be
implemented.

One level up, we deal with the organization of the objects. The specific
characteristics of each object are ignored. In this context, a set of cache
replacement policies is defined, managing the content of the cache. Each
policy maintains an ordering of the objects according to a set of attributes.
The attributes may refer to objects’ characteristics such as size, TTL, and
last access time. For instance, the LRU cache policy should maintain a buffer

that keeps the objects sorted according to last access time, enabling the
replacement of the objects. The upper level uses the SIDU interface which is
provided by the cache replacement policies. At this point, we may introduce
the concept of cache partitioning and especially Static cache partition and
Dynamic cache partition.

The third level, defines a higher level logic of content management. In
contrast to the lower levels, we are interested in the actual content type and
special characteristics of the objects. Each content type effectively can be ex-
pressed as a group of objects (fragments) forming a hierarchy. For instance,
a dynamic page can be expressed as a set of objects, representing identi-
fied cacheable page fragments. Therefore, the object abstraction of the lower
levels provides a unified approach for dealing with the content diversity. An-
other high level construct is the service, which represents any operation at
CDN level. The services can be of internal use only (e.g. surrogate server
cooperation) and are available only to the CDN. Otherwise, the services are
public, such as dynamic Web pages manifestation and serving to the users.
Therefore, cache consistency can be addressed by implementing appropri-
ate services that manage the cache content. Additionally, uncacheable con-
tent (on-demand-update) can be handled by implementing services capable
of composing content on-the-fly.

Caching issue Architectural component CDNsim default

Static/Dynamic Cache partition, Generic support/LRU
cache partitioning volatile / non-volatile
Strong/Delta/ Service Strong
Weak/Mutual consistency
Complex content Object hierarchy Video, Web pages, etc
Unpredictable/periodic - Object Generic support
cacheable dynamic content
On-demand-update - Service Unspecified
uncacheable dynamic content

Table 2 Mapping of caching issues to CDNsim’s architectural components.

Table 2 summarizes the mapping between various caching issues and the
architectural components in CDNsim. Specifically, CDNsim supports directly
the static, dynamic, and integrated caching scheme. Each can be modeled as
partition of the cache. CDNsim offers generic input for any kind of static
replica placement algorithm, while by default it supports the LRU dynamic
caching. Cache consistency is managed by a set of services that signal the
various content updates and commit the changes. Cache consistency lays at
level-3. By default CDNsim implements strong cache consistency. Complex
content types such as audio, video, Web pages, and streaming content are
supported in the form of objects’ hierarchies. Each type can be represented

by a set of objects that can be cached. Combined with cache consistency
services we can enable the caching of dynamic content updates . Uncacheable
content is dealt separately by implementing a set of specialized services at
level-3.

4.4 Implementation Considerations

This subsection covers the actual implementation of a caching scheme in
CDNsim, which can be of use to an actual software practitioner. Specifically,
we use a representative example where the surrogate servers contain caches
with partitioned storage capacity for static and dynamic caching, as reported
by Stamos et al. [30]. The static part of the cache is filled using a replica
placement algorithm while the dynamic part of the cache obeys to the LRU.
We select LRU as it is a well known and easy to follow algorithm. Our goal
is to implement such a cache by following the described architecture, while
keeping up with the performance requirements.

Level 1 The primary concern in this level is to implement the classes
object and cache. Since we plan to create a caching scheme that incorporates
dynamic and static caching, a class of volatile objects, and a class for non-
volatile objects is defined. We consider an object belonging to the non-volatile
class, to be stored in the static part of the cache. Specifying an object as
volatile leads to be stored at runtime in the dynamic part and potentially be
removed by a cache replacement policy.

Low memory consumption is defined as a secondary requirement. An im-
plementation approach needs to be followed that balances information com-
pression and the ability to perform cache replacement:

• Full compression - no information: Bloom filters [13] are proposed as a
method for simulating a cache. A bloom filter is a bitarray that packs in-
formation. In the context of a cache, this information refers to the ids of the
objects. The operations permitted in the bitarray are: reading, enabling,
and disabling bits. A set of different hash functions map each inserted id
to a set of bits in the array. This approach has several advantages. The
operation is fast, because it includes AND and OR operations, native to
the CPU of the host and the memory consumption is low. However, the
use of hash functions causes collisions. For different object ids the same
bits may be suggested leading to inaccurate content description. Further-
more, the information related to each object is stripped. We cannot store
attributes such as last access time and thus we are unable to implement
cache replacement algorithms like LRU.

• Partial compression - partial information: As the name suggests, this ap-
proach makes partially use of the bloom filters technique and the full
representation of the objects [13]. In full representation, each object is an
actual C++ object that stores all the necessary attributes, like the size

and the last access time. However, the bloom filters result in information
loss and thus LRU cannot be implemented.

• No compression - full information: The full representation is suitable for
implementing LRU since all the objects’ attributes are available. Consider
the following example, we need 16 bytes (4 for the id, 8 for the last access
time and 4 for the size, in a 32 bits environment) we still can store roughly
about 130 million objects in 2 GB RAM. Therefore, despite the increased
memory usage several millions of objects can be managed using a stan-
dard host. The use of lossless compression schemes is prohibited, because
they involve time consuming decompression and re-compression leading to
performance penalty. Therefore, the suggestion is to use a 1 − 1 mapping
of ids-objects. All the SIDU operations are O(1).

Level 2 It manages the organization of the content in the form of cache
policies. Two distinct cache policies are identified, the static caching and
the LRU. The content of the static part of the cache remains unchanged by
default, therefore, we are not required to maintain some kind of ordering in
the stored objects. A 1−1 mapping of the object ids to the objects will suffice
and the SIDU performance is O(1).

Fig. 5 The LRU buffer.

On the other hand, LRU requires special treatment. LRU removes the least
recently used objects in favor of others most recently used. Therefore, It is
necessary to enable an ordering of the objects according to the last access
time. CDNsim uses a buffer containing objects sorted by the last access time,
depicted in Fig. 5. This buffer does not store the actual objects, which is the
responsibility of the cache itself. Instead, the buffer is used only as an ordering
structure of object ids. The search operation requires O(n) in the worst case,
since we have to browse through the buffer to detect the required object. The
insertion operation requires O(1); the new object is inserted at the beginning
of the buffer (head) and if necessary, several objects at the end of the buffer
(tail) are being removed to free up storage capacity. The deletion operation
requires O(1) time. As long as the object for deletion is searched, we just crop
the object from the buffer without the need for adjusting any ordering. Finally
the update operation is also O(1). Provided that we have searched the object,
we just update without changing the ordering. It is evident that the search

operation is involved in most of the SIDU operations. The time complexity of
the search in the worst case is O(n) and may reduce the speed of the cache.
However, this can be safely ignored for two reasons: a) this data structure can
be cached out easily in the CPU cache, leading to small performance overhead
and b) we tend to search for recently used objects, so only a few objects are
being checked at the beginning of the buffer. Although in practice it gives
satisfactory performance, we can further improve the search operation. This
can be achieved by maintaining an extra index that points directly to the
objects inside the buffer achieving O(1) performance.

Another issue is the possible resource deadlocks and content inconsistency
by accessing simultaneously the content. This is handled by creating private
copies of the requested content. Therefore, the services of the upper level deal
only with private copies of the content.

Level 3 At this level we are free from the caching issues, as they are
handled by the lower level. The software practitioner is free to implement
services that serve and distribute content.

4.5 Indicative Experimentation Results

The effectiveness of the storage partitioning scheme for Web caching and
content replication is supported by a set of experiments conducted in this
work [30]. In this subsection we demonstrate briefly a few results that capture
the behavior of this scheme. The examined criteria are:

• Mean response time: This is the expected time for a request to be satisfied.
It is the summation of all request times divided by their quantity. Low
values denote that content is close to the end user.

• Response time CDF : The Cumulative Distribution Function (CDF) in our
experiments denotes the probability of having a response times lower or
equal to a given response time. The goal of a CDN is to increase the
probability of having response times around the lower bound of response
times.

• Hit ratio: It is defined as the fraction of cache hits to the total number of
requests. A high hit ratio indicates an effective cache replacement policy
and defines an increased user servicing, reducing the average latency.

• Byte hit ratio: It is the hit ratio expressed in bytes. It is defined as the
fraction of the total number of bytes that were requested and existed in
cache to the number of bytes that were requested. A high byte hit ratio
improves the network performance (i.e. bandwidth savings, low congestion,
etc.).

The tested caching schemes include the LRU, LFU, and SIZE algorithms
at various levels of integration (r, c) with static replication. The (r, c), as
already defined, represent the percentage of the storage capacity used for

static replication and Web caching respectively. The used static replication
algorithm is il2p [19] which takes the server load into account. Specifically,
il2p using two phases selects which object should be placed and where. During
the first phase for each object the appropriate surrogate is selected minimizing
network latency. Given the candidate pairs of (object, surrogate server), at
the second phase, the one that yields the maximum utility value (depended
on server load) is selected. This selection process is iterated until all caches
are full. For completion, the cases of full mirroring (entire Web site is copied
to the caches) and empty disks (simulating the absence of CDN) are included.
Meeting the experimentation needs, the Stanford’s Web site 3 is used. In this
context a CDN was built using CDNsim, simulating several thousand users
and network elements.

Replication vs Caching precentage

M
ea

n
re

sp
o
n
se

ti
m

e

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% c 100% c
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 6 Mean response time.

To begin with, Fig. 6 illustrates how the mean response time of the requests
is affected by modifying the level of integration between static replication
and caching. Using static replication only (r = 100%) we receive the highest
mean response time. This can be explained by the fact that a fixed replica
placement cannot cope with the changing users’ demands for content. Two
distinct performance peaks can be identified; the first for r = 80%, c = 20%
and the second for c = 100%. Increasing the dynamic partition of the cache
only by 20% (first peak) leads to significant performance improvement. This
behavior is logical since we keep a part of the cache open for new content
to be stored, based on the users’ requests, while maintaining a sufficient
amount of static replicas suggested by il2p. As the percentage of the dynamic
partition increases the good attributes of replication are gradually lost. This

3 http://www.stanford.edu/∼sdkamvar/research.html

is caused by the fact that the cache replacement policies may remove usefull
content which otherwise would be strategically placed by il2p. The caching
scheme (second peak) appears to perform slightly better than the integrated
scheme (first peak). A possible explanation is that by letting the entire storage
capacity to be used by cache replacement, we allow the Web caching scheme
to adapt effectively to the user traffic patterns. Moreover, the fact that the
Stanford’s Web site contains mostly small objects, leads to low performance
penalty during a cache miss. However, caching is not the choice, since the
CDN is converted into a proxy server including all the scalability problems
a proxy server imposes. Another important observation is that all the cache
replacement algorithms follow the same behavior, with SIZE to be slightly
better. SIZE’s superiority can be explained by the fact that more room for
new objects is available leading to better cache size utilization.

Replication vs Caching precentage

H
it

ra
ti

o

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 7 Hit ratio.

In terms of hit ratio, depicted in Fig. 7, the same two peaks can be de-
tected. Pure Web caching and the integrated schemes offer comparable re-
sults, while the static only replication does not keep up with. Fixed replica
placement using the entire storage capacity suffers from low hit ratio since
redundant content is outsourced and the placement is not optimal. The opti-
mal placement cannot be achieved due to the changing users’ requests pattern
and the fact that it is a NP-complete problem. This reason also indicates why
pure Web caching demonstrates slight performance superiority over the inte-
grated scheme. The same behavior also exists in Fig. 8, illustrating the byte
hit ratio.

A more accurate representation of the requests’ satisfaction time distribu-
tion is presented in Fig. 9 for the first performance peak (r = 80%, c = 20%).
Ignoring the ideal case of full mirroring, we observe that the integrated scheme
(SIZE/il2p) outperforms (is the ceiling of all distributions) by achieving lower

Replication vs Caching precentage

B
y
te

h
it

ra
ti

o

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 8 Byte hit ratio.

response times than the other schemes. Here below we outline our observa-

Response time

R
es

p
o
n
se

ti
m

e
C

D
F

FULL mirroring
LRU
LFU
SIZE
EMPTY disks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Fig. 9 Response Time CDF.

tions by summarizing the results:

• There exist at least one performance peak belonging to the integrated
caching and replication scheme.

• The integrated scheme may demonstrate reduced performance because of
an inefficient replica placement.

• In special caches the caching only scheme perform as good as the integrated
scheme, but it is not recommended since it inherits all the disadvantages
of the proxy servers.

The conclusion is that there is a realistic room for performance improvement
by implementing Web caching characteristics in a CDN.

5 Visionary Thoughts for Practitioners

CDNsim is a free and open tool available both for research purposes and
commercial use. Two main target groups can be identified where CDNsim
could be of great use; the CDN developers and the software practitioners
interested in CDNs. In this section, we discuss several visionary thoughts on
how CDNsim can be used by these groups.

Dealing with the first target group, CDN providers are interested in max-
imizing the benefit of their network infrastructure. To achieve this, the CDN
developers design proprietary algorithms that manage the content effectively.
The natural derivative of such activity is the creation of a new product. In the
context of CDNs, the product is a new content delivery service, like streaming
video, large files delivery, etc. Although each service 4 may differ from the
others in terms of functionality, a common set of periods in the life time of
every service can be identified :

• Before service release: This period includes the development process of
the service before its release to the users. CDNsim could be of use at
the early development stages. It can be used to design and implement
prototypes giving shape to the initial product ideas. Once the prototyping
is done, it can be used to perform an in vitro evaluation of the performance
and behavior under various network configurations and traffic patterns.
CDNsim could significantly reduce the infrastructure investments during
the stages of testing and prototyping until a certain level of maturity is
reached. Then, evaluation is performed at the real CDN infrastructure. A
real world example of the concept of prototyping and testing that could
potentially be performed by CDNsim is the recent High Definition Video
streaming by Akamai 5.

• After service release: The service, by the time of its release to the wider
public, should have passed a set of testing suites. Additionally, there is a set
of documented conclusions about its behavior and performance. However,
as the product is being used under untested circumstances, the behavior
may divert from the initial conclusions. CDNsim may be used to reproduce
a problematic or unexpected situation aiding the analysts to explain why

4 Using the term service we refer to a content delivery service in general.
5 http://www.akamai.com/

an observed behavior is reached. Therefore, CDNsim could be used for
continuous evaluation without disrupting the deployment of the service.
Since the environment where a service runs is not static, CDNsim might
act as a preventing mechanism of unwanted situations before they happen.
For instance, the necessity of behavior prediction and disaster prevention
is apparent before a worldwide broadcast of soccer world championship by
Limelight Networks 6.

• Service evolution in time: Eventually a service will reach a certain level
of maturity, stability, and correctness. However, the service’s “habitat”
(network configurations, typical user populations, current technologies) is
constantly evolving. A representative example is the increment of fast in-
ternet connections and the fact that IPv6 [11] will become a necessity since
the available IP addresses are reducing. CDNsim could be used to perform
a what-if analysis. How the service scales with larger user populations?
Can the service and the existing infrastructure keep up with much faster
connections currently not available? These questions could be addressed
by CDNsim by setting up the respective network configurations. Failing
to predict the long term evolution could result in loss of clients by not
investing on upgraded infrastructure in time.

Dealing with the second target group, software practitioners are encour-
aged to extend the existing architecture to support the latest trend of algo-
rithms. A visionary evolution of CDNsim could be a testbed that incorporates
a complete suite of caching algorithms used for performance comparison and
testing. Moreover, CDNsim is able to run in parallel environments. The high
performance computing researchers could find a testbed for implementing
parallel algorithms in the context of CDNs. Therefore, some ideas concern
the design and implementation of caching algorithms that take advantage of
the new multi-core processors and the appliance of new more efficient data
structures. Further research directions are outlined in the following section.

6 Future Research Directions

CDNsim might offer new perspectives for future research directions in the
area of content delivery. Some indicative applications where CDNsim would
be used as a simulation testbed could be the following:

• Content Delivery Practices: Several issues are involved in CDNs since
there are different decisions related to where to locate surrogate servers,
which content to outsource, and which practice to use for (selected con-
tent) outsourcing. It is obvious that each decision for these issues results
in different costs and constrains for CDN providers. In this framework,

6 http://www.limelightnet.com/

CDNsim can be used to evaluate a wide range of policies as well as to
explore the benefits of caching in a CDN infrastructure.

• Pricing of CDNs Services: Pricing of CDNs’ services is a challenging
problem faced by managers in CDN providers. Deployment of new services,
such as Edgesuite, are accompanied with open questions regarding pricing
and service adoption. Chapter 8 addresses some pricing issues and presents
some pricing models the context of CDNs. CDNsim can be used in order
to validate them.

• Mobile CDNs: Content delivery on the mobile wireless Web is a topic
of emerging interest and importance in the academic and industrial com-
munities. Considering the recent advances in mobile content networking
(e.g. WAP, IPv6 etc.), the infrastructure of mobile CDNs may play a lead-
ing role in terms of exploiting the emerging technological advances in the
wireless Web. Chapter 14 presents mobile CDNs in details. CDNsim may
be used as a testbed in order to address new research pathways in the area
of mobile CDNs.

• Peering of CDNs: Peering of CDNs is gaining popularity among re-
searchers of the scientific community. Several approaches are being con-
ducted for finding ways for peering CDNs. However, several critical issues
(i.e. When to peer? How to peer? etc.) should be addressed. Chapter 16
discusses some of these issues in detail. CDNsim may be used to simu-
late the peering CDNs framework under realistic traffic, workload, and
replication conditions. It can also be utilized to evaluate the best practices
and new techniques for load measurement, request redirection and content
replication in the proposed framework for peering CDNs.

• Security in CDNs: The rapid growth of business transactions conducted
on the Internet has drawn much attention to the problem of data security
in CDNs [35]. In this context, secure content delivery protocols should
be proposed in order to maintain content integrity (the delivered content
which is modified by unauthorized entities should not be accepted) and
confidentiality (the delivered contents cannot be viewed by unauthorized
entities, including unauthorized proxies, and other users besides the re-
quester) in CDNs. The high extensibility of CDNsim allows researchers to
adapt the proposed protocols (e.g. iDeliver [35]) under its infrastructure.

• P2P and Grid Technologies in CDNs: Since CDNs are complex large-
scale distributed systems, their development may be supported by the new
emerging technologies of P2P and Grid. The successful exploitation and
integration of these paradigms and technologies under a CDN infrastruc-
ture would provide an efficient way to cope with the aforementioned issues
and would contribute significantly to the development of more efficient
CDNs. The CDNsim architecture can easily enhance the aforementioned
emerging technologies.

7 Conclusions

The Web has evolved rapidly from a simple information-sharing mechanism
offering only static text and images to a rich assortment of dynamic and
interactive services, such as video/audio conferencing, e-commerce, and dis-
tance learning. However, the explosive growth of the Web has imposed a
heavy demand on networking resources and Web content providers. Users
often experience long and unpredictable delays when retrieving Web pages
from remote sites. CDN infrastructure seems to address the issues of capacity
and performance on the Web in an efficient way. More and more Web content
providers rely their content to be distributed by CDNs. The key to satisfy
these growing demands lies in managing the content which is replicated in
CDNs. Specifically, the need of various Web data caching techniques and
mechanisms on CDNs has become obligatory towards improving information
delivery over the Web.

In this chapter, we have summarized the emerging caching techniques
which can be applied on CDN simulated frameworks. We study how to in-
tegrate caching policies on CDN’s infrastructure. We also provide a com-
prehensive survey of the cache consistency mechanisms that can be applied
on CDNs. Furthermore, we present the caching techniques which have been
applied under CDNs for delivering dynamic content. Finally, we study these
techniques under an analytic simulation tool for CDNs, the CDNsim.

To sum up, CDNs are still in an early stage of development and their future
evolution remains an open issue. It is essential to understand the existing
practices involved in a CDN framework in order to propose or predict the
evolutionary steps. In this regard, caching-related practices seem to offer an
effective roadmap for the further evolution of CDNs.

References

1. Aioffi, W.M., Mateus, G.R., Almeida, J.M., Loureiro, A.A.F.: Dynamic content
distribution for mobile enterprise networks. IEEE Journal on Selected Areas on
Communication 23(10) (2005)

2. Bakiras, S., Loukopoulos, T.: Increasing the performance of cdns using replica-
tion and caching: A hybrid approach. In: IPDPS ’05: Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium (IPDPS’05),
p. 92.2. IEEE Computer Society, Washington, DC, USA (2005)

3. Bartolini, N., Presti, F.L., Petrioli, C.: Optimal dynamic replica placement in
content delivery networks. In: 11th IEEE International Conference on Networks
(ICON 2003), pp. 125–130. Sydney, Australia (2003)

4. Bent, L., Rabinovich, M., Voelker, G.M., Xiao, Z.: Characterization of a large
web site population with implications for content delivery. World Wide Web
9(4), 505–536 (2006)

5. Challenger, J., Dantzig, P., Iyengar, A., Witting, K.: A fragment-based approach
for efficiently creating dynamic web content. ACM Trans. Inter. Tech. 5(2), 359–
389 (2005)

6. Chen, Y., Katz, R.H., Kubiatowicz, J.: Dynamic replica placement for scalable
content delivery. In: IPTPS, pp. 306–318. Cambridge, USA (2002)

7. Chen, Y., Qiu, L., Chen, W., Nguyen, L., Katz, R.H.: Efficient and adaptive
web replication using content clustering. IEEE Journal on Selected Areas in
Communications 21(6) (2003)

8. Duvvuri, V., Shenoy, P., Tewari, R.: Adaptive leases: A strong consistency mech-
anism for the world wide web. IEEE Transactions on Knowledge and Data En-
gineering 15(5), 1266–1276 (2003)

9. Freedman, M.J., Freudenthal, E., Mazi‘eres, D.: Democratizing content publica-
tion with coral. In: 1st USENIX/ACM Symposium, vol. 2004

10. Gray, C., Cheriton, D.: Leases: an efficient fault-tolerant mechanism for dis-
tributed file cache consistency. In: SOSP ’89: Proceedings of the twelfth ACM
symposium on Operating systems principles, pp. 202–210. ACM, New York, NY,
USA (1989). DOI http://doi.acm.org/10.1145/74850.74870

11. Huston, G.: Ipv4: How long do we have? The Internet Protocol Journal 6(4)
(2003)

12. Kangasharju, J., Roberts, J.W., Ross, K.W.: Object replication strategies in con-
tent distribution networks. Computer Communications 25(4), 376–383 (2002)

13. Kulkarni, P., Shenoy, P.J., Gong, W.: Scalable techniques for memory-efficient
cdn simulations. In: WWW, pp. 609–618 (2003)

14. Li, D., Cao, P., Dahlin, M.: Wcip:web cache invalidation protocol. IETF Internet
Draft (2000)

15. Liu, C., Cao, P.: Maintaining strong cache consistency in the world-wide web.
In: ICDCS ’97: Proceedings of the 17th International Conference on Distributed
Computing Systems (ICDCS ’97), p. 12. IEEE Computer Society, Washington,
DC, USA (1997)

16. Mikhailov, M., Wills, C.E.: Evaluating a new approach to strong web cache con-
sistency with snapshots of collected content. In: WWW ’03: Proceedings of the
12th international conference on World Wide Web, pp. 599–608. ACM, New York,
NY, USA (2003)

17. Ninan, A., Kulkarni, P., Shenoy, P., Ramamritham, K., Tewari, R.: Cooperative
leases: scalable consistency maintenance in content distribution networks. In:
WWW ’02: Proceedings of the 11th international conference on World Wide
Web, pp. 1–12. ACM Press, New York, NY, USA (2002)

18. Pai, V.S., Wang, L., Park, K., Pang, R., Peterson, L.: Codeen. In: Second Work-
shop on Hot Topics in Net-working (HotNets-II) (2003)

19. Pallis, G., Stamos, K., Vakali, A., Katsaros, D., Sidiropoulos, A.: Replication
based on objects load under a content distribution network. In: ICDEW ’06:
Proceedings of the 22nd International Conference on Data Engineering Work-
shops (ICDEW’06). IEEE Computer Society, Atlanta, USA (2006)

20. Pallis, G., Thomos, C., Stamos, K., Vakali, A., Andreadis, G.: Content classifi-
cation for caching under cdns. In: Innovation on Information Technology. IEEE
Computer Society, Dubai, United Arab Emirates (2007)

21. Pallis, G., Vakali, A., Stamos, K., Sidiropoulos, A., Katsaros, D., Manolopoulos,
Y.: A latency-based object placement approach in content distribution networks.
In: Third Latin American Web Congress (LA-Web 2005), pp. 140–147. Buenos
Aires, Argentina (2005)

22. Pierre, G., van Steen, M.: Globule: a collaborative content delivery network. IEEE
Communications Magazine 44(8), 127–133 (2006)

23. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies.
ACM Comput. Surv. 35(4), 374–398 (2003)

24. Presti, F.L., Petrioli, C., Vicari, C.: Dynamic replica placement in content de-
livery networks. In: 13th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS 2005), pp.
357–360. Atlanta, GA, USA (2005)

25. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley
(2002)

26. Rabinovich, M., Xiao, Z., Douglis, F., Kalmanek, C.R.: Moving edge-side includes
to the real edge - the clients. In: USENIX Symposium on Internet Technologies
and Systems. Seattle, Washington, USA (2003)

27. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic fragment detection
in dynamic web pages and its impact on caching. IEEE Trans. Knowl. Data Eng.
17(6), 859–874 (2005)

28. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of caching
and replication strategies for web applications. IEEE Internet Computing 11(1),
60–66 (2007)

29. Stamos, K., Pallis, G., Thomos, C., Vakali, A.: A similarity based approach for
integrated web caching and content replication in cdns. In: Tenth International
Database Engineering and Applications Symposium (IDEAS 2006), pp. 239–242.
Delhi, India (2006)

30. Stamos, K., Pallis, G., Vakali, A.: Integrating caching techniques on a content dis-
tribution network. In: Advances in Databases and Information Systems, 10th East
European Conference, ADBIS 2006, pp. 200–215. Thessaloniki, Greece (2006)

31. Tewari, R., Niranjan, T., Ramamurthy, S.: Wcdp: Web content distribution pro-
tocol. IETF Internet Draft (2002)

32. Tse, S.S.H.: Approximate algorithms for document placement in distributed web
servers. IEEE Trans. Parallel Distrib. Syst. 16(6), 489–496 (2005)

33. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Inter-
net Computing 7(6), 68–74 (2003)

34. Wang, L., Pai, V.S., Peterson, L.L.: The effectiveness of request redirection on cdn
robustness. In: 5th Symposium on Operating System Design and Implementation
(OSDI 2002)

35. Yao, D., Koglin, Y., Bertino, E., Tamassia, R.: Decentralized authorization and
data security in web content delivery. In: SAC ’07: Proceedings of the 2007 ACM
symposium on Applied computing, pp. 1654–1661. ACM, New York, NY, USA
(2007)

36. Yin, J., Alvisi, L., Dahlin, M., Iyengar, A.: Engineering web cache consistency.
ACM Trans. Inter. Tech. 2(3), 224–259 (2002)

37. Zhuo, L., Wang, C.L., Lau, F.C.M.: Load balancing in distributed web server
systems with partial document replication. In: 31st International Conference on
Parallel Processing (ICPP), p. 305. Vancouver, Canada (2002)

