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Abstract: The enormous growth in the number of documents circulated over the Web 
increases the need for improved Web data management systems. In order to 
evaluate the performance of these systems, various simulation approaches 
must be used. In this paper, we study the main simulation models that have 
been deployed for Web data management. More specifically, we survey the 
most recent simulation approaches, for Web data representation and storage (in 
terms of caching) as well as for Web data trace evaluation.  
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1. INTRODUCTION 

The World Wide Web is growing so fast that the need of effective Web 
data management systems has become obligatory. This rapid growth is 
expected to persist as the number of Web users continues to increase and as 
new Web applications (such as electronic commerce) become widely used. 
Currently, the Web circulates more than seven billions documents and this 
enormous size has transformed communications and business models so that 
the speed, accuracy, and availability of network-delivered content become 
absolutely critical factors for the overall performance on the Web. 
     The emergence of the Web has changed our daily practice, by providing 
information exchange and business transactions. Therefore, supportive 
approaches in data, information and knowledge exchange becomes the key 
issue in new Web technologies. In order to evaluate the quality of these 
technologies many research efforts have used various simulation approaches.  
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During the last years, a great interest for developing simulation 
techniques on the Web Data Management Systems has been observed. By 
using simulation techniques, we can easily explore some models and 
produce tools for managing effectively the Web data. In that framework, it is 
essential to identify new concepts in an effective Web data management 
system. Simulation efforts in this area have focused on: 
– Web Data Representation: Due to the explosive growth of the Web, it 

is essential to represent it appropriately. One solution would be to 
simulate the Web as a directed graph. Graphs used for Web 
representation provide an adequate structure, considering both the Web 
pages and their links as elements of a graph. According to this 
implementation, the Web documents and their links are simulated as 
graph nodes and graph arcs respectively. In addition, the emergence of 
XML, as the standard markup language on the Web (for organizing and 
exchanging data), has driven to new terms (such as ontologies, XML 
schemas) for simulating the Web data representation with a more 
effective way. 

– Web Data Accessing: These simulation efforts include a collection of 
analytical techniques used to reveal new trends and patterns in Web data 
accessing records. The process of selecting, exploring and modeling large 
amounts of these records is essential for characterizing the Web data 
workload.  In this context, workload characterization of Web data is 
clearly an important step for better understanding the Web data of 
behavior. 

– Web Data Storage: Since Web data storage has a major effect on the 
performance of Web applications, new implementations (such as Web 
data caching and Web databases) have emerged. These implementations 
can be considered as one of the most beneficial approach to 
accommodate the (continuously growing) number of documents and 
services, providing also a remarkable improvement on the Quality of 
Service (QoS). The term of QoS has been introduced to describe certain 
technical characteristics, (such as performance, scalability, reliability and 
speed). In order to evaluate the performance of different cache 
management techniques, many Web caching simulations have been 
presented. So, one of the most important features of modern Web data 
management simulation efforts is based on the capability of storing 
effectively various Web documents.     
The remainder of this paper is organized as follows. The next Section 

presents the main issues for Web data representation, with more emphasis on 
Web graph simulation models. The basic characteristics for both Web data 
workload and Web users’ patterns are discussed in Section 3. In Section 4 an 
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overview of Web data caching simulation approaches is presented.  Section 
6 summarizes the conclusions. 

2. WEB DATA REPRESENTATION  

2.1 Web Document Structure 

Since, the amount of publicly available information on the Web is rapidly 
increasing (together with the number of users that request this information) 
various types of data (such as text, images, video, sound or animation) 
participate in Web documents. This information can be designed by using a 
markup language (such as HTML1 or XML2), retrieved via protocols (such 
as HTTP or HTTPS) and presented using a browser (such as Internet 
Explorer or Netscape Communicator). We can further categorize Web 
documents into:  
– Static: The content of a static document is created manually and does not 

depend on users’ requests. As a result, this type of documents shows 
good retrieval time but it is not recommended in applications, which 
require frequent content changes. The hand-coded HTML Web pages 
processed by simple plain text editors (as well as the HTML documents 
created by more sophisticated authoring tools) are examples of static 
Web documents and (as noted in [18]) they define the first Web 
generation. 

– Dynamic: Dynamic content includes Web pages built as a result of a 
specific user request (i.e. they could be different for different user 
accesses). However, once a dynamically created page sent to the client, it 
does not change. This approach enables authors to develop Web 
applications that access databases using programming languages (CGI, 
PHP, ASP etc.) in order to present the requested document. In this way, 
we can serve documents with same structure or up-to-date content. 
However, the dynamic content increases the server load as well as the 
response time. 

– Active: Active documents can change their content and display in 
response to the user request (without referring back to the server). More 
specifically, active pages include code that is executed at the client side 
and usually implemented by using code such as Java and JavaScripts. 

 
1 W3C HTML Home Page: http://www.w3c.org/MarkUp 
2 Extensible Markup Language (XML): http://www.w3c.org/XML 
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Thus, active content does not require server’s resources, but, it runs quite 
slowly since the browser has to interpret every line of its code. 
Both dynamic and active Web documents introduce the second Web 

generation, where the content is machine-generated [18]. The common 
feature between these two Web generations is that they both design and 
present information with a human-oriented manner. This refers to the fact 
that Web pages are handled directly by humans who either read the static 
content or produce the dynamic and active content (executing server and 
client side code correspondingly). Finally, the third Web generation, also 
known as Semantic Web, focuses on machine-handled information 
management. The primary goal of the Semantic Web is to extend the current 
Web content to computer meaningful content. Current data representation 
and exchange standards (such as XML) could facilitate the introduction of 
semantic representation techniques and languages. 

2.2 The Web as a graph 

The World Wide Web structure includes pages which have both the Web 
content and the hypertext links (that connect one page to another). An 
effective method to study the Web is to consider it as a directed graph, which 
simulates both its content and content’s interconnection. In particular, in the 
Web graph each node corresponds to Web pages and arcs correspond to 
links between these pages. We can further separate these arcs in outgoing 
edges of a node (which simulate the hypertext links contained in the 
corresponding page) and incoming edges (which represent the hypertext 
links through which the corresponding page is reached). Considering Web as 
a graph is proving to be valuable for applications such as Web indexing, 
detection of Web communities and Web searching. 

The actual Web graph is huge and appears to grow exponentially over 
time. More specifically, in July 2000, it was estimated that it consists of 
about 2.1 billions nodes [26], [30] and 15 billions edges, since the average 
node has roughly seven hypertext links (directed edges) to other pages [22], 
[25]. Furthermore, approximately 7.3 millions pages are added every day 
and many others are modified or removed, so that the Web graph might 
currently (November 2002) contain more than seven billions nodes and 
about fifty billions edges in all. 

In studying the Web graph, two important elements should be 
considered: its giant size and its rapid evolution. As it is impossible to work 
on the whole graph we retrieve parts of it. This procedure is employed by 
and performing with software packages such as crawlers, robots, spiders, 
worms or wanderers. More specifically, we can think of this procedure as 
BFS (bread-first search) on a directed graph [10]: we begin with a random 
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initial list of URLs (Uniform Resource Locators) and build up the set of 
pages reachable from the first list through the outgoing hypertext links. The 
same process iterates from the new set of pages. In fact, this mechanism is 
more complicated for reasons, which deal with the frequency of the requests 
(to a given web server according to its load) and its rapid evolution (which 
implies that graph changes during the crawl). 

Because of the above considerations, studies about the structure of the 
Web documents always deal with parts of the actual Web graph, usually 
from several millions to several hundreds of millions nodes. Actually 
simulation efforts focus on subgraphs (which are supposed to be 
representative) in order to make observations about the Web entirety and can 
be categorized in: 

 

Figure 8-1. Web communities on local structures of the Web graph 

– Local approaches: In this case, we can detect structures with an 
unusually high density of links among a small set of pages which is an 
indication that they may be topically related. Local structures are of great 
interest for "cyber-community" detection and thus for improving search 
engines techniques. A characteristic pattern in such communities contains 
a collection of hub pages (lists or guides) linking to a collection of 
authorities on a topic of common interest. More specifically, each page 
of the first set has a link to all pages of the second one, while there is no 
link between pages of the second set, and hubs do not necessarily link to 
hubs [22], [25]. As an example, in Figure 8-1 (left) we can consider hub-
like pages on the left as the personal pages of ecologists, which co-cite 
the authoritative pages of ecological organizations on the right. The HITS 
(Hyperlink-Induced Topic Search) algorithm [25] is applied to modify 
subgraphs and computes lists of hubs and authorities for Web search 
topics. To construct such a subgraph, the algorithm first submits a search 
request to a traditional search engine and receives a root set of about 200 
pages. The root set is further expanded into a base set of roughly 1000 – 
5000 pages including all pages that are linked to by root-pages and all 
pages that link to a root-page. In a second step the algorithm performs an 
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iterative procedure determining the authority and hub weight of each 
page (before the start of the algorithm these values set to 1 and then are 
updated as follows: if a page is pointed to by many hubs, its authority 
weight is increased; correspondingly, the hub weight of a page is 
updated, if the page points to many authorities). As a result HITS returns 
as hubs and authorities for the search topic those pages with the highest 
weights. The Trawling algorithms [13], [25] enumerate all such complete 
bipartite subgraphs of the Web graph. The results of the [24] 
experimentation suggest that the Web graph consists of several hundred 
thousand of such subgraphs, the majority of which correspond to 
communities with a definite topic of interest. An alternate approach 
detect communities based on the fact that some set of pages exhibit a link 
density that is greater among the members of the set than between 
members and the rest of the Internet, as shown in Figure 8-1 (right) [23]. 

 

Figure 8-2. The bow-tie structure of the Web 

– Global approaches: At a global level, a recent study [10] defines a bow-
tie structure of the Web. Particularly, an experiment on a 200 millions 
nodes graph with 1.5 billions links, retrieved from a crawl of the Web, 
demonstrates that Web graph appears to consist of four components of 
equivalent sizes (as shown in Figure 8-2). The "heart" of this structure is 
the largest, strongly connected component (SCC) of the graph (28% of 
graph nodes) and composes the core in which every page can reach every 
other or can be reachable by every other through a path of hypertext 
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links. The remaining components can be defined by their relation to the 
core: left-stream nodes or IN component (21% of graph nodes) can reach 
the core but cannot be reached from it whereas the right-stream or OUT 
component (21% of graph nodes) can be reached from the core but 
cannot reach it. We can further explain the flow from the IN component 
to core as links from new web pages to known interesting destinations 
and the lack of paths from OUT component to the core as set of pages 
whose links point only internally. Finally, the "tendrils" (21% of graph 
nodes) contain pages that do not link to the core and which are not 
reachable from it. The "tendrils" compose a set of pages that neither has 
been discovered yet from the rest of the web community nor do they 
contain interesting links back to it. The remaining of about 9% of graph 
nodes consists of disconnected components [25]. 
In order to evaluate such simulation efforts there is a need to consider 

appropriate measures and parameters. Therefore, statistical studies have 
considered several parameters to characterize the Web’s graph structure. 
More specifically: 
– the number of links to (in-degree) and from (out-degree) individual pages 

is distributed following a power low; as a sequence, the average out-
degree of a node is about 7 [10] 

– the sizes of the strongly-connected components in the Web graph are also 
distributed according to a power low [10] 

– the probability that there is a path between a random start node u to a 
random final node v is 25%. Therefore, for around 75% of time there is 
no path between these nodes; during only the 25% of the time the 
average connected distance (diameter) can be defined and it was 
estimated to be about 16 [25] 
As already mentioned, analysis of the Web’s structure is leading to 

improved methods for understanding, indexing and, consequently, accessing 
the available information through the design of more sophisticated search 
engines, focused search services or automatically refreshed directories. As 
an example, the Google’s ranking algorithm (which called "RankPage") 
based on the link structure of the Web [9]. More specifically, Google ranks 
results pages uses information from the number of pages pointing to a given 
document. This information is related to the quality of the page, as "high-
quality" web sites pointed by other "high-quality" web sites. 
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3. WORKLOADS FOR SIMULATING WEB DATA 

ACCESSING 

3.1 Web Data Workload Characterization 

Table 8-1. A sample access log 
986074304.817 81019 ccf.auth.gr TCP_MISS/503 1180 GET http://www.mymobile.com/ - 

DIRECT/www.mymobile.com – 
986074304.828 51360 med.auth.gr TCP_MISS/000 0 GET http://www.battle.net/includes/ads.js - 

DIRECT/www.battle.net – 
986074312.188 3140 med.auth.gr TCP_MISS/000 0 GET http://www.battle.net/includes/ads.js - 

DIRECT/www.battle.net – 
986074312.302 53 med.auth.gr TCP_HIT/200 16590 GET http://www.battle.net/ - NONE/- 

text/html                                                                        
986074320.238 7210 med.auth.gr TCP_MISS/000 0 GET http://www.battle.net/includes/ads.js - 

DIRECT/www.battle.net – 
986074334.489 13742 med.auth.gr TCP_MISS/503 1202 GET 

http://www.battle.net/includes/ads.js - DIRECT/www.battle.net -                                               
986074345.604 6 ccf.auth.gr TCP_MISS/503 1180 GET http://www.mymobile.com/ - 

DIRECT/www.mymobile.com – 
986074359.079 50 med.auth.gr TCP_HIT/200 10673 GET http://www.auth.gr/index.el.php3 - 

NONE/- text/html                                                             
 986074360.125 56 med.auth.gr TCP_IMS_HIT/304 252 GET http://www.auth.gr/auth.css - 

NONE/- text/css                                                    
Due to the enormous size of Web data accessing records, it is essential to 

devise workload characterization that will be representative of the 
underlying Web data behavior. Analysis derived from these records is 
reviewed in an effort to characterize the entire structure of the Web. In this 
context, one of the important steps in any simulation approach is to model 
the Web data behavior. The purpose of this approach is to understand the 
characteristics of the submitted workload and then to find a model for the 
Web data behavior using a collection of analytic techniques (such as data 
mining). 

Therefore, workload characterization is the key issue for simulation 
approaches on Web data management. In fact, workload characterization is 
an essential source of information for all the simulation models, which 
define a compact description of the load (by means of quantitive and 
qualitive parameters). Visually, the workload has a hierarchical nature and 
measurements are collected at various levels of detail. However, the 
complex nature of the Web complicates measuring and gathering of the Web 
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usage loads. Web data workloads usually consist of requests which are 
issued by clients and be processed by servers. Then, these requests are 
recorded in files which called log files [17]. Entries in the log file are 
recorded when the request is completed, and the timestamp records the time 
at which the socket is closed. Table 8-1 presents a sample of Squid logs. The 
first attempt to characterize Web user behavior was presented in [12]. The 
authors tried to synthesize the workload of Web data by analyzing the user 
behavior (captured at the browser). The task of workload characterization is 
not simple since Web workloads have many unusual features. Firstly, the 
Web requests have high variability (file sizes, time arrivals). According to 
[29], this is due to the variability in CPU loads of the Web servers and the 
number of their connections. Another feature of Web workloads is that the 
traffic patterns have also high variability and therefore, it can be described 
statistically using the term of self-similarity. Studies have shown that self-
similarity in traffic has negative results in the performance of Web data 
management systems.  

Capturing a specific set of Web logs is essential in order to simulate an 
application’s behavior. So the majority of simulation efforts use Web 
workloads that are characterized by several approaches. These approaches 
deal with characterizing associations and sequences in individual data items 
(Web logs) when analyzing a large collection of data. In that framework, 
there are two common simulation approaches for characterizing Web 
workloads [6]: 
– Trace-based approach:  The most popular way to characterize the 

workload of Web data is by analyzing the past Web servers log files. In 
[3] a detailed workload characterization study, which uses past logs, is 
presented for World-Wide Web servers. Most of these tools are 
downloaded free from the Web. It is common to analyze the Web server 
logs for reporting traffic patterns. In addition, many tools have been 
developed for characterizing Web data workload. In this context, the 
Webalizer3 is a log file analysis tool, which produces highly detailed, 
easily configurable usage reports in HTML format. Calamaris4, Squid-
Log-Analyzer5, Squidalyser6 are tools which analyse only the logs of 
Squid proxy server.  On the other hand, characterizing the workload with 
captured logs has many disadvantages, since it is tied to a known system. 
Despite the fact that this approach is simple to implement, it has limited 
flexibility. Firstly, this workload analysis is based completely on past 
logs. But the logs may lose their value if some references within them are 

 
3 Webalizer site: http://www.mrunix.net/webalizer  
4 Calamaris site:  http://calamaris.cord.de 
5  Squid-Log-Analyzer site: http://squidlog.sourceforge.net 
6 Squidalyser site: http://ababa.org 
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no longer valid. Secondly, the logs are inaccurate when they return 
objects that may not have the same characteristics with the current 
objects. Finally, the logs should be recorded and processed carefully 
because a false can lead to incorrect temporal sequences. For example, 
the requests for a main page can appear after the requests for images 
within the page itself. So, all the above can lead to incorrect results. In 
[17] the author examines the disadvantages of using captured log files 
and investigates what can be learned from logs in order to infer more 
accurate results.  

– Analytical approach:  Another idea is for the Web data workload 
characterization to use traces that do not currently exist. This kind of 
workload is called synthetic workload and it is defined by using 
mathematical models, which are usually based on statistical methods, for 
the workload characteristics. The main advantage of the analytical 
approach is that it offers great flexibility. There are several workload 
generation tools developed to study Web proxies. In [6] the authors 
created a realistic Web workload generation tool, which mimics a set of 
real users accessing a server. In [11] another synthetic Web proxy 
workload generator is (called ProWGen) described. However, the task of 
generating representative log files is difficult because Web workloads 
have a number of unusual features. Sometimes, in attempting to generate 
artificial workloads, we make significant assumptions such as that all 
objects are cacheable, or that the requests follow a particular distribution. 
These assumptions may be necessary for testing, but are not always 
absolutely true.  
Finally, another approach for synthesizing Web workloads is to process 

the current requests. Using a live set of requests produces experiments that 
cannot be reproducible. The disadvantage of using current requests is the 
high real load. So, the hardware and the software may have difficulties 
handling this load. 

3.2 Capturing Web Users’ Patterns 

The incredible growth in the size and use of the Web has created 
difficulties in both the design of web sites (to meet a great variety of users' 
requirements) and the browsing (through vast web structures of pages and 
links) [7]. Most Web sites are set up with little knowledge on the 
navigational behaviour of the users (who access them). Therefore, simulating 
users' navigation patterns can be proved to be valuable both to the Web site 
designers and to the Web site visitors. For example, constructing dynamic 
interfaces based on visitors' behaviour, preferences or profile has already 
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been very attractive to several applications (such as e-commerce, 
advertising, e-business etc). 

When web users interact with a site, data recording their behaviour is 
stored in files (called Web server’s log files), which can sum up to several 
megabytes per day (in case of a medium size site). A relatively recent 
research discipline, called Web Usage Mining, applies data mining 
techniques to the Web data in order to capture interesting usage patterns. So 
far, there have so far been two main approaches to mining for user 
navigation patterns from log records: 
– Direct method: In this case techniques have been developed which can 

be invoked directly on the raw Web server’s log data. The most common 
approach to extract information about usage of a Web site is statistical 
analysis. Several open source packages that provide information about 
the most popular pages, the most frequently entry and exit points of 
navigations, the average view time of a page (or the hourly distribution of 
access) have been developed. This type of knowledge could be taken into 
consideration during system improvement or site modification tasks. For 
example, decisions about caching policies could be based on detecting 
traffic behaviour while identifying the pages where users usually 
terminate their sessions is important for site designers to improve their 
content. 

– Indirect method: In this case the collected raw Web data are 
transformed into data abstractions (during a pre-processing phase) 
appropriate for the pattern discovery procedure. According to [34] the 
types of data that can be used for capturing interesting user’s patterns are 
classified into the content, structure, usage and user profile data. Such 
data can be collected from different sources (e.g. server log files, client 
level or proxy level log files). Server log files keep information about 
multiple users who access a single site. However, the collected data 
might not be reliable since the cached pages requests are not logged in 
the file. Another problem is the identifying of individual users since in 
most cases the web access is not authorized. On the other hand, client 
level collected data reflects the access to multiple web sites by a single 
user and overcomes difficulties related to page caching, user and session 
identification. Finally, proxies log files collect data about requests from 
multiple users to multiple sites. All of above data can be processed in 
order to construct data abstractions such as user and server session [34]. 
A user session consists of page requests made by a single user across the 
entire Web while the server session is the part of user session that 
contains requests to a particular Web site. Once the data abstractions 
have been created standard data mining techniques, such as association 
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rules, sequential patterns and clustering analysis, are used in patterns 
recognition [14].   
In Web Usage Mining process, association rules discover set of pages 

accessed together (without these pages being necessarily connected directly 
through hyper-links). For example, at a cinema's chain Web site, it could be 
found that users who visited pages about comedies also accessed pages about 
thriller films. Detecting such rules could be helpful for improving the 
structure of a site or reducing latency due to page loadings based on pre-
fetched documents. 

On the other hand, the action of detecting sequential patterns is that of 
observing patterns among server sessions such that the access to a set of 
pages is followed by another page in a time-ordered set of sessions. As an 
example, at an ISP's Web site, it might be revealed that visitors accessed the 
Products page followed by the News page. This type of information is 
extremely useful in e-business applications since analyzing products bought 
(or advertisements views) can be based on discovery of sequential patterns. 

Finally, clustering techniques can be used for categorizing both the users 
and the requested pages. More specifically, clusters are groups of items that 
have similar features, so we can recognize user and page clusters. User 
clusters involve users who exhibit similar browsing behaviour, whereas page 
clusters consist of pages with related content. The user clustering approach 
can improve the development of e-commerce strategies. Serving dynamic 
content focused on users' profile is a challenge in Web research. Moreover, 
information about page clusters can be useful for Web search engines. 

Several mining systems have been developed in order to extract 
interesting navigation patterns. [21] proposes the WebWatcher a tour guide 
agent for the Web browsing. WebWatcher simulates a human guide making 
recommendations that help visitors during their navigation. It suggests the 
next page based on the knowledge of user's interests and of the content of the 
web pages as well as it improves its skills interacting with users. In [33] the 
authors present the Web Utilization Miner (WUM), a mining system, which 
consists of an aggregation module and a mining module. The first module 
executes a pre-processing task on the web log data and infers a tree structure 
of detecting user sessions where as the second one is a mining language 
(MINT) which performs the mining task according to a human expert. [7] 
presents the Hypertext Probabilistic Grammar (HPG) model which 
simulates the Web as a grammar, where the pages and hyperlinks of the Web 
may be viewed as grammar's states and rules. Data mining techniques are 
used to find the higher probability strings which correspond to the user's 
preferred navigation path. However, this model has the drawback that 
returns a very large set of rules for low values of threshold and a small set of 
very short rules for high values of threshold. As a sequence, the heuristic 
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Inverse Fisheye (IFE) [8] computes small sets of long rules using a dynamic 
threshold whose value is adapted to the length of the traversal path. Finally, 
in [15] the WebSIFT system is presented which performs Web Usage Mining 
based on server logs. WebSIFT uses content, structure and usage 
information and composed of pre-process, pattern mining and pattern 
analysis modules. 

4. SIMULATION OF WEB DATA CACHING 

Web data caching techniques are used to store the Web data, in order to 
retrieve them with low communication costs. 

4.1 Web Data Caching 

The explosive growth of the World Wide Web in recent years has 
resulted in major network traffic and congestion. As a result, the Web has 
become a victim of its own success [1]. These demands for increased 
performance have driven the innovation of new approaches, such as the Web 
caching [2], [36], [37]. 

It is recognized that deploying Web caching can make the World Wide 
Web less expensive and better performing. In particular, it can reduce the 
bandwidth consumption (fewer requests and responses that need to go over 
the network), the network latency perceived by the client (cached responses 
are available immediately, and closer to the client being served) and the 
server load (fewer requests for a server to handle) [1], [37]. Furthermore, it 
can improve the network reliability perceived by the client. 

 

Figure 8-3. Web data caching 
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Web caching has many similarities with a memory system caching. A 
Web cache stores frequently used information in a suitable location so that it 
can be accessed quickly and easily for future use. Caching can be performed 
by the client application and is built into every Web browser. Caching can 
also be utilized between the client and the server as part of a proxy as 
illustrated in Figure 8-3.  A proxy cache server intercepts requests from 
clients, and if it finds (called a cache hit) the requested object in the cache, it 
returns the object to the user without disturbing the upstream network 
connection or destination server. If the object is not found (a cache miss), the 
proxy attempts to fetch the object directly from the origin server. For greater 
performance proxy caches can be parts of cache hierarchies, in which a 
proxy requests objects from neighboring caches instead of fetching them 
directly from the origin server. Table 8-2 presents the main metrics which 
assess the cache performance. 

Table 8-2. Caching Metrics 
Caching Metrics Definitions 

Hit rate It is defined as the ratio of documents obtained through using 
the caching mechanism versus the total documents requested. 
A high hit rate reflects an effective cache policy. 

Byte hit rate It is defined as the ratio of the number of bytes loaded from 
the cache to the total number of bytes accessed. 

Saved bandwidth This metric tries to quantify the decrease in the number of 
bytes retrieved from the origin servers. It is directly related 
with byte hit rate. 

User response time The time a user waits for the system to retrieve a requested 
document.  

System utilization It is defined as the fraction of time that the system is busy. 
Latency Latency is defined as the interval between the time the user 

requests for a certain content and the time at which it appears 
in the user browser.  

However, if at some point the space required to store all the objects being 
cached exceeds the available space, the proxy will need to replace an object 
from the cache. Cache Replacement Algorithms play a main role in the 
design of any caching component and some of them are discussed in [5]. In 
general, cache replacement policies attempt to maximize the percentage of 
requests which successfully are served by the cache (called hit ratio) [4]. In 
order to evaluate these algorithms in various caching systems, some 
simulation approaches are usually used. Simulation is a very flexible method 
to evaluate the caching policies because it does not require full 
implementation. Otherwise, we should have developed an integrated caching 
scheme. The simulation results have shown that the maximum cache hit rate 
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that can be achieved by any caching algorithm is usually no more than 50% 
[28].  

4.2 Simulating Caching Approaches 

It is useful to evaluate the performance of proxy caches both for Web 
data managers (selecting the essential system for a particular situation) and 
also for developers (working on alternative caching mechanisms). 
Simulating the Web data will help also to an effective data management on 
the Web [28]. 

In this context, new simulation approaches are needed for describing the 
Web. In [16] an encouraging development for simulating the Web is 
presented. In this paper, the authors use a class of Parallel Discrete Event 
Simulation (PDES) techniques for constructing appropriate models for the 
World Wide Web. More specifically, they use the Scalable Simulation 
Framework (SSF), which is being developed by Cooperating Systems 
Coorporation. SSF provides an interface for constructing process-oriented, 
event-oriented and hybrid simulations. SSF provides also some mechanisms 
for constructing PDES that can scale to millions of Web objects. Therefore, 
this framework, in conjunction with scalable parallel simulations, makes it 
possible to analyze the behaviour of the complicated Web models. 

 

Figure 8-4. The Three Stages of Trace-driven Simulation 
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In the literature, several alternative approaches are available. They can be 
summarized as follows: 
– Simulations using captured logs: This kind of simulation is the most 

popular and is directly related with Web performance. Many research 
efforts have used trace-driven simulation to evaluate the effects of 
various replacement, threshold, and partitioning policies on the 
performance of a Web server. The workload traces for the simulations 
come from Web servers’ access logs. They include access information, 
configuration errors and resource consumption. In this approach the logs 
are the basic component and they should be recorded and processed 
carefully. In general, a trace driven simulation can be considered of 
having three main stages: trace collection, trace reduction and trace 
processing [19]. As illustrated in Figure 8-4, trace collection is the 
process of determining the sequence of Web data that made by some 
workload. Because these traces can be very large, trace reduction 
techniques are often used to remove the full trace of data that are 
needless or redundant. In the final stage, trace processing is used to 
simulate the behaviour of a system, producing some useful metrics, such 
as hit rate, byte hit rate etc. More specifically, authors in [32] trace-
driven simulation is used to evaluate their proposed algorithm (LNC-R-
W3-U) with different cache replacement algorithms. In this work, the 
authors gathered a seven-day snapshot of requests generated by clients in 
a lab at Northwestern University. The simulation results show that the 
LNC-R-W3-U improves the delay saving ratio by 38% when compared 
to LRU (the most popular algorithm). Another work [28] uses trace-
driven simulation based on access logs from various servers to evaluate 
the most popular documents with client access profiles. The basic idea of 
this proposal is (for servers) to publish their most accessed objects, called 
“Top 10” (although there may be more than ten popular objects). In 
particular, the authors captured traces from several Web servers from a 
variety of environments, such as universities, research institutions, and 
Internet Service Providers (ISPs) both from Europe and the United 
States. All these traces exceed the four million requests. Then, the 
authors used these captured logs to investigate the costs and benefits of 
their approach. Performance results have shown that this approach can 
prefetch more than 60% of future requests, with less than 20% 
corresponding increase in traffic. Finally, in [31] the authors use trace-
driven simulation to evaluate a new caching policy, taking into account 
some criteria such as hit rate, byte hit rate and latency. In particular, the 
authors developed a simulator in C++ which models the behaviour of a 
proxy cache server. According to this simulation model, the authors 
captured logs from proxy caches of various institutes such as Digital 
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Equipment Corporation, Boston University, NLAR and INRIA. The 
experimentation results show that the new caching policy improves the 
performance. 

– Simulations using synthetic workloads: In this approach synthetic 
traces are usually used to generate workloads that do not currently exist. 
Authors in [35] propose a new cache algorithm (RBC) which uses 
synthetic traces for the simulation of caching continuous media traffic. 
The selected workload has a predefined distribution of requests among 
different object types and a predefined object size distribution. In 
particular, the objects are ranging either from 3 to 64 KB (for objects of 
image/text) or from 100 KB to 15MB (for objects of audio/video). The 
simulation results show that RBC achieves higher hit ratio as compared 
to several existing algorithms under the above workload. In [20] an 
adaptive prefetch scheme using a synthetic trace set is presented. 
According to this scheme, the authors presented a prediction algorithm 
and studied its performance through simulations. Although the trace set is 
very limited, this algorithm achieves a high hit rate. Furthermore, authors 
in [11] use synthetic workloads to evaluate the performance of different 
cache replacement algorithms for multi-level proxy caching hierarchies. 
The workload follows distinct distributions, such as Zipf-like popularity, 
heavy-tailed file size distribution etc. According to this simulation model, 
the client’s requests are forwarded to the lower level proxies. All the 
requests that failed from the upper level proxies are forwarded to the 
Web servers. At different levels of the hierarchy, the proxies support 
different replacement policies. Results have shown that this approach 
improves the performance, combining different policies at different 
levels of the proxy cache hierarchy. Finally, in [27] a new Web 
benchmark that generates a server benchmark load, which is focused on 
actual server loads, is presented. This tool would be used to compare the 
traffic generated by the benchmark and the desired traffic patterns. The 
results have shown that these predictions are sufficiently realistic. 

– Simulations using current requests: This kind of simulation utilizes 
current requests of a live network. The advantage is that the cache is 
tested on a real traffic. The drawback is that the experiments are not 
reproducible (especially when connected with live networks or systems). 
Finally, many research efforts have used a combination of these 

approaches, which are often called as hybrids. According to these 
approaches, research efforts are trying to evaluate the Web data management 
systems using both captured logs and synthetic workloads. 
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5. CONCLUSIONS 

This paper presents a study of simulation in the Web data management 
process. The extremely large volume of the Web documents has increased 
the need for advanced management software implementations that offer an 
improvement on the quality of Web services. 

Selection of an appropriate evaluation methodology for Web data 
management systems depends on various concerns. In this context, several 
simulation approaches for Web data management have been developed 
during the last years. Firstly, these approaches are focused on simulating the 
structure of Web. Web graphs are the most common implementations for 
Web data representation. Secondly, it is essential to simulate the Web data 
workloads. This can be implemented using data mining techniques. These 
techniques study carefully the structure of Web data and find new trends and 
patterns that fit well with a statistical model. Finally, various systems have 
been developed for simulating Web caching approaches. These approaches 
are used for an effective storage.  

All the previous simulation approaches, in conjunction with the 
emergence of search engines, try to improve both the management of Web 
data (on the server side) and the overall Web performance (on the user side).  
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