
1

Chapter #8

SIMULATION IN WEB DATA MANAGEMENT

G. Papadimitriou, A. Vakali, G. Pallis, S. Petridou and A. Pomportsis
KAP

Abstract: The enormous growth in the number of documents circulated over the Web
increases the need for improved Web data management systems. In order to
evaluate the performance of these systems, various simulation approaches
must be used. In this paper, we study the main simulation models that have
been deployed for Web data management. More specifically, we survey the
most recent simulation approaches, for Web data representation and storage (in
terms of caching) as well as for Web data trace evaluation.

Key words: Web data accessing, Web caching, Simulation of Web information
management

1. INTRODUCTION

The World Wide Web is growing so fast that the need of effective Web
data management systems has become obligatory. This rapid growth is
expected to persist as the number of Web users continues to increase and as
new Web applications (such as electronic commerce) become widely used.
Currently, the Web circulates more than seven billions documents and this
enormous size has transformed communications and business models so that
the speed, accuracy, and availability of network-delivered content become
absolutely critical factors for the overall performance on the Web.
 The emergence of the Web has changed our daily practice, by providing
information exchange and business transactions. Therefore, supportive
approaches in data, information and knowledge exchange becomes the key
issue in new Web technologies. In order to evaluate the quality of these
technologies many research efforts have used various simulation approaches.

2 Chapter #8

During the last years, a great interest for developing simulation
techniques on the Web Data Management Systems has been observed. By
using simulation techniques, we can easily explore some models and
produce tools for managing effectively the Web data. In that framework, it is
essential to identify new concepts in an effective Web data management
system. Simulation efforts in this area have focused on:
– Web Data Representation: Due to the explosive growth of the Web, it

is essential to represent it appropriately. One solution would be to
simulate the Web as a directed graph. Graphs used for Web
representation provide an adequate structure, considering both the Web
pages and their links as elements of a graph. According to this
implementation, the Web documents and their links are simulated as
graph nodes and graph arcs respectively. In addition, the emergence of
XML, as the standard markup language on the Web (for organizing and
exchanging data), has driven to new terms (such as ontologies, XML
schemas) for simulating the Web data representation with a more
effective way.

– Web Data Accessing: These simulation efforts include a collection of
analytical techniques used to reveal new trends and patterns in Web data
accessing records. The process of selecting, exploring and modeling large
amounts of these records is essential for characterizing the Web data
workload. In this context, workload characterization of Web data is
clearly an important step for better understanding the Web data of
behavior.

– Web Data Storage: Since Web data storage has a major effect on the
performance of Web applications, new implementations (such as Web
data caching and Web databases) have emerged. These implementations
can be considered as one of the most beneficial approach to
accommodate the (continuously growing) number of documents and
services, providing also a remarkable improvement on the Quality of
Service (QoS). The term of QoS has been introduced to describe certain
technical characteristics, (such as performance, scalability, reliability and
speed). In order to evaluate the performance of different cache
management techniques, many Web caching simulations have been
presented. So, one of the most important features of modern Web data
management simulation efforts is based on the capability of storing
effectively various Web documents.
The remainder of this paper is organized as follows. The next Section

presents the main issues for Web data representation, with more emphasis on
Web graph simulation models. The basic characteristics for both Web data
workload and Web users’ patterns are discussed in Section 3. In Section 4 an

#8. Simulation in Web Data Management 3

overview of Web data caching simulation approaches is presented. Section
6 summarizes the conclusions.

2. WEB DATA REPRESENTATION

2.1 Web Document Structure

Since, the amount of publicly available information on the Web is rapidly
increasing (together with the number of users that request this information)
various types of data (such as text, images, video, sound or animation)
participate in Web documents. This information can be designed by using a
markup language (such as HTML1 or XML2), retrieved via protocols (such
as HTTP or HTTPS) and presented using a browser (such as Internet
Explorer or Netscape Communicator). We can further categorize Web
documents into:
– Static: The content of a static document is created manually and does not

depend on users’ requests. As a result, this type of documents shows
good retrieval time but it is not recommended in applications, which
require frequent content changes. The hand-coded HTML Web pages
processed by simple plain text editors (as well as the HTML documents
created by more sophisticated authoring tools) are examples of static
Web documents and (as noted in [18]) they define the first Web
generation.

– Dynamic: Dynamic content includes Web pages built as a result of a
specific user request (i.e. they could be different for different user
accesses). However, once a dynamically created page sent to the client, it
does not change. This approach enables authors to develop Web
applications that access databases using programming languages (CGI,
PHP, ASP etc.) in order to present the requested document. In this way,
we can serve documents with same structure or up-to-date content.
However, the dynamic content increases the server load as well as the
response time.

– Active: Active documents can change their content and display in
response to the user request (without referring back to the server). More
specifically, active pages include code that is executed at the client side
and usually implemented by using code such as Java and JavaScripts.

1 W3C HTML Home Page: http://www.w3c.org/MarkUp
2 Extensible Markup Language (XML): http://www.w3c.org/XML

4 Chapter #8

Thus, active content does not require server’s resources, but, it runs quite
slowly since the browser has to interpret every line of its code.
Both dynamic and active Web documents introduce the second Web

generation, where the content is machine-generated [18]. The common
feature between these two Web generations is that they both design and
present information with a human-oriented manner. This refers to the fact
that Web pages are handled directly by humans who either read the static
content or produce the dynamic and active content (executing server and
client side code correspondingly). Finally, the third Web generation, also
known as Semantic Web, focuses on machine-handled information
management. The primary goal of the Semantic Web is to extend the current
Web content to computer meaningful content. Current data representation
and exchange standards (such as XML) could facilitate the introduction of
semantic representation techniques and languages.

2.2 The Web as a graph

The World Wide Web structure includes pages which have both the Web
content and the hypertext links (that connect one page to another). An
effective method to study the Web is to consider it as a directed graph, which
simulates both its content and content’s interconnection. In particular, in the
Web graph each node corresponds to Web pages and arcs correspond to
links between these pages. We can further separate these arcs in outgoing
edges of a node (which simulate the hypertext links contained in the
corresponding page) and incoming edges (which represent the hypertext
links through which the corresponding page is reached). Considering Web as
a graph is proving to be valuable for applications such as Web indexing,
detection of Web communities and Web searching.

The actual Web graph is huge and appears to grow exponentially over
time. More specifically, in July 2000, it was estimated that it consists of
about 2.1 billions nodes [26], [30] and 15 billions edges, since the average
node has roughly seven hypertext links (directed edges) to other pages [22],
[25]. Furthermore, approximately 7.3 millions pages are added every day
and many others are modified or removed, so that the Web graph might
currently (November 2002) contain more than seven billions nodes and
about fifty billions edges in all.

In studying the Web graph, two important elements should be
considered: its giant size and its rapid evolution. As it is impossible to work
on the whole graph we retrieve parts of it. This procedure is employed by
and performing with software packages such as crawlers, robots, spiders,
worms or wanderers. More specifically, we can think of this procedure as
BFS (bread-first search) on a directed graph [10]: we begin with a random

#8. Simulation in Web Data Management 5

initial list of URLs (Uniform Resource Locators) and build up the set of
pages reachable from the first list through the outgoing hypertext links. The
same process iterates from the new set of pages. In fact, this mechanism is
more complicated for reasons, which deal with the frequency of the requests
(to a given web server according to its load) and its rapid evolution (which
implies that graph changes during the crawl).

Because of the above considerations, studies about the structure of the
Web documents always deal with parts of the actual Web graph, usually
from several millions to several hundreds of millions nodes. Actually
simulation efforts focus on subgraphs (which are supposed to be
representative) in order to make observations about the Web entirety and can
be categorized in:

Figure 8-1. Web communities on local structures of the Web graph

– Local approaches: In this case, we can detect structures with an
unusually high density of links among a small set of pages which is an
indication that they may be topically related. Local structures are of great
interest for "cyber-community" detection and thus for improving search
engines techniques. A characteristic pattern in such communities contains
a collection of hub pages (lists or guides) linking to a collection of
authorities on a topic of common interest. More specifically, each page
of the first set has a link to all pages of the second one, while there is no
link between pages of the second set, and hubs do not necessarily link to
hubs [22], [25]. As an example, in Figure 8-1 (left) we can consider hub-
like pages on the left as the personal pages of ecologists, which co-cite
the authoritative pages of ecological organizations on the right. The HITS
(Hyperlink-Induced Topic Search) algorithm [25] is applied to modify
subgraphs and computes lists of hubs and authorities for Web search
topics. To construct such a subgraph, the algorithm first submits a search
request to a traditional search engine and receives a root set of about 200
pages. The root set is further expanded into a base set of roughly 1000 –
5000 pages including all pages that are linked to by root-pages and all
pages that link to a root-page. In a second step the algorithm performs an

6 Chapter #8

iterative procedure determining the authority and hub weight of each
page (before the start of the algorithm these values set to 1 and then are
updated as follows: if a page is pointed to by many hubs, its authority
weight is increased; correspondingly, the hub weight of a page is
updated, if the page points to many authorities). As a result HITS returns
as hubs and authorities for the search topic those pages with the highest
weights. The Trawling algorithms [13], [25] enumerate all such complete
bipartite subgraphs of the Web graph. The results of the [24]
experimentation suggest that the Web graph consists of several hundred
thousand of such subgraphs, the majority of which correspond to
communities with a definite topic of interest. An alternate approach
detect communities based on the fact that some set of pages exhibit a link
density that is greater among the members of the set than between
members and the rest of the Internet, as shown in Figure 8-1 (right) [23].

Figure 8-2. The bow-tie structure of the Web

– Global approaches: At a global level, a recent study [10] defines a bow-
tie structure of the Web. Particularly, an experiment on a 200 millions
nodes graph with 1.5 billions links, retrieved from a crawl of the Web,
demonstrates that Web graph appears to consist of four components of
equivalent sizes (as shown in Figure 8-2). The "heart" of this structure is
the largest, strongly connected component (SCC) of the graph (28% of
graph nodes) and composes the core in which every page can reach every
other or can be reachable by every other through a path of hypertext

#8. Simulation in Web Data Management 7

links. The remaining components can be defined by their relation to the
core: left-stream nodes or IN component (21% of graph nodes) can reach
the core but cannot be reached from it whereas the right-stream or OUT
component (21% of graph nodes) can be reached from the core but
cannot reach it. We can further explain the flow from the IN component
to core as links from new web pages to known interesting destinations
and the lack of paths from OUT component to the core as set of pages
whose links point only internally. Finally, the "tendrils" (21% of graph
nodes) contain pages that do not link to the core and which are not
reachable from it. The "tendrils" compose a set of pages that neither has
been discovered yet from the rest of the web community nor do they
contain interesting links back to it. The remaining of about 9% of graph
nodes consists of disconnected components [25].
In order to evaluate such simulation efforts there is a need to consider

appropriate measures and parameters. Therefore, statistical studies have
considered several parameters to characterize the Web’s graph structure.
More specifically:
– the number of links to (in-degree) and from (out-degree) individual pages

is distributed following a power low; as a sequence, the average out-
degree of a node is about 7 [10]

– the sizes of the strongly-connected components in the Web graph are also
distributed according to a power low [10]

– the probability that there is a path between a random start node u to a
random final node v is 25%. Therefore, for around 75% of time there is
no path between these nodes; during only the 25% of the time the
average connected distance (diameter) can be defined and it was
estimated to be about 16 [25]
As already mentioned, analysis of the Web’s structure is leading to

improved methods for understanding, indexing and, consequently, accessing
the available information through the design of more sophisticated search
engines, focused search services or automatically refreshed directories. As
an example, the Google’s ranking algorithm (which called "RankPage")
based on the link structure of the Web [9]. More specifically, Google ranks
results pages uses information from the number of pages pointing to a given
document. This information is related to the quality of the page, as "high-
quality" web sites pointed by other "high-quality" web sites.

8 Chapter #8

3. WORKLOADS FOR SIMULATING WEB DATA

ACCESSING

3.1 Web Data Workload Characterization

Table 8-1. A sample access log
986074304.817 81019 ccf.auth.gr TCP_MISS/503 1180 GET http://www.mymobile.com/ -

DIRECT/www.mymobile.com –
986074304.828 51360 med.auth.gr TCP_MISS/000 0 GET http://www.battle.net/includes/ads.js -

DIRECT/www.battle.net –
986074312.188 3140 med.auth.gr TCP_MISS/000 0 GET http://www.battle.net/includes/ads.js -

DIRECT/www.battle.net –
986074312.302 53 med.auth.gr TCP_HIT/200 16590 GET http://www.battle.net/ - NONE/-

text/html
986074320.238 7210 med.auth.gr TCP_MISS/000 0 GET http://www.battle.net/includes/ads.js -

DIRECT/www.battle.net –
986074334.489 13742 med.auth.gr TCP_MISS/503 1202 GET

http://www.battle.net/includes/ads.js - DIRECT/www.battle.net -
986074345.604 6 ccf.auth.gr TCP_MISS/503 1180 GET http://www.mymobile.com/ -

DIRECT/www.mymobile.com –
986074359.079 50 med.auth.gr TCP_HIT/200 10673 GET http://www.auth.gr/index.el.php3 -

NONE/- text/html
 986074360.125 56 med.auth.gr TCP_IMS_HIT/304 252 GET http://www.auth.gr/auth.css -

NONE/- text/css
Due to the enormous size of Web data accessing records, it is essential to

devise workload characterization that will be representative of the
underlying Web data behavior. Analysis derived from these records is
reviewed in an effort to characterize the entire structure of the Web. In this
context, one of the important steps in any simulation approach is to model
the Web data behavior. The purpose of this approach is to understand the
characteristics of the submitted workload and then to find a model for the
Web data behavior using a collection of analytic techniques (such as data
mining).

Therefore, workload characterization is the key issue for simulation
approaches on Web data management. In fact, workload characterization is
an essential source of information for all the simulation models, which
define a compact description of the load (by means of quantitive and
qualitive parameters). Visually, the workload has a hierarchical nature and
measurements are collected at various levels of detail. However, the
complex nature of the Web complicates measuring and gathering of the Web

#8. Simulation in Web Data Management 9

usage loads. Web data workloads usually consist of requests which are
issued by clients and be processed by servers. Then, these requests are
recorded in files which called log files [17]. Entries in the log file are
recorded when the request is completed, and the timestamp records the time
at which the socket is closed. Table 8-1 presents a sample of Squid logs. The
first attempt to characterize Web user behavior was presented in [12]. The
authors tried to synthesize the workload of Web data by analyzing the user
behavior (captured at the browser). The task of workload characterization is
not simple since Web workloads have many unusual features. Firstly, the
Web requests have high variability (file sizes, time arrivals). According to
[29], this is due to the variability in CPU loads of the Web servers and the
number of their connections. Another feature of Web workloads is that the
traffic patterns have also high variability and therefore, it can be described
statistically using the term of self-similarity. Studies have shown that self-
similarity in traffic has negative results in the performance of Web data
management systems.

Capturing a specific set of Web logs is essential in order to simulate an
application’s behavior. So the majority of simulation efforts use Web
workloads that are characterized by several approaches. These approaches
deal with characterizing associations and sequences in individual data items
(Web logs) when analyzing a large collection of data. In that framework,
there are two common simulation approaches for characterizing Web
workloads [6]:
– Trace-based approach: The most popular way to characterize the

workload of Web data is by analyzing the past Web servers log files. In
[3] a detailed workload characterization study, which uses past logs, is
presented for World-Wide Web servers. Most of these tools are
downloaded free from the Web. It is common to analyze the Web server
logs for reporting traffic patterns. In addition, many tools have been
developed for characterizing Web data workload. In this context, the
Webalizer3 is a log file analysis tool, which produces highly detailed,
easily configurable usage reports in HTML format. Calamaris4, Squid-
Log-Analyzer5, Squidalyser6 are tools which analyse only the logs of
Squid proxy server. On the other hand, characterizing the workload with
captured logs has many disadvantages, since it is tied to a known system.
Despite the fact that this approach is simple to implement, it has limited
flexibility. Firstly, this workload analysis is based completely on past
logs. But the logs may lose their value if some references within them are

3 Webalizer site: http://www.mrunix.net/webalizer
4 Calamaris site: http://calamaris.cord.de
5 Squid-Log-Analyzer site: http://squidlog.sourceforge.net
6 Squidalyser site: http://ababa.org

10 Chapter #8

no longer valid. Secondly, the logs are inaccurate when they return
objects that may not have the same characteristics with the current
objects. Finally, the logs should be recorded and processed carefully
because a false can lead to incorrect temporal sequences. For example,
the requests for a main page can appear after the requests for images
within the page itself. So, all the above can lead to incorrect results. In
[17] the author examines the disadvantages of using captured log files
and investigates what can be learned from logs in order to infer more
accurate results.

– Analytical approach: Another idea is for the Web data workload
characterization to use traces that do not currently exist. This kind of
workload is called synthetic workload and it is defined by using
mathematical models, which are usually based on statistical methods, for
the workload characteristics. The main advantage of the analytical
approach is that it offers great flexibility. There are several workload
generation tools developed to study Web proxies. In [6] the authors
created a realistic Web workload generation tool, which mimics a set of
real users accessing a server. In [11] another synthetic Web proxy
workload generator is (called ProWGen) described. However, the task of
generating representative log files is difficult because Web workloads
have a number of unusual features. Sometimes, in attempting to generate
artificial workloads, we make significant assumptions such as that all
objects are cacheable, or that the requests follow a particular distribution.
These assumptions may be necessary for testing, but are not always
absolutely true.
Finally, another approach for synthesizing Web workloads is to process

the current requests. Using a live set of requests produces experiments that
cannot be reproducible. The disadvantage of using current requests is the
high real load. So, the hardware and the software may have difficulties
handling this load.

3.2 Capturing Web Users’ Patterns

The incredible growth in the size and use of the Web has created
difficulties in both the design of web sites (to meet a great variety of users'
requirements) and the browsing (through vast web structures of pages and
links) [7]. Most Web sites are set up with little knowledge on the
navigational behaviour of the users (who access them). Therefore, simulating
users' navigation patterns can be proved to be valuable both to the Web site
designers and to the Web site visitors. For example, constructing dynamic
interfaces based on visitors' behaviour, preferences or profile has already

#8. Simulation in Web Data Management 11

been very attractive to several applications (such as e-commerce,
advertising, e-business etc).

When web users interact with a site, data recording their behaviour is
stored in files (called Web server’s log files), which can sum up to several
megabytes per day (in case of a medium size site). A relatively recent
research discipline, called Web Usage Mining, applies data mining
techniques to the Web data in order to capture interesting usage patterns. So
far, there have so far been two main approaches to mining for user
navigation patterns from log records:
– Direct method: In this case techniques have been developed which can

be invoked directly on the raw Web server’s log data. The most common
approach to extract information about usage of a Web site is statistical
analysis. Several open source packages that provide information about
the most popular pages, the most frequently entry and exit points of
navigations, the average view time of a page (or the hourly distribution of
access) have been developed. This type of knowledge could be taken into
consideration during system improvement or site modification tasks. For
example, decisions about caching policies could be based on detecting
traffic behaviour while identifying the pages where users usually
terminate their sessions is important for site designers to improve their
content.

– Indirect method: In this case the collected raw Web data are
transformed into data abstractions (during a pre-processing phase)
appropriate for the pattern discovery procedure. According to [34] the
types of data that can be used for capturing interesting user’s patterns are
classified into the content, structure, usage and user profile data. Such
data can be collected from different sources (e.g. server log files, client
level or proxy level log files). Server log files keep information about
multiple users who access a single site. However, the collected data
might not be reliable since the cached pages requests are not logged in
the file. Another problem is the identifying of individual users since in
most cases the web access is not authorized. On the other hand, client
level collected data reflects the access to multiple web sites by a single
user and overcomes difficulties related to page caching, user and session
identification. Finally, proxies log files collect data about requests from
multiple users to multiple sites. All of above data can be processed in
order to construct data abstractions such as user and server session [34].
A user session consists of page requests made by a single user across the
entire Web while the server session is the part of user session that
contains requests to a particular Web site. Once the data abstractions
have been created standard data mining techniques, such as association

12 Chapter #8

rules, sequential patterns and clustering analysis, are used in patterns
recognition [14].
In Web Usage Mining process, association rules discover set of pages

accessed together (without these pages being necessarily connected directly
through hyper-links). For example, at a cinema's chain Web site, it could be
found that users who visited pages about comedies also accessed pages about
thriller films. Detecting such rules could be helpful for improving the
structure of a site or reducing latency due to page loadings based on pre-
fetched documents.

On the other hand, the action of detecting sequential patterns is that of
observing patterns among server sessions such that the access to a set of
pages is followed by another page in a time-ordered set of sessions. As an
example, at an ISP's Web site, it might be revealed that visitors accessed the
Products page followed by the News page. This type of information is
extremely useful in e-business applications since analyzing products bought
(or advertisements views) can be based on discovery of sequential patterns.

Finally, clustering techniques can be used for categorizing both the users
and the requested pages. More specifically, clusters are groups of items that
have similar features, so we can recognize user and page clusters. User
clusters involve users who exhibit similar browsing behaviour, whereas page
clusters consist of pages with related content. The user clustering approach
can improve the development of e-commerce strategies. Serving dynamic
content focused on users' profile is a challenge in Web research. Moreover,
information about page clusters can be useful for Web search engines.

Several mining systems have been developed in order to extract
interesting navigation patterns. [21] proposes the WebWatcher a tour guide
agent for the Web browsing. WebWatcher simulates a human guide making
recommendations that help visitors during their navigation. It suggests the
next page based on the knowledge of user's interests and of the content of the
web pages as well as it improves its skills interacting with users. In [33] the
authors present the Web Utilization Miner (WUM), a mining system, which
consists of an aggregation module and a mining module. The first module
executes a pre-processing task on the web log data and infers a tree structure
of detecting user sessions where as the second one is a mining language
(MINT) which performs the mining task according to a human expert. [7]
presents the Hypertext Probabilistic Grammar (HPG) model which
simulates the Web as a grammar, where the pages and hyperlinks of the Web
may be viewed as grammar's states and rules. Data mining techniques are
used to find the higher probability strings which correspond to the user's
preferred navigation path. However, this model has the drawback that
returns a very large set of rules for low values of threshold and a small set of
very short rules for high values of threshold. As a sequence, the heuristic

#8. Simulation in Web Data Management 13

Inverse Fisheye (IFE) [8] computes small sets of long rules using a dynamic
threshold whose value is adapted to the length of the traversal path. Finally,
in [15] the WebSIFT system is presented which performs Web Usage Mining
based on server logs. WebSIFT uses content, structure and usage
information and composed of pre-process, pattern mining and pattern
analysis modules.

4. SIMULATION OF WEB DATA CACHING

Web data caching techniques are used to store the Web data, in order to
retrieve them with low communication costs.

4.1 Web Data Caching

The explosive growth of the World Wide Web in recent years has
resulted in major network traffic and congestion. As a result, the Web has
become a victim of its own success [1]. These demands for increased
performance have driven the innovation of new approaches, such as the Web
caching [2], [36], [37].

It is recognized that deploying Web caching can make the World Wide
Web less expensive and better performing. In particular, it can reduce the
bandwidth consumption (fewer requests and responses that need to go over
the network), the network latency perceived by the client (cached responses
are available immediately, and closer to the client being served) and the
server load (fewer requests for a server to handle) [1], [37]. Furthermore, it
can improve the network reliability perceived by the client.

Figure 8-3. Web data caching

14 Chapter #8

Web caching has many similarities with a memory system caching. A
Web cache stores frequently used information in a suitable location so that it
can be accessed quickly and easily for future use. Caching can be performed
by the client application and is built into every Web browser. Caching can
also be utilized between the client and the server as part of a proxy as
illustrated in Figure 8-3. A proxy cache server intercepts requests from
clients, and if it finds (called a cache hit) the requested object in the cache, it
returns the object to the user without disturbing the upstream network
connection or destination server. If the object is not found (a cache miss), the
proxy attempts to fetch the object directly from the origin server. For greater
performance proxy caches can be parts of cache hierarchies, in which a
proxy requests objects from neighboring caches instead of fetching them
directly from the origin server. Table 8-2 presents the main metrics which
assess the cache performance.

Table 8-2. Caching Metrics
Caching Metrics Definitions

Hit rate It is defined as the ratio of documents obtained through using
the caching mechanism versus the total documents requested.
A high hit rate reflects an effective cache policy.

Byte hit rate It is defined as the ratio of the number of bytes loaded from
the cache to the total number of bytes accessed.

Saved bandwidth This metric tries to quantify the decrease in the number of
bytes retrieved from the origin servers. It is directly related
with byte hit rate.

User response time The time a user waits for the system to retrieve a requested
document.

System utilization It is defined as the fraction of time that the system is busy.
Latency Latency is defined as the interval between the time the user

requests for a certain content and the time at which it appears
in the user browser.

However, if at some point the space required to store all the objects being
cached exceeds the available space, the proxy will need to replace an object
from the cache. Cache Replacement Algorithms play a main role in the
design of any caching component and some of them are discussed in [5]. In
general, cache replacement policies attempt to maximize the percentage of
requests which successfully are served by the cache (called hit ratio) [4]. In
order to evaluate these algorithms in various caching systems, some
simulation approaches are usually used. Simulation is a very flexible method
to evaluate the caching policies because it does not require full
implementation. Otherwise, we should have developed an integrated caching
scheme. The simulation results have shown that the maximum cache hit rate

#8. Simulation in Web Data Management 15

that can be achieved by any caching algorithm is usually no more than 50%
[28].

4.2 Simulating Caching Approaches

It is useful to evaluate the performance of proxy caches both for Web
data managers (selecting the essential system for a particular situation) and
also for developers (working on alternative caching mechanisms).
Simulating the Web data will help also to an effective data management on
the Web [28].

In this context, new simulation approaches are needed for describing the
Web. In [16] an encouraging development for simulating the Web is
presented. In this paper, the authors use a class of Parallel Discrete Event
Simulation (PDES) techniques for constructing appropriate models for the
World Wide Web. More specifically, they use the Scalable Simulation
Framework (SSF), which is being developed by Cooperating Systems
Coorporation. SSF provides an interface for constructing process-oriented,
event-oriented and hybrid simulations. SSF provides also some mechanisms
for constructing PDES that can scale to millions of Web objects. Therefore,
this framework, in conjunction with scalable parallel simulations, makes it
possible to analyze the behaviour of the complicated Web models.

Figure 8-4. The Three Stages of Trace-driven Simulation

16 Chapter #8

In the literature, several alternative approaches are available. They can be
summarized as follows:
– Simulations using captured logs: This kind of simulation is the most

popular and is directly related with Web performance. Many research
efforts have used trace-driven simulation to evaluate the effects of
various replacement, threshold, and partitioning policies on the
performance of a Web server. The workload traces for the simulations
come from Web servers’ access logs. They include access information,
configuration errors and resource consumption. In this approach the logs
are the basic component and they should be recorded and processed
carefully. In general, a trace driven simulation can be considered of
having three main stages: trace collection, trace reduction and trace
processing [19]. As illustrated in Figure 8-4, trace collection is the
process of determining the sequence of Web data that made by some
workload. Because these traces can be very large, trace reduction
techniques are often used to remove the full trace of data that are
needless or redundant. In the final stage, trace processing is used to
simulate the behaviour of a system, producing some useful metrics, such
as hit rate, byte hit rate etc. More specifically, authors in [32] trace-
driven simulation is used to evaluate their proposed algorithm (LNC-R-
W3-U) with different cache replacement algorithms. In this work, the
authors gathered a seven-day snapshot of requests generated by clients in
a lab at Northwestern University. The simulation results show that the
LNC-R-W3-U improves the delay saving ratio by 38% when compared
to LRU (the most popular algorithm). Another work [28] uses trace-
driven simulation based on access logs from various servers to evaluate
the most popular documents with client access profiles. The basic idea of
this proposal is (for servers) to publish their most accessed objects, called
“Top 10” (although there may be more than ten popular objects). In
particular, the authors captured traces from several Web servers from a
variety of environments, such as universities, research institutions, and
Internet Service Providers (ISPs) both from Europe and the United
States. All these traces exceed the four million requests. Then, the
authors used these captured logs to investigate the costs and benefits of
their approach. Performance results have shown that this approach can
prefetch more than 60% of future requests, with less than 20%
corresponding increase in traffic. Finally, in [31] the authors use trace-
driven simulation to evaluate a new caching policy, taking into account
some criteria such as hit rate, byte hit rate and latency. In particular, the
authors developed a simulator in C++ which models the behaviour of a
proxy cache server. According to this simulation model, the authors
captured logs from proxy caches of various institutes such as Digital

#8. Simulation in Web Data Management 17

Equipment Corporation, Boston University, NLAR and INRIA. The
experimentation results show that the new caching policy improves the
performance.

– Simulations using synthetic workloads: In this approach synthetic
traces are usually used to generate workloads that do not currently exist.
Authors in [35] propose a new cache algorithm (RBC) which uses
synthetic traces for the simulation of caching continuous media traffic.
The selected workload has a predefined distribution of requests among
different object types and a predefined object size distribution. In
particular, the objects are ranging either from 3 to 64 KB (for objects of
image/text) or from 100 KB to 15MB (for objects of audio/video). The
simulation results show that RBC achieves higher hit ratio as compared
to several existing algorithms under the above workload. In [20] an
adaptive prefetch scheme using a synthetic trace set is presented.
According to this scheme, the authors presented a prediction algorithm
and studied its performance through simulations. Although the trace set is
very limited, this algorithm achieves a high hit rate. Furthermore, authors
in [11] use synthetic workloads to evaluate the performance of different
cache replacement algorithms for multi-level proxy caching hierarchies.
The workload follows distinct distributions, such as Zipf-like popularity,
heavy-tailed file size distribution etc. According to this simulation model,
the client’s requests are forwarded to the lower level proxies. All the
requests that failed from the upper level proxies are forwarded to the
Web servers. At different levels of the hierarchy, the proxies support
different replacement policies. Results have shown that this approach
improves the performance, combining different policies at different
levels of the proxy cache hierarchy. Finally, in [27] a new Web
benchmark that generates a server benchmark load, which is focused on
actual server loads, is presented. This tool would be used to compare the
traffic generated by the benchmark and the desired traffic patterns. The
results have shown that these predictions are sufficiently realistic.

– Simulations using current requests: This kind of simulation utilizes
current requests of a live network. The advantage is that the cache is
tested on a real traffic. The drawback is that the experiments are not
reproducible (especially when connected with live networks or systems).
Finally, many research efforts have used a combination of these

approaches, which are often called as hybrids. According to these
approaches, research efforts are trying to evaluate the Web data management
systems using both captured logs and synthetic workloads.

18 Chapter #8

5. CONCLUSIONS

This paper presents a study of simulation in the Web data management
process. The extremely large volume of the Web documents has increased
the need for advanced management software implementations that offer an
improvement on the quality of Web services.

Selection of an appropriate evaluation methodology for Web data
management systems depends on various concerns. In this context, several
simulation approaches for Web data management have been developed
during the last years. Firstly, these approaches are focused on simulating the
structure of Web. Web graphs are the most common implementations for
Web data representation. Secondly, it is essential to simulate the Web data
workloads. This can be implemented using data mining techniques. These
techniques study carefully the structure of Web data and find new trends and
patterns that fit well with a statistical model. Finally, various systems have
been developed for simulating Web caching approaches. These approaches
are used for an effective storage.

All the previous simulation approaches, in conjunction with the
emergence of search engines, try to improve both the management of Web
data (on the server side) and the overall Web performance (on the user side).

REFERENCES

[1] M. Abrams et al. Caching Proxies: Limitations and Potentials. Proc. of the 4th
International WWW Conference, pp. 119-133, 1995.

[2] C. Aggarwal, J. Wolf, P. S. Yu. Caching on the World Wide Web. In IEEE Transactions
on Knowledge and Data Engineering Vol.11, No.1, pp.94-107,January-February, 1999.

[3] M. Arlitt, C. Williamson. Internet Web servers: Workload Characterization and
Performance Implications. IEEE/ACM Transactions on Networking, Vol. 5, No. 5, pp.
631-645, October 1997.

[4] M. Arlitt, R. Friedrich, T. Jin. Performance Evaluation of Web Proxy Cache
Replacement Policies. Hewlett-Packard Technical Report HPL 98-97, Performance
Evaluation Journal, May 1998.

[5] G. Barish and K. Obraczka. World Wide Web Caching: Trends and Techniques. IEEE
Communications Magazine, Vol. 38, No. 5, pp. 178-185, 2000.

[6] P. Barford and M. Crovella. Generating representative Web workloads for network and
server performance evaluation. Proc. of the SIGMETRICS '98 Conference, June 1998.

[7] J. Borges and M. Levene. Data Mining of User Navigation Patterns. Proc. of the Web
Usage Analysis and User Profiling Workshop (WEBKDD99), pp. 31-36, San Diego,
Aug 1999.

#8. Simulation in Web Data Management 19

[8] J. Borges and M. Levene. A Heuristic to Capture Longer User Web Navigation Patterns.

Proc. of the 1st International Conference on Electronic Commerce and Web
Technologies, Greenwish, U.K., Sep 2000.

[9] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Proc. of 7th International World Wide Web Conference, Brisbane, Australia, 1998.

[10] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.
Tomkins, J. L. Wiener. Graph Structure in the Web. Proc. of 9th International
Conference (WWW9)/Computer Networks, Vol. 33, No. 1-6, pp. 309-320, 2000.

[11] M. Busari and C. Williamson. ProWGen: A Synthetic Workload Generation Tool for
Simulation Evaluation of Web Proxy Caches. Computer Networks, Vol. 38, No. 6, pp.
779-794, June 2002.

[12] L. D. Catledge and J. E. Pitkow. Characterizing Browsing Strategies in the World-Wide
Web. Computers Networks and ISDN Systems Vol. 26, No. 6, pp. 1065-1073, 1995.

[13] S. Chakrabarti, B. E. Dom, R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, D.
Gibson, J. M. Kleinberg. Mining the Web's Link Structure. IEEE Computer, Vol. 32, No.
8, pp. 60-67, 1999.

[14] R. Cooley, B. Mobasher, J. Stivastava. Data Preparation for Mining World Wide Web
Browsing Patterns. Journal of Knowledge and Information systems, Vol. 1, No. 1, 1999.

[15] R. Cooley, P. Tan, J. Stivastava. WebSIFT: The Web Site Information Filter System.
Proc. of the Workshop on Web Usage Analysis and User Profiling (WEBKDD99), San
Diego, Aug 1999.

[16] J. Cowie, D. M. Nicol, A. T. Ogielski. Modeling the Global Internet. In Computing in
Science and Engineering, Vol. 1, No. 1, pp. 42-50, January-February 1999.

[17] B. D. Davison. Web Traffic Logs: An Imperfect Resource for Evaluation. Proc. of the
9th Annual Conference of the Internet Society (INET'99), June 1999.

[18] S. Decker, F. Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, M. Klein, S.
Melnik. The Semantic Web - on the Respective Roles of XML and RDF. IEEE Internet
Computing, 2000.

[19] M. Holiday. Techniques for Cache and Memory Simulation Using Address Reference
Traces. International Journal in Computer Simulation, Vol. 1, No. 1, pp. 129-151, 1991.

[20] Z. Jiang and L. Kleinrock. An Adaptive Network Prefetch Scheme. IEEE Journal on
Selected Areas in Communications, Vol. 16, No. 3, pp. 358-368, April 1998.

[21] T. Joachims, D. Freitag, T. Mitchell. WebWatcher: A Tour Guide for the World Wide
Web. Proc. of 15th International Joint Conference on Artificial Intelligence, pp. 770-775,
Aug 1997.

[22] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins. The Web as a
Graph: Measurements, Models, and Methods. Proc. of the International Conference on
Combinatorics and Computing, pp. 1-18, 1999.

[23] J. M. Kleinberg and St. Lawrence. The Structure of the Web. Science Magazine, Vol.
294, pp. 1849-1850, Nov 2001.

20 Chapter #8

[24] R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins. Trawling emerging cyber-

communities automatically. Proc. of 8th International World Wide Web Conference
(WWW8), Toronto, Canada, 1999.

[25] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, E. Upfal. The Web
as a Graph. Proc. of 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, 2000.

[26] M. Levene and R. Wheeldon. Web Dynamics. Software Focus, Vol. 2, pp. 31-38, 2001.
[27] S. Manley, M. Seltzer, M. Courage. A Self-scaling and Self-configuring Benchmark for

Web Servers. Proc. of the Joint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS '98/PERFORMANCE '98), pp. 270-271, Madison,
WI, June 1998.

[28] E. P. Markatos, C. E. Chronaki. A Top-10 Approach to Prefetching the Web. Proc. of
INET'98, Geneva, Switzerland, July 1998.

[29] J.C. Mogul. Network Behaviour of a Busy Web Server and its Clients. Technical Report
WRL 95/5, DEC Western Research Laboratory, Palo Alto, CA, 1995.

[30] B. Murray and A. Moore. Sizing the Internet. White paper, Cyveillance, Jul 2002.
[31] N. Niclausse, Z. Liu, P. Nain. A New Efficient Caching Policy for the World Wide Web.

Proc. of the Workshop on Internet Server Performance (WISP'98), 1998.
[32] J. Shim, P. Scheuermann, R. Vingralek. Proxy Cache Algorithms: Design,

Implementation, and Performance. IEEE Transactions on Knowledge and Data
Engineering, 1999.

[33] M. Spiliopoulou and L. Faulstich. WUM: A Web Utilization Miner. Proc. of International
Workshop on the Web and Databases, pp. 184-203, Valencia, 1998.

[34] J. Srivastava, R. Cooley, M. Deshpande, P. Tan. Web Usage Mining: Discovery and
Applications of Usage Patterns from Web Data. SIGKDD Exploratios, Vol.1, No. 2, Jan
2000.

[35] R. Tewari, H. M. Vin, A. Dan, D. Sitaram. Resource-Based Caching for Web Servers.
Proc. of the SPIE/ACM Conference on Multimedia Computing and Networking
(MMCN), San Jose, CA, January 1998.

[36] A.Vakali. Evolutionary Techniques for Web Caching. Distributed and Parallel
Databases, Journal, Kluwer Academic Publishers, 2002.

[37] A. Vakali and G. Pallis. A Study on Web Caching Architectures and Performance". 5th
World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2001), July
2001.

