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Abstract. Understanding the effects of social cascading on streaming
media is of great importance to Web information system engineering.
Given the large amount of available videos, it is often difficult for users
to discover interesting content. Relying on the suggestions coming from
friends seems to be a popular way to choose what to watch. Taking
into account the increasing popularity of Online Social Networks and
the growing popularity of streaming media, in this paper we present a
detailed analysis of social cascading exchange of YouTube videos among
Twitter users. Using a real data set we have recently collected, our anal-
ysis highlights several important aspects of social cascading, including
its impact on YouTube videos popularity, dependence on users with a
large number of followers, the effect of multiple sharing follows and the
distribution of cascade duration.
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1 Introduction

The rapid proliferation of online social networking sites like Facebook and Twit-
ter has made a profound impact on the Internet and tends to reshape its struc-
ture, design, and utility [10]. Industry experts [15] believe that Online Social
Networks (OSNs) create a potentially transformational change in consumer be-
havior and will bring a far-reaching influence on traditional industries of content,
media, and communications.

Motivation. Two recent trends in Web information system engineering moti-
vate this work: the increasing popularity of OSNs and the growing popularity of
streaming media. In contrast to traditional methods of content discovery such
as browsing or searching, OSN sites have recently emerged as a popular way
of discovering information on the Web through information dissemination along
user’s social links. Today OSN sites have been noted as being the primary causes
behind the recent increases in HTTP traffic observed in measurement studies.
According to Hitwise1, 8.6% of traffic to news sites now comes from Facebook,

1 http://www.experian.com/hitwise/index.html



Twitter and smaller social media sites, which is a 57% percent increase since
2009. The percentage coming from search engines, at the same time, is declin-
ing; according to Hitwise, it has been observed a drop of 9% since 2009. Social
media, in other words, now bring in almost half as much traffic to news sites
as search does. A second emerging trend is the growing popularity of streaming
media services. The amount of Internet traffic generated every day by online
multimedia streaming providers, such as YouTube, is extremely high [18]. Al-
though it is difficult to estimate the proportion of traffic generated by social
cascading, it is observed that there are more than 400 tweets per minute with a
YouTube link [6].

While the real numbers are debatable, it is clear that the evolution of OSNs
and streaming media play a crucial role on Internet traffic, since social cascades
(information (i.e., text, image, video) dissemination along links in a OSN [8])
affect the users’ navigation behavior. In a recent study [4], authors measured the
role that social cascading impacts the diffusion of information. Their experiments
showed that social cascades affect significantly the browsing of users. At the same
time, YouTube is the most popular and bandwidth intensive service of today’s
Internet [6]. The mix of the two phenomena has serious implications and presents
new challenges for Internet services and content providers towards improving the
effectiveness of several services, including caching, content delivery networks,
searching and content recommendation [21].

Contributions. In this work we address the following question: What is the role
of social cascading in YouTube video diffusion? In order to answer this question,
we study a large corpus of YouTube videos. For capturing the social cascading
effects, we use Twitter, which is one of the most popular OSNs and its core
functionality, tweeting, is centered around the idea of spreading information
by word-of-mouth [19]. Specifically, Twitter provides mechanisms like retweet
(act of forwarding other people’s tweets), which enable users to propagate in-
formation across multiple hops in the network through cascading. According to
a recent announcement2, Twitter is sharing more than 340 million tweets per
day, where 25% of tweets contain links. Overall, this paper makes the following
contributions:

– We present the methodology that we have followed in order to collect the
Twitter dataset. Our study is based on a newly real dataset from Twitter
containing geographic location, follower lists and tweets for 37 million users.
Then, we tracked the spreading of more than one million of YouTube videos
over this network, analyzing a corpus with more than 2 billions messages
and extracting about 1,3 millions single messages with a video link.

– We examine the role of social cascading in YouTube video diffusion. Our
analysis highlights several important aspects of social cascading, including
its impact on YouTube videos popularity, dependence on users with a large
number of followers, the effect of multiple sharing follows and the distribution
of cascade duration. Our analysis provides valuable results so as to better

2 http://mashable.com/2012/03/21/twitter-has-140-million-users/



understand how the retweeting mechanism affects the spread of YouTube
videos. To this respect, we introduce a new metric, called video retweet like-
lihood, that measures the likelihood of a user retweeting a video. Although
our work has focused only on YouTube videos, its wide popularity and its
massive user base allow us to gain insights on user navigation behavior on
other similar media platforms.

Roadmap. The rest of this paper is organized as follows. Section 2 reviews
previous related work. Our data collection methodology is described in Section
3, whereas, our main findings are presented in Section 4. Section 5 concludes the
paper and discusses directions for future work.

2 Related Work

Many studies have been carried to analyze the users’ behaviors in different media
services [1, 18, 22]. Early work in this area is focused on the analysis and charac-
terization of streaming services in the Internet [22]. In [22], the authors explored
workload characteristics based on logs from internal media servers at Hewlett-
Packard. Recently, YouTube has been a popular research topic in the Internet
measurement community [6, 11]. Several studies [1, 7, 12–14, 17] have been con-
ducted to investigate the traffic characteristics of YouTube users. These works
are focused on the characteristics of YouTube content, such as file size, bit-rate,
usage patterns and popularity. After an extensive analysis of the YouTube work-
load in [13], authors found that there are many similarities to traditional Web
and media streaming workloads. From another perspective, the authors in [9]
studied YouTube videos and found that the videos have strong correlations with
each other since the links to related videos generated by uploaders have small-
world characteristics. In [11], it is characterized the growth patterns of video
popularity on YouTube and analyzed how the popularity of individual videos
evolve since the video’s upload time.

OSNs are focused on sharing information and as such, have been studied
extensively in the context of information diffusion. For instance, the authors
in [19] found how propagation of YouTube videos on Twitter is spread among
users who are geographically close together. In the same context, the authors
in [21] studied how geographic information extracted from social cascades of
Twitter can be exploited to improve caching of multimedia files in a Content
Delivery Network (CDN). Similarly, in [23], the authors developed a system that
exploits information available from Twitter and regularity of activity patterns
so as to distribute long-tailed content while decreasing bandwidth costs. In [6],
it is measured the popularity distribution of YouTube videos across different
geographic regions and analyze how social sharing affects their spatial popularity.
According to this study, it is observed that the impact of social sharing on the
geographic properties of YouTube video views is significant. Our findings confirm
these results with respect to our investigation of the impact of social cascading
regarding geographic popularity.



Various studies in the context of social networks have been conducted to
predict properties of the social cascading process. The authors in [3] exploited
the social cascades in order to identify influencers in Twitter. The authors in [20]
focus on characterizing and modeling the information cascades formed by the
individual URL mentions in the Twitter so as to predict which users will predict
which URL. In a recent study [4], the authors subject 250 million Facebook users
to a controlled experiment in order to measure the role that social cascading
impacts the diffusion of information.

The present work builds on these earlier contributions in the following key
issues. First, whereas the focus of previous studies [1, 12, 14, 17, 18, 22] has been
on the analysis and characterization of streaming services in the Internet, we are
interested in the analysis of YouTube videos, taking into account the word-of-
mouth diffusion of Twitter. Second, although previous works [4, 19] study the
impact of social cascading for YouTube videos, they do not focus on a Twitter
data set. As we mentioned above, the core functionality of Twitter is centered
around the idea of social cascading.

3 Methodology

In this section we first present the methodology we followed in collecting our
Twitter data set and then we extract data characteristics from the obtained set.
We note that the data collection was not a straightforward process, mainly due
to Twitter’s recently modified policy of limiting the number of search requests
per hour from a given IP address. Below we explain how we managed to collect
our data set while respecting, in our opinion, this policy.

3.1 Data Collection

Data collection took over five months using four Cloud infrastructures (Nephelae3,
Okeanos4, Amazon EC2 and Rackspace). The data are stored locally in a database.
Specifically, a Twitter user keeps a brief profile about each user. The public pro-
file includes the full name, the location, a web page, a short biography, and the
number of tweets of the user. The people who follow the user and those that the
user follows are also listed. In order to collect user profiles, we search for HTTP
URLs that were posted on Twitter.

Totally, the data comprises profiles of 37,343,273 users, 6,820,494,777 directed
follower links among these users. Due to computation limitations, we select uni-
formly at random from the above data set 1,384,758 users (247,399,334 directed
follower links among these users), whom we focus on in the remainder of this
paper. Specifically, 299,071,571 public tweets were posted by these users. The
tweets are from December 2011 until April 2012. The period of study allows us
to avoid any seasonal side effects exhibited by users navigation behavior. The

3 Nephelae. http://grid.ucy.ac.cy/Nephelae/
4 Okeanos. https://cms.okeanos.grnet.gr/about/



Fig. 1. Data Collection System for Twitter

data set does not include any tweet information about a user who had set his
account private. The large-scale of our dataset captures the geographic location
diversity of Twitter users. Figure 1 presents the data collection system that we
developed in order to collect the Twitter data. In the following paragraphs, we
present the methodology that has been followed.

Using the Twitter API5, we collected user profiles and tweets for each user
and then analyze tweets to get HTTP URLs. Twitter imposes rate limiting in
the number of search requests per hour from a given IP address. Specifically,
one request can fetch up to 5,000 followers for a user, or 200 tweets for a user,
or the information of 200 users. To respect this policy, we used several Twitter
accounts. Additionally, in order to increase the number of users we used the
Twitter social graph obtained in 2009 [16] and requested for Twitter users that
were in the Twitter user pool. During our collection period we managed to
collect more than 300 million tweets containing HTTP URLs. For each tweet we
have crawled the author, the time when it was sent and the actual content of
the message. In order to capture the geographic location of users, we used the
Geocoding API of Google Maps. The Google Geocoding API provides a direct
way to access a geocoder via an HTTP request. Tables 1 and 2 present the
information that we collected for each user profile and each tweet respectively.

The next step was to pre-process the content in tweets. While analyzing the
URLs within tweets we have found that the majority of the Web links are from
URL shortening services (e.g., bit.ly), which substantially shorten the length of
any URL. Thus, we used URL shortening services, such as unshort.me, in order

5 Twitter API. https://dev.twitter.com/



Verified user’s identity has been verified by email account

followers count the number of users that follow the user

Protected user’s account is private and only their approved
followers can read their tweets or see extended
information about them

listed count the number of lists the user is a member of

friends count the number of users the user follows

Location the location of user

geo enabled if enabled allows applications to send tweets with
a geographic location attached

Lang the language of user

favourites count the number of tweets the user has classified as
favorites

created at the date that the account has been created

time zone the time zone of each tweet

Table 1. Twitter User Profile Information

ID the unique ID of the tweet

Text the text of tweet (typically up to 140 characters)

created at the date that the tweet has been published

Retweeted if it is new tweet or a retweet

in reply to status id the ID of an existing status that the update is in reply to

in reply to user id the user ID that the tweet replies

urls the url of the tweet

retweet count the number of times that a tweet has been retweeted

Table 2. Tweet Information

to unshort the URLs. Then, the final step was to gather all the URLs and filter
out all the URLs except the YouTube ones.

3.2 Data Set Characteristics

Unlike other OSNs, a Twitter user may follow another user to receive his/her
tweets, forming a social network of interest. Furthermore, it is not necessarily
the case that two users are mutual followers. Thus, Twitter is represented by
a directed graph, where nodes represent the users and a direct link is placed
from a user to another user, if the first follows the tweets of the latter. Fig-
ure 2 depicts an example of a Twitter social graph. Users A and G are mutual
followers, while users A and B are not (A follows B but not vice-versa). Ac-
cording to [19] the node in-degree and out-degree distributions measured on this
network are heavy-tailed, and the network topology is similar to those of other
OSNs like Facebook. Although a very small fraction of users have an extremely
large number of friends, the majority of users have only a few friends. The most
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Fig. 2. An example of the representation of Twitter followers as a social graph.

popular users act as authorities and are usually either public figures or media
sources. These observations are confirmed by the data set we have collected. An-
other interesting observation from our Twitter data set is that the high in-degree
nodes are not necessarily high out-degree nodes since a small number of links
are bidirectional (that is, followers are mutual).

4 Effects of Social Cascading

In this section we investigate the role of the retweeting mechanism in YouTube
video diffusion. To this respect, social cascades include only users that have
tweeted a certain video link. Also, without loss of generality, we make the as-
sumption that every video contained in a Twitter message has been viewed by
the user who retweet it (in other words, we assume that users do not “blindly”
retweet videos).

To measure the impact of social cascading, and more specifically of video
retweeting, we define the video retweet likelihood metric over our data set, as
the likelihood of retweeting a YouTube video. More formally, we define the set
OutgoingV ideos to be the set of videos (over all users) that were retweeted by
some user to another user (multiplicities are not counted). Similarly, we define
the set IncomingV ideos to include all videos that a user received by some other
user, as a result of a retweet of the latter. Then, the video retweet likelihood is
computed by the following expression:

|OutgoingV ideos ∩ IncomingV ideos|
|IncomingV ideos|

.

Note that this metric captures only the videos that have been retweeted. The
cardinality of the intersection gives the number of videos that users retweeted
among the ones that were retweeted to them. Dividing this number with the
total number of “received retweeted” videos gives the likelihood of a video being
retweeted.



Fig. 3. Influence of video retweets with respect to the relationship between Twitter
Users

4.1 Impact of Twitter Users

First, we study how retweeting influences the diffusion of YouTube videos. Our
aim is to investigate the impact of social cascading on the users’ navigation
behavior. In general, it is more likely to view and retweet a video that has been
tweeted by a follower. Considering that each tweet can be viewed by all the
followers of the author, the potential audience that a YouTube video may reach
via retweeting is much larger, even if only few users are involved. As displayed in
Figure 3, an interesting observation is that the video retweet likelihood is 6 times
larger for users that are mutual followers. Recall that two users are mutual
followers if the relationship of following and being followed is reciprocal (like
users A and G in Figure 2). Moreover, we studied the video retweet likelihood for
the week with the most tweets. Comparing with the results that we took for the
whole period, to our surprise, we observe a different behavior for the non-mutual
followers. On the other hand, the results for mutual followers are quite similar
for both periods.

Furthermore, in Figure 4 we show how the video retweet likelihood is affected
taking into account the number of users that have shared a tweet. We observe
that the video retweet likelihood is increased with the number of users’ follows
who have already shared the same tweet. This increase seems to be exponential
when the same tweet is shared by more than 8 follows. This is consistent with
recent observational studies in other OSNs, such as Facebook [4].

4.2 Impact of Geographic Popularity

Our next study is to investigate the impact of social cascading regarding the geo-
graphic popularity. To capture the geographic popularity, we use the time-zones
of users. Twitter enables users to declare their time zone. However, instead of
using the UTC time zone system (where the globe is divided into 24 time zones),



Fig. 4. The video retweet likelihood with respect to the number of follows that share a
YouTube video.

Twitter uses its own time zone system which divides the globe into 142 zones. In
our study we consider that the users with the same Twitter time-zone have the
same geographic location. Then, according to our data set, the average number
of users per zone is 93,076.3, the median 7,167 and the standard deviation is
369,823.6 (this large number is due to the different population distribution of
different time zones: some zones expand over entire countries, where others over
small cities). Figure 5 depicts the video retweet likelihood with respect to the
population in logarithmic scale. Each point in the plot depicts a group of users
that belong in the same time zone, since users are mainly influenced by follows
who are in the same geographic location. Our results show that the smaller the
population is, the larger the video retweet likelihood is. This means that the so-
cial cascading effect has high impact on a more focused and less diverse set of
geographic regions. These findings confirm recent results [2, 6] which found that
geographic distance affects social interaction on OSNs. Specifically, the highest
video retweet likelihood (0.1) has been observed in the region of Astana. Astana
is a place with 700,000 habitants, whereas, the average likelihood is 0,0016.

Furthermore, we study the relationship between the popularity of videos with
respect to the number of retweets. In order to understand the impact of social
cascading for videos with higher number of views we have classified all videos
regarding their popularity (this statistic is given by the YouTube API) into 16
segments (of views). The results (Table 3) show that the popularity versus the
number of retweets is not trivial. The effect of social cascading for these groups
of videos is different across these 16 categories. The general trend is that the
more popular a video is, the more retweets has. From Table 3, it occurs a surge
in the number of retweets for very popular videos. Also, it is interesting that the
average number of retweets does not exceed an upper limit, which is 26 cascades
in our case.



Fig. 5. The log plot geographic location population of YouTube videos with respect to
the video retweet likelihood.
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Fig. 6. An example of a cascade represented as a tree rooted at the initiator.

4.3 Impact of Social Cascade Length

The next experiment is to study the video retweet likelihood with respect to
the length of the cascade. Cascades can be represented as rooted directed trees
where the initiator of the cascade is the root of the tree [3]. Figure 6 depicts
an example of a cascade, initiated by user A over the Social Graph of Figure 2.
Then, the length of the cascade is the height of the resulting tree (which is 4 in
Figure 6).

Figure 7 depicts the distribution of the cascade length (given in log scale),
which is approximately power-law. This measure of popularity demonstrates that
it is rare to have large cascades, but when they do take place they can become
extremely large. This implies that the vast majority of posted YouTube videos
do not spread at all.

4.4 Impact of Time

In Figure 8, we illustrate the distribution of cascade duration (in hours) from the
first tweet to the last tweet for each cascade with at least 2 users, not counting
the initiator. This result shows how YouTube links can spread on Twitter on a



Views Number of videos Number of retweets Avg. Number of retweets

1000 68655 85252 1.24

5000 37899 45640 1.20

20000 43014 49197 1.14

50000 34855 40515 1.16

200000 53509 68099 1.27

400000 23544 34638 1.47

700000 16010 27011 1.68

1 million 8571 16452 1.92

2 millions 13332 27721 2.08

5 millions 11183 30245 2.70

10 millions 4641 18924 4.07

20 millions 2205 12967 5.88

50 millions 1210 10775 8.90

100 millions 393 10519 26.76

200 millions 21 553 26.33

350 millions 7 176 25.14

Table 3. Popularity of YouTube videos

time scale. About 70% of the cascades end within 24 hours. In particular, about
25% of the cascades occur within the first hour, in 3 hours the spread reaches
to 40% and about 85% of the cascades end by the third day (72 hours). This
indicates that links to videos can quickly spread over the social network, leading
to many views in a short period of time. This information could be exploited, for
example, in improving the efficiency of Content Delivery Networks, as discussed
in the next section.

5 Conclusion and Future Work

The widespread adoption of OSN sites has significantly altered the information
diffusion through the Web. In this work, we have presented how the retweeting
influences the diffusion of YouTube videos. Using an experimental approach on
Twitter, we are able to quantify the effect of social cascading on video spread.
This study is useful for Internet service and content providers, who can exploit
these findings towards improving the effectiveness of their services.

One of the most sound observations of our study is that the social cascading
effect has high impact on a more focused and less diverse set of geographic
regions. Also, the social cascading effect ends within 24 hours. These findings
are useful for large-scale systems whose traffic is driven by online social services.
For instance, Content Delivery Networks (CDNs) can take advantage of the fact
that social cascades can spread in a geographically limited area to decide whether
a YouTube video is disseminating locally or globally.

Another interesting observation is that social cascading affects the users navi-
gation behavior. In the case of Twitter, users are influenced more from the follows



Fig. 7. Number of social cascades in log scale with respect to the length of the social
cascade

Fig. 8. The cumulative distribution function of the social cascades with respect to the
time passed.

who also follow them as well. This finding may be used to study the role of in-
fluencers in Twitter. A related work in this area has been presented in [3]. Also,
our analysis showed that most events through Twitter do not spread at all, and
even moderately lengthed cascades are extremely rare.

For the future, we plan to further investigate the impact of social cascading
in YouTube video diffusion. Specifically, we will study the retweeting influence
with respect to the popularity dynamics of YouTube videos over the time [5].
An implication of this study is the improvement of Internet-based content deliv-
ery. The rapid proliferation of OSNs opens new perspectives in Internet-based
content technologies, raising new issues in the architecture, design and imple-
mentation of existing CDNs. In this context, we plan to develop a realistic media



workload generator that would reflect the dynamics and evolution of content at
media sites and the change of access rate to this content due to the role of social
networks in information diffusion. The media workload generator will produce
synthetic traces with desired distributions and controllable parameters for per-
formance experiments studying effective streaming content delivery approaches.
The ultimate goal of this generator is to be used as a valuable tool in order to
study efficient algorithms towards predicting social cascades and improving the
performance of CDNs.
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References

1. A. Abhari and M. Soraya. Workload generation for youtube. Multimedia Tools
Appl., 46(1):91–118, Jan. 2010.

2. L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improving geographical
prediction with social and spatial proximity. In Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW ’10), pages 61–70, New York, NY,
USA, 2010. ACM.

3. E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an influencer:
quantifying influence on twitter. In Proceedings of the 4th ACM International
Conference on Web Search and Data Mining (WSDM ’11), pages 65–74, New York,
NY, USA, 2011. ACM.

4. E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks
in information diffusion. In Proceedings of the 21st International Conference on
World Wide Web (WWW ’12), pages 519–528, New York, NY, USA, 2012. ACM.

5. Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. Eager, and A. Mahanti. Char-
acterizing and modelling popularity of user-generated videos. Perform. Eval.,
68(11):1037–1055, November, 2011.

6. A. Brodersen, S. Scellato, and M. Wattenhofer. Youtube around the world: geo-
graphic popularity of videos. In Proceedings of the 21st International Conference
on World Wide Web (WWW ’12), pages 241–250, New York, NY, USA, 2012.
ACM.

7. M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. I tube, you tube, ev-
erybody tubes: analyzing the world’s largest user generated content video system.
In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement
(IMC ’07), pages 1–14, San Diego, California, USA, 2007. ACM.

8. M. Cha, A. Mislove, B. Adams, and K. Gummadi. Characterizing social cascades
in flickr. In Proceedings of the first workshop on Online social networks (WOSN
’08), pages 13–18, Seattle, WA, USA.

9. X. Cheng, C. Dale, and J. Liu. In Proceedings of the 16th International Workshop
on Quality of Service (IWQOS ’08), pages 229–238, Enskede, The Netherlands,
2008. IEEE.

10. A. Datta, M. D. Dikaiakos, S. Haridi, and L. Iftode. Infrastructures for online
social networking services. IEEE Internet Computing, 16:10–12, 2012.

11. F. Figueiredo, F. Benevenuto, and J. M. Almeida. The tube over time: char-
acterizing popularity growth of youtube videos. In Proceedings of the 4th ACM



International Conference on Web Search and Data Mining (WSDM ’11), pages
745–754, New York, NY, USA, 2011. ACM.

12. A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao. Youtube
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