
Effective Keyword Search for Software Resources
installed in Large-scale Grid Infrastructures

George Pallis, Asterios Katsifodimos, Marios D. Dikaiakos
Department of Computer Science

University of Cyprus, Nicosia, Cyprus

Abstract—In this paper, we investigate the problem of
supporting keyword-based searching for the discovery of
software resources that are installed on the nodes of large-
scale, federated Grid computing infrastructures. We address a
number of challenges that arise from the unstructured nature
of software and the unavailability of software-related metadata
on Grid sites. We present Minersoft, a Grid harvester that visits
Grid sites, crawls their file-systems, identifies and classifies
software resources, and discovers implicit associations between
them. The results of Minersoft harvesting are encoded in a
weighted, typed graph, named the Software Graph. A number
of IR algorithms are used to enrich this graph with structural
and content associations, to annotate software resources with
keywords, and build inverted indexes to support keyword-based
searching for software. Using a real testbed, we present an
evaluation study of our approach, using data extracted from
a production-quality Grid infrastructure. Experimental r esults
show that our approach achieves high search efficiency.

I. I NTRODUCTION

A growing number of large-scale Grid and Cloud in-
frastructures are in operation around the world, providing
production-quality computing and storage services to many
thousands of users from a wide range of scientific and
business fields. One of the main goals of these large-scale
distributed computing environments is to make their soft-
ware resources and services easily accessible and attractive
for end-users [6]. To achieve this goal, it is important to
establish advanced, user-friendly tools for software search
and discovery, in order to help end-users locate application
software suitable to their needs and encourage software
reuse [8], [23], [27].
Motivation. Adopting a keyword-based search paradigm
for locating software seems like an obvious choice, given
that keyword search is currently the dominant paradigm for
information discovery [18]. To motivate the importance of
such a tool, let us consider a researcher who is searching
for graph mining software deployed on a Grid infrastruc-
ture. Unfortunately, the manual discovery of such software
is a daunting, nearly impossible task: taking the case of
EGEE [1], one of the largest production Grids currently in
operation, the researcher would have to search among 300
sites with several sites hosting well over 1 million software-
related files. The situation is not better in emerging Cloud
infrastructures: a user of the Amazon Elastic Cloud service

can choose among 1,700 Amazon Machine Images (AMIs),
with each AMI hosting at least 90,000 files, including
installed software. Envisioning the existence of a software
search engine, the researcher would submit a query to the
search engine using some keywords (e.g. “graph tool,” or
“communities discovery”). In response to this query, the
engine would return a list of software matching the query’s
keywords, along with computing sites where this software is
located. Thus, the researcher would be able to identify the
sites hosting an application suitable to her needs, and would
accordingly prepare and submit jobs to these sites.

However, software usually resides in file systems, together
with numerous other files of different kinds. Traditional file
systems do not maintain metadata representing file semantics
and distinguishing between different file types. Furthermore,
the registries of distributed computing infrastructures rarely
publish little information about installed software [11].Fi-
nally, software files usually come with few or no free-text de-
scriptors. Consequently, the software-search problem cannot
be addressed by traditional IR approaches. Instead, we need
new techniques that will: i) discover automatically software-
related resources installed in file systems that host a great
number of files and a large variety of file types; ii) extract
structure and meaning from those resources, capturing their
context, and iii) discover implicit relationships among them.
Also, we need to develop methods for effective querying and
for deriving insight from query results. The provision of full-
text search over large, distributed collections of unstructured
data has been identified among the main open research
challenges in data management that are expected to bring
a high impact in the future [2]. Searching for software falls
under this general problem since file-systems treat software
resources as unstructured data and maintain very little if any
metadata about installed software.
Contributions. Following this motivation, we developed
the Minersoft software search engine. To the best of our
knowledge, Minersoft provides the first full-text search fa-
cility for locating software resources installed in large-scale
Grid infrastructures. Furthermore, Minersoft can be easily
extended to support search on Cloud infrastructures like
Amazon’s EC. Minersoft visits a Grid site, crawls its file-
system, identifies software resources of interest (binaries,



libraries, documentations etc), assigns type informationto
these resources, and discovers implicit associations between
them. Also, Minersoft extracts a number of terms by exploit-
ing the path within file-system and the filename of software
resources.

To achieve these tasks, Minersoft invokes file-system
utilities and object-code analyzers, implements heuristics
for file-type identification and filename normalization, and
performs document analysis algorithms on software docu-
mentation files and source-code comments. The results of
Minersoft harvesting are encoded in the Software Graph,
which is used to represent the context of discovered soft-
ware resources. We process the Software Graph to annotate
software resources with metadata and keywords, and use
these to build an inverted index of software. Indexes from
different Grid sites are retrieved and merged into a central
inverted index, which is used to support full-text searching
for software installed on the nodes of a Grid infrastructure.
The distributed architecture, the implementation and the per-
formance evaluation of the Minersoft crawler are presented
in [15]. In this paper, we introduce the core information
retrieval component of Minersoft -the Software Graph, and
its related algorithms. The main contributions of this work
can be summarized as follows:

• We introduce theSoftware Graph, a typed, weighted
graph that captures the types and properties of software
resources found in a file system, along with structural
and content associations between them (e.g. directory
containment, library dependencies, documentation of
software).

• We present the Software Graph construction algorithm.
This algorithm comprises techniques for discovering
structural and content associations between software
resources that are installed on the file systems of large-
scale distributed computing environments.

• We demonstrate the effectiveness of the Software Graph
as a structure for annotating software resources with de-
scriptive keywords, and for supporting full-text search
for software. To this end, we use Minersoft to harvest
sites of the EGEE Grid. Results show that Minersoft
achieves high search efficiency.

The remainder of this paper is organized as follows.
Section 2 presents an overview of related work. In Sec-
tion 3, we introduce the concepts of software resources,
software package and Software Graph. Section 4 describes
the proposed algorithm to create a Software Graph annotated
with keyword-based metadata. In Section 5 we present
an experimental assessment of our work. We conclude in
Section 6.

II. RELATED WORK

A number of research efforts have investigated the prob-
lem of software-component retrieval in the context of

language-specific software repositories and CASE tools (a
survey of recent work can be found in [19]).

In [20], Maarek et. al. presented GURU, possibly the
first effort to establish a keyword-based paradigm for the
retrieval of source code installed on standalone comput-
ers. Similar approaches have been proposed also in [5],
[21]. All these works exploit source-code comments and
documentation files, representing them as term-vectors and
using similarity metrics from Information Retrieval (IR) to
identify the associations between software resources. Results
showed that such schemes work well in practice and are able
to discover links between documentation files and source
codes. The use of folksonomy concepts has been investigated
in the context of the Maracatu system [26]. Folksonomy is
a cooperative classification scheme where the users assign
keywords (called tags) to software resources. A drawback of
this approach is that it requires user intervention to manually
tag software resources. Finally, the use of ontologies is
proposed in [16]; however, this work provides little evidence
on the applicability and effectiveness of its solution.

The search for software can also benefit from extended file
systems that capture file-related metadata and/or semantics,
such as the Semantic File System [12], the Linking File Sys-
tem (LiFS) [4], or from file systems that provide extensions
to support search through facets [17], contextualization [24],
and desktop search (e.g., Confluence [13], Wumpus [28],
etc). Although Minersoft could easily take advantage of file
systems offering this kind of support, in our current design
we assume that the file system provides the metadata found
in traditional Unix and Linux systems, which are common
in most Grid and Cloud infrastructures.

In the Grid context, a recent work has proposed a software
search service, called GRIDLE [23]; this scheme allows
users to specify a high-level workflow plan including the
requirements of each software file. Then, GRIDLE presents a
ranked list of files that match partially or totally user require-
ments. However, GRIDLE cannot be used as a keyword-
based paradigm for locating software resources in the Grid
since neither crawls the Grid sites, nor searches installed
software files.

Although we are not aware of any work that proposes
a keyword-based paradigm for locating software resources
on large-scale Grid infrastructures, our work overlaps with
prior work on software resources retrieval [5], [20], [21],
[26]. These works mostly focus on developing schemes
that facilitate the retrieval of software source files using
the keyword-based paradigm. Minersoft is different from
these works in a number of key aspects: i) Our system
supports searching not only for source codes but also for
executables and libraries stored in binary format; ii) Miner-
soft does not presume that file-systems maintain metadata
(tags etc) to support software search; instead, the Minersoft
harvester generates such metadata by invoking standard file-
system utilities and tools and by exploiting the hierarchical



organization of file-systems; iii) Minersoft introduces the
concept of the Software Graph, a weighted, typed graph.
The Software Graph is used to represent software resources
and associations under a single data structure, amenable to
further processing.

III. B ACKGROUND

In this section we provide some background and define
software resource, software package and Software Graph,
which are the main focus of this paper.

Definition 1: Software Resource. A software resource is
a file that is installed on a machine and belongs to one of
the following categories: i)executables(binary or script),
ii) software libraries, iii) source codeswritten in some
programming language, iv)configuration filesrequired for
the compilation and/or installation of code (e.g. makefiles),
v) unstructured or semi-structuredsoftware-description doc-
uments, which provide human-readable information about
the software, its installation, operation, and maintenance
(manuals, readme files, etc).
The identification of a software resource and its classification
into one of these categories can be done by human experts
(system administrators, software engineers, advanced users).

Definition 2: Software Package. A software package
consists of one or more content or/and structurally asso-
ciated software resources that function as a single entity to
accomplish a task, or group of related tasks.
Human experts can recognize the associations that establish
the grouping of software resources into a software package.
Normally, these associations are not represented through
some common, explicit metadata format maintained in the
file-system. Instead, they are expressed implicitly by location
and naming conventions or hidden inside configuration files
(e.g., makefiles, software libraries). Therefore, the automa-
tion of software-file classification and grouping is a non-
trivial task. To represent the software resources found in a
file-system and the associations between them we introduce
the concept of theSoftware Graph.

Definition 3: Software Graph. Software Graph is a
weighted, metadata-rich, typed graphG(V, E). The vertex-
set V of the graph comprises: i) vertices representing
software resources found on the file-system of a computing
node (file-vertices), and ii) vertices representing directories
of the file-system (directory-vertices). The edgesE of the
graph represent structural and content associations between
vertices.

Structural associationscorrespond to relationships be-
tween software resources and file-system directories. These
relationships are derived from file-system structure accord-
ing to various conventions (e.g., about the location and
naming of documentation files) or from configuration files
that describe the structuring of software packages (RPMs, tar
files, etc).Content associationscorrespond to relationships
between software resources derived by text similarity.

The Software Graph is “typed” because its vertices and
edges are assigned to different types (classes). Each vertex v
of the Software GraphG(V, E) is annotated with a number
of associated metadata attributes, describing its contentand
context:

• name(v) is the normalized name1 of the software
resource represented byv.

• type(v) denotes the type ofv; a vertex can be classified
into one of a finite number of types (more details on
this are given in the following section).

• site(v) denotes the computing site where filev is
located.

• path(v) is a set of terms derived from the path-name
of software resourcev in the file system ofsite(v).

• zonel(v), l = 1, . . . , zv is a set of zones assigned to
vertex v. Each zone contains terms extracted from a
software resource that is associated tov and which
contains textual content. In particular,zone1(v) stores
the terms extracted fromv’s own contents, whereas
zone2(v), . . . , zonezv

(v) store terms extracted from
software documentation files associated tov. The num-
ber (zv − 1) of these files depends on the file-system
organization of site(v) and on the algorithm that
discovers such associations (see subsequent section).
Each term of a zone is assigned an associated weight
wi, 0 < wi ≤ 1 equal to the term’s TF/IDF value
in the corpus. Furthermore, eachzonel(v) is assigned
a weight gl so that

∑zv

l=1 gl = 1. Zone weights are
introduced to support weighted zone scoring in the
resolution of end-user queries.

Each edgee of the graph has two attributes:e =
(type, w), wheretype denotes the association represented by
e andw is a real-valued weight(0 < w ≤ 1) expressing the
degree of correlation between the edge’s vertices. TheSoft-
ware Packagesare coherent clusters of “correlated” software
resources inSoftware Graph. Next, we focus on presenting
how the Software Graph can be constructed (section IV) and
we evaluate its contribution (section V).

IV. SOFTWARE GRAPH CONSTRUCTION AND INDEXING

A key responsibility of the Minersoft harvester is to
construct a Software Graph (SG) for each computing site,
starting from the contents of its file system. To this end,
we propose an algorithm comprising a number of steps
described below :
FST construction: Initially, Minersoft scans the file system
of a site and creates afile-system tree(FST) data structure.
The internal vertices of the tree correspond to directories
of the file system; its leaves correspond to files. Edges
represent containment relationships between directoriesand
sub-directories or files. All FST edges are assigned a weight
equal to one. During the scan, Minersoft ignores astop list

1Normalization techniques for filenames are presented in [22].



of files and directories that do not contain information of
interest to software search (e.g.,/tmp, /proc).
Classification and pruning: Names and pathnames play an
important role in file classification and in the discovery of as-
sociations between files. Accordingly, Minersoft normalizes
filenames and pathnames of FST vertices, by identifying and
removing suffixes and prefixes. The normalized names are
stored as metadata annotations in the FST vertices. Subse-
quently, Minersoft applies a combination of system utilities
and heuristics to classify each FST file-vertex into one of the
following categories: binary executables, source code (e.g.
Java, C++), libraries, software-description documents and
irrelevant files. Minersoft prunes all FST leaves found to be
irrelevant to software search, dropping also all internal FST
vertices that are left with no descendants. This step results
to a pruned version of the FST that contains only software-
related file-vertices and the corresponding directory-vertices.
Structural dependency mining: Subsequently, Minersoft
searches for “structural” relationships between software-
related files (leaves of the file-system tree). Discovered
relationships are inserted as edges that connect leaves of
the FST, transforming the tree into a graph. Structural
relationships can be identified by: i) Rules that represent
expert knowledge about file-system organization, such as
naming and location conventions. For instance, a set of
rules link files that containman-pagesto the corresponding
executables.Readmeand html files are linked to related
software files. ii) Dynamic dependencies that exist between
libraries and binary executables. Binary executables and
libraries usually depend on other libraries that need to be
dynamically linked during runtime. These dependencies are
mined from the headers of libraries and executables and the
corresponding edges are inserted in the graph; each of these
edges is assigned a weight of one, as there exists a direct
association of files.

The structural dependency mining step produces the first
version of the SG, which captures software resources and
their structural relationships. Subsequently, Minersoftseeks
to enrich file-vertex annotation with additional metadata and
to add more edges into the SG, in order to better express
content associations between software resources.
Keyword scraping: In this step, Minersoft performs deep
content analysis for each file-vertex of the SG, in order
to extract its descriptive keywords. This is a resource-
demanding computation that requires the transfer of all file
contents from disk to memory, to perform content parsing,
stop-word elimination, stemming and keyword extraction.
Different keyword-scraping techniques are used for different
types of files: for instance, in the case of source code, we
extract keywords only from the comments inside the source,
since the actual code lines would create unnecessary noise
without producing descriptive features.

Binary executable files and libraries contain strings that
are used for printing out messages to the users, debugging

information, logging etc. All this information can be used in
order to get useful features from these resources. Minersoft
parses the binary files byte by byte and captures the printable
character sequences that are at least four characters long
and are followed by an unprintable character. The extracted
keywords are stemmed and saved in the zones of the file-
vertices of the SG.
Keyword flow: Software files (executables, libraries, source
code) usually contain little or no free-text descriptions.
Therefore, content analysis typically discovers very few
keywords inside such files. To enrich the keyword sets of
software-related file-vertices, Minersoft identifies edges that
connect software-documentation file-vertices with software
file-vertices, and copies selected keywords from the former
into the zones of the latter.
Content association mining: Similar to [5] and [21], we
further improve the density of SG by calculating the co-
sine similarity between the SG vertices of source files. To
implement this calculation, we represent each source-file
vertex as a weighted term-vector derived from its source-
code comments. To improve the performance of content
association mining, we apply a feature extraction technique
to estimate the quantity of information of individual terms
and to disregard keywords of low value. Source codes that
exhibit a high cosine-similarity value are joined through an
edge that denotes the existence of a content relationship
between them.
Inverted index construction: To support full-text search for
software resources, Minersoft creates an inverted index of
software-related file-vertices of the SG. The inverted index
has a set of terms, with each term being associated to a
“posting” list of pointers to the software files containing the
term. The terms are extracted from the zones of SG vertices.

In the subsequent sections, we provide more details on the
algorithms for finding relationships between documentation
and software-related files (section IV-A), keyword extraction
and keyword flow (section IV-B), and content association
mining (section IV-C).

A. Context Enrichment

During the structural dependency mining phase, Minersoft
seeks to discover associations between documentation and
software leaves of the file-system tree. These associations
are represented as edges in the SG and contribute to the en-
richment of the context of software resources. The discovery
of such associations is relatively straightforward in the case
of Unix/Javadoc online manuals since, by convention, the
normalized name of a file storing a manual is identical to
the normalized file name of the corresponding executable.
Minersoft can easily detect such a connection and insert an
edge joining the associated leaves of the file-system tree. The
association represented by this edge is considered strong and
the edge is assigned a weight equal to 1.



In the case ofreadme files, however, the association
between documentation and software is not obvious: soft-
ware engineers do not follow a common, unambiguous
convention when creating and placing readme files inside the
directory of some software package. Therefore, we introduce
a heuristic to identify the software-files that are potentially
described by a readme, and to calculate their degree of
association. The key idea behind this heuristic is that a
readme file describes its siblings in the file-system tree; ifa
sibling is a directory, then the readme-file’s “influence” flows
to the directory’s descendants so that equidistant vertices
receive the same amount of influence and vertices that are
farther away receive a diminishing influence. If, for example,
a readme-file leafvr has a vertex-setV r of siblings in the
file-system tree, then:

• Eachleaf vr
i ∈ V r receives fromvr an “influence” of

1.
• Each leaff that is a descendant of an internal node

vr
k ∈ V r, receives fromvr an “influence” of1/(d−1),

whered is the length of the FST path fromvr to f .
The association between software-file and readme-file ver-
tices can be computed easily with a simple linear-time
breadth-first searchtraversal of the FST, which maintains
a stack to keep track of discovered readme files during the
FST traversal. For each discovered association we insert a
corresponding edge in the SG; the weight of the edge is
equal to the association degree.

B. Content Enrichment

Minersoft performs the “keyword-flow” step, which en-
riches software-related vertices of the SG with keywords
mined from associated documentation-related vertices. The
keyword-flow algorithm is simple: for all software-related
verticesv, we find all adjacent edgesed = (v, y) in the SG,
wherey is a documentation vertex. For each such edgeed,
we attach a documentationzone to v.

As we referred in the previous section, each software
file is described by a number of zones. A zone includes
a set of keywords. If there is an edge inG between a
software-description document (i.e., readme, manual) and
a software file (i.e., executable file, library, source code),
then we enrich the content of the software file by adding a
new zone. Such an action improves keyword-based searching
since software files contain little or no free-text descriptions.
So, the software files are represented by a number of zones.
However, each zone has a different degree of importance
in terms of describing the content of a software file. For
instance, thecontent zoneof a vertexv is more important for
the description ofv than itsdocumentation zones. Thus, each
zonel(v) is assigned a weightgl so thatZ =

∑zv

l=1 gl = 1,
wherezv is the total number of zones for a software filev.
The weight of each zone is computed as follows: the weight
of zonewhich includes the textual content ofv takes the
value α. The weights of the other zones of each file are

determined by the edge weights of the SGG that has been
occurred by exploiting the file-system tree, multiplied byα.
The value ofα is a normalization constant calculated so that
the sum of the weights of the zones attached to each vertex
equals 1. Recall that a software file is enriched by a zone if
there already exists an edge between this file and a software-
description document. Each zone includes the selected terms
of the underlying software-description document.

C. Content Association

Minersoft enriches the SG with edges that capture content
association between source-code files in order to support,
later on, the automatic identification of software packages
in the SG.

To this end, we represent each source files as a weighted
term-vector

−→
V (s) in the Vector Space Model (VSM). We

estimate the similarity between any two source-code files
si and sj as the cosine similarity of their respective term-
vectors:

−→
V (si) ·

−→
V (sj). If the similarity score is larger than

a specific threshold (for our experiments we have set the
threshold ≥ 0, 05), we add a new typed, weighted edge to
the SG, connectingsi to sj . The weightw of the new edge
equals the calculated similarity score.

The components of the term-vectors correspond to terms
of our dictionary. These terms are derived from comments
found inside source-code files and their weights are cal-
culated using a TF-IDF weighing scheme. To reduce the
dimensionality of the vectors and noise, we apply a feature
selection technique in order to choose the most important
terms among the keywords assigned to the content zones
source files. Feature selection is based on thequantity of in-
formationQ(t) metric that a termt has within a corpus, and
is defined by the following equation:Q(t) = −log2(P (t)),
whereP (t) is the observed probability of occurrence of term
t inside a corpus [20]. In our case, the corpus is the union of
all content zones of SG vertices of source files. To estimate
the probabilityP (t), we measure the percentage of content
zones of SG vertices of source files whereint appears; we
do not count the frequency of appearance oft in a content-
zone, as this would create noise.

Subsequently, we drop terms which their quantity of
information values from the content-zones of SG vertices
of source files are lower than a specific threshold (for our
experiments we remove the terms whereQ(t) < 3, 5). The
reason is that low-Q terms would be useful for identifying
different classes of vertices. In our case, however, we
already know the class where each vertex belongs to (this
corresponds to the type of the respective file). Therefore,
by dropping terms that are frequent inside the source-code
class, we maintain terms that can be useful for discriminating
between files inside a source-code class.



V. EVALUATION

The software design of Minersoft enables the distribution
of its crawling and indexing tasks to the computing nodes
of EGEE [1]. In the current implementation we used Java,
Python, and an open-source high performance, full-text
index and search library (Apache Lucene2). Details on the
software architecture and the performance evaluation of the
overall system can be found in [15].

In this section, we evaluate the effectiveness of the Min-
ersoft search engine for locating software on the EGEE. A
difficulty in the evaluation of such a system is that there
are not widely accepted any benchmark data collections
dedicated to software (e.g., TREC, OHSUMED etc). On
the other hand, the usefulness of the findings of any study
depends on the realism of the data upon which the study
operates. For this purpose, the experiments are conducted on
EGEE. In this context, we use the following methodology
in order to evaluate the performance of Minersoft:

• Data collection: Our dataset consists of the software
installed in 6 Grid sites of EGEE infrastructure. Table I
presents the software resources that have been identified
by Minersoft on those sites.

• Queries: We use a collection of 27 queries, which were
provided to us by EGEE users, and which comprise
either single- or multiple-keywords. Each query has an
average of 2.3 keywords; this is comparable to values
reported in the literature for Web search engines [25].
To further investigate the sensitivity of Minersoft, we
have classified the queries into two categories: general-
content and software-specific (see Table II).

• Relevance judgment: A software resource is considered
relevant if it addresses the stated information need
and not because it just happens to contain all the
keywords in the query. A software resource returned
by Minersoft in response to some query is given a
binary classification as either relevant or non-relevant
with respect to the user information need behind the
query. In addition, the result of each query has been
rated at three levels of user satisfaction: “not satisfied,”
“satisfied,” “very satisfied.” These classifications are
referred to as thegold standardand have been done
manually by EGEE administrators and/or experienced
users.

Performance Measures.The effectiveness of Minersoft
should be evaluated on the basis of how much it helps users
achieve their software searches efficiently and effectively. In
this context, we used the following performance measures:

• Precision@20: reports the fraction of software re-
sources ranked in the top 20 results that are labeled
as relevant. The relevance of the retrieved results is
determined by thegold standard. By default, we con-
sider that the results are ranked with respect to the

2Apache Lucene: http://lucene.apache.org/java/docs/

Grid Site Binaries Sources Libraries Docs Irrelevant
AEGIS01-PHY-SCL 6.064 31.734 7.669 66.810 38.559
CY-03-INTERCOLLEGE 26.971 8.925 3.644 23.064 27.296
CY-01-KIMON 28.691 166.294 22.571 295.074 45.666
RO-08-UVT 8.134 56.793 4.199 68.335 146.940
HG-05-FORTH 28.351 495.995 65.507 759.571 114.138
BG04-ACAD 46.330 960.824 93.663 1.305.390 298.039
Total 144.541 1.720.565 197.253 2.518.244 670.638

Table I
FILES CATEGORIES.

General-content queries Software-specific queries
linear algebra package; fast
fourier transformations; sym-
bolic algebra computation li-
brary; mathematics statistics
analysis; earthquake analysis;
scientific data processing; sta-
tistical analysis software; atlas
software

ImageMagick; lapack library;
GSL library; crab; k3b cd
burning; xerces xml; gcc for-
tran; octave numerical com-
putations; matlab; hpc netlib;
scalapack; mpich; autodock
docking; boost c++ library;
subversion client; java virtual
machine; ffmpeg video pro-
cessing; FFTW library

Table II
QUERIES.

ranking function of Lucene, which is based on TF-
IDF of documents and has extensively been used in the
literature [7], [10]. The maximum Precision@20 value
that can be achieved is 1.

• NDCG (Normalized Discounted Cumulative
Gain) [14]: is a retrieval measure devised specifically
for evaluating user satisfaction. For a given query q,
the K ranked results are examined in decreasing
order of rank, and the NDCG computed as:
NDCGq = Mq ·

∑K=20
j=1

2r(j)
−1

log2(1+j) , where each
r(j) is an integer relevance label (0=“not satisfied”,
1=“satisfied”, 2=“very satisfied”) of the result returned
at position j andMq is a normalization constant
calculated so that a perfect ordering would obtain
NDCG of 1.

• NCG: This is the predecessor of NDCG and its main
difference is that it does not take into account the
position of the results. For a given query q, the NCG
is computed as:NCGq = Mq ·

∑K=20
j=1 r(j). A perfect

ordering would obtain NCG of 1.

Cumulative gain measures (NDCG, NCG) and precision
complement each other when evaluating the effectiveness
of IR systems [3], [9].

Examined Approaches.In order to evaluate the Minersoft
efficiency, we conducted experiments during the construc-
tion of inverted index. Specifically, we examine the follow-
ing:

• File-search: Inverted index terms are only extracted
from the full-text content of discovered files in EGEE
infrastructure without any preprocessing. This approach
searches files matching given query terms and it is
relevant to the desktop search systems (e.g., Conflu-



Figure 1. Experimental Results.

Grid Sites V E (total edges) ESD ECA Index Size(GB)
AEGIS01-PHY-SCL 120.369 1.007.508 207.080 800.428 0.73
CY-03-INTERCOLLEGE 72.424 209.243 154.998 54.245 0.34
CY-01-KIMON 565.799 20.670.759 1.050.076 19.620.683 2
RO-08-UVT 157.591 862.005 228.299 633.706 0.66
HG-05-FORTH 1.508.986 164.657.942 3.632.165 161.025.777 15
BG04-ACAD 2.632.193 617.084.993 6.359.610 610.725.383 16

Total 5.057.362 804.492.450 11.632.228 792.860.222 34.73

Table III
SOFTWARE GRAPHSSTATISTICS.

ence [13], Wumpus [28]).File − search is used as a
baseline for our experiments.

• Context-enhanced search: The files have been classified
into file categories. The terms of inverted index are
extracted from the content and path of SG vertices.
The irrelevant files are discarded. We also exclude the
software-description documents from the posting lists.

• Software-description-enriched search: The terms of in-
verted index are extracted from the content of SG
vertices as well as from the zones of documentation
files (i.e., man-pages and readme files) and the path of
SG vertices.

• Text-file-enriched search: The terms of inverted index
are extracted from the content, the path and the zones
from the other text files of SG vertices with the same
normalized filename.

Results. Figure 1 presents the results of the examined
approaches with respect to the query types. Each approach is
a step towards the construction of the inverted index that is
implemented in Minersoft. For completeness of presentation,
we present the average and median values of the examined
metrics. The general observation is thatcontext-enhanced
search improves significantly both thePrecision@20 and
the examined cumulative gain measures compared with
file-searchfor both types of queries. Specifically,context-
enhanced searchimproves thePrecision@20 about 97%
and NDCG about 87% with respect to the baseline approach.
Another interesting observation is that most of software-
specific queries indicate averagePrecision@20 close to 1
(see median values), whereas the averagePrecision@20
for all the queries is about 0,8. Regarding thesoftware-
description-enriched search, we make the following obser-
vations: Although the enrichment of software-description

documents decreases the precision (about 5%) with respect
to context-enhanced search, it does increase user satisfaction
achieving higher cumulative gain measures (on average
about 7%). The decrease of precision is due to the side-
effects of stemming. On the other hand, thetext-file-enriched
searchdeteriorates the general system’s performance. This
is explained by the fact the software developers use similar
filenames in their software packages. On the other hand,text-
file-enriched searchimproves user satisfaction for general-
content queries since more results are returned to users than
the previous examined approaches. To sum up, the results
show that Minersoft is a powerful tool since it achieves high
effectiveness for both types of queries.

Table III presents the statistics of the resulted SGs. Recall
that Minersoft harvester constructs a SG in each Grid site.
In this context, Table III presents the edges that have
been added due to structure dependency (ESD) and content
associations (ECA). For completeness of presentation, the
index size of each graph is presented. One observation is
that the SGs are not sparse. Specifically, we found that they
follow the relationE = V α, where1.1 < α < 1.37; note
that α = 2 corresponds to an extremely dense graph where
each node has, on average, edges to a constant fraction of
all nodes. Another observation is that most of the edges are
due to content associations. However, most of these edges
have lower weights (0, 05 ≤ w < 0, 2) than the edges which
are due to structure dependency associations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the design and implementation
of the core information retrieval component of Minersoft
- the Software Graph. Experimental results showed that
SG represents the software resources in an efficient way,



improving the searching of software packages in large-scale
network environments. In future work we intend to exploit
the linkage structure of SG so as to identify coherent clusters
of “correlated” software resources and improve the ranking
of results. Also, we plan to extend the Minersoft architecture
for Cloud infrastructures.
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