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Abstract—Vehicular ad hoc networks have emerged recently as
a platform to support intelligent inter-vehicle communication and
improve traffic safety and performance. The road-constrained
and high mobility of the vehicles, their unbounded power source,
and the emergence of roadside wireless infrastructures make
VANETs a challenging research topic. A key to the develop-
ment of protocols for intervehicle communication and services
lies in the knowledge of the topological characteristics of the
VANET communication graph. This article provides answers to
the general question: how does a VANET communication graph
look like over time and space? This study is the first one that
examines a very large-scale VANET graph and conducts a
thorough investigation of its topological characteristics using
several metrics, not examined in previous studies. Our work
characterizes a VANET graph at the connectivity (link) level,
quantifies the notion of “qualitative” nodes as required by
routing and dissemination protocols, and examines the existence
and evolution of communities (dense clusters of vehicles) in
the VANET. Several latent facts about the VANET graph are
revealed and incentives for their exploitation in protocol design
are examined.

I. INTRODUCTION

Inter-vehicle communication (IVC) has emerged as a pro-

mising field of research, where advances in wireless and

mobile ad-hoc networks can be applied to real-life problems

(traffic jams, fuel consumption, pollutant emissions, and road

accidents) and lead to a great market potential. Already,

several major automobile manufacturers and research centers

are investigating the development of IVC protocols, systems

(e.g., DSRC, 802.11p) and the use of inter-vehicle communi-

cation for the establishment of Vehicular Ad-Hoc NETworks

(VANETs).

A vehicular network is a challenging environment since it

combines a fixed infrastructure (roadside units, e.g., proxies),

and ad hoc communications among vehicles. Despite the fact

that it presents similarities with the traditional Mobile Ad hoc

NETworks (MANETs), the mobile nodes in a VANET (i.e., the

vehicles) are not energy-starving, are highly mobile, and their

mobility is constrained by the underlying road network topol-

ogy. Moreover, the existence of roadside infrastructure creates

more opportunities for optimized communications. Apart from

the networking aspects, the applications which are expected to

run over a VANET make it also a unique environment: safety

applications [25], [28] (accident avoidance near intersections,

speed “regulation” for road congestion avoidance), peer-to-

peer music sharing [16], Internet access [23], they all pose

interesting questions related to protocol design and network

deployment.

During the process of designing and deploying a VANET,

various questions must be answered that pertain to protocol

performance and usefulness. For instance, when deciding the

placement of roadside proxies [20], in order to reduce the

average path length between the vehicles and the access points,

we need to know the distribution of the position of vehicles;

when performing message routing, the corner-stone question

is “which are the highest-quality nodes (vehicles)?” [9] to

carry out the forwarding process; when performing geocasting,

the question is how we can spread the emergency messages

with the minimal number of rebroadcasts so as to reduce

collisions and latency; when designing mobility models [21],

we need to know the distribution of “synapses” per node,

i.e., whether there are any clusters (communities); when the

network is disconnected, a significant question concerns the

identification of bridge nodes [4] which are encharged with

the delivery/ferrying of the messages.

All these questions and many more require knowledge

of the topological characteristics of the VANET commu-

nication graph, where vehicles correspond to vertices and

communication links to edges. Despite the fact that such

knowledge is of paramount importance, the relevant literature

is relatively poor w.r.t. the study of the characteristics of

a VANET communication graph (for a detailed presentation

of the relevant work see Section II). Notable exceptions are

the works reported in [10] and [27], which study quantities

like wireless link lifetime, network diameter, node degree,

number, size of groups (clusters) of vehicles and the intra-

group connectivity strength. In spite of the usefulness of these

metrics, they are not capable of revealing a deep image of the

VANET graph.

The objective of this work is to go one step further and

present “higher order” knowledge of the time-evolving topo-

logical characteristics of a VANET communication graph, as

compared to the “first-order” knowledge provided by the stud-

ies reported in [10], [27]. Most of real-world networks have



been proved to follow some topological statistical features

(i.e., features of scale-free networks, small-world properties,

power-law degree distribution etc.) [19]. Considering that

VANETs are not static but evolve over time by additions and

deletions of nodes, it is important to examine the network

properties and topological statistical features that characterize

the structure and behavior of vehicular networks. This study

is the first one that examines a very large scale VANET

graph and conducts a thorough investigation of its topological

characteristics using numerous metrics not examined in any

previous study, existence and evolution of communities (dense

clusters of vehicles) in the VANET. In particular, the paper’s

major contributions are the following:

• A thorough study of the visible and “latent” structure of a

VANET communication graph, including metrics used in

earlier studies [10], [27], as well as several other metrics

traditionally used in the field of social network analysis,

i.e., centrality measures.
• A detailed study of clusters and dense subgraphs estab-

lished inside a VANET communication graph including

their dynamic properties.
• A study of the connectivity properties of the road net-

work. The results obtained provide a more definite un-

derstanding of the impact of the road network on the

properties of the VANET graph.
• Discussion of the implications of the findings upon the

design of protocols for the MAC, Network, and Applica-

tion layers of a VANET.

The rest of the article is organized as follows: Section II

briefly surveys the relevant work; Section III describes the

metrics used in the present study to characterize the evolution

of VANET communication graph; Section IV describes the

source of the data studied here. Section V records the findings

of the study, and Section VI examines the implications of the

these findings in the design of protocols. Finally, Section VII

concludes the article.

II. RELEVANT WORK

Network graph analysis has been conducted both for MA-

NETs and VANETs. In [2], the authors study the temporal

evolution of the diameter of opportunistic mobile networks,

which follow the random graph model. Results showed that

the diameter increases slowly with the network size. Härri et

al. in [13] introduced the concept of kinetic graphs to capture

the dynamics of mobile graph structures so as to efficiently

support network-wide operations, e.g., broadcasting. A kinetic

graph comprises a generalization of the static network graph

able to model the trajectories of the mobile nodes and supports

the notion of the “probabilistic existence” of graph edges.

Well-known concepts from social network analysis have

been used as primitives to design advanced protocols for rout-

ing and caching in delay-tolerant networks (DTNs) and in ad

hoc sensor networks. In [4], the betweenness centrality index

and its combination with a similarity metric (comprising both

the SimBet metric) have been used to select forwarding nodes

to support routing in DTNs. Results showed that data dis-

semination is improved if the messages are delivered through

nodes which have high SimBet utility values. The betweenness

centrality has also been used in [7] to design a cooperative

caching protocol for wireless multimedia sensor networks.

This protocol selects the mediator nodes that coordinate the

caching decisions based on their “significant” position in the

network. Yoneki studied the impact of connective informa-

tion (clustering, network transitivity, and strong community

structure) on epidemic routing in a series of works [30]. The

value of the connectivity analysis of ad hoc networks is so

fundamental that recently a competition-experiment has been

started — the MANIAC experiment [27]— to study network

connectivity, diameter, node degree distribution, clustering,

frequency of topology changes, route length distribution, route

asymmetry, frequency of route changes, and packet delivery

ratio. The obtained results show a high degree of topology and

route changes, even when mobility is low, and a prevalence

of asymmetric routes, both of which contradict assumptions

commonly made in MANET simulation studies.

In the context of vehicular networking, there has been

relatively little work on exploring the properties of the time

evolution of VANET graphs. The authors of [3] present a

preliminary characterization of the connectivity of a VANET

operating in an urban environment. They transform the vehic-

ular network into a transitive closure graph. Then, the graph

temporal evolution of the average node degree is presented.

However, the authors do not make a deep analysis of the

networking shape of vehicular mobility. They study only the

average node degree for a small time interval. In [26], the au-

thors set up a real-world experiment consisting of 10 vehicles

making loops in a 5-mile segment of a freeway. They focus

on the connectivity issues without investigating the topological

properties of the VANET graph. Authors in [10] study the node

degree distribution, link duration, clustering coefficient and

number of clusters for VANET graphs under various vehicular

mobility models. The objective of [10] focuses on studying

the topological properties of different mobility models and

explaining why different models lead to dissimilar network

protocol performance. Finally, the authors of [15] provide

an analysis of the connectivity of vehicular networks by

leveraging on well-known results of percolation theory. Using

a simulation model, they study the influence of vehicle density,

the proportion of equipped vehicles, transmission range, traffic

lights and roadside units.

The paper at hand goes one step further from the previous

studies in [10], [15], [26], [27] and provides a thorough study

of the visible and “latent” structure of a VANET communica-

tion graph, including metrics not examined before.

III. GRAPH METRICS EXAMINED

This section contains the definitions of the metrics used in

the study. We categorize the examined metrics as network-

wide (require knowledge of the complete VANET graph),

localized, and community-oriented. All node IDs mentioned

in this section refer to the sample graph of Figure 1. For the

sequel, we will consider G(t) to be an undirected graph of

VANET at time t, where vehicles correspond to the set of



vertices V (t) = {ui} and communication links to the set

of edges E(t) = {eij}. An edge eij(t) exists, if ui can

communicate directly with uj at time t, with i 6= j.

A. Localized metrics

• Node degree. The number of vehicles within the trans-

mission range of a node. Formally, the degree of ui at

time t is defined as Di(t) = ‖{uj | ∃eij(t)}‖.
• Lobby Index [18]. The lobby index of a given vehicle ui

at time t, denoted as Li(t), is the largest integer k such

that the number of one-hop neighbors of ui in graph G(t)
with degree at least k equals k. This metric can be seen

as a generalization of Di(t), conveying information about

the neighbors of the node as well (e.g., node with ID 8
has lobby index 2).

• Link duration. The time between the instance at which

a vehicle enters within transmission range of another

vehicle, and the instance at which the physical connection

is lost. Formally, the duration lij(t) of the link from ui

to uj at time t is defined as lij(t) = tc − to, if ∃eij(t),
where t ∈ [to, tc].
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Fig. 1. Snapshot of a sample VANET graph.

B. Network-wide metrics

• Diameter. It is the longest distance between any two

nodes in the network, where the distance is defined as

the shortest path between the nodes.
• Closeness Centrality [29]. It is defined as the inverse of

the sum of the distances between a given node and all

other nodes in the network. The closeness centrality of a

vehicle ui at time t is:

Ci(t) =
1∑

j 6=i distance(ui, uj)
(1)

where distance(ui, uj) is the distance between ui

and uj . Closeness centrality measures how long it will

take information to spread from a given vehicle to other

vehicles in the network. A sample node with low close-

ness centrality is the node with ID 14 (C14 = 0.026).
• Betweenness Centrality [29]. It is defined as the fraction

of the shortest paths between any pair of nodes that pass

through a node. The betweenness centrality of a vehicle

ui at time t is:

BCi(t) =
∑

j 6=k

spj,k(ui, t)

spjk(t)
(2)

where spjk is the number of shortest paths linking

vertices j and k at time t and spj,k(ui, t) is the number of

shortest paths linking vertices j and k that pass through

ui at time t. Betweenness centrality is a measure of the

extent to which a vehicle has control over information

flowing between others (e.g., BC14 = 0.668).

• Bridging Centrality [14]. It is computed by multiplying

the betweenness centrality by a bridging coefficient. The

bridging centrality of ui at time t is:

BRi(t) = BCui
(t) · β(ui), (3)

where β(ui) is the bridging coefficient of ui. The bridg-

ing coefficient is the ratio of the inverse of a node degree

to the sum of the inverses of all its neighbor degrees. The

bridging centrality metric attempts to find nodes that are

central to the graph, but also they have a low number of

direct connections relative to their neighbor connections

(e.g., BR7 = 3.345).

At this point we emphasize that localized versions of these

centrality metrics can be devised as well, taking into account

only k-hop neighborhoods.

C. Community metrics

• Number of Clusters. The number of co-existing, non-

connected clusters of nodes at a given instant. We define

as cluster a connected group of vehicles. A connected

group is a subgraph of the network such that there is a

path between any pair of nodes.
• Clustering Coefficient. It measures the cliquishness of

a network. The clustering coefficient pk(t) of a cluster k
at time t (as defined in [10]) is:

pk(t) =
2|Ek(t)|

|Nk(t)|(|Nk(t)| − 1)
, (4)

where |Ek(t)| is the number of existing links in cluster

k at time t and |Nk(t)| is the number of nodes in cluster

k at time t. The clustering coefficient has a maximum

value 1 if the cluster is a clique.
• Localized Clustering Coefficient. We define a localized

version of the clustering coefficient as follows: For a

vehicle i, which has Di(t) neighboring vehicles at time t,
and there are zi(t) edges between its neighbors, then

the localized clustering coefficient lpi(t) of vehicle i is

lpi(t) = Di(t)/zi(t) if zi(t) > 1, else lpi(t) = 0, if
zi(t) = 0 or zi(t) = 1.

• Number of Communities [17]. The number of existing

communities at a given instant. A community is de-

fined as a dense sub-graph where the number of intra-

community edges is larger than the number of inter-

community edges. In order to identify communities,

we transform G(t) to directed graph so as Din
i (t) =

Dout
i (t) = Di(t), where Din

i (t),Dout
i (t) is the in-degree

and out-degree of node ui at time t. Formally, a subgraph

U(t) of a VANET graph G(t) at time t constitutes a

community, if it satisfies:
∑

ui∈U(t)

(Din
i (t))(U(t)) >

∑

ui∈U(t)

(Dout
i (t))(U(t)), (5)

i.e., the sum of all degrees within the community U(t)
is larger than the sum of all degrees toward the rest of

graph the G(t)1.

1Other notions of communities can be defined as well, but we use that
defined in [17] since it allows for overlap.



IV. TRAFFIC DATA STUDIED

Apparently, the usefulness of the findings of any study

depends on the realism of the data upon which the study

operates. For the first time at such a large scale, we study

the structure and evolution of a VANET communication graph

using realistic vehicular traces2 from the city of Zurich. These

traces are obtained from a multi-agent microscopic traffic

simulator (MMTS) [22]. MMTS is capable of simulating

public and private traffic over real regional road maps of

Zurich with a high level of realism. Each vehicle makes its

plans and MMTS executes all those plans simultaneously. The

route choice of each vehicle is dynamic in order to react

adequately to time-dependent congestion effects. We skip a re-

proof of the realism of these traces, since this has been done

in [24]. We have extracted a rectangular street area of size

5km × 5km, which covers the centre of Zurich and contains

around 200,000 distinct vehicle trajectories during a 3 hours

interval in morning rush hour. We have also considered 1

hour warm-up period (5:00-6:00). During this period, vehicles

have evenly distributed throughout the map. Assuming that all

vehicles are equipped with vehicular communication hardware

and software, we study the networking shape evolution of

VANET, by observing snapshots of this network taken at

regularly spaced time instances. Future work is to study the

impact of market penetration of the communication equipment

as well as the resultant background traffic on connectivity.

We also assume that a vehicle can communicate effectively

with neighboring vehicles and stationary access points that

are within a range of at most 50 − 100 meters from it. This

assumption is established upon recent experimental results

that investigated the viability of IEEE 802.11b for vehicle-

to-vehicle communication in urban environments [12]. Conse-

quently, in our study, we examine network graphs that capture

wireless network connections established between vehicles

separated by a distance of at most 100 meters. The data-

sets examined in this article comprise two VANET commu-

nication graphs: one corresponds to transmission range equal

to T = 50m (urban scenario with non-line of sight transmis-

sion distance for bandwidth> 4Mbps with 20 − 30% lost of

packets), and the other to a transmission range of T = 100m
(urban scenario with line of sight transmission distance for

bandwidth> 4Mbps with 20 − 30% lost of packets).

V. THE STRUCTURAL PROPERTIES OF A VANET

COMMUNICATION GRAPH

This section presents the findings of the study related to laws

governing the nodes, edges, diameter of the VANET network

(§ V-A), node centralities (§ V-B), the characteristics of the

network concerning the link duration (§ V-C), the community-

level analysis of the graph (§ V-D), and the network robustness

(§ V-E).

A. Network analysis

Typically, large real world networks evolve over time.

Lescovec et al. in [19] studied the temporal evolution of

2The traces are publicly available from http://www.lst.inf.ethz.ch/research

several real graphs arising in a wide range of domains (i.e.,

autonomous systems, e-mail networks, citations) and made

the following empirical observations: i) the average degree

increases as the network grows, with the number of edges

growing super-linearly in the number of nodes, ii) the diameter

is decreasing as the network grows, iii) real networks have

relatively small average node degrees and diameters.

QUESTION 1: What are the laws that govern the temporal

evolution of VANET-graph properties?

For each graph dataset, we have several time snapshots for

which we study the number of nodes V (t) and edges E(t).
Figures 2 illustrates the number of nodes and edges over

time, respectively. As expected, the VANET graph grows

with the number of vehicles injected into the map and the

transmission range of their wireless antennae. We investigate

further the relation between edges and nodes: Figure 3 depicts

that the VANET graphs obey a power-law with a consistently

good fit. Specifically, we find that they follow the relation

E(t) ∝ V (t)α, where α ≃ 1.77; also, that this relation is

independent of transmission range. Specifically, we examined

this relation for several communication ranges (e.g., T=50

m, T=200m) and we observed that it holds for any T; due

to the interest of space we do not present the figures. This

means that the VANET graph is dense; note that α = 2
corresponds to an extremely dense graph where each node

has, on average, edges to a constant fraction of all nodes.

Practically, this observation is important since we can have

estimate the number of communication links in the network.
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Fig. 2. (Left) Nodes over time. (Right) Edges over time.
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Figure 4 illustrates the average degree of separation (i.e., av-

erage length of shortest path between pairs of nodes) over time.

Our findings show that the VANET graphs do not exhibit small

world properties. That is important as this metric provides an

indication about how long a vehicle has to wait on average

before obtaining a desired piece of information. For instance,

at 7:00 am the average degree of separation is 60 hops. We also

observe that the average number of hops between two vehicles

for the T=50m case is large and exhibits wide variability as

the network grows in size (right chart of Figure 4). On the



other hand, the degree of separation for T=100m changes more

smoothly and is less variant. Note, that the small degrees of

separation that we observe in some timestamps (e.g., 6:00,

6:35, 9:00) are side-effects of the shuttering of the whole

VANET into smaller clusters. A thorough study for the clusters

of the VANET communication graph is presented in § V-D.
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Next, we examine the evolution of the graphs’ diameter

over time. Our analysis shows that graph diameter follows the

average degree of separation over time, and gets quite large

values 3.

Finally, we estimate the geographic distance between the

two most distant vehicles on the map, in terms of hops, with

each hop being equal to the transmission range of the wireless

medium. We call this measure the “geographic diameter”.

The geographic diameter gives us an estimate of the overall

span of our vehicles on the area of our map and a worst-

case bound about the end-to-end delay to deliver a message

from a source to a destination or the total delay to perform

network-wide broadcasting. As we can see from Figure 5, the

geographic diameter is practically constant and independent

of the network’s size. The geographic diameter of the network

is a useful metric for taking decisions about base stations

placement in a vehicular network [1].
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Figure 6 shows the average node degree over time. We

observe that the average node degree increases with the

number of nodes in the vehicular network, ad has a pattern

similar to the number of edges (Figure 2); both the number

of edges and the average node degree for T = 100m are

two times larger than T = 50m. We also observe that the

variance of the average node-degree values is quite large, but

that their distribution is rather uniform. This means that a

vehicular network includes a significant percentage of nodes

3Avg. diameter=90.8 (T=50m) | 76.2 (T=100m)

with high and low degree (i.e., vehicles which are in junctions

and vehicles which are in places with low traffic, respectively).
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Fig. 6. Avg. node degree over time: (Left)T=50m. (Right) T=100m.

To sum up, our network analysis concluded to the following

empirical observations:

• The VANET is a dense graph; the number of edges vs. the

number of nodes follows power-law distribution: E(t) ∝
V (t)α, where α ≃ 1.77.

• The diameter and the average node degree are, in most

cases, increasing as the vehicular network grows in size.
• The average node degrees present large standard deviation

values.
• The VANET does not exhibit small world properties; high

values of diameter and degrees of separation exist.
• The geographic diameter (for any T ) and the average

degree of separation (for T ≥ 100m) are, in most cases,

constant and smooth.

B. Centrality metrics

Looking deeper into the VANET communication graph, we

examined the average value of the centrality measures as a

function of time and communication range4. The results are

depicted in Figures 7 and 8. The key question we investigate

is:

QUESTION 2: Do the centrality metrics identify “quality”

nodes and what is the spatial distribution thereof?

The general observation is that the distribution of “central”

nodes is not affected by the communication range; the distri-

butions have similar shapes for both T = 50m and T = 100m.

The centrality metrics reflect quite reliably the variation in

traffic conditions, i.e., density and relative positions of the

vehicles. Therefore, centrality is not an artefact of the com-

munication range but an indication of the latent “behavior” of

the vehicles, i.e., road network and drivers’ intentions, which

ultimately define the network position of the vehicles.

A very interesting question is whether all these centrality

metrics reveal different patterns of the graph, and what is

their relation to the node degree. From Figure 7, we can

conclude that the betweenness, closeness, and bridging cen-

trality indexes follow more or less similar distributions. For the

case where the transmission range is equal to 50m, closeness

centrality is practically constant over time. This is due to the

fact that the resulting network is quite sparse without large

dense components, which in turns means that the (average)

distance of each vehicle to the rest of the network’ vehicles

is practically the same.

4We have also examined the case of Spectral Centrality metrics (e.g.,
PageRank), but it did not show any significant results, and thus we did not
consider presenting them into this article.
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The case of lobby index (Figure 8) is quite interesting and

deviates from the behavior of the aforementioned centrality

metrics. Recall that its definition implies that it is a gener-

alization of node degree and some sort of “simplification” of

betweenness centrality. Indeed, it follows the general pattern of

betweenness, but without the abrupt changes. It is worth noting

that we have identified a significant number of vehicles with

the same (quite large) value for the lobby index. This was not

the case for betweeness centrality, where only (relatively) few

vehicles had quite large value for the betweenness centrality.

This observation is quite significant, because, during some

protocol design we need to identify quite a large number of

“quality” nodes to assign to them special roles, whereas in

some other case we need to identify only the highest “quality”

vehicle. Therefore, we can conclude that the betweenness

centrality and lobby centrality indexes are sufficient and

appropriate for capturing the structural properties of a VANET

communication graph, without any of them superseding the

other.

Since prior studies have investigated the degree distribution,

it is interesting to examine whether the centrality metrics

studied in this article are correlated to the degree, i.e., whether

the high-degree nodes are also high-quality nodes. To answer

this, we computed the Pearson correlation coefficient for

all nodes at a specific5 time (7:00 am, T = 100m). In

general, the Pearson correlation coefficient ranges from −1
to 1, where −1 or 1 indicates a “perfect” relationship. The

further the coefficient is from 0, regardless of whether it is

positive or negative, the stronger the relationship is between

the two variables. It is obvious from Table I that the high-

degree nodes are not correlated with betweenness centrality

5We examined this for many time instances, but due to lack of space we
only present one representative case.

and bridging centrality metrics. On the other hand, there is a

low positive correlation with closeness centrality. Therefore,

the node degree is not able to identify “quality” nodes in a

VANET; betweenness and lobby index do it better.

Betweenness Bridging Closeness Lobby

Degree 0.044 -0.008 0.36 0.106

TABLE I
PEARSON CORRELATION COEFFICIENT (CORRELATION IS

SIGNIFICANT AT THE 0.01 LEVEL).

Examining in greater depth the variation of one of the

prevalent centrality metrics, i.e., betweenness, we plotted its

actual values (instead of averages) as a function of time and

geographic location. Due to space limitations, we present the

betweenness centrality values at 08 : 00. The results are

illustrated in the diagrams of Figure 96. This diagram reflects

the BC values of vehicles: each vehicle is colored according to

its BC value. Clearly, the road topology is not the decisive pa-

rameter for the betweenness, even though it affects it (observe

that many of the vehicles with high BC value are moving along

the same roads). Nevertheless, vehicles with high centrality

values appear at any geographic location independently of the

road-network’s structure. Therefore, the road network alone,

e.g. position of junctions, does not determine the positions of

possible “significant” nodes.
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Fig. 9. Betweenness centrality over geographic location.

Finally, we investigated the correlation of centrality metrics

(degree, betweenness, closeness, bridging, lobby) to the vehi-

cles’ density, and also among them. The results are illustrated

in Figure 10 and Table II. The color of each junction in

Figure 10 represents the average quality value of the vehicles

which are close enough (≤ 50m) to the junction. For the

interest of space, in Figure 10 we illustrate graphically the

true values for the junctions only for the vehicles density and

lobby index. Although not identical, we are able to identify

a significant correlation of the two metrics in the junctions;

indeed this is also the case for the rest of the metrics (see

Table II).

The metrics are highly correlated with each other regarding

their value in the junctions; they are also correlated to the

vehicles’ density. To confirm our observation, we calculated

the Pearson correlation coefficient and the results are presented

6The use of colored figures here and in the sequel, is necessary to help the
reader gain a better image of the results.
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Fig. 10. Geographic distribution of: (top) vehicles density, (bottom)
lobby index.

in Table II. We see that the localized metrics are positively

correlated to a great degree with the network-wide metrics in

the case of junctions. We view this finding as quite significant,

since the localized metrics are easier to compute than the

network-wide ones, and we can exploit them easier in the

road junctions.

Density Degree Betweenness Bridging Closeness Lobby

Density 1 0.711 0.299 0.231 0.643 0.711

Degree 0.711 1 0.508 0.396 0.816 0.681

Betweenness 0.299 0.508 1 0.829 0.684 0.482

Bridging 0.231 0.396 0.829 1 0.606 0.472

Closeness 0.643 0.816 0.684 0.606 1 0.801

Lobby 0.576 0.681 0.482 0.472 0.801 1

TABLE II
PEARSON CORRELATION COEFFICIENT IN JUNCTIONS

(CORRELATION IS SIGNIFICANT AT THE 0.01 LEVEL).

In summary, we made the following observations:

• Centrality metrics are an indication of the latent “be-

havior” of the vehicles without being affected by the

communication range.
• Betweenness centrality and lobby centrality indexes are

sufficient and appropriate for identifying the “quality”

(more central nodes) of vehicles. On the other hand, the

node degree is not able to identify “quality” nodes in a

VANET.
• The road network alone is not sufficient information to

identify the positions of possible “significant” nodes in a

VANET.
• The localized metrics of vehicles are highly correlated

with their network-wide metrics regarding their values in

roads junctions.

C. Link duration analysis

The analysis of link duration contributes to the prediction of

network-link lifetime. Link duration is influenced by driving

situations and vehicle speed. For instance, vehicles establish

short-lived links when travelling fast on the opposite direction.

A recent study showed that the link duration is high when

vehicles are moving in a highway, with most connections

formed in the freeway lasting between 15 and 30 secs, with a

median of 23 secs [26].

QUESTION 3: Which are the link duration statistics in VANET

when the vehicles are moving in urban areas?

Table III presents the link duration statistics for our data

sets. As expected, for larger T , the link duration is longer.

Specifically, the link duration is almost doubled when T is

doubled. As depicted in Figure 11, most vehicles have low

link duration times. However, the link durations measured,

can accommodate the time required for service interactions

over the VANET [6]. Prior simulations have shown that the

average time of a successful transaction can be less than 0.1

sec. From a comparison of the mean and median values of

link duration, we can conclude that there is a high variability

in link-duration values.

An interesting question is to identify which vehicles have

long link duration times. Our experiments showed the fol-

lowing trend: the vehicles with high degree values usually

have longer link duration time than the ones with low-degree

values. This means that vehicles which have a large number

of communication links are better and longer connected than

the ones with a small number of links.

Transmission range 50 m 100 m

Time 6:00 – 9:00 6:00 – 9:00

Total links 21922350 23705232

Min 1 sec 1 sec

Max 978 sec 1105 sec

Mean 6.7531 sec 13.2038 sec

Median 3 sec 7 sec

Standard deviation 21.2401 sec 34.2413 sec

TABLE III
LINK DURATION STATISTICS.
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Fig. 11. Link duration CDF (top: T=50m, bottom: T=100m).

D. Cluster analysis

For services requiring dissemination of messages across the

whole VANET, it is mandatory to know whether the network

is connected or not. Additionally, for services that require

the delivery of messages inside a specific geographic region

(geocasting), it would be useful to have an estimation of

the density of communication links among vehicles inside

this region so as to exploit or avoid the use of the flooding

primitive. Therefore, it is useful to investigate the following:

QUESTION 4: Does the VANET consist of a single connected

component? Are there any dense subgraphs inside the VANET?



We performed a cluster analysis of the VANET graph,

and in Figure 12 we present the number of clusters and the

clustering coefficient over time for our networks. We observe

that the number of clusters is mainly affected by transmission

range. Specifically, the number of clusters when T = 50m
is 3 times larger than that for T = 100m. On the other

hand, the clustering coefficient is stable (about 0.73) without
influencing by vehicle density and transmission range. The

existence of clusters means that the vehicular network graph

is not connected. Another interesting observation is that most

vehicles belong to the same cluster. A snapshot of the existing

clusters in a specific time is illustrated in Figure 13, where the

vehicles that belong to the same cluster have the same color.

Figure 14 shows that about 80% and about 50% of vehicles

belong to the same cluster for T = 100m and T = 50m,

respectively.
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Fig. 12. (Left) Number of clusters over time. (Right) Clustering
coefficient over time (all clusters).
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Fig. 13. The clusters (color indicates membership) at 7.00 am
(T=100).
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Fig. 14. Size of the largest cluster over time.

The right chart of Figure 12 tells us that the connectiv-

ity within a cluster remains stable over time. Despite the

usefulness of such observation, the complementary question

of what is the relation of node degree and connectivity,

which can be used to quantify a purely localized connectivity

behavior, seems much more interesting. Figure 15 investigates

this question. It shows that dense clusters can contain nodes

with both small and large degree. Beyond a certain, very large

degree (e.g., 100) though, the localized clustering coeefficient

stabilizes at the value of 0.5 implying that the neighborhoods

are “half” dense and this is expected since there can not be

too many links betweeen nodes of a neighborhood which

is comprised by more than 100 nodes. Nevertheless, the

strong practical meaning is that in a VANET we can easily

find “almost-cliques” comprised by many vehicles, and not

simply triangles. This is particularly appealing, because in a

dissemination protocol for instance, a single broadcast will

reach a lot (depending on the cluster size) of nodes.
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Fig. 15. Avg. localized clustering coefficient vs. node degree.

To better understand the properties of the largest cluster,

we further study its change over time. For each second we

identify how many vehicles are inserted, left and remained

in the largest cluster. Figure 16 depicts the Q-Q plots of

arrival/departure processes of vehicles and we observe that

they follow the Pareto distribution. Specifically, the Pareto

distribution has two parameters associated with it: the shape

parameter α > 0 and the scale parameter κ > 0. The cumu-

lative distribution function of inter-arrival and inter-departure

time durations is F (x) = 1 − ( κ
x+κ

)α. This distribution is

heavy-tailed with unbounded variance when α < 2. In our

datasets, α = 0.518 for inter-arrival of vehicles and α = 0.489
for inter-departure of vehicles. The scale parameter takes the

value κ = 4. This means that vehicles inter-arrivals and

inter-departures from the largest cluster exhibit burstiness on

several time scales. The Q-Q plot in the bottom of Figure 16

illustrates that the number of vehicles that remain in the same

cluster follow Normal distribution. We view these findings as

particularly important since we can predict the evolution of

clusters over time.

Fig. 16. (Left) Distribution of arrival nodes in the largest cluster
(α = 0.518, κ = 4). (Middle) Distribution of departure nodes in
the largest cluster (α = 0.489, κ = 4). (Right) Distribution of static
nodes in the largest cluster.

Finally, we used the state-of-the-art, CiBC algorithm [17], in

order to identify the communities in VANET. CiBC identifies

overlapping communities in a graph without requiring to preset

their number. Figure 17 depicts the identified communities



over time. Results have shown that a significant number of

communities is identified in vehicular networks. As expected,

the number of communities are mainly influenced by the

transmission range. More edges to the network leads to fewer

and longer communities.
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Fig. 17. Number of communities over time.

We further sharpen the quantitive aspects of these findings.

In particular, we observe that tight communities scale at very

small sizes (up to 150 nodes). Communities that scale at very

large sizes are not tight and thus become less “community-

like”. The existence communities in vehicular networks is

important since this means that there are groups of vehicles in

VANET which are strongly connected with each other. In other

words, VANET contains groups of vehicles that interact more

strongly amongst themselves than with the outside world.

To sum up, we have made the following observations:

• The VANET graph includes a giant cluster.
• Vehicles’ inter-arrivals and inter-departures from the

largest cluster exhibit burstiness on several time scales.
• Clusters’ connectivity remains stable over time.
• Dense clusters contain nodes with both small and large

degree.
• The VANET includes overlapping communities.
• Tight communities scale at very small sizes.

E. Network resilience

The notion of network resilience to the removal of vertices

is a very significant property of any VANET, since it directly

impacts its cohesion (thus, the possibility of disconnection),

and also the immunization of the network against malicious

attacks to vehicles concerning their communication. Thus, the

following question is particularly important:

QUESTION 5: How robust is a VANET?

If vertices are removed from the network, the typical length

between pairs of vertices will increase. Thus, even though

there are various ways to address the above question, in this

article we adopt a simple, though powerful metric to quantify

the network resilience [5]. We investigate how the diameter of

the network changes when we remove nodes with the highest

betweenness centrality values, and how the number of clusters

change after these removals. Figure 18 illustrates the obtained

results.

We investigated the increase/decrease of the network diam-

eter when removing 10% of nodes with the highest between-

ness centrality index. Figure 18 illustrates that the diameter

change distribution follows a power-law with the relation

Ni ∝ diameterα
i , where Ni is the number of nodes remaining

in the graph at the i-th removal of nodes and diameteri
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Fig. 18. Diameter vs. number of nodes in log-log scale. Slope α =

1.26 (T=100m).

is the diameter of the network which has Ni nodes. The

value of α determines how robust the VANET is. If α is

close to 1 then the network can be considered as robust.

According to our findings, the VANET communication graph

is not robust since a significant loss of high quality nodes

affects the characteristics of graph.

VI. IMPLICATIONS ON PROTOCOL DESIGN

In the previous section we conducted a thorough analysis of

the topological characteristics of a large scale VANET graph

and gained a deep understanding of its shape. The question that

remains to be answered is whether this information is useful

from an engineering perspective. The astute reader will have

already recognized many uses for our results. In the interest

of space, we provide only some generic directions where our

results can be useful.

One of the most sound observations of our study is that

a VANET graph is quite dense. Therefore, protocols based

on flooding will choke the network; thus, topology control

algorithms are necessary. Though, the high mobility of the ve-

hicles, make graph-based topology-control methods (spanning

trees, Gabriel/Yao graph, RNG) not appealing; clustering is

preferable. Which could be the clusterheads? Not necessarily

high-degree nodes, but those with large betweenness centrality

(if we need a few clusters), or those with high lobby centrality

(if we need a lot of clusters). Similarly, the network’s density

makes the use of power transmission adjustment mandatory.

The difference in a VANET setting is that this procedure

must be continuous, and can not be decided once in advance.

Such continuous power adjustment is not easy to achieve,

unless it is done on a per-road-segment basis, i.e., decide

power transmission levels for segments of the roads, based

on observed vehicle density (i.e., in places where vehicles’

communities exist). How to segment the roads, is a matter of

investigation.

Article [9] asked the question: which nodes will be the

forwarders in routing? Our study is able to provide an answer

to this: we can draw such nodes among those with high

centrality value. These nodes are also perfect candidates for

message ferrying in case of network partitionings. Similarly,

for geocasting applications, nodes with high lobby index are

ideal for carrying out the rebroadcasts so as to spread the

message with as few rebroadcasts as possible.

The very short lifetime of communication links makes the

exchange of time-critical info problematic, thus the use of

cooperative caching [11], [8] would be beneficial. Moreover,



for applications requiring awareness of the positions of other

vehicles through periodic beacons, or the distribution of traffic

related data through periodic beacons, the exploitation of

the more “central” vehicles for these tasks could relieve the

network from redundant broadcasts and reduce the collisions.

Also, the roadside infrastructure is suggested. But, where to

place these roadside units? In points where borders of clusters

exist, or in places where vehicle communities exist. Similarly,

installation of roadside units is suggested in places where

the nodes have low localized clustering coefficient (sparse

network), and thus the delivery of messages would require

a significant amount of time without the infrastructure. Addi-

tionally, since the link lifetime is very short, it arises the need

to design MAC protocols which, based on the prediction of

link lifetime using information like the direction and velocity

of vehicles, will prioritize broadcasts based on estimated link

duration, or design appropriate handover techniques.

Finally, the existence of communities implies that mobility

models like the Random Way Point, which are based on

types of random walks should be abandoned, because they

do not produce clusterings of the vehicles and additionally

they do not support the existence of “hub” vehicles that

explain the distributions of the centrality metrics. Therefore,

research towards richer models (e.g., [21]) must be conducted.

Furthermore, the existence of communities implies also that

leader election algorithms will work successfully, especially if

we incorporate the centrality metrics in their selection.

VII. CONCLUSIONS

This paper provides a thorough study of the topological

characteristics and statistical features of a VANET commu-

nication graph. Specifically, our work provides answers to

some critical questions: How do VANET graphs evolve over

time and space? Do the centrality metrics identify “quality”

(more central) nodes, and what is the spatial distribution of

these nodes? Which are the link duration statistics in VANET

when the vehicles are moving in urban areas? Does the

VANET consist of a single connected component? Are there

any dense subgraphs inside the VANET? How robust is a

VANET? We view our findings as particularly important since

the obtained results have a wide range of implications upon the

development of high-performance, reliable, scalable, secure,

and privacy-preserving vehicular technologies.
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