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ABSTRACT 

Two superficial ly similar graph rewriting formalisms, 
Interaction Nets and MONSTR, are studied. Interaction Nets 
come from multiplicative Linear Logic and feature undirected 
graph edges, while MONSTR arose from the desire to 
implement generalised Term Graph Rewriting efficiently on a 
distributed architecture and utilises directed graph arcs. Both 
formalisms feature rules with small left hand sides consisting 
of two main graph nodes. A translation of Interaction Nets 
into MONSTR is described, thus providing an implementation 
route for the former based on the latter and particularly suited 
to distributed implementations. 

K e y w o r d s :  Term Graph Rewriting Systems; MONSTR; 
Interaction Nets; Distributed Systems. 

INTRODUCTION 

There are many different kinds of graph that have been studied 
over the years, and inevitably, people have invented a rather 
large number of  Ways of  rewriting them, yielding a vast 
number of different models of  computation. In this paper we 
study the relationship between two models that bear a 
superficial resemblance, but that were inspired by very 
different motivations: Interaction Nets and MONSTR. 

Interaction Nets ([10,11]) evolved from the mult_iplicative 
fragment of  Linear Logic ([8]). The basic idea is that a 
multiplicative proof object consists of  inference steps. The 
object is represented by a graph, in which the individual 
inference steps, com_bining a number of hypotheses to form a 
conclusion, are represented by agent nodes for which the 
adjacent edges represent the hypotheses and conclusions. The 
special nature of  a conclusion singles it out, making it 
"principal". The dynamics of  proof objects is enshrined in the 
notion of elimination of cuts, whereby the two conclusions 
meeting in a cut are eliminated by transforming the proof 
object in the vicinity o f  the cut. in the world of  the 
representing graphs, two agents joined by a connection which 
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is principal for both of  them is the analogue of the cut, and its 
elimination is a rewrite rule for such graphs. Thus arises the 
Interaction Net model of graph rewriting. 

MONSTR ([1,3]) originated from the desire to implement the 
generalised Term Graph Rewriting language DACTL ([9]) on a 
distributed parallel machine, the Flagship machine ([13]). The 
demands of  (even an imperfectly adhered to notion of) 
serialisability for DACTL executions, necessitated curtailing 
the expressive power of  DACTL rules rather drastically. 
Because it was vital for the Flagship machine that the 
computational model encompassed a reasonable notion of  
state despite the predominantly declarative programming 
models that it was primarily intended for, the MONSTR 
computational model as it eventually emerged, permitted each 
rule to include at most one uni" of  updatable state per rewrite, 
apart from the root of  the rewrite itself, giving two key nodes 
on the left hand side of each rule. The similarity to Interaction 
Nets is clear. 

The rest of the paper is organised as follows. The next section 
describes MONSTR and some of  its more important properties. 
The following section does the same for Interaction Nets, 
following the treatment of  Banach ([2]). The two models are 
brought together in the fourth section which describes a 
translation of Interaction Nets into MONSTR. 

MONSTR 

Unlike most typical graph rewriting formalisms (see e.g. 
[9,12]), MONSTR was designed with the repercussions of  
efficient distributed implementation uppermost in mind. This 
meant tuning the expressiveness of  the basic atomic actions 
of  the model to the capabilities of  a typical distributed 
architecture, so as not to overtax the synchronisation 
properties of the latter unduly - -  something which would lead 
to a dramatic loss of  performance as a result of  having to 
implement a lot of distributed locking. 

MONSTR Rewrites 

The fundamental objects of  MONSTR are term graphs. A term 
graph, is a directed graph where the nodes are labelled with 
symbols, assumed of fixed ant),, and each node has a sequence 
of  out-arcs to its child nodes. The nodes and arcs of term 
graphs are marked to control rewriting strategy as we will we 
below. The term graph that represents the instantaneous state 
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of  the computation is modified by the application of  some 
rule. Let us look at a rule in action, to see what happens during 
a rewrite. 

F[Ocrs[a b] s:Var] => gG[a ^*b], s:--*~'z~,,; 

First the LHS (the part before =>)  is matched. F is the root 
node and has two children, the C o n s  node, and the V a t  node. 
The C o n s  node has two unlabeiled children; such undefined 
nodes may match anything. Note that the pattern is shallow; 
this is fundamental to MONSTR as large patterns demand 
large scale locking to ensure atomicity. 

Once a match is located, which must be at an active (*-marked) 
node of  the graph, the nodes on the RHS are built into the 
redex area. Thus a once-suspended (#-marked)  G node is 
constructed, with arcs to the existing LHS nodes referred to by 
a and b (so these nodes become shared even if  they weren' t  
previously). Also the arc to b is a notification arc (^-marked).  
The other new node is the active SUCCEED node. 

The notation = > indicates that the root is to be redirected to 
the node immediately following the => i .e.G. Also the O a r  
node is to be redirected to S U C C E E D  by the notation 
s : =SUCCEED. During redirection, all in-ares to the respective 
redirection subjects (i.e. F and O a r )  are replaced by in-arcs to 
the respective targets (i.e. G and SUCCEED). Redirection is the 
fundamental notion of  update in Term Graph Rewriting, being 
a graph-oriented version of  substitution. 

The final tasks of  a MONSTR rewrite are to make the root 

inactive (idle, written visibly as e when necessary); and to 
activate specified LHS nodes (which causes them to be marked 
active i f  otherwise unmarked). In the concrete syntax, this is 
accomplished by mentioning the relevant nodes on the KdS 
of the rule, with a * marking e.g. b above. We illustrate *he 
action of the rule described above in Figure 1. 

Da t a  N i l  

F I G U ~  i 

in the diagram, note how the in-arcs of  F now point to G after 
redirection, and those of  V a t  point to SUCCEED.  We are 
assuming in the rewrite illustrated, that the LHS nodes F and 
C o n s ,  had no further in-arcs, and thus became inaccessible and 
were garbage collected. 

The above assumed that there was a rule which matched, and 
that the explicitly matched arguments of the root of  the redex 
(i.e. those arguments whose symbol needs to be inspected for 
pattern matching to succeed, C o n s  and v a t  in our example), 
are idle. If any of the explicitly matched arguments of  the root 

are not idle then suspension occurs, in which the root of  the 
redex becomes suspended on as many of  its explicit ly 
matched arguments as happen to be non-idle; i.e. the root 
node acquires that many suspension markings, and each of  the 
relevant out-arcs becomes a notification arc (i.e. A-marked). 

If no rule can match regardless of  the markings,  then 
notification occurs, in which the root becomes idle, and for all 
its notification in-arcs, the ^ marking is removed, and the 
number of suspensions (# ' s )  in the parent node 's  marking is 
decremented (with # 0 = *). In this manner  subcomputations 
can signal their completion to their parents (and suspended 
rewrites can thereby be reawakened). 

MONSTR Syntactic Restriction and Runtime Provcrtie~ 

To make the above ideas into a computational model suited to 
distributed machines, a number of  restrictions are imposed on 
the syntactic structure of  systems so that some useful runtime 
properties can be rigorously demonstrated. We point out the 
main ones now rather informally~ referring the reader to [i ,3] 
for a more detailed study of  why these are appropriate and 
what their consequences are: 

• All nodes respect the arities of  their  symbols.  (Within  
rules; and by means of  a simple induction, within all 
execution graphs.) 

• The alphabet of  symbols  is d ivided into func t ions .  
constructors and stateholders. Functions label root nodes 
of LHSs of  rules (but not subroot nodes), and function 
symbols must always have at least one default rule which 
has no explicitly matched arguments, enabling such a rule 
to always rewrite at runtime, regardless o f  its arguments. 
Constructors and stateholders can label subroot nodes o f  
LHSs of rules (but not the root nodes). Funct ions and 
stateholders (but not constructors) can label LHS nodes of  
redirections, and all redirections must  specify an explicit 
function or stateholder as LHS node, (one of  which must be 
the root). Thus no attempt is ever made to redirect a 
constructor at runtime. 

• The pattern matching requirements of each redex, depend 
solely on the symbol at the root (and so can be delegated 
to simple hardware). More specifically,  each function 
symbol has a fixed matching template, one level deep, 
which specifies which of  the root 's  children need to have 
their symbols inspected to match a non-default rule for the 
function. Furthermore, a single fixed position within this 
template can be designated for matching stateholders; the 
other posi t ions may only match  cons t ruc tors  ( thus,  
jus t i fying the acronym M O N S T R  which  stands for 
Maximum of One Non-root STateholder per Rewrite). And 
no pointer equality testing is permitted except for the 
matched constructors, (and for some special builtins of  
which we will have no need in this paper). 

All nodes in rules are balanced; i.e. have exactly as many 
suspension markings as they have notification out-arcs. 
(And by a simple induction, all nodes in all execution 
graphs are balanced too.) 

All nodes in rules are either state saturated (i.e. if they 
have one or more notification in-arcs and are idle, then 
they must be stateholders), or designated for activation. 

• Any redirection whose RHS node is idle and not activated, 
must be a stateholdel'. (As a consequence of  this and the 
previous point, all nodes in all execution graphs are state 
saturated.) 
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In all rules, the LHS node of  a redirection should not be 
activated unless it is also the RHS of some other 
redirection. (In practice this enables the convenient 
representation of  rewriting by packet store manipulations, 
(and particularly the representation of  most redirections 
by packet overwriting).) 

By convention rewriting always starts with a single active 
node labelled I N I T I A L ;  and MONSTR provides a rule 
selection policy which permits non-default rules to be 
selected before default rules when either would match ( ; is 
the sequential rule selector in concrete syntax). Note that we 
have said nothing very specific about garbage collection. For 
the rest of  this paper it will be sufficient to assume that this 
works in a "sensible way"; see [1,3] for a more precise 
discussion. 

INTERACTION NETS 

Interaction Nets were invented for describing finegrained 
computations graphically. Their theory builds on prior work 
in multiplicative Linear Logic that gives the Interaction Net 
model  part icularly transparent  proper t ies  regarding 
confluence, and to a lesser extent normalisation. We will use 
the formulation of  Banach ([2]) as it will prove more 
convenient for the translation that we will subsequently give. 

Interaction Nets can be viewed as bipartite graphs where the 
two node kinds are agent nodes and port nodes. Each agent 
bears a symbol, which determines the number of  port edges 
incident on it, and the attributes of  those edges. These port 
edge attributes are: the port edge's  name; whether it is 
principal or auxiliary; and the port edge's type. The types 

come in complementary pairs (ct+, 0t-), for ct drawn from a 
suitable type aiphab t. Exactly one of  an agent 's ports is 
principal, and the rest are auxiliary. Finally, we have the all- 
important port invariant which states that at most two port 
edges may be incident on a port node, and that they must be of 
complementary types, say ct+ and ct-. Figure 2 illustrates the 
situation and also introduces the notion of port connection. 
which we will use as required below. Note that we indicate 
principal port edges using an arrowhead, while auxiliary port 
edges are unadorned. Also we will suppress some of the detail 
to avoid clutter in future. We will say that a port connection 
consisting of  two principal port edges is a principal port 
connection. 

An Interaction Net rewrite rule has on the left hand side, two 
agents joined by a principal port connection, and with all 
their auxiliary ports free, (i.e. not connected to other port 
edges). The right hand side is an arbitrary Interaction Net with 
the same external interface as the left hand side, which is to 
say that part of  the rule's data is a bijective mapping between 
the free port edges of  the LHS and RHS nets, which preserves 
the types. The only exceptions to the bijective law are short 
circuits, where two free port nodes of  the LHS with 
complementary types are allowed to be identified in the RHS. 
Figure 3 shows a picture of  a rule. The numbers on the 
interface port edges define the aforementioned bijection 
between left and right hand sides. The blobs labelled (2 : 13+, 
9:13-) and (3 : f - ,  4 :y+) are the short circuits in an obvious 
notation. And any fresh port nodes introduced in the RHS, i.e. 
port nodes not belonging to the interface, will be called 
internalports in future (e.g. port node 10 in Figure 3). 

Port Name 

Auxiliary Port E d g e /  Port Type 

Agen~t Node Port Node / Agent Symbol 

Principle Port Edge 

Port Connection 

F I G U R E  2 

The operational semantics of such a rule starts by finding a 
matching of  the LHS of the rule in the net being rewritten. 
Then the matched subnet is removed, and replaced with a copy 
of the RHS of the rule. It is easy to see that the type preserving 
bijective law with short circuits of type-matched pairs, means 
that the port invariant is preserved by rewrites. Figures 4a and 
4b show a rewrite according to the rule introduced previously 
before and after the rule has been applied. 

2 

5 

3 1 

:i //~:"t- k:l~ 

f:. r t -  
- - ' - 6  

.~:Ct+ 
m: 

---9 
6 

COt-- 

Y:7 
8 9 

7 
I :g+  

~O:X+ 

p:v.- 

8 

(2:13% 9:13-) 
(3:y-, 4:y+) 

FIGURE 3 
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F I G U R E  4a 

7 

8 
F I G U R E  4b 

The principal/auxiliary distinction on ports, and the fact that 
rules must feature a principal connection, leads to the study of  
deadlock prevention for Interaction Nets. A deadlock is where 
there is a cycle of agents, each of whose principal port edges 
connects with an auxiliary port edge o f  the next agent. 
Obviously in such a situation, none of  the agents involved 
can rewrite...ever. A rich theory can be developed to ensure 
that such situations cannot arise, but this will not be needed 
in this paper. See the cited references for details. 
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We end this brief exposition of  Interaction Nets with some 
further observations. Since each agent has only one principal 
port, it can interact with at most one other agent, the one 
connected to the said principal port, and then only if that 
agent's corresponding port is itself principal. This means that 
apart from auxiliary port nodes that they might have in 
common, any two distinct redexes in an arbitrary net are non- 
overlapping, and provided for each possible pair of  agents on 
the LHS there is exactly one rule, Interaction Net rewriting is 
Church-Rosser. If  moreover, the RHS's of  rules are smaller 
than their LHS's (as is the case e.g. for the Interaction Net 
version of LLM cut elimination), then Interaction Net  
rewriting is also terminating. 

The form of rules, and the one principal port restriction for 
agents, combine to imply the following structure for the life 
history of  a port node: It is created during some rewrite. 
Perhaps the two port edges incident on it are auxiliary. While 
an incident port edge is auxiliary, it may be replaced by 
another port edge, or short circuited, as its owning agent 
interacts along some different port connection. Once an 
auxiliary port edge is replaced by a principal port edge 
however, the port edge is commited. It can no longer be 
replaced, except if  the other incident edge also becomes 
principal, and the whole connection becomes the redex of  a 
rewrite, at which point the connection, and the pair o f  
connected agents are garbaged. For any given port, the whole 
of  the above is not compulsory, and the port may undergo 
only a subsequence of  the indicated transformations, but the 
structure of  that subsequence must always fit within the 
indicated pattern. This fact can be usefully exploited by 
implementations, as we will see below. 

MAPPING INTERACTION NETS TO MONSTR 

The most striking thing about Interaction Nets from an 
implementation point of  view is that the port edges are 
unoriented. (We disregard the arrowheads of  the principal port 
edges for this purpose.) Usually, implementing an unoriented 
edge in a concrete data structure requires a pair of  oppositely 
oriented pointers. With this in mind, if  concurrent update of  
the data structure by many rewriting processes is envisaged, 
then unoriented edges can spell disaster performancewise, 
since one has to avoid race conditions arising from two agents 
competing to update the same edge from opposite ends. This 
can involve all the overheads of  locking and perhaps of  
deadlock avoidance. By contrast, MONSTR, with a close eye 
kept on implementation matters, features only directed arcs, 
avoiding the problems indicated above. 

The similar shape of left hand sides in the two models is 
striking. The obvious thing that we would like to do, is to 
relate the two agents connected by a principal and undirected 
port connection in the LHS of a net rule, to the function and 
stateholder connected by a directed arc in a corresponding 
MONSTR rule - -  fortunately it is possible to do this if one 
exploits the orientedness of  the Interaction Net type system to 
provide an orientation for the principal port connection, 
Indeed it is possible to go further. Noticing that the agents of  
an Interaction Net computation get inspected and replaced 
exactly once each (since each agent participates in exactly one 
interaction), enables us to represent some agents by 
constuctors rather than the more general stateholders. 

Somewhat arbitrarily, we choose to encode agents with 
principal ports of positive type by MONSTR function nodes, 
and those with principal ports of negative type by MONSTR 
constructor nodes. Further, we encode port nodes (which are 



synchronisat io n points) by stateholders labelled with the 
symbol P o r t .  To start with, all port edges are represented by 
arcs from the agent  nodes to port nodes, and all port 
connections are represented by a pair of  in-arcs of a P e r  t node 
- -  in a representation of  an Interaction Net that is rather 
obvious. For a principal connection, we have to turn the 
inward pointing pair of  arcs into a single arc; furthermore 
doing this in a manner which respects the independence of  the 
two port edges. Fortunately, the typical life history of  a port 
edge sketched in the previous section helps, as both edges are 
following similar trains of  activity. 

At the point that a function node is created, it is created active. 
It matches its child. I f  this is a constructor representing an 
agent, a MONSTR rewrite representing an Interaction Net 
rewrite takes place. If  not, and the function sees only a Port 
node, it suspends waiting to be notified of a change of  state. 
Conversely, the constructor representing the negative type 
agent is created along with an additional A s s i g n  function 
whose job is to redirect the constructor's principal port node 
to the constructor  itself, thereby making the constructor 
visible to any waiting function node, should there indeed be 
one there now or at some point in the future. In fact it is clear 
that with the desired behaviour of  the A s s  i g n  function, the 
original arc from the constructor to the P o r t  node becomes 
superfluous, and can be dispensed with. It is easy to see that 
the protocol works as required, and in particular that it allows 
auxiliary port edge representatives to be replaced at will. In 
particular, the replacement of  agents and of their port edges 
works by garbage collect ion:  in a rewrite, the nodes 
representing the LHS of  the rule are created and connected to 
the relevant P o r t  nodes; meanwhile, the LHS agent nodes 
loose all l ive references and thus become garbaged. 
(Obviously, i f  a principal port connection is being created all 
at once within the RHS of  some rule rather than dynamically, 
then the protocol can be optimised away.) 

We now give the translation formally. First we write down a 
generic Interaction Net rule DI s . 

LHS: Agents: 

F, with auxiliary ports fl : ~tl°_f i : ~i°_fn : an ° 

C, with auxiliary ports c1:13I*_ci:~i°_cm:13m ° 
where * is either + or - in each case 

RHS: Agents: 
El...Ei...Er, with principal ports Q1 : AIO-Qi : ~i°_Qr :/~r* 
and with auxiliary ports 

qll:511*-qljl:51jl*--qltl:61tl ° (of El) 

qil:6il°--qiji:Siji°--qiti:Siti ° (of El) 

qrl:Srl*-qrjr:6rjr*--qrtr:Srtr ° (of Er) 
Internal Ports: pl-pi_ps 
Short Circuits: (xl:¥1-, yl:vl+)- 

(xi :vi-, yi:vi+)- 
(xu:vu-, yu : vu+) 

where in the above there is an onto mapping 

O:{QI_Qr} u {Qll_Qrtr} u {xl_yu} 

--) {fl_fn} u {cl_cm} u {pl_ps} 

where 0 -I is I-I on (fl_fn} u {cl_cm}.andeach 9-1(pi) 

is of cardinality 2. (This just expresses the port invariant for 
the RHS.) 

In the MONSTR translation, i t a l i c  C o u r i e r  items will 
correspond to symbols or parts of  symbols mapped from the 

components of  the above generic rule, while upright 
C o u r i e r  items will stand for constants of  the translation. In 
general, we use font change to identify pieces that correspond 
in the Interaction Nets and MONSTR rules. The MONSTR rule 
D M that translates the above rule is: 

F[ C[ cl ... ci ... cm ] fl ... fi ... da ] ~ ~K, 
pl:Rart ..... pi:~rt ..... ps:Port , 

el:pl El[ Q1 ql I ... qljl ... qltl 1 ..... 

ei:pi Ei[ ~ ~i "'" ~ji "'" ~ti ] ..... 

er:pr Er[ Or qr 1 ... qrjr ... qrtr ] , 

where ~Qi :Ai+ (i.e. Ei is an agent ofpos  type principal port, 
and thus Ei is a function symbol), 

then tai = *,  
else if Qi  : A i  - (i.e. EJ. is an agent of neg type principal port, 

and thus Ei  is a constructor symbol), 
then p i  = e ,  Qi is absent from the arguments of Ei, 

and we also have *Assign [ Qi ei ] 
[i 

• Assign [xl yl], -, *Assign [xi yi], _, Assign [x12 yu] 

where in the above, the map O is interpreted as syntactic 
identity, i.e. i f  0(O4)  = o9  say, then Q4 is identical to c9 ,  
g i v i n g  the comaectedness of  the corresponding term graph 
according to the syntactic conventions of  MONSTR. 

In addition we need the following suite of rules. 

Assign[ v:Bzrt a ] => *OK, v := *a ; 
Assign[ v a ] --> ~Assign[ ^*v ] ; 

F[ p:Pcrt fl ... fi ... fn ] => #F[ ~p fl ... fi ... f~ ] ; 

F[ p fl ... £i ... fn ] => #F[ ,~p fl ... fi ... fn ] ; 

Here is the translation of  the specific example we had 
previously.  

F[C[ c7 c~ c9 ] fl f2 f3 f4 f6 ] -->*OK, 
pl0:Pcrt , 
el:T[ fl c7pl0 ] , *Assign[ f6 el ] , 
e2:*H[ plO c8 ] , 
*Assign[ C9 f2 ] , *Assign[ f3 f4 ] ; 

To further illustrate the mapping procedure, we now show how 
an Interaction Nets version of  the unavoidable A p p e n d  is 
translated using the framework just developed. (We recall that 
the convention we are adopting in this paper is that the 
principal ports of  the "functions" have a positive sign and 
those of  the "constructors" have a negative one; the opposite 
would also of  course be valid provided it would be used 
consistently and indeed this is the one adopted in Lafont 's  
papers ([ 10,11 ])). 

type atcl~ list 

symbol ~: list - ;atom+, list+ 
Nil:list- 
Append: list+; list+, list- 

c~si,Appmd(v,t)] x Arpmd[v, oms(x,t)] 
Nil x App~d[v,v] 

It should be now easier for the reader to understand how the 
following MONSTR rule system is derived. 

Appmd[Ccrs~ u] wv] --> *CK, 
a:Pcrt, 
el :Ct:ns Ix a ] ,  
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e2:*Al:pa-d[u a v], 
*Ass~n[w eX] ; 

A typical MONSTR query involving the above program is 
shown below. (We recall that INITIAL denotes the first piece 
of graph to be attempted for reduction in a MONSTR/Dactl 
program.) 

]2~rmL =~ p, 
*,~tamd[.~ p 12], 
1.1-o:m [1 Ores[2 Nil.I], 
1.2:O:m[30::m[4 Ni3.]], 
p:Pcrt; 

Note, that the result of appending the two lists will appear in 
the second argument of Append. 

CONCLUSIONS AND RELATED WORK 

In this paper we have studied the relationship between two 
graph rewriting formalisms, namely Lafont's Interaction Nets 
and Banach's MONSTR and we have presented a concrete 
lranslation from the former to the latter. The two formalisms 
have evolved from rather different perspectives and for 
different reasons - -  Interaction Nets as a version of Linear 
Logic based on normalised proof Nets and rather abstract and 
MONSTR as a down stripped verion of a compiler target 
language with emphasis on easiness of implementation on 
distributed machines. Thus, being able to provide a concrete 
mapping framework from the former onto the latter has a 
number of advantages and interesting possibilities: (1) it 
provides an "implementation apparatus" of Interaction Nets 
via the compiler target language MONSTR - bear here in mind 
that Interaction Nets exhibit a high degree of parallelism 
which can be fully exploited by MONSTR; (2) it illustrates 
how Interaction Nets based rule systems can be transformed 
into "ordinary" graph rewriting rule based code for execution 
using traditional rewriting formalisms (like the MONSTR 
computational model) and associated architectures; (3) it 
offers ways to reason about some of MONSTR's operations 
and features by lifting their interpretation to the level of the 
computational model that is being mapped onto MONSTR (as 
in the case of multiple non-root overwrites and the rather 
unusal stateholder object); (4) it allows MONSTR to be used 
as a point of  reference and comparison between different 
computational models by examining their common points 
and differences at the MONSTR level. 

This paper complements work by the authors (and others) to 
justify the characterization of Term Graph Rewriting in 
general but, more to the point, MONSTR in particular, as a 
"generalised computational model" able to accommodate the 
needs of, often divergent in behaviour, computational 
models; needs that range from those associated primarily with 
reasoning and specification to those more related to 
implementation issues. In [5] it is shown how concurrent 
logic languages can be implemented in MONSTR. In [4] 
MONSTR is used to reason about pi-calculus and in [7] it is 
shown how MONSTR can be used as an implementation and 
specification framework for concurrent object-oriented 
languagues. Finally, [6] studies the possibility of using 
MONSTR to implement concurrent languages based on Linear 
Logic but also discusses the definition of a "linear" MONSTR 
sublanguage. 

Currently, we are examining ways to map onto MONSTR 
untyped Interaction Nets but also the reverse, i.e. the mapping 
of the MONSTR rewriting formalism onto Interaction Nets. 
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