
IMPLEMENTING INTERACTION NETS IN MONSTR

Richard Banach

Department of Computer Science
University of Manchester

Manchester M 13 9PL
U.K.

banach@cs.man.ac.uk

George A. Papadopoulos

Department of Computer Science
University of Cyprus

P.O.B. 537, CY-1678, Nicosia
CYPRUS

george@turing.cs.ucy.ac.cy

ABSTRACT

Two superficial ly similar graph rewriting formalisms,
Interaction Nets and MONSTR, are studied. Interaction Nets
come from multiplicative Linear Logic and feature undirected
graph edges, while MONSTR arose from the desire to
implement generalised Term Graph Rewriting efficiently on a
distributed architecture and utilises directed graph arcs. Both
formalisms feature rules with small left hand sides consisting
of two main graph nodes. A translation of Interaction Nets
into MONSTR is described, thus providing an implementation
route for the former based on the latter and particularly suited
to distributed implementations.

K e y w o r d s : Term Graph Rewriting Systems; MONSTR;
Interaction Nets; Distributed Systems.

INTRODUCTION

There are many different kinds of graph that have been studied
over the years, and inevitably, people have invented a rather
large number of Ways of rewriting them, yielding a vast
number of different models of computation. In this paper we
study the relationship between two models that bear a
superficial resemblance, but that were inspired by very
different motivations: Interaction Nets and MONSTR.

Interaction Nets ([10,11]) evolved from the mult_iplicative
fragment of Linear Logic ([8]). The basic idea is that a
multiplicative proof object consists of inference steps. The
object is represented by a graph, in which the individual
inference steps, com_bining a number of hypotheses to form a
conclusion, are represented by agent nodes for which the
adjacent edges represent the hypotheses and conclusions. The
special nature of a conclusion singles it out, making it
"principal". The dynamics of proof objects is enshrined in the
notion of elimination of cuts, whereby the two conclusions
meeting in a cut are eliminated by transforming the proof
object in the vicinity o f the cut. in the world of the
representing graphs, two agents joined by a connection which

-Permission to make digital or hard copies of part o r all of this work for
personal or classroom use is granted without lee provided that copies are not
made or distributed Ibr profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a Ice."
,~3' 1997 ACM 0-89791-850-9 97 0002 3.50

509

is principal for both of them is the analogue of the cut, and its
elimination is a rewrite rule for such graphs. Thus arises the
Interaction Net model of graph rewriting.

MONSTR ([1,3]) originated from the desire to implement the
generalised Term Graph Rewriting language DACTL ([9]) on a
distributed parallel machine, the Flagship machine ([13]). The
demands of (even an imperfectly adhered to notion of)
serialisability for DACTL executions, necessitated curtailing
the expressive power of DACTL rules rather drastically.
Because it was vital for the Flagship machine that the
computational model encompassed a reasonable notion of
state despite the predominantly declarative programming
models that it was primarily intended for, the MONSTR
computational model as it eventually emerged, permitted each
rule to include at most one uni" of updatable state per rewrite,
apart from the root of the rewrite itself, giving two key nodes
on the left hand side of each rule. The similarity to Interaction
Nets is clear.

The rest of the paper is organised as follows. The next section
describes MONSTR and some of its more important properties.
The following section does the same for Interaction Nets,
following the treatment of Banach ([2]). The two models are
brought together in the fourth section which describes a
translation of Interaction Nets into MONSTR.

MONSTR

Unlike most typical graph rewriting formalisms (see e.g.
[9,12]), MONSTR was designed with the repercussions of
efficient distributed implementation uppermost in mind. This
meant tuning the expressiveness of the basic atomic actions
of the model to the capabilities of a typical distributed
architecture, so as not to overtax the synchronisation
properties of the latter unduly - - something which would lead
to a dramatic loss of performance as a result of having to
implement a lot of distributed locking.

MONSTR Rewrites

The fundamental objects of MONSTR are term graphs. A term
graph, is a directed graph where the nodes are labelled with
symbols, assumed of fixed ant),, and each node has a sequence
of out-arcs to its child nodes. The nodes and arcs of term
graphs are marked to control rewriting strategy as we will we
below. The term graph that represents the instantaneous state

:.~8

of the computation is modified by the application of some
rule. Let us look at a rule in action, to see what happens during
a rewrite.

F[Ocrs[a b] s:Var] => gG[a ^*b], s:--*~'z~,,;

First the LHS (the part before =>) is matched. F is the root
node and has two children, the C o n s node, and the V a t node.
The C o n s node has two unlabeiled children; such undefined
nodes may match anything. Note that the pattern is shallow;
this is fundamental to MONSTR as large patterns demand
large scale locking to ensure atomicity.

Once a match is located, which must be at an active (*-marked)
node of the graph, the nodes on the RHS are built into the
redex area. Thus a once-suspended (#-marked) G node is
constructed, with arcs to the existing LHS nodes referred to by
a and b (so these nodes become shared even if they weren' t
previously). Also the arc to b is a notification arc (^-marked).
The other new node is the active SUCCEED node.

The notation = > indicates that the root is to be redirected to
the node immediately following the => i .e.G. Also the O a r
node is to be redirected to S U C C E E D by the notation
s : =SUCCEED. During redirection, all in-ares to the respective
redirection subjects (i.e. F and O a r) are replaced by in-arcs to
the respective targets (i.e. G and SUCCEED). Redirection is the
fundamental notion of update in Term Graph Rewriting, being
a graph-oriented version of substitution.

The final tasks of a MONSTR rewrite are to make the root

inactive (idle, written visibly as e when necessary); and to
activate specified LHS nodes (which causes them to be marked
active i f otherwise unmarked). In the concrete syntax, this is
accomplished by mentioning the relevant nodes on the KdS
of the rule, with a * marking e.g. b above. We illustrate *he
action of the rule described above in Figure 1.

Da t a N i l

F I G U ~ i

in the diagram, note how the in-arcs of F now point to G after
redirection, and those of V a t point to SUCCEED. We are
assuming in the rewrite illustrated, that the LHS nodes F and
C o n s , had no further in-arcs, and thus became inaccessible and
were garbage collected.

The above assumed that there was a rule which matched, and
that the explicitly matched arguments of the root of the redex
(i.e. those arguments whose symbol needs to be inspected for
pattern matching to succeed, C o n s and v a t in our example),
are idle. If any of the explicitly matched arguments of the root

are not idle then suspension occurs, in which the root of the
redex becomes suspended on as many of its explicit ly
matched arguments as happen to be non-idle; i.e. the root
node acquires that many suspension markings, and each of the
relevant out-arcs becomes a notification arc (i.e. A-marked).

If no rule can match regardless of the markings, then
notification occurs, in which the root becomes idle, and for all
its notification in-arcs, the ^ marking is removed, and the
number of suspensions (# ' s) in the parent node 's marking is
decremented (with # 0 = *). In this manner subcomputations
can signal their completion to their parents (and suspended
rewrites can thereby be reawakened).

MONSTR Syntactic Restriction and Runtime Provcrtie~

To make the above ideas into a computational model suited to
distributed machines, a number of restrictions are imposed on
the syntactic structure of systems so that some useful runtime
properties can be rigorously demonstrated. We point out the
main ones now rather informally~ referring the reader to [i ,3]
for a more detailed study of why these are appropriate and
what their consequences are:

• All nodes respect the arities of their symbols. (Within
rules; and by means of a simple induction, within all
execution graphs.)

• The alphabet of symbols is d ivided into func t ions .
constructors and stateholders. Functions label root nodes
of LHSs of rules (but not subroot nodes), and function
symbols must always have at least one default rule which
has no explicitly matched arguments, enabling such a rule
to always rewrite at runtime, regardless o f its arguments.
Constructors and stateholders can label subroot nodes o f
LHSs of rules (but not the root nodes). Funct ions and
stateholders (but not constructors) can label LHS nodes of
redirections, and all redirections must specify an explicit
function or stateholder as LHS node, (one of which must be
the root). Thus no attempt is ever made to redirect a
constructor at runtime.

• The pattern matching requirements of each redex, depend
solely on the symbol at the root (and so can be delegated
to simple hardware). More specifically, each function
symbol has a fixed matching template, one level deep,
which specifies which of the root 's children need to have
their symbols inspected to match a non-default rule for the
function. Furthermore, a single fixed position within this
template can be designated for matching stateholders; the
other posi t ions may only match cons t ruc tors (thus,
jus t i fying the acronym M O N S T R which stands for
Maximum of One Non-root STateholder per Rewrite). And
no pointer equality testing is permitted except for the
matched constructors, (and for some special builtins of
which we will have no need in this paper).

All nodes in rules are balanced; i.e. have exactly as many
suspension markings as they have notification out-arcs.
(And by a simple induction, all nodes in all execution
graphs are balanced too.)

All nodes in rules are either state saturated (i.e. if they
have one or more notification in-arcs and are idle, then
they must be stateholders), or designated for activation.

• Any redirection whose RHS node is idle and not activated,
must be a stateholdel'. (As a consequence of this and the
previous point, all nodes in all execution graphs are state
saturated.)

510

In all rules, the LHS node of a redirection should not be
activated unless it is also the RHS of some other
redirection. (In practice this enables the convenient
representation of rewriting by packet store manipulations,
(and particularly the representation of most redirections
by packet overwriting).)

By convention rewriting always starts with a single active
node labelled I N I T I A L ; and MONSTR provides a rule
selection policy which permits non-default rules to be
selected before default rules when either would match (; is
the sequential rule selector in concrete syntax). Note that we
have said nothing very specific about garbage collection. For
the rest of this paper it will be sufficient to assume that this
works in a "sensible way"; see [1,3] for a more precise
discussion.

INTERACTION NETS

Interaction Nets were invented for describing finegrained
computations graphically. Their theory builds on prior work
in multiplicative Linear Logic that gives the Interaction Net
model part icularly transparent proper t ies regarding
confluence, and to a lesser extent normalisation. We will use
the formulation of Banach ([2]) as it will prove more
convenient for the translation that we will subsequently give.

Interaction Nets can be viewed as bipartite graphs where the
two node kinds are agent nodes and port nodes. Each agent
bears a symbol, which determines the number of port edges
incident on it, and the attributes of those edges. These port
edge attributes are: the port edge's name; whether it is
principal or auxiliary; and the port edge's type. The types

come in complementary pairs (ct+, 0t-), for ct drawn from a
suitable type aiphab t. Exactly one of an agent 's ports is
principal, and the rest are auxiliary. Finally, we have the all-
important port invariant which states that at most two port
edges may be incident on a port node, and that they must be of
complementary types, say ct+ and ct-. Figure 2 illustrates the
situation and also introduces the notion of port connection.
which we will use as required below. Note that we indicate
principal port edges using an arrowhead, while auxiliary port
edges are unadorned. Also we will suppress some of the detail
to avoid clutter in future. We will say that a port connection
consisting of two principal port edges is a principal port
connection.

An Interaction Net rewrite rule has on the left hand side, two
agents joined by a principal port connection, and with all
their auxiliary ports free, (i.e. not connected to other port
edges). The right hand side is an arbitrary Interaction Net with
the same external interface as the left hand side, which is to
say that part of the rule's data is a bijective mapping between
the free port edges of the LHS and RHS nets, which preserves
the types. The only exceptions to the bijective law are short
circuits, where two free port nodes of the LHS with
complementary types are allowed to be identified in the RHS.
Figure 3 shows a picture of a rule. The numbers on the
interface port edges define the aforementioned bijection
between left and right hand sides. The blobs labelled (2 : 13+,
9:13-) and (3 : f - , 4 :y+) are the short circuits in an obvious
notation. And any fresh port nodes introduced in the RHS, i.e.
port nodes not belonging to the interface, will be called
internalports in future (e.g. port node 10 in Figure 3).

Port Name

Auxiliary Port E d g e / Port Type

Agen~t Node Port Node / Agent Symbol

Principle Port Edge

Port Connection

F I G U R E 2

The operational semantics of such a rule starts by finding a
matching of the LHS of the rule in the net being rewritten.
Then the matched subnet is removed, and replaced with a copy
of the RHS of the rule. It is easy to see that the type preserving
bijective law with short circuits of type-matched pairs, means
that the port invariant is preserved by rewrites. Figures 4a and
4b show a rewrite according to the rule introduced previously
before and after the rule has been applied.

2

5

3 1

:i //~:"t- k:l~

f:. r t -
- - ' - 6

.~:Ct+
m:

---9
6

COt--

Y:7
8 9

7
I :g+

~O:X+

p:v.-

8

(2:13% 9:13-)
(3:y-, 4:y+)

FIGURE 3

511

F I G U R E 4a

7

8
F I G U R E 4b

The principal/auxiliary distinction on ports, and the fact that
rules must feature a principal connection, leads to the study of
deadlock prevention for Interaction Nets. A deadlock is where
there is a cycle of agents, each of whose principal port edges
connects with an auxiliary port edge o f the next agent.
Obviously in such a situation, none of the agents involved
can rewrite...ever. A rich theory can be developed to ensure
that such situations cannot arise, but this will not be needed
in this paper. See the cited references for details.

512

We end this brief exposition of Interaction Nets with some
further observations. Since each agent has only one principal
port, it can interact with at most one other agent, the one
connected to the said principal port, and then only if that
agent's corresponding port is itself principal. This means that
apart from auxiliary port nodes that they might have in
common, any two distinct redexes in an arbitrary net are non-
overlapping, and provided for each possible pair of agents on
the LHS there is exactly one rule, Interaction Net rewriting is
Church-Rosser. If moreover, the RHS's of rules are smaller
than their LHS's (as is the case e.g. for the Interaction Net
version of LLM cut elimination), then Interaction Net
rewriting is also terminating.

The form of rules, and the one principal port restriction for
agents, combine to imply the following structure for the life
history of a port node: It is created during some rewrite.
Perhaps the two port edges incident on it are auxiliary. While
an incident port edge is auxiliary, it may be replaced by
another port edge, or short circuited, as its owning agent
interacts along some different port connection. Once an
auxiliary port edge is replaced by a principal port edge
however, the port edge is commited. It can no longer be
replaced, except if the other incident edge also becomes
principal, and the whole connection becomes the redex of a
rewrite, at which point the connection, and the pair o f
connected agents are garbaged. For any given port, the whole
of the above is not compulsory, and the port may undergo
only a subsequence of the indicated transformations, but the
structure of that subsequence must always fit within the
indicated pattern. This fact can be usefully exploited by
implementations, as we will see below.

MAPPING INTERACTION NETS TO MONSTR

The most striking thing about Interaction Nets from an
implementation point of view is that the port edges are
unoriented. (We disregard the arrowheads of the principal port
edges for this purpose.) Usually, implementing an unoriented
edge in a concrete data structure requires a pair of oppositely
oriented pointers. With this in mind, if concurrent update of
the data structure by many rewriting processes is envisaged,
then unoriented edges can spell disaster performancewise,
since one has to avoid race conditions arising from two agents
competing to update the same edge from opposite ends. This
can involve all the overheads of locking and perhaps of
deadlock avoidance. By contrast, MONSTR, with a close eye
kept on implementation matters, features only directed arcs,
avoiding the problems indicated above.

The similar shape of left hand sides in the two models is
striking. The obvious thing that we would like to do, is to
relate the two agents connected by a principal and undirected
port connection in the LHS of a net rule, to the function and
stateholder connected by a directed arc in a corresponding
MONSTR rule - - fortunately it is possible to do this if one
exploits the orientedness of the Interaction Net type system to
provide an orientation for the principal port connection,
Indeed it is possible to go further. Noticing that the agents of
an Interaction Net computation get inspected and replaced
exactly once each (since each agent participates in exactly one
interaction), enables us to represent some agents by
constuctors rather than the more general stateholders.

Somewhat arbitrarily, we choose to encode agents with
principal ports of positive type by MONSTR function nodes,
and those with principal ports of negative type by MONSTR
constructor nodes. Further, we encode port nodes (which are

synchronisat io n points) by stateholders labelled with the
symbol P o r t . To start with, all port edges are represented by
arcs from the agent nodes to port nodes, and all port
connections are represented by a pair of in-arcs of a P e r t node
- - in a representation of an Interaction Net that is rather
obvious. For a principal connection, we have to turn the
inward pointing pair of arcs into a single arc; furthermore
doing this in a manner which respects the independence of the
two port edges. Fortunately, the typical life history of a port
edge sketched in the previous section helps, as both edges are
following similar trains of activity.

At the point that a function node is created, it is created active.
It matches its child. I f this is a constructor representing an
agent, a MONSTR rewrite representing an Interaction Net
rewrite takes place. If not, and the function sees only a Port
node, it suspends waiting to be notified of a change of state.
Conversely, the constructor representing the negative type
agent is created along with an additional A s s i g n function
whose job is to redirect the constructor's principal port node
to the constructor itself, thereby making the constructor
visible to any waiting function node, should there indeed be
one there now or at some point in the future. In fact it is clear
that with the desired behaviour of the A s s i g n function, the
original arc from the constructor to the P o r t node becomes
superfluous, and can be dispensed with. It is easy to see that
the protocol works as required, and in particular that it allows
auxiliary port edge representatives to be replaced at will. In
particular, the replacement of agents and of their port edges
works by garbage collect ion: in a rewrite, the nodes
representing the LHS of the rule are created and connected to
the relevant P o r t nodes; meanwhile, the LHS agent nodes
loose all l ive references and thus become garbaged.
(Obviously, i f a principal port connection is being created all
at once within the RHS of some rule rather than dynamically,
then the protocol can be optimised away.)

We now give the translation formally. First we write down a
generic Interaction Net rule DI s .

LHS: Agents:

F, with auxiliary ports fl : ~tl°_f i : ~i°_fn : an °

C, with auxiliary ports c1:13I*_ci:~i°_cm:13m °
where * is either + or - in each case

RHS: Agents:
El...Ei...Er, with principal ports Q1 : AIO-Qi : ~i°_Qr :/~r*
and with auxiliary ports

qll:511*-qljl:51jl*--qltl:61tl ° (of El)

qil:6il°--qiji:Siji°--qiti:Siti ° (of El)

qrl:Srl*-qrjr:6rjr*--qrtr:Srtr ° (of Er)
Internal Ports: pl-pi_ps
Short Circuits: (xl:¥1-, yl:vl+)-

(xi :vi-, yi:vi+)-
(xu:vu-, yu : vu+)

where in the above there is an onto mapping

O:{QI_Qr} u {Qll_Qrtr} u {xl_yu}

--) {fl_fn} u {cl_cm} u {pl_ps}

where 0 -I is I-I on (fl_fn} u {cl_cm}.andeach 9-1(pi)

is of cardinality 2. (This just expresses the port invariant for
the RHS.)

In the MONSTR translation, i t a l i c C o u r i e r items will
correspond to symbols or parts of symbols mapped from the

components of the above generic rule, while upright
C o u r i e r items will stand for constants of the translation. In
general, we use font change to identify pieces that correspond
in the Interaction Nets and MONSTR rules. The MONSTR rule
D M that translates the above rule is:

F[C[cl ... ci ... cm] fl ... fi ... da] ~ ~K,
pl:Rart pi:~rt ps:Port ,

el:pl El[Q1 ql I ... qljl ... qltl 1

ei:pi Ei[~ ~i "'" ~ji "'" ~ti]

er:pr Er[Or qr 1 ... qrjr ... qrtr] ,

where ~Qi :Ai+ (i.e. Ei is an agent ofpos type principal port,
and thus Ei is a function symbol),

then tai = *,
else if Qi : A i - (i.e. EJ. is an agent of neg type principal port,

and thus Ei is a constructor symbol),
then p i = e , Qi is absent from the arguments of Ei,

and we also have *Assign [Qi ei]
[i

• Assign [xl yl], -, *Assign [xi yi], _, Assign [x12 yu]

where in the above, the map O is interpreted as syntactic
identity, i.e. i f 0(O4) = o9 say, then Q4 is identical to c9 ,
g i v i n g the comaectedness of the corresponding term graph
according to the syntactic conventions of MONSTR.

In addition we need the following suite of rules.

Assign[v:Bzrt a] => *OK, v := *a ;
Assign[v a] --> ~Assign[^*v] ;

F[p:Pcrt fl ... fi ... fn] => #F[~p fl ... fi ... f~] ;

F[p fl ... £i ... fn] => #F[,~p fl ... fi ... fn] ;

Here is the translation of the specific example we had
previously.

F[C[c7 c~ c9] fl f2 f3 f4 f6] -->*OK,
pl0:Pcrt ,
el:T[fl c7pl0] , *Assign[f6 el] ,
e2:*H[plO c8] ,
*Assign[C9 f2] , *Assign[f3 f4] ;

To further illustrate the mapping procedure, we now show how
an Interaction Nets version of the unavoidable A p p e n d is
translated using the framework just developed. (We recall that
the convention we are adopting in this paper is that the
principal ports of the "functions" have a positive sign and
those of the "constructors" have a negative one; the opposite
would also of course be valid provided it would be used
consistently and indeed this is the one adopted in Lafont 's
papers ([10,11])).

type atcl~ list

symbol ~: list - ;atom+, list+
Nil:list-
Append: list+; list+, list-

c~si,Appmd(v,t)] x Arpmd[v, oms(x,t)]
Nil x App~d[v,v]

It should be now easier for the reader to understand how the
following MONSTR rule system is derived.

Appmd[Ccrs~ u] wv] --> *CK,
a:Pcrt,
el :Ct:ns Ix a] ,

513

e2:*Al:pa-d[u a v],
*Ass~n[w eX] ;

A typical MONSTR query involving the above program is
shown below. (We recall that INITIAL denotes the first piece
of graph to be attempted for reduction in a MONSTR/Dactl
program.)

]2~rmL =~ p,
*,~tamd[.~ p 12],
1.1-o:m [1 Ores[2 Nil.I],
1.2:O:m[30::m[4 Ni3.]],
p:Pcrt;

Note, that the result of appending the two lists will appear in
the second argument of Append.

CONCLUSIONS AND RELATED WORK

In this paper we have studied the relationship between two
graph rewriting formalisms, namely Lafont's Interaction Nets
and Banach's MONSTR and we have presented a concrete
lranslation from the former to the latter. The two formalisms
have evolved from rather different perspectives and for
different reasons - - Interaction Nets as a version of Linear
Logic based on normalised proof Nets and rather abstract and
MONSTR as a down stripped verion of a compiler target
language with emphasis on easiness of implementation on
distributed machines. Thus, being able to provide a concrete
mapping framework from the former onto the latter has a
number of advantages and interesting possibilities: (1) it
provides an "implementation apparatus" of Interaction Nets
via the compiler target language MONSTR - bear here in mind
that Interaction Nets exhibit a high degree of parallelism
which can be fully exploited by MONSTR; (2) it illustrates
how Interaction Nets based rule systems can be transformed
into "ordinary" graph rewriting rule based code for execution
using traditional rewriting formalisms (like the MONSTR
computational model) and associated architectures; (3) it
offers ways to reason about some of MONSTR's operations
and features by lifting their interpretation to the level of the
computational model that is being mapped onto MONSTR (as
in the case of multiple non-root overwrites and the rather
unusal stateholder object); (4) it allows MONSTR to be used
as a point of reference and comparison between different
computational models by examining their common points
and differences at the MONSTR level.

This paper complements work by the authors (and others) to
justify the characterization of Term Graph Rewriting in
general but, more to the point, MONSTR in particular, as a
"generalised computational model" able to accommodate the
needs of, often divergent in behaviour, computational
models; needs that range from those associated primarily with
reasoning and specification to those more related to
implementation issues. In [5] it is shown how concurrent
logic languages can be implemented in MONSTR. In [4]
MONSTR is used to reason about pi-calculus and in [7] it is
shown how MONSTR can be used as an implementation and
specification framework for concurrent object-oriented
languagues. Finally, [6] studies the possibility of using
MONSTR to implement concurrent languages based on Linear
Logic but also discusses the definition of a "linear" MONSTR
sublanguage.

Currently, we are examining ways to map onto MONSTR
untyped Interaction Nets but also the reverse, i.e. the mapping
of the MONSTR rewriting formalism onto Interaction Nets.

REFERENCES

[i]

[2]

[3]

[4]

[5]

[61

Banach R., "MONSTR: Term Graph Rewriting for
Parallel Machines", in [12], pp. 243-252.

Banach R., "The Algebraic Theory of Interaction Nets",
Department of Computer Science, University of
Manchester , Technical Report MUCS-95-7-2,
http://www.cs.man.ac.uk/csonly/cstechrep/Abstracts/U
MCS-95-7-2.html, 1995.

Banach R., "MONSTR I - - Fundamental Issues and the
Design of MONSTR", Journal of Universal Computer
Science, 2 (4), 1996, pp. 164-216, http://www.iicm.tu-
graz.ac.at/jucs.

Banach R., Balazs J., Papadopoulos G. A., "A
Translation of the Pi-Calculus into MONSTR", Journal
of Universal Computer Science, I (6), 1995, pp. 339-
398, http://www.iic m.tu-graz.ac.at/jucs.

Banach R., Papadopoulos G. A., "Parallel Term Graph
Rewriting and Concurrent Logic Programs", WPDP'93.
Sofia, Bulgaria, May 4-7, 1993, pp. 303-322.

Banach R., Papadopoulos G. A., "Linear Behaviour of
Term Graph Rewriting Programs", ACM SAC'95,
Nashville, TN, USA, Feb. 26-28, 1995, ACM press, pp.
157-163.

[7] Banach R., Papadopoulos G. A., "Term Graph Rewriting
as a Specification and Implementation Framework for
Concurrent Object Oriented Programming Languages",
MPPM'95. Berlin, Germany, Oct. 9-12, 1995, IEEE
Press, pp. 151-158.

[8] Girard J-Y., "'Linear Logic", Theoretical Computer
Science 50, 1987, pp. 1-102.

[9] Glauert J. R. W., Kennaway J. R., Sleep M. R., "DACTL:
An Experimental Graph Rewriting Language", GraGra,
Bremen, Germany, March 5-9, 1990, LNCS 532,
Springer Verlag, 1991, pp. 378-395.

[10] Lafont Y., "Interaction Nets", in 17th ACM POPL, San
Francisco, Ca., Jan. 17-19, 1990, ACM Press~ 95-108.

I l l] Lafont Y., "The Paradigm of Interaction", Working
Paper, file://lmd, univ-mrs, fr/pub/lafont/paradigml .ps.
Z, 1991.

[12] Sleep M. R., Plasmeijer M. J., van Eekelen M. C. J. D.
(eds.), Term Graph Rewriting: Theory and Practice,
John Wiley, New York, 1993.

[l 3] Watson I., Woods V., Watson P., Banach R., Greenberg
M., Sargeant J., "Flagship: A Parallel Architecture for
Declarative Programming", 15th ISCA, Hawaii, May 30
- June 2, 1988, ACM Press, pp. 124-130.

514

