
V. Malyshkin (Ed.): PaCT 2003, LNCS 2763, pp. 291–303, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Asynchronous Timed Multimedia Environments Based
on the Coordination Paradigm

George A. Papadopoulos

Department of Computer Science
University of Cyprus
75 Kallipoleos Str.

Nicosia, CY-1678, P.O. Box 537, CYPRUS
����������	�
�����

Abstract. This paper combines work done in the areas of Artificial
Intelligence, Multimedia Systems and Coordination Programming to derive a
framework for Distributed Multimedia Systems based on asynchronous timed
computations expressed in a certain coordination formalism. More to the point,
we propose the development of multimedia programming frameworks based on
the declarative logic programming setting and in particular the framework of
object-oriented timed concurrent constraint programming (OO-TCCP). The
real-time extensions that have been proposed for the concurrent constraint
programming framework are coupled with the object-oriented and inheritance
mechanisms that have been developed for logic programs yielding an integrated
declarative environment for multimedia objects modelling, composition and
synchronisation. Furthermore, we show how the framework can be
implemented in the general purpose coordination language Manifold, without
the need for using special architectures or real-time languages.

Keywords: Multimedia; Timed Concurrent Constraint Programming; Timed
Asynchronous Languages; Coordination; Distributed Computing.

1 Introduction

The development of distributed multimedia frameworks is a quite common
phenomenon in our days. Furthermore, any distributed programming environment
can be viewed as being comprised by two separate components: a computational part
consisting of a number of concurrently executing processes and responsible for
performing the actual work, and a communication/coordination part which is
responsible for inter-process communication and overall coordination of the
executing activities. This has led to the development of the so called family of
coordination models and languages ([3, 12]) which can be used to support the
coordinated distributed execution of a number of concurrently executing agents.

The purpose of this paper is to present a framework for coordinating the
distributed execution of multimedia applications exhibiting real-time behaviour.
However, unlike most of the other approaches that are primarily based on using
special purpose real-time languages and platforms ([2, 6, 7, 8, 13]), our model is

292 G.A. Papadopoulos

based on declarative programming and, in particular, that of concurrent constraint
programming. More to the point, we show how the timed version of concurrent
constraint programming ([15]), combined with already existing techniques supporting
object-oriented programming ([5]), can be used to produce a framework for
multimedia programming which we name OO-TCCP. We then show how a general
purpose coordination formalism, namely Manifold ([1]), can be used to support the
run-time environment that satisfies the real-time execution requirements of OO-
TCCP agents, thus effectively presenting an implementation of OO-TCCP in
Manifold, or in other words, a coordination formalism for distributed multimedia
applications.

The rest of the paper is organised as follows: The next section presents OO-TCCP
and shows how it can be used as the basis for multimedia programming. The
following section describes briefly the coordination language Manifold and shows
how OO-TCCP can be implemented in it. The last section concludes the paper with a
discussion of current and future work.

2 A Declarative Object-Oriented Real-Time Multimedia
Programming Framework

Timed concurrent constraint programming (TCCP), developed by Saraswat et al.
([15]), is an extension of concurrent constraint programming, itself being a
combination of constraint logic programming and concurrent logic programming,
with temporal capabilities along the lines of state-of-the-art real-time languages such
as ESTEREL, LUSTRE and SIGNAL ([2, 8]), offering temporal constructs and
interrupts, and suitable for modelling real-time systems. In TCCP variables play the
role of signals whose values from one time instance to another can be different. At
any given instance in time the system is able to detect the presence of any signals;
however, the absence of some signal can be detected only at the end of the time
interval and any reaction of the system will take place at the next time interval. Thus,
the behaviour of a process is influenced by the set of positive information input up to
and including some time interval t and the set of negative information input up to but
not including t. This has been called the timed asynchrony hypothesis ([15]) and
contrasts the perfect synchrony hypothesis, usually advocated by teal-time languages
([6]). These time intervals t at the end of which no more positive information can be
detected are termed the quiescent points of the computation.

Thus, the fundamental differences between the timed and the untimed version of
concurrent constraint programming are that in the timed version: (i) recursion (and
iteration for that matter) are eliminated, and (ii) no information is carried over (by
means of variables) from one time instance to the next one. These restrictions
guarantee bounded time response and hence a real-time behaviour. Note that the basic
ideas characterising TCCP are not unique to concurrent constraint programming and
in fact could be introduced into any asynchronous model of computation. It is
precisely this property that we exploit in the next section to derive an implementation
of the model in terms of a general purpose coordination formalism.

If � is a constraint and � and are agents, the fundamental temporal construct in
TCCP is the following combination:

Asynchronous Timed Multimedia Environments Based on the Coordination Paradigm 293

������������������

whose interpretation is as follows: if there is enough positive information to entail the
constraint � then the process reduces immediately (in the current time interval) to �
and the operations further performed by � are also observable immediately;
otherwise, if at the end of the current time interval the store cannot entail � (i.e.
negative information, or in other words, the absence of some signal has been
detected), the process reduces to at the next time interval (the work performed by
will not be observable in the current time instance). As implied by the syntax for the
agents above, either of the ���� or ���� parts can be omitted. By „guarding“
recursion within an ���� (or ����) part it can be guaranteed that computation
within a time interval is bounded. In fact, reachable states of the computation in a
TCCP program can be identified at compile time leading to the generation of a finite
state automaton in the same way that this is possible for state-of-the-art real-time
languages ([2]). Note that when moving from one time interval to another all the
positive information accumulated within the current time interval are discarded. Thus,
the value of a program’s „variable“ varies at different time intervals and any data
must either be kept as arguments to the relative predicate or be posted as signals at
every time interval.

To recapitulate, at any moment in time a number of agents are executed
concurrently exchanging information by means of posting signals to a, possibly only
notionally, common store. Each agent is allowed to either suspend waiting for some
signal to be posted from some other concurrently running agent, or post itself
signal(s) and/or spawn other agents. Any (mutually) recursive call will have to wait
until the next time instance. Thus, each (loop-free) agent performs only a bounded
amount of work and eventually the whole system quiescences. The store is discarded
and computation moves on to the next time instance where only those agents present
in the else and next constructs are executed (any agent still remaining suspended in the
current time instance is also discarded).

As shown in [15], the above construct can be used to implement a number of
temporal constructs that are usually found in real-time languages such as ESTEREL,
LUSTRE and SIGNAL . In the sequel we show only the basic ones. The construct

���

suspends until the constraint c can be entailed and then reduces the executing process
to �, thus modelling a temporal wait construct. Alternatively, the construct

����
�������������������
����

defines a process that behaves like � at every time instance.
Timeouts and interrupts in TCCP can be handled by a ����������� construct

similar to that found in languages like ESTEREL but with a slightly different
semantics. In particular,

���������������������	��

294 G.A. Papadopoulos

executes � and if � becomes true before � completes execution, the process will
reduce to at the next time instance. Since (agent) � can be a number of things, the
above construct is actually defined by a set of rules rather than a single one, the most
important of which are the following ones.

The OO-TCCP framework can be used as the basis for developing multimedia
programming environments based on the timed asynchronous paradigm, i.e.
frameworks that essentially exhibit soft real-time behaviour; such a framework is
reported in [9]. Here, we show how we can model time-based media in OO-TCCP.

������������� ����!� ����"�#	����
$������%	�������&����
����'����(�$������)����*+

���������!� ���*������
�� � ����!� ���*���(�$�����*,�����

�(�$�����-�,����������.��
����!� ���*���%	������*/����������

�%	������-�/���������������.��
�����.�������������.���������.	������

0���������
����!� ���*���'��������

�1!� ���*����*'���2����������.��
����!� ���*���&������������

�1!� ���*��������*&�������2����������.��
�����.�������������.���������.	������

0���������
��

The above code defines a time-based media object comprising a name, which
plays effectively the role of a communication channel, and a set of attributes such as
quality factor (eg. VHS or CD depending on whether it is video, sound, etc.),
duration (in, say, seconds) and rate of presentation (in frames for video or samples for
audio). Note that all the attributes are defined as implicit arguments; note also that the
scaling factor has a default value of 1. The main part of the code defines its interface
where we note that the object remains suspended until it receives an initial message
!� ���*������; upon receiving such a message ������������� ��� expects
the presence of an accompanying message which can belong to either of two
categories: i) it can be an updating type of message (implementing effectively the set
type of primitive functions) in which case it updates the relevant parameter (and calls
itself recursively at the next time instance), or ii) it can be a request type of message
(implementing effectively the get type of primitive functions) in which case it posts a
signal with the value(s) of the requested parameter(s). Note that the accompanying
message may be a parameterised one carrying complicated information that should be
passed on by the object to some other agent (e.g. some device driver) for processing.
We do not explore this scenario any further here.

We can use the above object class to define a video and an audio object subclass as
follows.

�������� ����3�����"�#	����
$������435(6�%	�������&����
����'����(�$������7���	�����*+

"�������������� ���8

Asynchronous Timed Multimedia Environments Based on the Coordination Paradigm 295

���������3����*������
�� � ����3����*���7���	�*7�������7���	�-�7�

��������.��
�����.�������������.���������.	������

0����������0�����	�������������� ���
����3����*���7���	������

�13����*����	�*7���	�2����������.��
�����.�������������.���������.	������

0����������0�����	�������������� ���
����3����*0��

�������������������9/�:�3�������������

���.��
����3����*���0
�������������������(;!9�3�����������

���.�
������

�	������ �����	����"�#	����
$������47%6�%	�������&�����
���'����(�$������3��	������*+

"�������������� ���8
����������	���*������
���������	���*���3��	��*3�������3��	��-�3�

��������.��
�����.�������������.���������.	������

0����������0�����	�������������� ���
�����	���*���3��	�������

�1�	���*���	��*3��	��2����������.��
�����.�������������.���������.	������

0����������0�����	�������������� ���
�����	���*0��
�����

��	�����������9/�:��	����������������.��
�����	���*���0�����

��	�����������(;!9��	��������������.�
0������
����������������������

0�����	�������������� ���
��

Note that both objects inherit the methods handling the common signals of their
superclass. Note also that there is a third category of messages, that of control
messages (such as START or STOP) in which case the appropriate device is
accessed.

3 The Coordination Language Manifold

Manifold ([1]) is a control-driven coordination language. In Manifold there are two
different types of processes: managers (or coordinators) and workers. A manager is
responsible for setting up and taking care of the communication needs of the group of
worker processes it controls (non-exclusively). A worker on the other hand is

296 G.A. Papadopoulos

completely unaware of who (if anyone) needs the results it computes or from where it
itself receives the data to process. A Manifold process features ports, states and
events. All these notions are directly derived from the equivalent constructs of
Manifold’s underlying coordination model, namely IWIM, which is briefly described
in the relevant section of another paper by the author in this proceedings volume.

Figure 1 below shows diagramatically the infrastructure of a Manifold process.
The process 0 has two input ports (��), ��<) and an output one (�	�). Two input
streams (�), �<) are connected to ��) and another one (�=) to ��< delivering input
data to 0. Furthermore, 0 itself produces data which via the �	� port are replicated to
all outgoing streams (�>, �?). Finally, 0 observes the occurrence of the events �)
and �< while it can itself raise the events �= and �>. Note that 0 need not know
anything else about the environment within which it functions (i.e. who is sending it
data, to whom it itself sends data, etc.).

s1

s2

s3

in1

in2

out

e1 e2

e3 e4

s4

s5

P

Fig. 1. The basic infrastructure of a Manifold process

The following is a Manifold program computing the Fibonacci series.

����.����9����@���������0����
����.�������������0����������0����
����.�����	���������0����������0�������
����0����
����������.����

�	���0��������A�������������A��
�	���0��������)�������������)��
�	���0�������0��������9����@�����
�	���0�����������������	������.�����

����.����B�����
1
������*��A+C����������)+C������
��)+C�A�
�������������+C�)������+C0������
�����.���������*�����
2

The above code defines ����� as an instance of some predefined process �	�
with two input ports (�,
) and a default output one. The main part of the program
sets up the network where the initial values (A,)) are fed into the network by means
of two „variables“ (�A,�)). The continuous generation of the series is realised by

Asynchronous Timed Multimedia Environments Based on the Coordination Paradigm 297

feeding the output of ����� back to itself via �A and �). Note that in Manifold
there are no variables (or constants for that matter) as such. A Manifold variable is a
rather simple process that forwards whatever input it receives via its input port to all
streams connected to its output port. A variable „assignment“ is realised by feeding
the contents of an output port into its input. Note also that computation will end when
the event ����.��� is raised by �����. B��� will then get preempted from its
����� state and make a transition to the ����.��� state and subsequently
terminate by executing ����. Preemption of B��� from its ����� state causes the
breaking of the stream connections; the processes involved in the network will then
detect the breaking of their incoming streams and will also terminate.

Manifold contrasts with the „Linda-like“ family of data-driven coordination
models and languages, where computational components intermix with coordination
ones, and coordinator agents see and examine the data involved in some computation.
In Manifold all agents are treated as black boxes and there is no concern as to what
they actually compute, or indeed whether they are software processes or hardware
devices. Thus, this formalism is ideal for coordinating distributed Multimedia
frameworks. However, the basic Manifold system does not support real-time
behaviour. We show below how the OO-TCCP abstract machine can be implemented
in Manifold.

4 Implementing the OO-TCCP Abstract Machine in Manifold

Although Manifold’s features were designed with other purposes in mind, we have
found them to be suitable in implementing the run-time environment required by OO-
TCCP. In particular, a Manifold configuration exhibiting real-time behaviour in the
OO-TCCP sense consists of the following components:
•� A Manifold coordinator process (the clock) responsible for monitoring the status

of the coordinated processes, detecting the end of the current time instance, and
triggering the next one. The coordinator process is also responsible for detecting
the end of the computation.

•� A set of Manifold coordinated processes, each one monitoring the execution of
some group of atomic processes. Each such coordinated process performs a
bounded amount of work between the ticks as dictated by the coordinator process
(thus any loops in such a process „spread over“ the next one or more ticks).

•� A set of groups of atomic processes (i.e., processes written in some language other
than Manifold), each group being monitored by a coordinated process. In order for
the whole configuration to exhibit asynchronous real-time behaviour, these atomic
processes must also produce results in bounded time. There are two approaches
possible here: (i) enforce the constraint that there are no loops within these
processes and instead, put these loops in their respective coordinated processes, or
(ii) treat them as asynchronous parallel components that take an unbounded
amount of time.
The overall configuration is a hierarchical one with the Manifold coordinator

process on the top, monitoring a number of Manifold coordinated processes,
themselves possibly monitoring groups of atomic (non Manifold) processes. One can

298 G.A. Papadopoulos

regard Manifold as being the „host language“ for writing the control structures of
reactive systems, while most of the actual computation (data handling, interfaces with
any embedded systems) are done in other more conventional languages, typically C.
This fits nicely into the spirit of real-time coordination models as we perceive them
and separates the real-time coordination requirements from the rest of the performed
activities.

An application featuring timed asynchronous behaviour takes the general form:

D�00��������C **� D�����������C
D�����������C"�D������C"

The general behaviour of a coordinator (clock) process is shown, as a first
approximation, below (note that the construct (�)�����) denotes a block where all
� activities will be executed concurrently; there is also a ‘8’ separator imposing
sequentiality).

����.����7���E��
0�������������������������0�����	��������	���������	��
1
����������E�������0�������������0�
������*��D����	0�������E��.���������0��������C8

������������������
������0����*����������E���������������������
��������0*��D0��.����������	0C8�0����������
2

7���E first sets up the initial network of ����������� processes. It then
suspends waiting for either of the following two cases to become true (one way to
achieve suspension in Manifold is by waiting for the termination of the special
process ���� which actually never terminates):
•� The coordinated processes have completed execution within the current time

instance and are waiting for the next clock tick. 7���E posts the appropriate event
(or signal) and suspends again.

•� The computation has terminated in which case 7���E terminates, possibly after
performing some clean up.
Detecting the completion of both the current phase and the end of the computation

is done in a distributed fashion, provided some constraints regarding the organisation
and communication protocols between the participating coordinated processes are
imposed. We elaborate further on the exact nature of the work done by 7���E once
we describe the activities performed by a coordinated process.

The general behaviour of a coordinated process is as follows:

����.����9��������
0������������������������
0�����	��������	���������	��
1
������* �D�����������C8

D�����	�������0	����������������C�

Asynchronous Timed Multimedia Environments Based on the Coordination Paradigm 299

���0	�������* �D0��.��������������.���0)+C0<C�
D�������������0��������C8
������������������

����E�7���E*�D0��.����.	�������������C8
� 0����������
2

A typical behaviour of a timed asynchronous coordinated process, as understood
in the Manifold world, is to post some events, possibly wait until the presence of
some event in the current time instance is detected and then react by producing some
data transfer between a group of atomic processes that it itself coordinates (say from
0) to 0<), post more events and/or generate further processes. Upon termination of
its activities within the current time instance, the process suspends waiting for the
next ���E event from the coordinator (7���E) process, in which case it performs
more activities of similar nature or simply terminates within the current time instance.

We now present in more detail the way detection of the end of the current phase,
as well as the whole computation, is achieved. Due to space limitations only the most
essential parts of the Manifold code are shown below. The techniques we are using
are reminiscent of the ones usually encountered within the concurrent constraint
programming community based on short circuits. We recall that the coordinator and
each one of the coordinated processes have (among others) two pairs of ports: the
�������/������	� pair is used to detect termination of the whole computation
whereas, the �������/������	� pair is used to detect termination of the current
clock phase. Upon commencing the computation, the 7���E process sets up a
configuration like the one shown in figure 2 below. This is achieved by means of the
following Manifold constructs:

(C.next_out->P1.next_in,…,P3.next_out->C.next_in)
(C.term_out->P1.term_in,…,P3.term_out->C.term_in)

�

�� �� ��

next
(i/o) port

term
(i/o) port

Fig. 2. A short circuit of inter-connecting processes

300 G.A. Papadopoulos

Any process wishing to further generate other processes is also responsible for
setting up the appropriate port connections between these newly created processes.
Detecting termination of the whole computation is done as follows: a process 9
wishing to terminate, first redirects the stream connections of its input and output
���� ports so that its left process actually bypasses 9. It also sends a message down
the term.in port of its right process. If 9’s right process is another coordinated process
the message is ignored; however, if it happens to be the 7���E controller, the latter
sends another message down its ������	� port to its left process. It then suspends
waiting for either the message to reappear on its ������� port (in which case no
other coordinated process is active and computation has terminated) or a notification
from its left coordinated process (which signifies that there are still active coordinated
processes in the network). The basic Manifold code realising the above scenario for
the benefit of the 7���E controller is shown below.

�����* �	�����������������0��������E�������
����E�����* �F��E��F�+C�������	���0������������
������E��* 0�����������
����E�����* 0���������

A �	��� process is set up to monitor activity in the ������� port. Upon
receiving some input in this port, �	��� posts the event ����E�����, thus
activating 7���E which then sends ��E�� down its ������	� port waiting to get
either a ������E�� message from some coordinated process or have ��E��
reappear again. The related code for a coordinated process is as follows:

�����* �	�����������������0��������E�������
����E�����* �D�������+C�������.���������0�������F��E��F

������������E���C��

Detecting the end of the current time instance is a bit more complicated.
Essentially, quiescence, as opposed to termination, is a state where there are still
some processes suspended waiting for events that cannot be generated within the
current time instance. We have developed two methods that can detect quiescent
points in the computation. In the first scheme, all coordinated processes are
connected to a 7���E process by means of reconnectable streams between
designated ports. A process that has terminated its activities within the current time
instance breaks the stream connection with 7���E whereas a process wishing to
suspend waiting for an event � first raises the complementary event ��������.
Provided that processes wishing to suspend but also able to raise any events for the
benefit of other processes, do so before suspending, quiescence is the point where the
set of processes still connected to 7���E is the same as the set of processes that have
raised �������� events. The advantage of this scheme is that processes can raise
events arbitrarily without any concern about them being received by some other
process. The disadvantage however is that it is essentially a centralised scheme, also
needing a good deal of run-time work in order to keep track of the posted events.

An alternative approach requiring less work that is also distributable is a
modification of the protocol used to detect termination of the computation: a process
wishing to suspend waiting for an event performs the same activities as if it were

Asynchronous Timed Multimedia Environments Based on the Coordination Paradigm 301

about to terminate (i.e. have itself bypassed in the port connections chain) but this
time using the ���� input/output ports. A process wishing to raise an event before
suspending (or terminating for that matter) does so, but waits for a confirmation that
the event has been received before proceeding to suspend (or terminate). A process
being activated because of the arrival of an event, adds itself back into the next ports
chain. Quiescence now is the point where the 7���E detects, as before, that its
������	� port is effectively connected to its own ������� port, signifying that
no event producer processes are active within the current time instance. Note that
unlike the case for detecting termination, here the short circuit chain can shrink and
expand arbitrarily. Nevertheless, it will eventually shrink completely provided that
the following constraints on raising events are imposed:
•� Every raised event must be received within the current time instance so that no

events remain in transit. An event multicast to more than one process must be
acknowledged by all receiver processes whose number must be known to the
process raising the event; this latter process will then wait for a confirmation from
all the receiver processes before proceeding any further.

•� A process must perform its activities (where applicable) in the following order: 1)
raise any events, 2) spawn any new processes and set up the next and term port
connections appropriately, 3) suspend waiting for confirmation of raised events, 4)
repeat the procedure.
The code for the 7���E controller is very similar to the one managing the ����

ports, with the major difference that upon detecting the end of the current phase
7���E raises the event ���E, thus reactivating those coordinated processes waiting
to start the activities of the next time instance.

�����* �	�����������������0��������E�������
����E�����* �F��E��F�+C�������	���0������������
������E��* 0�����������
����E�����* ����������E���0������������

The code for a coordinated process is as follows:

����������* 1 �����*�����������
D0������
��0����������0��������C8
������������������
�������*

2
D������	�C

The framework presented above can be used to implement the OO-TCCP
primitives and, thus, provide a Manifold-based implementation for OO-TCCP. We
show below the implementation of three very often used such primitives:

����.����G��������%�����������0�������0�
1
������* �����������������
��* ���������0��
����E�7���E*1 �������H�

302 G.A. Papadopoulos

�����*�0�����������
2�

2

����.��������
��0�������0�
1
������*�����������0���������������������
����E�7���E*0�����������
2
����.����%��G��������0�������0����������
1
������*�����������0���������������������
��*�1 �����*������������������

���E�7���E*���������������2�
���E�7���E* �����������������

2

Note that ������� H clears the event memory of the manifold executing this
command. By using ������ a „recursive“ manifold can go to the next time instance
without carrying with it events raised in the previous time instance.

5 Conclusions; Related and Further Work

We have presented an alternative (declarative) approach to the issue of developing
multimedia programming frameworks, that of using object-oriented timed concurrent
constraint programming. The advantages for using OO-TCCP in the field of
multimedia development are, among others, the use of a declarative style of
programming, exploitation of programming and implementation techniques that have
developed over the years, and possible use of suitable constraint solvers that will
assist the programmer in defining inter and intra spatio-temporal object relations.
Furthermore, we have shown how this framework can be implemented in a general
purpose coordination language such as Manifold in ways that do not require the use
of specialised architectures or real-time languages.

Our approach contrasts with the cases where specialised software and/or hardware
platforms are used for developing multimedia frameworks ([2, 7, 13]), and it is
similar in nature to the philosophy of real-time coordination as it is presented, for
instance, in [4, 14]. We believe our model is sufficient for soft real-time Multimedia
systems where the Quality of Service requirements impose only soft real-time
deadlines.

References

�1.�F. Arbab, I Herman and P. Spilling: An Overview of Manifold and its Implementation,
Concurrency: Practice and Experience, Vol. 5, No. 1 (1993), 23–70
�2.�G. Berry: Real-Time Programming: General Purpose or Special Purpose Languages,
Information Processing ‘89, G. Ritter (ed.), Elsevier Science Publishers, North Holland
(1989), 11–17

Asynchronous Timed Multimedia Environments Based on the Coordination Paradigm 303

�3.�N. Carriero and D. Gelernter: Coordination Languages and their Significance, Communi-
cations of the ACM 35(2) (Feb. 1992), 97–107
�4.�S. Frolund and G. A. Agha: A Language Framework for Multi-Object Coordination,
ECOOP’93, Kaiserslautern, Germany, LNCS 707, Springer Verlag, (July 1993), 346–360
�5.�Y. Goldberg, W. Silverman and E. Y. Shapiro: Logic Programs with Inheritance,
FGCS’92, Tokyo, Japan, Vol. 2 (June 1-5 1992), 951–960
�6.�N. Halbwachs: Synchronous Programming of Reactive Systems, Kluwer (1993)
�7.�F. Horn, J. B. Stefani: On Programming and Supporting Multimedia Object Synchroni-
sation, The Computer Journal, Vol. 36, No 1. (1993), 4–18
�8.� IEEE Inc. Another Look at Real-Time Programming, Special Section of the Proceedings
of the IEEE 79(9) (September 1991)
�9.�G. A. Papadopoulos: A Multimedia Programming Model Based On Timed Concurrent
Constraint Programming, International Journal of Computer Systems Science and
Engineering, CRL Publs., Vol. 13 (4) (1998), 125–133
�10.�G. A. Papadopoulos: Distributed and Parallel Systems Engineering in Manifold, Parallel
Computing, Elsevier Science, special issue on Coordination, Vol. 24 (7) (1998), 1107–
1135
�11.�G. A. Papadopoulos, F. Arbab: Coordination of Systems With Real-Time Properties in
Manifold, Twentieth Annual International Computer Software and Applications
Conference (COMPSAC’96), Seoul, Korea, 19–23 August, IEEE Press (1996), 50–55
�12.�G. A. Papadopoulos, F. Arbab: Coordination Models and Languages, Advances in
Computers, Academic Press, Vol. 46 (August 1998), 329–400.
�13.�M. Papathomas, G. S. Blair, G. Coulson: A Model for Active Object Coordination and its
Use for Distributed Multimedia Applications, Object-Based Models and Languages for
Concurrent Systems, Bologna, Italy, LNCS 924, Springer Verlag (July 5, 1994), 162–175
�14.�S. Ren, G. A. Agha: RTsynchronizer: Language Support for Real-Time Specifications in
Distributed Systems, ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Real-Time Systems, La Jolla, California (June 21–22 1995)
�15.�V. A. Saraswat, R. Jagadeesan, V. Gupta: Programming in Timed Concurrent Constraint
Languages, Constraint Programming, B. Mayoh, E. Tyugu and J. Penjam (eds.), NATO
Advanced Science Institute Series, Series F: Computer and System Sciences, LNCS,
Springer Verlag (1994)

	1 Introduction
	2 A Declarative Object-Oriented Real-Time Multimedia Programming Framework
	3 The Coordination Language Manifold
	4	Implementing the OO-TCCP Abstract Machine in 	Manifold
	5	Conclusions; Related and Further Work
	References

