
R. Meersman, Z. Tari, and P. Herrero et al. (Eds.): OTM Workshops 2006, LNCS 4277, pp. 17 – 18, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Distributed Adaptation Reasoning for a Mobility and
Adaptation Enabling Middleware

Nearchos Paspallis and George A. Papadopoulos

Department of Computer Science, University of Cyprus,
75 Kallipoleos Street, P.O. Box 20537, CY-1678, Nicosia, Cyprus

{nearchos, george}@cs.ucy.ac.cy

Abstract. The prospect of adaptive, mobile applications provides both opportu-
nity and challenge to the application developers. Adaptive, mobile applications
are designed to constantly adapt to the contextual conditions with the aim of op-
timizing the quality of their offered service. In this respect the MADAM project
provides software engineers with reusable models, tools and runtime support for
enabling adaptive behavior in their mobile applications. This paper presents an
extension to the MADAM middleware architecture which enables distributed
compositions. To this end, a new adaptation reasoning approach is described,
which improves on the original one in two ways: it allows decentralized reason-
ing for selecting the most suitable adaptation and it supports distributed applica-
tion composition. Moreover, the proposed approach is argued to provide addi-
tional benefits such as robustness, agility and scalability.

Adaptive, mobile and pervasive computing applications are designed to constantly
adapt to their contextual conditions in an autonomous manner. The aim of the adapta-
tions is to optimize the quality of the service offered to the end users. This study
builds on the results established by existing solutions [1, 2], and extends them to in-
troduce mechanisms for enabling distributed adaptation reasoning while at the same
time maintaining attributes such as robustness, agility and scalability.

Modern approaches define adaptive, component-based applications as collections
of software components which can be configured according to a number of different
compositions. Furthermore, technologies such as reflection and component orienta-
tion enable reasoning and possibly altering of their behavior. An important question
though is how can the underlying middleware automatically reason about the context
and select an optimal composition to adapt to. This question becomes further chal-
lenging as additional attributes such as robustness, agility and scalability are aimed.

The proposed approach depends on composition plans which are defined at design
time and which can be used to dynamically construct different variants of the applica-
tion. Individual variants are designed so that they offer certain advantages, such as for
example better resource utilization for a particular context. Naturally, each variant is
designed with the aim of maximizing the utility of the application for at least some
points in the context space. While multiple options are possible for the realization of
the adaptation reasoning, utility functions offer the important advantage of supporting
adaptation reasoning of components which become available after deployment.

18 N. Paspallis and G.A. Papadopoulos

Utility functions can be used to compute the utility, i.e. a quantifiable measure of
the quality of the service as it is experienced by the application users. In this respect,
the overall objective of the middleware can be defined as the continuous evaluation,
and selection of a composition which maximizes the utility. Any knowledgeable deci-
sion requires that the reasoning process is aware of the contextual information of all
the parts involved. In distributed environments, this implies that the contextual infor-
mation of all participating hosts must be communicated to the host which performs
the adaptation reasoning.

The continuous computation of the utility values can be quite costly though, espe-
cially in frequently changing environments such as in mobile and pervasive comput-
ing settings. In this respect, two custom-tailored adaptation reasoning approaches are
introduced: proactive and reactive adaptation reasoning. These two approaches differ
in the timing of the adaptation reasoning and its required steps. Proactive reasoning
requires that all context data is communicated as soon as it becomes available. Con-
trary to this, reactive adaptation reasoning defers the communication of such context
data until they are actually needed. Additional (hybrid) approaches are also possible.

Both options provide individual benefits which make them better choices, depend-
ing on the particular requirements of the application. For example, the proactive ap-
proach is more likely to achieve faster and more accurate decisions as more context
data is available to the decision making process at any moment. In contrast, the reac-
tive approach is better in terms of resource consumption as the context data are com-
municated only when needed. The latter benefit becomes more important when the
context changes more often than the rate at which the application is needed to adapt.

Besides the benefits of the two individual adaptation reasoning approaches, it is ar-
gued that an implementation middleware can also benefit by using hybrid approaches,
or by dynamically switching from one approach to the other on demand. Furthermore,
it is argued that the use of utility functions in this approach not only enables proactive
and reactive adaptation reasoning, but also enables the construction of distributed
protocols which satisfy the robustness, agility, and scalability requirements. Robust-
ness is achieved by means of supporting applications to re-compute and failover to
alternative, possibly centralized, compositions when a failure (e.g. network outage)
prevents the originally selected adaptation. Additionally, the ability to re-compute and
implement only a part of a composition greatly improves the agility of an application,
especially in the case of the proactive approach. Finally, scalability is achieved as a
means of the protocol support for distributed, decentralized computation of the utility
functions and construction of compositions.

References

1. Floch, J., et al., Using Architecture Models for Runtime Adaptability, Software, IEEE,
2006. Volume 23 (Number 2): p. 62-70.

2. Paspallis, N. and G.A. Papadopoulos, An Approach for Developing Adaptive, Mobile Ap-
plications with Separation of Concerns, to appear in the 30th Annual International Com-
puter Software and Applications Conference (COMPSAC), Chicago, IL, USA, September
16-21, 2006: IEEE.

