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Two superficially similar graph rewriting formalisms, Interaction Nets and MONSTR, are studied. Interaction Nets
come from multiplicative Linear Logic and feature undirected graph edges, while MONSTR arose from the desire
to implement generalized term graph rewriting efficiently on a distributed architecture and utilizes directed graph
arcs. Both formalisms feature rules with small left-hand sides consisting of two main graph nodes. A translation of
Interaction Nets into MONSTR is described for both typed and untyped nets, while the impossibility of the opposite
translation rests on the fact that net rewriting is always Church–Rosser while MONSTR rewriting is not. Some
extensions to the net formalism suggested by the relationship with MONSTR are discussed, as well as some related
implementation issues.
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Many different kinds of graph have been studied over the years, and inevitably, people have invented a
large number of ways of rewriting them, yielding a vast number of different models of computation. In
this paper we study the relationship between two models that bear a superficial resemblance, but that were
inspired by very different motivations: Interaction Nets and MONSTR.

Interaction Nets (Lafont 1990, Lafont 1991) evolved from the multiplicative fragment of Linear Logic
(From the vast literature on that subject, see the work by Girard (1987), Troelstra (1992), Girard et al.
(1995).) The basic idea is that a multiplicative proof object consists of inference steps. The object is
represented by a graph, in which the individual inference steps, combining a number of hypotheses to
form a conclusion, are represented by agent nodes for which the adjacent edges represent the hypotheses
and conclusions. The special nature of a conclusion singles it out, making itprincipal . The dynamics
of proof objects is enshrined in the notion of elimination of cuts, whereby the two conclusions meeting
in a cut are eliminated by transforming the proof object in the vicinity of the cut. In the world of the
representing graphs, two agents joined by a connection which is principal for both of them is the analogue
of the cut, and its elimination is a rewrite rule for such graphs. This gives rise to the Interaction Net model
of graph rewriting.

MONSTR (Banach 1993) originated from the desire to implement the generalized term graph rewriting
language Dactl (Glauert et al. 1988, Glauert et al. 1990) on a distributed parallel machine, the Flagship
machine (Watson et al. 1988). The demands of (even an imperfectly adhered to notion of) serializability
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for Dactl executions necessitated curtailing the expressive power of Dactl rules rather drastically. It was
vital for the Flagship machine that the computational model encompassed a reasonable notion of state,
despite the predominantly declarative programming models that it was primarily intended for. The MON-
STR computational model as it eventually emerged, therefore permitted each rule to include at most one
unit of updatable state per rewrite, apart from the root of the rewrite itself, giving two key nodes on the
left-hand side of each rule. The similarity to Interaction Nets is clear.

That two models of computation emerging from such diverse backgrounds should both settle on the idea
that left-hand sides of graph rewrite rules should consist of two main nodes is intriguing, and is the main
spur for this paper. Another motive for the work described here is the question of whether the efficiency
considerations that motivated MONSTR translate well into the world of Interaction Nets, whose primary
motivations were always much more abstract. To be more precise, both formalisms share some common
views regarding what constitutes a ‘good’ computational model for distributed systems: they both support
locality of computation (interaction between two redex nodes during their rewriting is clearly a local
activity), likewise rewriting which is asynchronous and free from excessive locking; and they both enjoy
formal semantics. Furthermore, while more traditional term (and/or graph) rewriting systems are rather
abstract in the sense that the way rewrite rules are formulated puts more emphasis on the ‘logic’ behind
the reduction sequences and less on more operational aspects like implementing execution strategies,
MONSTR differs in using explicit annotations capable of also expressing these. Finally, both formalisms
can play the role of being intermediate compiler target languages and can be used as implementation
models for higher-level (linear or otherwise) programming languages. Thus, a proper study of Interaction
Nets and a concrete term graph rewriting system model like MONSTR which bridges the gap between the
two is beneficial both in theory and in practice. In particular, we can reason about the rather unusual syntax
of Interaction Nets in terms of a more traditional (‘directional’) syntax employed by term graph rewriting
systems. We can also study the runtime behaviour and properties of rewrite rule systems generated for
Interaction Nets and exploit them in producing more efficient implementations with respect to locality of
computation, garbage collection, etc. Nor should we underestimate the fact that since MONSTR is a basic
execution model for reduction machines (Watson et al. 1988), the translation route from Interaction Nets
to MONSTR presented in this paper is effectively a parallel (distributed) realization of the Interaction Net
formalism.

The rest of the paper is organized as follows. The following section describes MONSTR and some of
its more important properties. Section 2 does the same for Interaction Nets, following the treatment of
Banach (1995). The two models are brought together in section 3 which describes a translation of typed
Interaction Nets into MONSTR. Section 4 shows how untyped Interaction Nets may also be translated.
Section 5 presents the translation to equivalent MONSTR rule systems of some concrete Interaction Nets
examples and compares the mapping framework with other similar ones. It also discusses some practical
ramifications related to efficient implementation. Section 6 discusses some generalizations of the net
model based on MONSTR’s properties. Section 7 offers concluding remarks and related and further
work, including why a corresponding modification of MONSTR emulating the properties of Interaction
Nets is not appropriate in the present work.

1 MONSTR
Unlike most typical graph rewriting formalisms such as the ones developed by Barendregt et al., Ehrig
et al. and Sleep et al. (see collections of relevant papers in, for example, Ehrig et al. (1991), Sleep et al.
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(1993), TCS (1993)), MONSTR was designed with the repercussions of efficient distributed implementa-
tion uppermost in mind. This meant tuning the expressiveness of the basic atomic actions of the model to
the capabilities of a typical distributed architecture, so as not to overtax the synchronization properties of
the latter unduly – something which would lead to a dramatic loss of performance as a result of having to
implement a lot of distributed locking.

1.1 MONSTR rewrites
The fundamental objects of MONSTR areterm graphs. A term graph is a directed graph where the nodes
are labelled with symbols, assumed of fixed arity, and each node has a sequence of out-arcs to its child
nodes. The nodes and arcs of term graphs are marked to control rewriting strategy, as we will see below.
The term graph that represents the instantaneous state of the computation is modified by the application
of some rule. Let us look at a rule in action, to see what happens during arewrite :

F[Cons[a b] s:Var] =) #G[a ^ �b]; s := �SUCCEED;

First the left-hand side (the part before=) ) is matched.F is the root node and has two children,
the Consnode, and theVar node. TheConsnode has two unlabelled children; such undefined nodes
may match anything. Note that the pattern is shallow; this is fundamental to MONSTR as large patterns
demand large-scale locking to ensure atomicity.

Once a match is located, which must be at an active (�-marked) node of the graph, the nodes on the
right-hand side are built into the redex area. Thus a once-suspended (#-marked)G node is constructed,
with arcs to the existing left-hand side nodes referred to bya andb (so these nodes become shared even
if they were not previously). Also the arc tob is a notification arc (̂ -marked). The other new node is the
activeSUCCEEDnode.

The notation=) indicates that the root is to be redirected to the node immediately following the
=) , i.e.G. Also theVar node is to be redirected toSUCCEEDby the notations := SUCCEED. During
redirection, all in-arcs to the respective redirection subjects (i.e.F andVar) are replaced by in-arcs to the
respective targets (i.e.G andSUCCEED). Redirection is the fundamental notion of update in term graph
rewriting, being a graph-oriented version of substitution.

The final tasks of a MONSTR rewrite are to make the root inactive (idle, written visibly asε when
necessary); and to activate specified left-hand side nodes (which causes them to be marked active if
otherwise unmarked). In the concrete syntax, this is accomplished by mentioning the relevant nodes on
the right-hand side of the rule, with a�marking, e.g.b above. We illustrate the action of the rule described
above in Fig. 1. In Fig. 1, note how the in-arcs ofF now point toG after redirection, and those ofVar
point toSUCCEED. In the rewrite illustrated here, we are assuming that the left-hand side nodesF and
Conshad no further in-arcs, and thus became inaccessible and were garbage collected.

The above assumed that there was a rule which matched, and that the explicitly matched arguments of
the root of the redex (i.e. those arguments whose symbol needs to be inspected for pattern matching to
succeed,ConsandVar in our example), are idle. If any of the explicitly matched arguments of the root
is not idle thensuspensionoccurs, in which the root of the redex becomes suspended on as many of its
explicitly matched arguments as happen to be non-idle; i.e. the root node acquires that many suspension
markings, and each of the relevant out-arcs becomes a notification arc (i.e.^-marked).

If no rule can match regardless of the markings, thennotification occurs, in which the root becomes
idle, and for all its notification in-arcs, thê-marking is removed, and the number of suspensions (#s) in
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*F[ • •]

Cons[ • •]

Data Nil

Var

#Q[ •]

^ #G[ • •]

Data *Nil *SUCCEED

#Q[ •]

^^⇒

Figure 1: MONSTR rewrite.

the parent node’s marking is decremented (with #0 = �). In this manner subcomputations can signal their
completion to their parents (and suspended rewrites can thereby be reawakened).

1.2 MONSTR syntactic restrictions and runtime properties
To make the above ideas into a computational model suited to distributed machines, a number of restric-
tions are imposed on the syntactic structure of systems so that some useful runtime properties can be
rigorously demonstrated. We point out the main ones now rather informally, referring the reader to Ba-
nach (1996a), Banach (1997a) for a thorough study (in the context of the formal semantics of MONSTR)
of why these are appropriate and what their consequences are.

� All nodes respect the arities of their symbols (within rules; and by means of a simple induction,
within all execution graphs).

� The alphabet of symbols is divided intofunctions, constructorsandstateholders. Functions label
root nodes of left-hand sides of rules (but not subroot nodes), and function symbols must always
have at least onedefault rule which has no explicitly matched arguments, enabling such a rule
always to rewrite at runtime, regardless of its arguments. Constructors and stateholders can label
subroot nodes of left-hand sides of rules (but not the root nodes). Functions and stateholders (but
not constructors) can label left-hand side nodes of redirections, and all redirections must specify
an explicit function or stateholder as left-hand side node (one of which must be the root). Thus no
attempt is ever made to redirect a constructor at runtime.

� The pattern matching requirements of each redex depend solely on the symbol at the root (and
so can be delegated to simple hardware). More specifically, each function symbol has a fixed
matching template, one level deep, which specifies which of the root’s children need to have their
symbols inspected to match a non-default rule for the function. Furthermore, a single fixed position
within this template can be designated for matching stateholders; the other positions may only
match constructors. (This explains the MONSTR acronym: it stands for aMaximum ofOneNon-
root STateholder perRewrite.) No pointer equality testing is permitted except for the matched
constructors (and for some special built-ins of which we will have no need in this paper).

� All nodes in rules arebalanced, i.e. they have exactly as many suspension markings as they have
notification out-arcs. (By a simple induction, all nodes in all execution graphs are balanced too.)
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� All nodes in rules are eitherstate saturated(i.e. if they have one or more notification in-arcs and
are idle, then they must be stateholders), or designated foractivation.

� Any redirection whose right-hand side node is idle and not activated must be a stateholder. (As a
consequence of this and the previous point, all nodes in all execution graphs are state saturated.)

� In all rules, the left-hand side node of a redirection should not be activated unless it is also the
right-hand side of some other redirection. (In practice this enables the convenient representation of
rewriting by packet store manipulations, and particularly the representation of most redirections by
packet overwriting.)

By convention, rewriting always starts with a single active node labelledINITIAL; and MONSTR pro-
vides a rule selection policy which permits non-default rules to be selected before default rules when
either would match (; is the sequential rule selector in concrete syntax). Note that we have said noth-
ing very specific about garbage collection. The general idea is that active andRoot-labelled nodes are
live, and liveness is propagated down normal arcs and up notification arcs; see Banach (1996a), Banach
(1997a) for a more precise discussion. The implicit mark-scan strategy that such a scheme embodies can
be considerably simplified when we restrict to a linear subset (see below).

2 Interaction Nets
Interaction Nets were invented for describing fine-grained computations graphically. Their theory builds
on prior work in multiplicative Linear Logic that gives the Interaction Net model particularly transparent
properties regarding confluence, and to a lesser extent normalization. We use the formulation of Banach
(1995) as it is more convenient for the translation that we subsequently give.

Interaction Nets can be viewed as bipartite graphs where the two node kinds areagentnodes andport
nodes. Each agent bears asymbol, which determines the number ofport edgesincident on it, and the
attributes of those edges. These port edge attributes are: the port edge’sname; whether it isprincipal
or auxiliary ; and the port edge’stype. The types come in complementary pairs (α+, α�), for α drawn
from a suitable type alphabet. Exactly one of an agent’s ports is principal, and the rest are auxiliary.
Finally, we have the all-important port invariant which states that at most two port edges may be incident
on a port node, and that they must be of complementary types, sayα+ andα�. Figure 2 illustrates the
situation and also introduces the notion ofport connection, which we will use as required below. Note
that we indicate principal port edges using an arrowhead, while auxiliary port edges are unadorned. Also
we will suppress some of the detail to avoid clutter in future. We will say that a port connection consisting
of two principal port edges is a principal port connection. An Interaction Net rewrite rule has, on the
left-hand side, two agents joined by a principal port connection, and with all their auxiliary ports free
(i.e. not connected to other port edges). The right-hand side is an arbitrary Interaction Net with the same
external interface as the left-hand side, which is to say that part of the rule’s data is a bijective mapping
between the free port edges of the left-hand side and right-hand side nets, which preserves the types. The
only exceptions to the bijective law areshort circuits, where two free port nodes of the left-hand side
with complementary types are allowed to be identified in the right-hand side. Figure 3 shows a picture
of a rule. The numbers on the interface port edges define the aforementioned bijection between left- and
right-hand sides. The blobs labelled (2:β+, 9:β�) and (3:γ�, 4:γ+) are the short circuits in an obvious
notation. Any fresh port nodes introduced in the right-hand side, i.e. port nodes not belonging to the
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•A B
t:α– u:α+

principal port edgeauxiliary port edge

port typeport name

port connectionagent node

port node

agent symbol

Figure 2: Port connection in an Interaction Net.

e:α+

x:α–

5

6

7

3
2

1

4

88 9

d:γ+

b:β+
a:β–

c:γ–

f:µ–

w:λ+

z:β–y:ν–

7

6

1

10

k:β– l:λ+

m:µ– n:λ–

o:λ+

p:ν–

•

•

(2:β+, 9:β–)

(3:γ–, 4:γ+)

⇒

F

C

T

H

Figure 3: Interaction Net rewrite rule.
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Figure 4: The action of an Interaction Net rewrite rule.

interface, will be calledinternal ports in future (port node 10 in Fig. 3). The operational semantics
of such a rule starts by finding a matching of the left-hand side of the rule in the net being rewritten.
Then the matched subnet is removed, and replaced with a copy of the right-hand side of the rule. It is
easy to see that the type preserving bijective law with short circuits of type-matched pairs, means that
the port invariant is preserved by rewrites. Figure 4 shows a rewrite according to the rule introduced
previously. The principal/auxiliary distinction on ports, and the fact that rules must feature a principal
connection, leads to the study ofdeadlock preventionfor Interaction Nets. A deadlock is where there
is a cycle of agents, each of whose principal port edges connects with an auxiliary port edge of the next
agent. Obviously in such a situation, none of the agents involved can ever rewrite. A rich theory can be
developed to ensure that such situations cannot arise, but this is not needed in the present paper: see the
cited references for details.

We end this brief exposition of Interaction Nets with some further observations. Since each agent
has only one principal port, it can interact with at most one other agent, the one connected to the said
principal port, and then only if that agent’s corresponding port is itself principal. This means that apart
from auxiliary port nodes that they might have in common, any two distinct redexes in an arbitrary net are
non-overlapping, and provided for each possible pair of agents on the left-hand side there is exactly one
rule, Interaction Net rewriting is Church–Rosser. If moreover, the right-hand sides of rules are smaller than
their left-hand sides (as is the case, for example, for the Interaction Net version of LLM cut elimination),
then Interaction Net rewriting is also terminating.

The form of rules, and the one principal port restriction for agents, combine to imply the following
structure for the life history of a port node: it is created during some rewrite. Perhaps the two port edges
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incident on it are auxiliary. While an incident port edge is auxiliary, it may be replaced by another port
edge, or short circuited, as its owning agent interacts along some different port connection. Once an
auxiliary port edge is replaced by a principal port edge, however, the port edge is committed. It can no
longer be replaced, except if the other incident edge also becomes principal, and the whole connection
becomes the redex of a rewrite, at which point the connection, and the pair of connected agents are
garbaged. For any given port, the whole of the above is not compulsory, and the port may undergo only a
subsequence of the indicated transformations, but the structure of that subsequence must always fit within
the indicated pattern. This fact can be usefully exploited by implementations, as we will see below.

3 From Interaction Nets to MONSTR
The most striking thing about Interaction Nets from an implementation point of view is that the port edges
are unoriented. (We disregard the arrowheads of the principal port edges for this purpose.) Usually, im-
plementing an unoriented edge in a concrete data structure requires a pair of oppositely oriented pointers.
With this in mind, if concurrent update of the data structure by many rewriting processes is envisaged,
then unoriented edges can imply disaster in performance, since one has to avoid race conditions arising
from two agents competing to update the same edge from opposite ends. This can involve all the over-
heads of locking and perhaps of deadlock avoidance. By contrast, MONSTR, with a close eye kept on
implementation matters, features only directed arcs, avoiding the problems indicated above.

The similar shape of left-hand sides in the two models is striking. The obvious thing that we would like
to do is to relate the two agents connected by a principal and undirected port connection in the left-hand
side of a net rule, to the function and stateholder connected by a directed arc in a corresponding MONSTR
rule – fortunately it is possible to do this if one exploits the orientedness of the Interaction Net type system
to provide an orientation for the principal port connection. Indeed it is possible to go further. Noticing
that the agents of an Interaction Net computation are inspected and replaced exactly once each (since each
agent participates in exactly one interaction), enables us to represent some agents by constructors rather
than the more general stateholders.

Somewhat arbitrarily, we choose to encode agents with principal ports of positive type by MONSTR
function nodes, and those with principal ports of negative type by MONSTR constructor nodes. Further,
we encode port nodes by stateholders labelled with the symbolPort. (We really do need stateholders here,
as thePort nodes represent synchronization points.) To start with, all port edges are represented by arcs
from the agent nodes to port nodes, and all port connections are represented by a pair of in-arcs of aPort
node – in a representation of an Interaction Net that is rather obvious. For a principal connection, we
have to turn the inward-pointing pair of arcs into a single arc; furthermore, we have to do this in a manner
which respects the independence of the two port edges. Fortunately, the typical life history of a port edge
sketched in the previous section helps, as both edges are following similar trains of activity.

At the point that a function node is created, it is created active. It matches its child. If this is a
constructor representing an agent, a MONSTR rewrite representing an Interaction Net rewrite takes place.
If not, and the function sees only aPort node, it suspends waiting to be notified of a change of state.
Conversely, the constructor representing the negative type agent is created along with an additionalAssign
function whose job is to redirect the constructor’s principal port node to the constructor itself, thereby
making the constructor visible to any waiting function node, should there indeed be one there now or at
some point in the future. Specifically, theAssignactivates the constructor, which then notifies any parent
suspended on it. In fact it is clear that with the desired behaviour of theAssignfunction, the original arc
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from the constructor to thePort node becomes superfluous, and can be dispensed with. It is easy to see
that the protocol works as required, and in particular that it allows auxiliary port edge representatives to be
replaced at will. (Obviously, if a principal port connection is being created all at once within the right-hand
side of some rule rather than dynamically, then the protocol can be optimized away.) The replacement
of agents and of their port edges works by garbage collection. In a rewrite, the nodes representing the
right-hand side of the rule are created and connected to the relevantPort nodes; meanwhile the left-hand
side agent nodes lose all live references and thus become garbaged.

We now give the translation formally. The reader may be slightly concerned that we do not also define
formally the language we are translating into. This would, however, require some substantial work which,
in addition to making the paper unacceptably long, would probably also sidetrack us from the main, rather
practical, pace we have set.

First we write down a generic Interaction Net ruleDIN:

LHS: Agents:F, with auxiliary portsf 1 : α1�::: f i : αi�::: f n : αn�

C, with auxiliary portsc1 : β1�:::ci : βi�:::cm: βm�

where� is either+ or� in each case.

RHS: Agents:E1:::Ei:::Er, with principal portsq1 : δ1�:::qi : δi�:::qr : δr�

and with auxiliary portsq11 : δ1�1:::q1 j1 : δ1�j1:::q1t1 : δ1�t1 (of E1) ...
qi1 : δi�1:::qi ji : δi�ji :::q1ti : δi�ti (of Ei) ...
qr1 : δr�1:::qr jr : δr�jr :::q1tr : δr�tr (of Er)

Internal ports:p1:::pi:::ps
Short circuits:(x1 : γ1�;y1 : γ1+):::(xi : γi�;yi : γi+):::(xu : γu�;yu : γu+)

where in the above there is an onto mapping

θ : fq1:::qrg[fq11:::qrtrg[fx1:::yug! f f 1::: f ng[fc1:::cmg[fp1:::psg

whereθ�1 is 1�1 onf f 1::: f ng[fc1:::cmg, and eachθ�1(pi) is of cardinality 2. (This just expresses the
port invariant for the right-hand side.)

In the MONSTR translation,bold items will correspond to symbols or parts of symbols mapped from
the components of the above generic rule, whileitalic items will stand for constants of the translation. In
general, we use font change to identify pieces that correspond in the Interaction Nets and MONSTR rules.
The MONSTR ruleDM that translates the above rule is:

FFF[CCC[ c1c1c1: : :cicici : : :cmcmcm] f 1f 1f 1: : : f if if i : : : f nf nf n] =) �OK;

p1p1p1:Port; : : : ;pipipi:Port; : : : ;pspsps:Port;

e1e1e1:m1E1E1E1[q1q1q1q11q11q11 : : :q1 j1q1 j1q1 j1 : : :q1t1q1t1q1t1 ]; : : : ;

eieiei:mi EiEiEi[ qiqiqi qi1qi1qi1 : : :qi jiqi jiqi ji : : :qitiqitiqiti ]; : : : ;

ererer:mr ErErEr[ qrqrqr qr1qr1qr1 : : :qr jrqr jrqr jr : : :qrtrqrtrqrtr ];

where if qiqiqi:δi+ (i.e.EiEiEi is an agent of positive type principal port, and thusEiEiEi is a function symbol),
then µiµiµi = � ,
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else ifqiqiqi : δi� (i.e.EiEiEi is an agent of negative type principal port, and thusEiEiEi is a constructor symbol),
then µi = εµi = εµi = ε, qiqiqi is absent from the arguments ofEiEiEi, and we also have

�Assign[qiqiqi eieiei]

fi

�Assign[x1x1x1y1y1y1]; : : : ;

�Assign[xixixi yiyiyi]; : : : ;

�Assign[xuxuxu yuyuyu];

where in the above, the mapθ is interpreted as syntactic identity, i.e. ifθ(q4) = c9q4) = c9q4) = c9 say, thenq4q4q4 is identical
to c9c9c9, giving the connectedness of the corresponding term graph according to the syntactic conventions of
MONSTR.

In addition we need the following suite of rules:

Assign[v:Port a] =) �OK;v := �a;

Assign[v a] =) #Assign[^�v a];

FFF[p:Port f1f 1f 1: : : f if if i : : : f nf nf n] =) #FFF[^p f1f 1f 1: : : f if if i : : : f nf nf n];

FFF[p f1f 1f 1: : : f if if i : : : f nf nf n] =) #FFF[^�p f1f 1f 1: : : f if if i : : : f nf nf n];

Here is the translation of the specific example we had previously:

F[C[c7 c8 c9] f 1 f 2 f 3 f 4 f 6] =) �OK;

p10:Port;

e1:T[ f 1 c7 p10];�Assign[ f 6 e1];

e2:�H[p10c8];

�Assign[c9 f 2];�Assign[ f 3 f 4];

In Fig. 5 we show what happens in the application of this rule to the translation of the net we treated
earlier, after all theAssigns have done their work. (We note that if multiple redirections were available in
MONSTR – as they are in Dactl, of which MONSTR is a sublanguage – then theAssigns would not be
necessary; we could match a larger pattern and do all the required redirections performed by theAssigns
in one fell swoop, modulo considerations of locality, of course.)

4 Untyped Interaction Nets
It turns out that much of the theory of Interaction Nets can be carried through without the presence of
a type system such as we exploited above (see Banach (1995)). This is because the principal/auxiliary
property of ports is already a kind of crude but effective type system. It is therefore interesting to see if a
reasonable translation can be concocted without the simplifying influence of orientedness. In this section
we show that one can; in fact we describe two schemes, the second of which builds on properties of the
first.
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Figure 5: Application of MONSTR rule.

4.1 The first translation

The main novelty, of course, is that Interaction Net rules are now truly symmetrical in the two agents that
occur on the left-hand side. Therefore neither can be deemed to be ‘in charge’ of the rewrite as previously,
and we must look for a more symmetrical solution. One way is to allow the port node of the principal port
connection itself to take control. We replace the simplePort node at the centre of a port connection of the
previous translation by a gadget consisting of aRewfunction node with twoPort node children, as shown
in Fig. 6. The gadget is connected to the two respective agent nodes, either using anAssignfunction when
the port in question is a principal port, or by a conventional port edge coming from the agent when the
port is auxiliary. One of each is shown in the figure. The basic idea is thatAssignredirects the relevant
child of Rewto an agent node, causing one notification toRew, and whenRewhas been notified twice,
it has two agent children and so can model the relevant Interaction Net rewrite. We leave it to readers to
convince themselves that the gadget works properly, i.e. that it controls rewrites in a suitable way, even
in the presence of short circuits (which are now undirected of course). In effect, the gadget is a kind of
composable concurrent data structure, in today’s terminology.

For the schematic rule translated in the previous section, but with the types now elided, we find the
following new translation. For each agent symbolX we will need two MONSTR symbols,X andRewX,
the former a constructor to be matched byRew, the latter a function incorporatingRew’s memory of the
first agent it matched.

Rew[p:Port a] =) �OK; p := �a;

Rew[FFF[ f 1f 1f 1: : : f nf nf n] ccc] =) �RewFFF [ccc f1f 1f 1: : : f nf nf n];

Rew[a b] =) ##Rew[^�a ^
�b];
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##Rew[ • •]

p1:Port p2:Port

agent-1

agent-2

*Assign[ • •]

^ ^

Figure 6: Rewfunction node with twoPort node children.

(Similarly Rew[C[c1c1c1: : :cmcmcm] fff ] =) : : : . We do not give the symmetrically paired rules.)

RewFFF [p:Port f1f 1f 1: : : f nf nf n] =) #RewFFF [^p f1f 1f 1: : : f nf nf n];

RewFFF [CCC[c1c1c1: : :cicici : : :cmcmcm] f 1f 1f 1: : : f if if i : : : f nf nf n] =) �OK;

rew1rew1rew1:##Rew[^p1p1p1:1:Port^p1p1p1:2 : Port]; : : : ;

rewirewirewi:##Rew[^pipipi:1:Port^pipipi:2:Port]; : : : ;

rewsrewsrews:##Rew[^pspsps:1:Port ^pspsps:2 : Port];

e1e1e1:E1E1E1[q11q11q11 : : :q1 j1q1 j1q1 j1 : : :q1t1q1t1q1t1];�Assign[q1q1q1e1e1e1]; : : : ;

eieiei:EiEiEi[qi1qi1qi1 : : :qi jiqi jiqi ji : : :qitiqitiqiti ];�Assign[qiqiqi eieiei]; : : : ;

ererer:ErErEr[qr1qr1qr1 : : :qr jrqr jrqr jr : : :qrtrqrtrqrtr ]; �Assign[qrqrqr ererer];

�Assign[x1x1x1y1y1y1]; : : : ;�Assign[xixixi yiyiyi]; : : : ;

�Assign[xuxuxu yuyuyu];

where the previous mappingθ now becomes a genuine bijection

θ : fq1: : :qrg[fq11: : :qrtrg[fx1: : :yug$ f f 1: : : f ng[fc1: : :cmg[fp1:1: : :ps:2g;

interpreted as syntactic identity in the MONSTR rule (this change being provoked by the replacement of
the original internalPort nodes by gadgets having two suchPort nodes, of course).

The key rule in our specific example now becomes:

RewF [C[c7 c8 c9] f 1 f 2 f 3 f 4 f 6] =) �OK;

rew:##Rew[^p10:1:Port ^p10:2:Port];

e1:T[ f 1 c7 p10:1];�Assign[ f 6 e1];

e2:H[c8];�Assign[p10:2e2];

�Assign[c9 f 2];�Assign[ f 3 f 4];

Figure 7 illustrates the situation after the rewrite of the example using the rule above, but before all the
‘plumbing’ rewrites have completed. To economize on space in this figure, we abbreviateAssignto Ass,
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Figure 7: After rewriting.

and the various port nodes to just numbers, with underlined numbers standing for the otherPort nodes
in the gadgets of the rewrite’s interface. The notation 1= 2 indicates thatPort nodes 1and 2were short
circuited at some previous point and are now one node.

4.2 The second translation
The second translation is inspired by the first rule forRew. This rule is needed to ensure theRew/ Port/
Port gadget works properly when two of them have been short circuited. Note that it behaves much
like the rule forAssign. This suggests that we model each rewrite as the resolution of a short-circuit-
like competition between the two principal port edges involved in the principal connection. In such a
scheme,Rewfunctions are allocated per principal port edge, rather than per port node as previously, and
theAssigns and additionalPort nodes of the first translation become superfluous. The allocation ofRews
per principal port edge effectively creates them lazily, since when a port node is first created, there is no
need for either incident port edge to be principal. The previous translation creates theRews eagerly, and
thus is less efficient. We now need just onePort node per port node as before. The rules forReware
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Figure 8: The situation just after the rewrite.

unchanged, but the right-hand sides of theRewF rules are different. Here is the key generic rule (other
rules are unaltered).

RewFFF [CCC[c1c1c1: : :cicici : : :cmcmcm] f 1f 1f 1: : : f if if i : : : f nf nf n] =) �OK;

p1p1p1:Port; : : : ;

pipipi:Port; : : : ;

pspsps:Port;

e1e1e1:E1E1E1[q11q11q11 : : :q1 j1q1 j1q1 j1 : : :q1t1q1t1q1t1];�Rew[q1q1q1e1e1e1]; : : : ;

eieiei:EiEiEi[qi1qi1qi1 : : :qi jiqi jiqi ji : : :qitiqitiqiti ];�Rew[qiqiqi eieiei]; : : : ;

ererer:ErErEr[qr1qr1qr1 : : :qr jrqr jrqr jr : : :qrtrqrtrqrtr ];�Rew[qrqrqr ererer];

�Assign[x1x1x1y1y1y1]; : : : ;�Assign[xixixi yiyiyi]; : : : ;

�Assign[xuxuxu yuyuyu];

The mappingθ is as in the typed case. We quote the main rule of the running example in the second
translation:

RewF [C[c7 c8 c9] f 1 f 2 f 3 f 4 f 6] =) �OK;

p10:Port;

e1:T[ f 1 c7 p10]; �Rew[ f 6 e1];

e2:H[c8]; �Rew[p10e2];

�Assign[c9 f 2]; �Assign[ f 3 f 4];

A picture of the situation just after the rewrite and having completed theAssigns but not theRews,
appears in Fig. 8.

5 Examples and comparison with similar work
In this section we provide the MONSTR code for a number of concrete programming examples, covering
both the cases of typed and untyped nets; this code has run successfully on the Dactl interpreter ((Glauert
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Figure 9: Visual representation ofAppendin Interaction Nets.

et al. 1988, Glauert et al. 1990)). We also compare the resulting MONSTR code with that produced
when programs written in other computational models, similar to Interaction Nets, are likewise translated
to sets of MONSTR rewrite rules. This comparison further highlights some features of MONSTR and
also puts each into a wider perspective.

5.1 Typed examples

We start with the typed version of the unavoidableAppend. In order to make it easier for the reader to
understand how the generic Interaction Nets to MONSTR translation presented in section 4 is used to
generate the MONSTR program, we show below both the ‘visual’ and textual representation ofAppendin
Interaction Nets. The visual representation is in Fig. 9. (The convention we adopt in this paper is that the
principal ports of the ‘functions’ have a positive sign and those of the ‘constructors’ have a negative one;
the opposite convention would of course be equally valid provided it were used consistently, and indeed
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that is the one adopted in Lafont (1990), Lafont (1991).) The textual equivalent of Fig. 9 now follows,
where the type of the principal port is shown first in the symbol declarations.

type atom, list

symbolCons:list-;atom+,list+
Nil:list�
Append:list+;list+,list�

Cons[x Append(v,t)]>< Append[v,Cons(x,t)]
Nil >< Append[v,v]

It should now be easier for the reader to understand how the following MONSTR rule system is derived.

Append[Cons[x u] w v] =) �OK;

a:Port;

e1:Cons[x a];

e2:�Append[u a v];

�Assign[w e1];

Append[Nil w v] =) �OK;

�Assign[w v];

Append[p:Port w v] =) #Append[^p w v];

Append[p w v] =) #Append[^�p w v];

A typical MONSTR query involving the above program is shown below. (We recall thatINITIAL denotes
the first piece of graph to be attempted for reduction in a MONSTR/Dactl program.)

INIT IAL =) p:Port;

�Append[l1 p l2];

l1:Cons[1Cons[2 Nil ]];

l2:Cons[3Cons[4 Nil ]];

In the above rule forINITIAL, it is easy to see the two arguments ofAppendand how the code ought
to work. It is the optimization described earlier of the following, where the right-hand side of the initial
graph is constructed in the longwinded way.

INIT IAL =) p:Port;

�Append[l1 p l2];

l1:Cons[1 p11];�Assign[p11Cons[2 p12]];

�Assign[p12Nil ];

l2:Cons[3 p21];�Assign[p21Cons[4 p22]];

�Assign[p22Nil ];

p11:Port; p12:Port; p21:Port; p22:Port;
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Figure 10: Visual representation ofDAppend.

Note that, as Fig. 9 shows, the result of appending the two lists will appear in the second argument of
Append.

The next program is a variant ofAppend, referred to asDAppend, which makes use of difference lists.
Aside from the obvious usefulness of once more demonstrating the mapping procedure from Interaction
Nets to MONSTR which we have described, the example illustrates some features of Interaction Nets
related more to concurrent logic (Shapiro 1989) than to functional programming. We discuss this issue
at greater length later. As for the case of ordinaryAppend, we show both the visual (in Fig. 10) and the
textual representation ofDAppend.

type d list

symbolDiff:d list�;list+,list�
DAppend:dlist+;d list+,d list�
Open:dlist+;list+,list�
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Diff[x,y] >< DAppend[Open(t,y),Diff(x,t)]
Diff[x,y] >< Open[y,x]

Note the use of the auxiliary agentOpento bypass the constraints imposed by Interaction Nets in the
formation of rules. The equivalent MONSTR code follows.

DAppend[Di f f [y x] w v] =) �OK;

a:Port;

e1:Diff[a x];�Assign[w e1];

e2:�Open[v y a];

DAppend[p:Port w v] =) #DAppend[^p w v];

DAppend[p w v] =) #DAppend[^�p w v];

Open[Diff[y x] x1 y1] =) �OK;

�Assign[x1 x];

�Assign[y y1];

Open[p:Port x1 y1] =) #Open[^p x1 y1];

Open[p x1 y1] =) #Open[^�p x1 y1];

A typical query involvingDAppendcould be formulated as follows (we do not bother with the unoptimized
case this time). As before, the expected result will be produced alongDAppend’s second argument.

INIT IAL =) w:Port;

�DAppend[a w v];

a:Diff[y Cons[1Cons[2 y]]];

v:Diff[z Cons[3 z]];

y:Port;z:Port;

5.2 Untyped examples

In order to illustrate via the use of concrete examples how the untyped version of Interaction Nets pro-
grams is translated to MONSTR by means of the methodology developed in section 5, we make use once
more ofAppend. The reader can refer again to Fig. 9, but the plus and minus signs on ports should now be
ignored. The equivalent MONSTR code is given in Fig. 11; for brevity we use only the second (optimized)
version of the translation scheme as described in section 5.2.

We recall from section 5 that the driving force in performing reductions in untyped Interaction Nets
is theRewfunction specialized with respect to each program. In fact, all other Interaction Nets agents,
such asAppend, ConsandNil in the above example, are ‘constructors’ (in a way, one could envision all
ports in such agents to be of negative sign with theRewports being of positive sign, thus triggering the
reductions). A typical query now takes the following rather longwinded form. (In case the reader finds it
hard to see the wood for the trees, this is the appending of [1], [2] to [3],[4] as previously. The advantages
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Rew[p:Port a] =) �OK; p := �a;

Rew[Append[w v] c] =) �RewAppend[c w v];

Rew[Cons[x u] f ] =) �RewCons[ f x u];

Rew[Nil f ] =) �RewNil [ f ];

Rew[a b] =) ##Rew[^�a ^
�b];

RewAppend[Cons[x u] w v] =) �OK;

a:Port;

e1:Cons[x a];�Rew[w e1];

e2:Append[a v];�Rew[u e2];

RewAppend[p:Port w v] =) #RewAppend[^p w v];

RewAppend[p w v] =) #RewAppend[^�p w v];

RewCons[Append[w v] x u] =) �OK;

a:Port;

e1:Cons[x a];�Rew[w e1];

e2:Append[a v];�Rew[u e2];

RewCons[p:Port x u] =) #RewCons[^p w u];

RewCons[p x u] =) #RewCons[^�p w v];

RewNil [Append[w v]] =) �OK;

�Assign[w v];

RewNil [p:Port] =) #RewNil [^p];

RewNil [p] =) #RewNil [^�p];

Figure 11: Equivalent MONSTR code.
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of a typed over an untyped system are obvious.)

INIT IAL =) p:Port;a:Port;

�Rew[a l1];�Rew[a Append[p l2]];

�Rew[l1Cons[c11c1r1]];

�Rew[l2Cons[c31c3r1]];

�Rew[c11 1];

�Rew[c1r1Cons[c21c2r1]];

�Rew[c21 2];�Rew[c2r1 Nil ];

�Rew[c31 3];

�Rew[c3r1Cons[c41c4r1]];

�Rew[c41 4];�Rew[c4r1 Nil ];

l1:Port; l2:Port;

c11:Port;c21:Port;c31:Port;c41:Port;

c1r1:Port;c2r1:Port;c3r1:Port;c4r1:Port;

5.3 Discussion
There are many advantages in mapping different computational models and associated languages onto
MONSTR. One is that the latter provides a common point of reference in comparing such models among
themselves as well as with MONSTR (Glauert et al. 1988). Another is that one can reason about the
behaviour of some model or language by transposing the discussion to the level of MONSTR where
the rewriting and interaction (in the general sense) between processes or agents becomes more explicit
(Banach et al. 1995, Banach and Papadopoulos 1995b). Finally, MONSTR provides a natural implemen-
tation apparatus for a variety of such computational models and languages (Banach 1993, Banach and
Papadopoulos 1993, Banach and Papadopoulos 1995a, Banach and Papadopoulos 1995b, Watson et al.
1988).

In the context of the present work, the mapping of Interaction Nets onto MONSTR serves, among
others, two purposes:

� to provide an implementation apparatus for Interaction Nets in a distributed environment via MON-
STR

� to illustrate how Interaction Net graphs can be transformed into ‘ordinary’ rewrite-rule based code,
thus making the framework developed applicable to a variety of other Interaction Net based rewrit-
ing formalisms.

One of MONSTR’s rather unusual features is the notion of non-root redirection which is something
that can befall anoverwritable node (as it is called in the terminology of term graph rewriting systems)
many times. For instance, it is perfectly acceptable to write a rule performingdestructive assignmentas
follows:

Assign[v : VAR[old val]newval] =) �OK; v := �VAR[newval];
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whereVARhas been declared as anOVERWRITABLEnode (likePort in the Interaction Nets to MONSTR
mapping presented above). We recall that the operations indicated by the above rule (i.e. the rewriting
of the redex toOK and the redirection of the nodeVAR to a new one whose child is the new value to
be assigned) are done as a single atomic action. We also recall that one of the fundamental differences
between MONSTR and its predecessor (and in a way ‘superset’) Dactl, is that the latter allows arbitrary
numbers of such non-root overwrites to be performed atomically within the same rewrite. The power of
this mechanism, but alas also the futility of trying to implement it efficiently on a real parallel and/or dis-
tributed environment, becomes apparent when one notices that multiple and atomic non-root overwrites
are more or less comparable to performing atomic unification in the CP-family of concurrent logic lan-
guages (Shapiro 1989). (‘More or less’ means that unification is a two-way pattern matching operation,
as opposed to the ordinary one-way matching employed by graph rewrite-rule systems, but it is also done
once per variable – the single assignment property – whereas an overwritable MONSTR or Dactl node
can be rewritten arbitrarily many times.) The CP-family is a very expressive language model, which,
however, was never implemented efficiently and was subsequently abandoned in favour of variants that
were weaker but easier to implement.

Nevertheless, allowing multiple non-root overwriting, even of only a single such node (per rewrite
rule), is a potentially puzzling feature bearing in mind that the graph rewriting formalism has been used
traditionally as an implementation framework for declarative (functional, logic) languages; and although
it does not prohibit us from reasoning rigorously about MONSTR (Banach 1996a, Banach 1997a, Ba-
nach 1997b), one would ideally like to have some greater insight into this slightly exotic feature. This
is provided by diverse examples of its use. In the context of implementing concurrent logic languages
via MONSTR (Banach and Papadopoulos 1993), this feature enables a convenient implementation of the
commitoperator. A more interesting and natural interpretation of multiple non-root overwriting arises
when it is used in mapping object-oriented and Linear Logic based languages. In both cases, a stateholder
plays the role of a channel. In Banach and Papadopoulos (1995b) it represents aself channel through
which objects receive method invocations and the guaranteed atomicity of the single stateholder redirec-
tion is used to implement mutual exclusion between concurrent method invocations and thus achieve data
coherence. In Banach and Papadopoulos (1995a), a work more closely related to the present one, a chan-
nel plays the role of a communication medium between linear agents. Linearity is achieved by a message
posted to some agent being consumed by the latter, freeing the channel for further use, a strategy that
can be expressed naturally in MONSTR by means of sequences of non-root overwrites. Since Interaction
Nets are so close to Linear Logic, it is interesting to show how a concurrent Linear LogicAppendwould
be implemented in MONSTR and compare it with the equivalent Interaction Nets version discussed in
detail in section 6.1. The source code could be something like what follows, using the (
, &,(, 9, 8, !)
fragment of Linear Logic and adhering to a language model like the one developed in Tse (1994).

! 8L1;L2;O:Append(L1;L2;O)

( 8M:L1 : M( (M = []! O : @L2

&! 8A;B:M = [U j X]! (9C:O : [U jZ]
Append(X;L2;Z))))

Note that ‘@’ is a forward operator which effectively replaces one channel by another. The behaviour of
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the above program can quite easily be made clear by examining the equivalent MONSTR code:

Append[l1:ChannelFull [Nil ] l2 o] =) �GARBAGECOLLECT;

�Forward[o l2];

l1 := �ChannelEmpty;

Append[l1:ChannelFull [Cons[u x]] l2 o] =)

�GARBAGECOLLECT;

�Send[o Cons[u c : ChannelEmpty]];

�Append[x l2 c];

l1:= �ChannelEmpty;

Append[l1:ChannelEmpty l2 o] =) #Append[^l1 l2 o];

whereSendis implemented as follows:

Send[c : ChannelEmpty mess] =) �GARBAGECOLLECT;

c := �ChannelFull [mess];

Send[c message] =) #Send[^c message];

andForward is very similar. Note the serial non-root overwriting of the stateholder representing a channel
by a succession of rewrites, in order to model the consumption of a resource (in this case messages posted
into a channel).

Comparing the above linearAppendwith the Interaction Nets version of section 6.1, one can notice
some differences. In the case of the linearAppend, the communication medium, a channel, is public and
a number of concurrently executing agents can have access to it in order to post parts of the list to be
appended. Thus a stateholder representing a channel exhibits a rather ‘non-monotonic’ behaviour in that
it switches between an empty and a full state repeatedly. In the case of the Interaction NetsAppend, the
communication medium, i.e. a principal port, is private to the agents that are involved in a rewrite. Thus,
the interaction of (precisely) two agents results in a once-only overwriting of the principal ports involved
by means of theAssignprimitive, an effectively monotonic version ofSend.

Further, note that the atomicity of the rewriting of the stateholder is of paramount importance in the
linearAppendbecause of its public nature. In the case of the Interaction NetsAppendthis atomicity is of
lesser importance since only two agents have access to the stateholder representing a port, and in fact they
cooperate in overwriting it either directly (as in the case of typed nets) or indirectly by means of theRew
function (in the case of untyped nets).

Interaction Nets ports can be viewed as a limited form of logic variable (allowing for instance con-
catenation of difference lists in constant time) and thus Interaction Nets can be seen as a deterministic
subset of concurrent logic programming (Shapiro 1989). It would thus be of some interest to provide the
MONSTR code for a typical concurrent logicappendsuch as

append([u j x];y;z) :�append(x;y;z1);z= [u j z1]:

append([];y;z) :�z= y:
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The above program could be implemented in MONSTR as follows:

Append[Cons[u x] y z] =) �Append[x y z1:Var];

�Uni f y[z Cons[u z1]];

Append[Nil y z] =) �Uni f y[z y];

Append[x:Var y z] =) #Append[^x y z];

Append[ANY ANY ANY] =) �FAIL;

Note the use of the more elaborate mechanism for variable instantiation, done by means of invoking a
Unify function. Note also that because the above program exhibits no linearity, the storage for the graph
structures that are not referenced in the right-hand side of the rules cannot be automatically reclaimed
since these structures may well be referenced by other processes. This is, of course, not the case for either
the linear or the Interaction NetsAppend.

The underlying MONSTR implementation may take advantage of these properties to generate a more
efficient runtime infrastructure. For instance, graph reduction language implementations are typically
packet based. A packet representing some entity (redex and/or data values) comprises a number of fields
with useful information such as the number of other nodes pointing to this entity (used for garbage col-
lection but also load distribution), the number of requests for reducing the entity (if it is a redex) which
can be used to give higher priority for reduction to certain redexes over others, etc. In addition, in the case
of distributed implementations, shared subexpressions may either have to be recomputed locally in each
processor or otherwise bear the penalty of the traffic generated to distribute the results. All these and other
issues are simplified considerably due to the nature of Interaction Nets graphs whose properties carry over
to the corresponding MONSTR code. Thus, an ‘Interaction Nets MONSTR sublanguage’ would be able
to take advantage of those properties for the benefit of the underlying implementation.

To further clarify some of these points, we show how the MONSTR compiler environment (Banach
1993, Glauert et al. 1990, Watson et al. 1988) could take advantage of the knowledge that the MONSTR
code generated originates from Interaction Net code enjoying the usual properties, possibly coupled with
knowledge derived from some static dataflow analysis. In particular, it is possible to enhance the MON-
STR code withdirectives which indicate to the compiler certain optimizations that can be performed.
Consider the (somewhat simplified) left-hand side of the general reduction rule for the case of typed
Interaction Nets in section 4, namely:

FFF[CCC[c1c1c1: : :cmcmcm] f 1f 1f 1: : : f nf nf n] =) �OK; : : : ;

The MONSTR compiler can derive the following variation enhanced with suitable directives:

fff hGARBAGEi:FFF [ccc f1f 1f 1: : : f nf nf n];

ccchGARBAGEihPREEVALUATEDihMOVETO[ fff ]i :CCC[c1c1c1: : :cmcmcm]

! r:hGARBAGEihCLOSETO[ fff ]iOK;

fff := �r;

The idea here is that due to the properties of interaction it can be known that the two redex nodesf
andc will disappear after the rewrite and no other agent involved in the Interaction Nets network will
ever attempt to access their values in the future. This means that they can be garbage collected (hence the
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directiveGARBAGE) but also that it would probably make sense to move thecnode to the processor where
f lies (hence the directiveMOVETO[f]). Furthermore, sincef will never get accessed, neither willr:OK to
which it gets redirected. Hencer can be garbage collected immediately, i.e. it need never be created. Also
we know that once the two Interaction Nets primary ports get engaged in interaction, they are represented
by a function and a value. Thus the implementation need not reduce the already evaluated argument of the
function (hence the directivePREEVALUATED). In this way, the packet structure and code generated by
the compiler can be simpler in terms of administrative information held in packet fields, load balancing
and garbage collection.

The above analysis may not be possible for MONSTR rules generated from translating other computa-
tional models. For instance, recalling one of the rules for a concurrent logic append, namely:

Append[Cons[u x] y z] =) �Append[x y z1 :Var];

�Uni f y[z Cons[u z1]];

we cannot be sure that theConsstructure in the left-hand side of the rule can be garbage collected since it
may be shared by other agents, or that this argument is already aCons(it could still be an uninstantiated
variable).

6 MONSTR and generalized Interaction Nets
In MONSTR, nothing prevents several function nodes from sharing the same stateholder (a feature we
have already referred to). Such overlapping redexes will obviously lead to non-Church–Rosser properties
of rewriting in general; therefore, a naive translation of arbitrary MONSTR systems to Interaction Nets
systems will be impossible. Instead, in this section we consider briefly how one might generalize the
Interaction Nets model to take on board some of the additional expressiveness of MONSTR. This helps
in making a sounder comparison of the two systems.

As we pointed out before, the use-once discipline for agents enables us to represent them as construc-
tors. Moreover, the main property of constructors, that they do not change over time, is not used in the
Interaction Nets model; agents are not only read-only, they are read-once-only. To get something more,
we need to generalize the shape of the left-hand sides of rules, or the principal/auxiliary port discipline
and its influence on rewriting, or the port invariant. We look at these in order.

In an abstract framework, there is no reason not to allow left-hand sides of rules to be of a more general
shape than before. If one simultaneously insists that redexes must consistonly of principal connections
as before, and that these connections includeall of the principal port edges of the agents involved, then
to go beyond what we have already, we must permit agents to have more than one principal port. But we
still retain the Church–Rosser property of rewriting since, provided we always have exactly one rule for
each possible left-hand side, all distinct redexes are still disjoint. (In the presence of multiple principal
ports, the analysis of deadlock prevention might be thought to become more problematic, but the theory
of Banach (1993) shows that this is not so if one does things the right way.) We gain some expressiveness
thereby, avoiding the need to break rules down into small binary interactions. Figure 12 illustrates such a
rule for appending difference lists, adapted from the one presented in section 6.1, but this time requiring
one rewrite rather than Lafont’s two to complete the append. We note that a compiler could automatically
break such a rule down into binary interactions if required. We note that in the above model, there is
still no exploitation of the key properties of constructors. A generalization that does permit such an
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Figure 12: A rule for appending difference lists.

exploitation, instead insists that all agentsremoved from a redex should have all of their principal ports
within principal connections of the redex, but now allows inspection but not removal of other agents along
auxiliary connections. If these other agents themselves haveno principal ports , they behave exactly like
constructors, being read-only. Figure 13 shows such a rule, where the notation is intended to be interpreted
as follows. Agents on the left-hand side having principal ports will have all their principal ports within
principal connections of the redex. These agents are to be removed during the rewrite. Agents of the
left-hand side having no principal ports are constructors. These are to remain behind when other left-hand
side agents are removed. (They cannot, however, be shown on the right-hand side of the rule since all
agents of the right-hand side are interpreted by a compiler as being specifications of new agents to be built
during rewriting.) So it is intended that the constructorC and its interface nodesd, e, f , g remain when
the agentsX, Y, Z are removed and replaced in a rewrite using Fig. 13. This model is a nice halfway point
between the original Interaction Nets model and MONSTR, incorporating some generalizations, yet still
retaining the Church–Rosser property of rewriting, since apart from the immutable constructors, all pairs
of distinct redexes are still disjoint. To go beyond this, we need to either relax the criterion thatall the
removed agents’ principal ports figure in the principal connections of the redex, or relax the port invariant.
We look at these possibilities now.

If we allow agents in the redex to have principal ports that do not connect with other agents of the redex,
then we permit overlapping of redexes and non-Church–Rosser behaviour. Figure 14 shows a rule for the
Getoperation of a simple binary semaphore. Clearly theFreeagent can be competed for along both of its
principal ports, thus leading to potentially overlapping redexes, but theBusyagent can only be released
from the port leading to theGet that succeeded, as one would wish.

This model approaches MONSTR’s overlapping redexes but with the crucial difference that the sharing
structure is constrained by the presence of the port invariant, i.e. since an agent’s repertory of port nodes
is fixed by its symbol, only a predetermined number of other agents may attempt to interact with it; for
Fig. 14, only two agents may ever compete for the semaphore. Emulating dynamically determined sharing
in such a framework is almost impossible without cumbersome encoding of lists of sharers. To overcome
this final hurdle, we must weaken the port invariant to allow more than two port edges to meet at a port
node. This allows arbitrary communities of agents to accumulate at a port nodep, but raises a number of
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Figure 13: A generalization of the rule in Fig. 12.
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Figure 14: A rule for theGet operation of a simple binary semaphore.



A study of two graph rewriting formalisms: Interaction Nets and MONSTR 227

fresh issues:

� What now is the allowed form of left-hand side for rules?

� Is the left-hand side still comprised of precisely binary port connections, or are larger collections of
agents meeting at a node permitted on the left-hand side?

� Does a port node match (some part of) a left-hand side iffall its incident port edges are in the
matching from the rule, or is one allowed to have some port edges left over? (In the latter case,
presumably the port node in the middle of such a left-hand side edge cannot be regarded as garbage
after the rewrite.)

� Does the map from rule left-hand side to redex have to be injective on port edges or is it now
allowed to be many–one? (For binary port connections and agents having single principal ports,
complementary types force injectivity of the port edge map in a redex.)

A variety of answers to these questions can be contemplated. We will not discuss all the possibilities
exhaustively, but content ourselves with the following. Let us insist that left-hand sides still consist of two
agents connected by a principal port connection (with perhaps some constructors as discussed above). Let
us further assume that the rule system is complete in providing a rule for each possible left-hand side that
one can envisage, and that surplus incident edges of a redex’s principal connection’s port node remain
behind after the rewrite. Then minor adaptations of the translations we described above will deal with
such a scenario, since agents can compete eagerly to register their willingness to interact at a given port
node; the first one to arrive will be sure of finding a cooperating partner as soon as the second one has
turned up. (Suitably interpreted, this works for both typed and untyped cases.)

On the other hand, if one does not assume rule completeness, and/or allows an unpredictable numbers
of agents to synchronize at a port node in order to interact, then one faces a much harder implementation
problem, as agents can no longer be allowed to ‘grab’ a port node eagerly. Similar issues arise when
one wishes to take seriously the synchronization model inherent in process algebras (see Banach et al.
(1995)). Thus, while in relaxing the port invariant there are useful and tempting programming models that
one can envisage, there are many variations which look innocent enough at the abstract level, but are much
more problematic from an implementation viewpoint. We therefore feel that MONSTR’s commitment to
directed arcs yields a much more reasonable framework when true dynamic sharing and choice are desired
within computations.

7 Conclusions and related and further work
In this paper we have studied the relationship between two graph rewriting formalisms, namely Lafont’s
Interaction Nets and Banach’s MONSTR. We have presented a concrete translation from Interaction Nets
to MONSTR and we have discussed in detail some important issues pertaining to the reverse mapping.
The two formalisms have evolved from rather different perspectives and for different reasons – Interaction
Nets as a version of Linear Logic based on normalized Proof Nets and rather abstract, and MONSTR
as a stripped-down version of a compiler target language with emphasis on ease of implementation on
distributed machines. Thus being able to provide a concrete mapping framework from the former onto the
latter yields a number of interesting possibilities.
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� It provides an ‘implementation apparatus’ for Interaction Nets via the compiler target language
MONSTR – bear in mind here that Interaction Nets exhibit a high degree of parallelism which can
be fully exploited by MONSTR.

� It illustrates how Interaction Net based rule systems can be transformed into ‘ordinary’ graph rewrit-
ing rule based code, for execution using traditional rewriting formalisms and associated architec-
tures (like MONSTR).

� It offers a fresh perspective on some of MONSTR’s features by lifting their interpretation to the
level of the computational model being mapped (as in the case of multiple non-root overwrites and
the rather unusual stateholder object).

� It allows MONSTR to be used as a point of reference and comparison between different computa-
tional models by exhibiting their similarities and differences at the MONSTR level. Furthermore,
bearing in mind that both formalisms enjoy formal semantics and share common targets (such as a
sensitivity for ease of implementation on distributed machines), a direct comparison of the seman-
tics of the two models would certainly be worth exploring.

This paper complements work by the authors (and others), justifying the view of generalized term graph
rewriting, and MONSTR in particular, as a good ‘generalized computational model’ able to accommodate
the needs of computational models often divergent in behaviour; needs that range from those associated
primarily with reasoning and specification to those more related to implementation issues. In Banach and
Papadopoulos (1993) we have shown how concurrent logic languages can be implemented in MONSTR.
In Glauert et al. (1988) this is done also for eager and lazy functional languages in a more general setting
which is applicable to MONSTR as well. In Banach and Papadopoulos (1995a) we used MONSTR
to reason about pi-calculus and in Banach and Papadopoulos (1995b) we showed how MONSTR can be
used as an implementation and specification framework for concurrent object-oriented languages. Finally,
Banach and Papadopoulos (1995a) studies the possibility of using MONSTR to implement concurrent
languages based on Linear Logic but also discusses the definition of a ‘linear’ MONSTR sublanguage.

In the spirit of the last point, one intriguing possibility that we have not pursued here, is the idea
of exploring the relationship between Interaction Nets and MONSTR in the other direction; i.e. using the
translation from Interaction Nets to MONSTR to inspire the definition of a sublanguage of MONSTR with
some of the special properties of Interaction Nets, particularly the Church–Rosser property. The latter
would yield an unusual object, a non-trivial imperative language with the Church–Rosser property, yet
featuring arbitrary amounts of concurrency. (Obviously, the concurrency arising from arbitrary numbers
of simultaneously active nodes is the thing that makes such a system interesting. Any purely sequential
imperative language is trivially Church–Rosser.) It turns out that this is possible, but the proof is rather
lengthy, and would unduly distort the balance of this more implementation oriented paper. We content
ourselves with pointing out the main idea, and will present the full theory elsewhere (Banach 1997b).

In the typed translation, at any particular moment, every stateholder (sayS) in the graph, has at most
one parent which is a function node (sayF) for which Soccurs inF’s stateholder position, and such that
the rule forF andS does not just reactivateF’s matched nodes, or merely resuspend on the stateholder
S awaiting a suitable state change. The latter kind of rules do not affect the structure of the graph apart
from garbage, and so each stateholder node effectively has at most one function node parent for which
the corresponding rewrite ‘does something useful’. We say that such a stateholder is at the apex of asafe
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critical cone (of function nodes). The intuition is that if the executions of a system feature only safe
critical cones for all the stateholder instances that arise, then the system has the Church–Rosser property,
despite the presence of overlapping redexes involving mutable stateholders. The intuition turns out to be
sound, but giving a convincing proof involves a lengthy excursion into the somewhat delicate technical
details of MONSTR theory, as the result only holds in the most satisfactory form under transitive coercing
operational semantics rather than the standard semantics we used in this paper (see Banach (1997b),
Banach (1996b)).

In fact, the safe critical cone property holds also for the first untyped translation,but not for the second.
The difference shows up at the level of proof of the Church–Rosser property. In the safe critical cone case,
the proof can be accomplished by tiling the Church–Rosser diamond with subcommuting squares formed
by interchanging individual steps, i.e. the usual strategy. For the system of the second translation, this
does not work because the rewrites resolving the race for ‘ownership’ of a principal connection in different
ways do not subcommute. Fortunately, these rewrites themselves create further redexes for rules whose
right-hand sides are identical (cf. the right-hand sides forRewAppend[Cons: : : ] andRewCons[Append
: : : ] ). In this way the Church–Rosser property is recovered. We eschew further discussion here.

Finally, we intend to further develop the concept of ‘interaction’ within the MONSTR framework,
the aim being to explore relationships between MONSTR and other computational approaches based on
the notions of linearity and interaction (Andreoli et al. 1993, Darlington et al. 1993, Kobayashi and
Yonezawa 1993, Tse 1994).
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