
Evaluating the Use of ADLs in Component-Based Development

George A. Papadopoulos
Department of Computer Science, University of Cyprus

75 Kallipoleos Street, POB 20537, CY-1678, Nicosia, Cyprus
george@cs.ucy.ac.cy

Abstract. In this paper we evaluate the use of
software architectures in the development of
component-based systems. The evaluation is
based on the level of support provided by the
software architectures formal representatives,
namely ADLs, for four established component-
based development principles. Specifically, we
will describe and evaluate three representative
ADLs: ACME, Unicon and Rapide. For each of
the above ADLs we give a brief introduction to
its purpose, capabilities and special features,
and describe the semantics of its main building
constructs.

Keywords. Software Architectures,
Architecture Description Languages (ADLs),
Component-Based Development.

1. Introduction

In this paper, we will attempt an evaluation of
the use of software architectures in the
development of component-based systems. The
evaluation will be based on the level of support
provided by the software architectures formal
representatives, namely ADLs, for four
established component-based development
principles. Specifically, we will describe and
evaluate three representative ADLs: ACME,
Unicon, and Rapide. For each of the above ADLs
we give a brief introduction to its purpose,
capabilities and special features, and describe the
semantics of its main building constructs. We
will also evaluate each ADL’s modelling
capabilities against the following criteria:
encapsulation, concern separation, abstraction
and decomposability ([1]).

In order to make the presentation and
evaluation of ADLs more clear and
understandable, we depict a simple software
architecture of a component-based system. The
architecture, presented in figures 1 and 2,
comprises a part of a bank system’s software
structure. Figure 1 presents the high level
structure of the system; it includes two
components, the ATM and the Bank Server

component, as well as the interaction among
them. Figure 2 forms a decomposition of the
Bank Server component to its constituent
components. For each ADL, we will describe the
structure of the system presented in the two
figures, using the notation provided by the
language. The evaluation of each ADL will also
use the same example to clearly present the
support that the ADL offers regarding the
component-based principles discussed earlier.

BankSystem

getBalance

authenticateUser

BankServerATM

transferMoney

getBalance

authenticateUser

transferMoney

Figure 1. The Bank System Architecture

BankServer

getBalance

UserAuthentication

AccountHandler

transferMoney

authenticateUser

Figure 2. Decomposition of the Bank Server
Component

2. ACME

ACME ([2]) is a generic language for
describing software architectures. As is the case
with any typical ADL, ACME provides
constructs for describing systems as graphs of
components interacting via connectors.
Furthermore, the language provides
representation mechanisms for decomposing

867
Proceedings of the ITI 2008 30th Int. Conf. on Information Technology Interfaces, June 23-26, 2008, Cavtat, Croatia

systems into subsystems and ways to describe
families of components. In particular, the
language’s core concepts are Systems,
Components, Connectors, Ports, Roles,
Representations and Rep-maps.

The first three concepts have the usual
meaning as in any component-based system.
Ports define the interface of a component,
identifying a point of interaction between the
component and its environment.

Roles specify the interface of a connector.
Each role of a connector defines a participant of
the interaction represented by the connector.
Binary connectors have two roles such as the
caller and the callee roles, or the sender and the
receiver roles. A different kind of connector is
the broadcast connector, which might have a
single event-announcer role and an arbitrary
number of event-receiver roles.

2.1. Modelling the example in ACME

System BankSystem = {
 Component ATM = {
Port authenticateUser,
getBalance, transferMoney; };
 Component BankServer = {
Port authenticateUser,
getBalance, transferMoney;
 Representation {
 System BankServer = {
 Component
UserAuthentication = { Port
authenticateUser; };
 Component
AccountHandler = {
Port getBalance, transferMoney;};
 Bindings{

 authenticateUser UserAuthenti
cation.authenticateUser;

 getBalance UserAuthentication
.getBalance;
 transferMoney
UserAuthentication.transferMoney;
};
 };
 };
 };
 Connector
authenticateUserConn = { Role
callee, caller; };
 Connector getBalanceConn = {
Role callee, caller; };
 Connector transferMoneyConn =
{ Role callee, caller; };

 Attachments {
 ATM.authenticateUser to
authenticateUserConn.caller;
 ATM.getBalance to
getBalanceConn.caller;
 ATM.transferMoney to
transferMoneyConn.caller;

BankSystem.authenticateUser to
authenticateUserConn.callee;
 BankSystem.getBalance to
getBalanceConn.callee;
 BankSystem.transferMoney
to transferMoneyConn.callee; };
};

2.2. Evaluating ACME

Encapsulation: In the above description the
details of each of the Bank System’s components
are hidden and only their provided and required
functions (i.e. authenticateUser,
getBalance, transferMoney) are exposed
through the input and output ports of each
component.

Concern separation: The communication part
of the Bank System example which is described
by connectors and attachments is clearly
separated by the computational part of the
system which is encapsulated in the component
constructs.

Abstraction: When describing the software
architecture of the above system we did not have
to consider the algorithms to be implemented by
e.g. the Account Handler component or
even the protocols to be used for the
communication of the system’s components.
This clearly presents the capability of ACME to
adjust the level of abstraction according to the
current development level.

Decomposability: The decomposition of the
Bank Server component to its constituent
components (e.g. User Authentication
and Account Handler) though the
representation construct, clearly illustrates the
support of ACME decomposability.

3. Unicon

Unicon ([4]) attempts to support a large
variety of real life applications and make the
transition of system design to implementation
code smoother. A system architecture described
in Unicon consists of a number of components
and connectors. Components represent

868

computational or data units of the system while
connectors mediate the communication between
components. Each component is associated with
an interface and an implementation.

A component’s interface defines the
computational capabilities of the component, as
well as a number of constraints on the way the
component can be used. An interface must also
include the component type, assertions that apply
to the component and a number of players
exposed by the component. Players are the units
through which a component can interact, provide
or request services. Their semantics is closely
related to ACME ports described earlier. The
specification of a player is given in the form of a
property list. Each property includes an attribute
name and its associated value.

The implementation of a component can be
primitive or composite. Primitive
implementations are specified in the code of
some programming language. Composite
implementations enable the building of
progressively larger subsystems from
components.

Unicon connectors mediate the interaction
between components. They include a protocol
specifying the type of interactions that are
provided by the connector and an
implementation.

3.1. Modelling the example in Unicon

COMPONENT ATM
 INTERFACE IS TYPE Computation
 PLAYER authenticateUser IS
RPCCall
 SIGNATURE (“char
*”,“int”; “char *”)
 END authenticateUser
 PLAYER getBalance IS
RPCCall
 SIGNATURE (“char *”;
“float”)
 END getBalance
 PLAYER transferMoney IS
RPCCall
 SIGNATURE (“char
*”,“char *”, “float”; “float”)

 END transferMoney
 END INTERFACE
 IMPLEMENTATION IS VARIANT
atm_library IN “atm.jar”
 IMPLTYPE is (executable)
 END IMPLEMENTATION
END ATM

/* Definition of
UserAuthentication and
AccountHandler Components */
/* in the same way as above
*/
COMPONENT UserAuthentication …
END UserAuthentication
COMPONENT AccountHandler … END
AccountHandler

COMPONENT BankServer
 INTERFACE IS TYPE Computation
 PLAYER authenticateUser IS
RoutineCall
 SIGNATURE (“char
*”,“int”; “char *”)
 END authenticateUser
 PLAYER getBalance IS
RoutineCall
 SIGNATURE (“char *”;
“float”)
 END getBalance
 PLAYER transferMoney IS
RoutineCall
 SIGNATURE (“char
*”,“char *”, “float”; “float”)

 END transferMoney
 END INTERFACE
 IMPLEMENTATION IS
 /* Instantiate the parts
to use */
 USES userAuth is
INTERFACE UserAuthentication,
 USES accHandler is
INTERFACE AccountHandler
 USES authenticateConn
PROTOCOL ProcedureCall
 USES getBalanceConn
PROTOCOL ProcedureCall
 USES transferConn
PROTOCOL ProcedureCall
 /* Associate players of
parts to players of interface */
 BIND authenticateUser to
userAuth.authenticateUser
 BIND getBalance to
accHandler.getBalance
 BIND transferMoney to
accHandler.transferMoney
 /* Associate players of
roles */
 CONNECT authenticateUser
TO authenticateConn.caller
 CONNECT
userAuth.authenticateUser TO
authenticateConn.definer
 CONNECT getBalance TO
getBalanceConn.caller

869

 CONNECT
accHandler.getBalance TO
getBalanceConn.definer
 CONNECT transferMoney TO
transferConn.caller
 CONNECT
accHandler.transferMoney TO
transferConn.definer
 END IMPLEMENTATION
END BankServer

/* Defintion of BankSystem as a
component type in the */
/* same way as BankServer
Component.
*/

3.2. Evaluating Unicon

Encapsulation: Unicon hides the
implementation details exposing the
computational capabilities and requirements of
each component through the Interface and
Player constructs. In the example each
component includes an interface constituting of a
number of players. Each player represents a
function of the component giving its signature,
i.e. the number and type of input and output
parameters. For example, the signature of the
getBalance method given in the above
example (“char *”; “float”) specifies that an
input parameter of string type is required which
is the account number and a return value of float
type is returned which is the current balance of
the account.

Concern separation: A superficial
examination of the above code may lead to the
conclusion that the communication and
computational parts of the system are not
separated since both are included in the
component implementation construct of Unicon.
However, separation is still achieved since the
computational part is described by component
interfaces, players and primitive component
implementations in contrast to the
communication part that is described through
connectors, protocols and bindings included in a
composite component implementation. In the
above example, primitive component
implementations are the ones of ATM,
UserAuthentication and
AccountHandler components which include
information about the libraries implementing the
components and could also include code in some
programming language. Composite component
implementation is the one given for the Bank

Server component which includes component
instantiations, connector instantiations and the
connections between them. Each connector is
attached to a built-in protocol defining the type
of communication implemented by the specific
connector. Bindings are also included in the
component implementation, specifying the links
between the internal parts of the component and
the players of its interface.

Abstraction: Although a software engineer
can use Unicon to give a detailed description of
the system including code in specific
programming languages, the level of abstraction
can be adjusted, i.e. during the first stage of the
system description one can only use the
component, interface and players constructs in
addition to the communication constructs to give
a high level description of the system and
elaborate this description at a following stage,
giving more implementation details.

Decomposability: Decomposability is also
supported by Unicon, by first defining the
constituent components, e.g. the
UserAuthentication and
AccountHandler components that constitute
the Bank Server component in the above
example and then specify instantiations of these
constituent components definitions in the
component implementation part of the parent
component.

4. Rapide

Rapide ([3]) is an executable event-based
ADL, intended to describe but also simulate the
behaviour of systems’ architectures. Rapide
models computations and interactions of a
system as partially ordered event sets (or
“posets”). An architecture described in Rapide
consists of interfaces, connections and
constraints.

An interface describes the functionality
provided and/or required by a component of the
system. The main elements that constitute an
interface are actions, functions and behaviour.
Actions represent asynchronous "one-way"
messages to be sent or received by the interface,
while functions represent synchronous
communication. Functions and actions can be
grouped into Services that can be reused in
different interfaces. The behaviour of an
interface can be described by an implementation
module, by a set of reactive rules or by defining
an architecture that implements the interface. A
module can be described using elements of

870

conventional programming languages provided
by Rapide, Reactive rules are pieces of code
written in a rule-based approach and executed
when certain preconditions are satisfied.
Preconditions are defined in the form of event
patterns

Rapide connections are the assembly units of
the language. Unlike some other languages,
Rapide connections are active elements
associated to a behaviour. They can be seen as
special case of reactive rules that when triggered
by events of specific patterns, generate another
set of events

4.1. Modelling the example in Rapide

type ATM is interface
 requires function
getBalance(accNo: String) return
balance;
 requires function
authenticateUser(cardNo: String,
pin:Integer)
 return accNo;
 requires function
authenticateUser(sourceAcc:
String, targetAcc: String,
 amount:Float) return
sourceAccBalance;
behavior ….. end;
/* Definition of
UserAuthentication,
AccountHandler and */
/* BankServer in the same way as
above
*/

with UserAuthentication,
AccountHandler, BankServer
architecture BankServerArch is
 bankServer: BankServer
 userAuth: UserAuthentication;
 accHandler: AccountHandler;
connect
 ?cardNo, ?accNo, ?sourceAcc,
?targetAcc :String;
 ?pin: Integer;
 ?balance: Float;

bankServer.authenticateUser(?card
No, ?pin) =>
userAuth.
authenticateUser(?cardNo, ?pin);

 bankServer.getBalance(?accNo)
=> accHandler.getBalance(?accNo);

bankServer.transferMoney(?sourceA
cc,?targetAcc,?amount) =>
accHandler.transferMoney(?sourceA
cc,?targetAcc,?amount);
end BankServerArch;

with ATM, BankServerArch
architecture BankSystem is
 atm: ATM;
 bankServer: BankServerArch;
connect
 ?cardNo, ?accNo, ?sourceAcc,
?targetAcc :String;
 ?pin: Integer;
 ?balance: Float;
 atm.authenticateUser(?cardNo,
?pin) =>
bankServer.
authenticateUser(?cardNo, ?pin);

 atm.getBalance(?accNo) =>
bankServer.getBalance(?accNo);

atm.transferMoney(?sourceAcc,?tar
getAcc,?amount) =>
accHandler.bankServer
(?sourceAcc,?targetAcc,?amount);

end BankSystem;

4.2. Evaluating Rapide

Encapsulation: The details of each component
are encapsulated behind the interface type
definition of each component. Each interface
type defines the provided and required
functionality of the component in the form of
function declarations. In the Bank System
example the Account Handler interface
defines the function: “transferMoney
(sourceAcc: String, targetAcc:
String, amount:Float) return
sourceAccBalance” which declares three
input and one output parameter. The first two
input parameters are of string type corresponding
to the source and target accounts depicted in the
transfer transaction, while the third input
parameter is of float type, corresponding to the
amount to be transferred. The output parameter is
also of float type corresponding to the new
balance of the source account after the execution
of the transfer transaction.

Concern separation: The communication part
of the system is explicitly defined by connections
included in the architecture element provided by
Rapide notation. The connections take the form

871

of mapping between functions or actions
required by a component and corresponding
functions or actions provided by another
component. One such mapping in the above
connection is the following:
“atm.getBalance(?accNo) =>
bankServer.getBalance(?accNo);” .

Abstraction: Abstraction is also supported,
although the behaviour and posets construct can
be used to give a detailed description of a
system’s computation. As is the case with
Unicon, the level of abstraction can be easily
adjusted according to the needs of each stage.

Decomposability: The support of Rapide here
is very similar to that of Unicon. There is no
explicit construct that is used to define the
decomposition of a component to its constituent
components but decomposability can be defined
in the same way as in Unicon, i.e. by defining an
interface type for each constituent component
and then define instances of these types into the
description of the parent’s component.

5. Summary and conclusions

The four main principles of component-based
development are supported by all ADLs,
although this support is not straightforward in all
cases. The description of required or provided
interfaces exposed by components is modestly
supported. The description of interfaces
supported by the rest of the ADLs is
implemented either by providing specific
constructs and syntax such as Rapide and
Unicon, or by providing just a framework such
as ACME that offers an open semantics
framework enabling users to define their own
properties to describe different aspects of the
system.

Table 1 summarizes the support of the ADLs
presented above for the four principles of
component-based development. The symbol “√”
used in the table indicates clear or explicit
support of the specific principle while the “?”
symbol indicates implicit or weak support.

We can see that most of the ADLs do not
clearly support all of the component-based
development principles and this is because most
of the ADLs emphasize on specific aspects such
as the communication part. On the other hand,
ADLs that support all principles, such as ACME,
lack in support of dynamic configuration
descriptions.

Criteria
vs
ADLs

ACME Unicorn Rapide

Encapsulation √ √ √

Concern
Separation

√ ? √

Abstraction √ √ ?

Decomposability √ ? ?

Table 1. Support of ADLs for component-
based development principles

6. References

[1] I. Crnkovic and M. Larsson, “Challenges of
Component-based Development”, Journal of
Software Systems, Vol. 61 (3), 2001, pp.
201-212.

[2] D. Garlan, R. T. Monroe and D. Wile,
“ACME: An Architectural Description of
Component Based Systems”, Foundations of
Component-Based Systems, Cambridge
University Press, 2000, pp. 47-68.

[3] D. C. Luckham, J. J. Kenney, L. M.
Augustin, J. Vera, D. Bryan and W. Mann,
“Specification and Analysis of System
Architecture Using Rapide,”, IEEE
Transactions on Software Engineering,
Special Issue on Software Architecture, Vol.
21(4), 1995, pp. 336-355.

[4] M. Shaw, R. DeLine, D. Klein, T. L. Ross,
D. M. Young and G. Zelesnik, “Abstractions
for software architecture and tools to support
them”, IEEE Transactions on Software
Engineering, Special Issue on Software
Architecture, Vol. 21(4), 1995, pp. 314-335.

872

