
INFORMATION

ELSEVIER Information and Software Technology 38 (1996) 539-547

AND
SOF7WlRE

IECH-

Concurrent object-oriented programming
techniques

using term graph rewriting

George A. Papadopoulos

Department of Computer Science, University of Cyprus, 75 Kallipoleos Str., Nicosia, P.O.B. 537, CY 1678, Cyprus

Received 24 December 1994; accepted 5 December 1995

Abstract

The generalized computational model of Term Graph Rewriting Systems is used as the basis for expressing concurrent object-
oriented programming techniques exploiting the fine grain highly parallel features of TGRS in a language independent fashion that
renders it able to act as the basis for developing specific languages based on object-orientation but also to study and compare existing
approaches to the modelling of object-oriented programming techniques such as delegation, various forms of inheritance, etc.

Keywords: Concurrent object-oriented programming; Term graph rewriting systems (TGRS); Implementation techniques; Dactl

1. Introduction

The generalized computational model of Term Graph
Rewriting Systems (TGRS) [1,2] has been used exten-
sively as an implementation vehicle for a number of,
often divergent, programming paradigms ranging from
the traditional functional programming ones [3,4] to the
(concurrent) logic programming ones [5-71. Recent
studies have shown that TGRS are also able to act as a
means for implementing languages based on computa-
tional models such as Concurrent Constraint Program-
ming [8], Linear Logic [9,10] and 7r-calculus [I 1,121.

In this paper we use TGRS and we exploit the high
degree of fine grain parallelism available in the model in
expressing a variety of concurrent object-oriented pro-
gramming techniques. Being our framework language
independent, it can serve as a basis for designing new
concurrent object-oriented languages, implementing
existing ones or act as a point of reference in comparing
different approaches proposed by various languages
to modelling certain OOP techniques such as delegation,
inheritance, etc. but also to solving any associated pro-
blems encountered [131.

The rest of the paper is organized as follows. The next
section introduces the model of Term Graph Rewriting

* email:george@turning.cs.ucy.ac.cy

0950-5849/96/S 15.00 0 1996 Elsevier Science B.V. All rights reserved
SSDI 0950-5849(96)01093-9

Systems with some emphasis on the associated language
Dactl which we will be using as our implementation
platform. The following section introduces an extension
to the model and shows how this extended TGRS frame-
work can be used to model OOP techniques. The paper
ends with some conclusions and a short discussion on
further and related research.

2. Term graph rewriting and Dactl

The TGRS model of computation is based around the
notion of manipulating term graphs or simply graphs. In
particular, a program is composed of a set of graph
rewriting rules L + R which specify the transformations
that could be performed on those parts of a graph
(redexes) which match some LHS of such a rule and
can thus evolve to the form specified by the correspond-
ing RHS. Usually [l], a graph G is represented as the
tuple (No, rooto, Symo, Succo) where:

No is the set of nodes for G;
rooto is a special member of NG, the root of G;
Symo is a function from No to the set of all function
symbols;
Succo is a function from No to the set of tuples N&
such that if Succ (N) = (Ni . . . Nk) then k is the arity
of N and Ni Nk are the arguments of N.

540 G.A. Papadopoulos/Information and Software Technology 38 (19%) 539-547

Note that the arguments of a graph node are identified
by position and in fact we write Succ (N,i) to refer to the
ith argument of N using a left-to-right ordering. The
context-free grammar for describing a graph could be
something like:

graph : := node 1 node + graph

node : := A(node, . . . , node) 1 identifier 1 identifier

: A(node, . . . , node)

where A ranges over a set of function symbols and an
identifier is simply a name for some node.

In the associated compiler target language Dactl
[14,15], a graph G is represented as the tuple

WG, rootG, Symo, SUCCG, NMarkG, AMarkG)
where in addition to those parts of the tuple described
above we also have:

l NMarko which is a function from No to the set of
node markings {e, *, #“};

l AMarkG which is a function from No to the set of
tuples of arc markings {E,*}*.

A Dactl rule is of the form:

Pattern + Contractum, Xi := yi, . . . , Xi := yip

where after matching the Pattern of the rule with a piece
of the graph representing the current state of the compu-
tation, the Contractum is used to add new pieces of
graph to the existing one and the redirections
x1 :=yi,..., xi := yi are used to redirect a number of
arcs (where the arc pointing to the root of the graph
being matched is usually also involved) to point to
other nodes (some of which will usually be part of the
new ones introduced in the Contractum); the last part of
the rule plzl . . . /+ zj specifies the state of some nodes
(idle, active or suspended).

The Pattern is of the form F[xi : P1 . . . x, : P,] where F
is a symbol name, x1 to x, are node identifiers and Pi to
P,, are patterns. In particular a pattern Pi can be, among
others, of the following forms with associated meanings:

ANY
INT, CHAR, STRING

READABLE

CREATABLE

matches anything;
with obvious mean-
ings;
matches a symbol
name which can only
be matched;
matches a symbol
name which can be
matched and cre-
ated;

REWRITABLE

OVERWRITABLE

(P1+ P2)

(p1 llP2)

(PI - P2)

matches a symbol
name which can be
rewritten with root
overwrites;
matches a symbol
name which can be
overwritten with
non-root overwrites;
matches a symbol
name which is either
P1 or P2;
matches a symbol
name which is both
P1 and P2;
matches a symbol
name which is P1 but
not P2.

The Contractum is also a Dactl graph where, however,
the definitions for node identifiers that appear in the
Pattern need not be repeated. So, for example, the
following rule:

r : F[x : (ANY - 1NT)y : (CHAR + STRING)

vl : OVERWRITABLE

v2 : OVERWRITABLE]

+ans: True,dl : 1,

d2 : 2, r :=* ans, vl :=* dl, v2 :=* d2;

will match that part of a graph which is rooted at
a (rewritable) symbol F with four descendants where
the first matches anything (ANY) but an integer, the
second either a character or a string and the rest over-
writable symbols. Upon selection, the rule will build in
the contract= the new nodes ans, dl and d2 with
patterns True, 1 and 2 respectively; finally, the redirec-
tions part of the rule will redirect the root F to ans and
the sub-roots nodes dl and d2 to 1 and 2 respectively.
The last two non-root redirections model effectively
assignment. A number of syntactic abbreviations can
be applied which lead to the following shorter presenta-
tion of the above rule:

F[x : (ANY - INT) y : (CHAR + STRING)

vl :OVERWRITABLE v2 : OVERWRITABLE]

=+ *True, vl :=* 1, v2 :=* 2;

where + is used for root overwriting and node identifiers
are explicitly mentioned only when the need arises.
Finally, note that all root or sub-root overwritings
involved in a rule reduction are done atomically. So in
the above rule the root rewriting of F and the sub-root

A. Author/Information and Software Technology 38 (1996) 539-547 541

rewritings of vl and v2 will all be performed as an atomic
action.

The way computation evolves is dictated not only by
the patterns specified in a rule system but also by the
control markings associated with the nodes and arcs of
a graph. In particular, * denotes an active node which can
be rewritten and #” denotes a node waiting for n noti-
fications. Notifications are sent along arcs bearing the
notification marking *. Computation then proceeds by
arbitrarily selecting an active node t in the execution
graph and attempting to find a rule that matches at t.
If such rule does not exist (as, for instance, in the case
where t is a constructor) notification takes place: the
active marking is removed from t and a “notification”
is sent up along each ^-marked in-arc of t. When this
notification arrives at its (necessarily) #“-marked source
node p, the L mark is removed from the arc, and the n in
p’s #” marking is decremented. Eventually, #’ is
replaced by *, so suspended nodes wake when all their
subcomputations have notified.

Now suppose the rule indeed matches at active node t.
Then the RHS of that rule specifies the new markings
that will be added to the graph or any old ones that will
be removed. In the example above, for instance, the new
nodes ans, dl and d2 are activated. Since no rules exist
for their patterns (True, 1 and 2 are “values”), when their
reduction is attempted, it will cause the notification of
any node bearing the # symbol and its immediate
activation. This mechanism provides the basis for allow-
ing a number of processes to be coordinated with each
other during their, possibly concurrent, execution.

The following piece of code implements a non-deter-
ministic merge program:

MODULE Merge;
IMPORTS Lists;
SYMBOL REWRITABLE PUBLIC CREATABLE
Merge;
SYMBOL OVERWRITABLE PUBLIC OVER-
WRITABLE Var;

Merge[Cons[x xs] ys zs : Var] + *Merge[xs ys zsl],

zs :=* Cons[xzsl : Var]]

Merge[xs Cons[y ys] zs : Var] =+* Merge[xs ys zsl],

zs :=* Cons[y zsl : Var]]

Merge[Nil ys zs : Var] =+ zs :=* ys]

Merge[xs Nil zs : Var] =+ zs :=* xs]

Merge[l 1 : Var 12 : Var zs] + #Merge[*xs *ys zs];

ENDMODULE Merge;
The module starts with a declaration of all the new

symbols to be used in the program and the way they

are supposed to be used. So, for instance, Merge can
be rewritten in this module but can only be created in
some other module whereas Var, playing the role of a
“variable”, can be overwritten anywhere.

The first four Dactl rules implement the actual merg-
ing of the two lists. Note here the use of := to model
assignment. The fifth rule models the suspension of the
process if none of its first two input arguments is instan-
tiated yet. Note here the use of two notification markings
and just one suspension marking. In general, a node
of the form #P[*pi . . . *p,] will be activated in a non-
deterministic way when some pi notifies. In our example
this technique models the required non-deterministic
merging of the lists. Rules separated by a 1 can be tested
in any order whereas those separated by a ; will be tested
sequentially. Non-determinism in this program is
modelled by means of the (rule separator in the first
two rules which have overlapping input patterns (so if
both the first two arguments of Merge are instantiated to
a list, one of them will be selected arbitrarily) and by the
way the suspension rule is written (which will be acti-
vated when either of the two arguments get instantiated
to a list).

We should also stress again the point that the nodes of
a graph are labelled with symbols for which an associated
access class is specified. In particular, a REWRITABLE
symbol (such as Merge) can be rewritten only by means
of ordinary root redirections whereas an OVER-
WRITABLE symbol (such as Var) can be rewritten
only by means of non-root redirections; also a
CREATABLE symbol can only be used as the name
implies. An overwritable symbol can be “assigned”
values by means of non-root overwrites as many times
as it is required, and can thus play the role of either a
declarative single-assignment variable or the usual
imperative one.

It should be apparent by now that TGRS is a powerful
generalized computational model able to accommodate
the needs of a number of languages, often with divergent
operational semantics such as lazy functional languages,
“eager” concurrent logic languages or combinations of
them. In addition, the implementation of TGRS them-
selves on a variety of (data-flow and graph rewriting)
machines such as Flagship [161 has been extensively
studied. Thus, TGRS can be viewed as playing the role
of an interface between a variety of programming
languages and computer architectures.

In this paper particularemphasis is paid on languages
based on object-oriented programming. In the rest of the
paper we discuss language independent concurrent
object-oriented programming techniques which can be
used as the basis for designing new TGRS based
languages with concurrent object-oriented features or
act as an implementation model and comparison frame-
work for existing languages [17,181, especially functional
[19] and concurrent logic ones [20].

542 G.A. Papadopoulos/Information and Software Technology 38 (1996) 539-547

3. Multi-headed rules

Every TGRS rule as defined in the previous section is
in fact translated to a kernel form where the relationship
between the nodes becomes explicit. For example, the
kernel form of the first rule of the merge program is as
follows

1 : Merge[ll 12 131, 11 : Cons[lll 1121,

lll:ANY, 112:ANY, 12:ANY, 13:Var

4 r : Merge[l12 12 131, rl : Cons[lll r12];

r12 : Var, 1 :=*r, 13 :* rl 1

In traditional TGRS it is customary to enforce
the restriction that all graph nodes comprising the LHS
of some rule should be accessible from the special symbol
root (in our example above the root is the node
1: Merge). Here we propose extending the TGRS frame-
work with the lifting of this restriction in the sense that
all graph nodes should be accessible from some root node
(there can be more than one) which effectively allows the
formation of multi-headed rules. In particular, a rule
now is of the form:

Pattern + Contractum, Xi := yi,. . . ,Xi := yi,

AZ1 ’ ’ ’ /Lj Zj

where Pattern ::= node,. . . , node

The enhancement of the model with multi-headed rules
requires also extending its operational semantics.
Whereas in a traditional rewrite rule:

Head[. . .] + NewHead[. . .]

Head is rewritten to NewHead and garbage collection is
an implicit activity, in the case of a multiple-head rule:

Head, [. . .], Headz[. . .], . . . , Headi[. . .] + RHS

the fate of the heads comprising the LHS of the rule (i.e.
whether they should remain active or removed) must be
specified in the RHS. This can be accomplished in our
framework by allowing the symbols Headi to Headi to
be OVERWRITABLE rather than REWRITABLE
symbols and use the redirection operator : = to overwrite
them to a special symbol not used in the program, thus
effectively eliminating them. As an example the following
rule:

rl : F[. . .], r2 : G[. . .]

-+ *H[. . .],*rl, r2 :=* GARBAGE;

creates a new potential redex H, retains F and removes G
by redirecting it to the special symbol GARBAGE with
an obvious meaning. Thus garbage collection becomes
an active process triggered at pattern matching.

Effectively, we have introduced a “linear” behaviour
to the model where the left hand side of a rewrite rule
denotes resources to be consumed and the right hand side
denotes resources to be produced as in the following
general rule

Pl@P2@P3-Ql@Q2

of Linear Logic [lo] where resources Pl to P3 must be
consumed in order to produce Ql and 42. (Note that in
our example above the resource rl has been consumed
and then immediately produced; the inclusion of it in the
RHS of the rule is an obvious optimization to the alter-
native approach of redirecting it to GARBAGE only to
create again a copy of it in the RHS of the rule.) This
allows our model to be used in other frameworks such as
planning [21] but we do not pursue this subject here any
further.

4. Object-oriented programming using multi-head TGRS

The relationship between multi-headed TGRS rewrite
rules of the form:

Hl,. . . , Hn+B

and Object-Oriented Programming can be understood if
one views the multiple heads Hl, . . . , Hn as object
“slots” for method invocation. Encapsulation and hiding
is then modelled by having rewrite rules which use only a
subset of Hl,... , Hn. Also, inheritance is achieved by
creating objects which inherit heads Hi from either a
single other object (single inheritance) or many objects
(multiple inheritance). In particular, we can view such a
set of multi-headed rewrite rules as defining some object
class as follows:

Class-Name, Message-Queue, Attributel, . . . ,

AttributeN + Class-Name,

Updated-Message-Queue,

Updated_ Attributel, . . . ,

Updated_ AttributeN]

. . .

Class-Name, Message-Queue, Attributel, . . . ,

AttributeN + Class-Name,

Updated-Message-Queue,

Updated_Attributel, . . . ,

Updated_ AttributeN;

where messages sent to the object invoke object’s
methods and we have a particular rule for each such

A. Author/Information and Software Technology 38 (1996) 539-547 543

method. Note that the second argument is effectively a
message queue where each message triggers a particular
method by invoking the corresponding rewrite rule.

We use the typical 2-D point example to show a parti-
cular case of the above modelling apparatus.

Point, Cons[Clear rest], X_COORD[x : INT],

Y_COORD[y : INT] 4 Point, rest,

X_COORD[O], Y_COORD[O]]

Point, Cons[Move[dx dy] rest],

X_COORD[x : INT], Y_COORD[y : INT]

-i Point, rest,

#X_COORD[* *IAdd[dx xl],

#Y_COORD[**IAdd[dyy]];

The first head plays the role of class id (an object of
type Point), the second is a stream of messages to the
object, and the rest are this object’s arguments; finally,
each rule denotes a method invocation. One could also
define the following method which projects the target
point on the x-axis.

Point, Cons[ProjectX rest], Y_COORD[y : INT]

--+ Point, rest, Y_COORD[O];

Note that the particular method does not need to
know the value of the x-coordinate. Now one is also
able to define methods for a coloured 2-D point.

Point, Cons[GetColour[m] rest],

X_COORD[x : INT], Y_COORD[y : INT],

Colour[c : COLOUR] -+ Point, rest,

X_COORD[x], Y_COORD[y],

Colour[c], m :=*c;

The above method returns in m the colour of the 2-D
point. Note that all previously defined methods for any
2-D point are still applicable. In the same way methods
for a 3-D coloured point can be defined as follows:

Point, Cons[Set_3D_Black rest],

X_COORD[x: INT], Y_COORD[y : INT],

Z_COORD(z : INT], Colour[c : COLOUR]

-+ Point, rest, X_COORD[x], Y_COORD[y],

Z_ COORD [z] , Colour [Black];

Again all methods defined for a 2-D and 2-D coloured
point are applicable to’s 3-D coloured one.

4.1. Broadcast-like object communication

If desired, a more flexible object invocation and com-
munication strategy can be used where even messages
themselves are heads in a multi-headed rewrite rule.
We illustrate the repercussions of such an approach by
means of the following example, similar to the previous
one, and modelling a drawing agent. This example serves
also in showing how a not fully defined class (what is
referred to as deferred class in Eifel or abstract superclass
in Smalltalk) can be modelled in the enhanced TGRS
framework.

Create-New-Figure + *Drawing, * Noshape,

*ID[s : VAR], * Centre[point : PIO O]];

Drawing, ID[s], Centre[point : P[x y]],

Move[snewcoord : C[dxdy]] -+ Drawing, ID[s],

Ack[s], #Centre[##P[**IAdd[xdx]

Drawing, ID[s], Noshape, Make_Square[s a]

-+ Drawing, ID[s], * Ack[s], * Square, * Side[a]]

Square, ID[s], Side[a], Centreboint], Print[s]

+ *Square, * ID[s], * Side[a], * Centre[point] ,

*Line[ml : Var m2 : Var] , * Line[m2 m3 : Var] ,

*Line[m3 m4 : Var], * Line[m4ml];

The first rule creates a drawing figure comprising a
class name (Drawing), an initial shape which is not
defined yet (Noshape), an id (whose purpose will be
explained shortly) and an initial position on the screen
(coordinates 0,O). The second rule moves the (still
abstract in form) object, the third one gives it a concrete
shape (a square) and the final one displays it (here we
assume the presence of some other agent receiving the
Line messages and displaying the sides of the square after
computing their length using the rest of the information
available for the object). Note that this time there is no
explicit stream of method invocation messages consumed
by an object. Instead, the method messages
(Move, Make-Square, Print, etc.) is posted on the
forum by the requesting agent and captured by the
pattern matching performed in the left hand sides of
the rewrite rules. So how is it possible now to send
messages to a specific object? This is achieved by means
of the pointer equality and node sharing mechanisms
available in TGRS [l]. In particular, we associate with
every object creation a unique new graph node playing
the role of an object id. In order to send a message to a
specific object, the message is posted to the forum (i.e. the
whole graph apparatus) but it carries with it the id of
the object it is meant to be consumed by. The receiver

544 G.A. Papaabpoulos~haformation and Software Technology 38 (19%) 539-547

of the message is discovered by means of the pointer
equality performed in the left hand side of the corre-
sponding rewrite rule. So the rule

involving redirection i.e.:

Drawing, ID[s], Noshape, Make_Square[s a]

+ Drawing, ID[s], * Ack[s], * Square,

*Side[a] 1

rl : Drawing, r2 : ID[s], r3 : Noshape,

r4 : Make_Square[sa] --t *rl, * r2, * Ack[s],

*Square, * Side[a], r3 :=* GARBAGE,

r4 :=* GARBAGE]

will be selected for the benefit of that object which is
sharing the graph node s with the posted message
Make-Square. The benefit of this approach is that it is
more flexible than the traditional stream-based approach
described in the previous section since it does not require
possibly complex stream manipulation operations
such as merging, one-to-many specific communication
patterns, etc. However, there is still need for developing
some sort of send-acknowledgment protocol between the
concurrently executing agents. This is achieved by means
of the Ack message sent back to the forum by the object
receiving a method invocation message which denotes
that the requested operation has been performed.

To recapitulate, we can think of this framework as
modelling a public forum (the graph structure) and a
number of messages travelling and “interacting” with
objects by means of rewrite rules, causing their elimina-
tion from the forum and the changing of the object’s
state.

4.2. Tuple-based object handling

Note that this approach is reminiscent of the Linda-
type “tuple space”; in fact one can model the funda-
mental Linda operations as illustrated by the following
elementary rules:

Datal[x:INT]-+...;

More restrictive approaches to the issue of object
representation, manipulation and invocation are also
possible to be developed within our framework. In
particular the rules could consist of two heads only
where the first one denotes the received message and
the second one is a tuple with all the information perti-
nent to an object. Here again sharing and pointer equal-
ity are used to denote the intended receiver object of
some message as in the following bounded buffer
example.

r : Data2[x : INT] + . . . , r :=* GARBAGE;

LHS --f* Data3[42];

r : Datal[x : Var] + #r;

r : Data2[x : Var] + #r;

MODULE Buffer;
IMPORTS Messages; Objects;
SYMBOL OVERWRITABLE PUBLIC OVER-
WRITABLE Buffer;
PATTERN PUBLIC BUFFER = Buffer[ANY];

which correspond to the operations rd(“datal”,?x),
in(“data2”,?x) and out(“data3”,42) respectively i.e.
read a tuple from the tuple space with an integer value
and suspend if it is unavailable, remove a similar tuple
and again suspend if it is unavailable and finally add to
the forum a tuple.

A final point regarding this particular approach which
must be addressed is what happens to the messages
received (by means of pattern matching) by some object.
These messages should obviously be removed from the
forum. So the actual operational interpretation of a rule
such as

Message[object : BUFFER Put[item]],

Object[object contents : LISTlimit : INTin : INT

out : INT] + #IF[^ILt[**ISub[in out] limit]

then], then : #Object[object Cons[item contents]

limit **IAdd[in l] out])

Drawing, ID[s], Noshape, Make_Square[s a]

--) Drawing, ID[s], * Ack[s], * Square, * Side[a]]

Message[object : BUFFER Get[rep_object]],

Object[object Cons[item rest] limit : INT in : INT

out : INT] --t #Object[object rest limit in

A *IAdd[out l]], * Message[rep_object

Reply [item]];

ENDMODULE Buffer;

is that after matching the rule, all the nodes comprising The buffer object comprises five arguments being the
the left hand side are removed from the graph (i.e. con- class name, a list of items (its contents), and three integer
sumed) and those specified in the right hand side are values representing the bound, the number of items
created. This is done by means of the usual technique inserted in the buffer and the number of items removed

A. Author/Information and Software Technology 38 (1996) 539-547 545

from the buffer so far. The first rewrite rule handles a put
message and before servicing it checks whether the buffer
is not full (in-out should be less than limit). The second
rewrite rule handles a get message; here the checking on
whether the buffer is empty is done implicitly by the
pattern matching performed in the left hand side of the
rewrite rule which with respect to the second argument of
Object should match a Cons-[item rest]. Note that a
message is represented by a tuple of the form
Message[object_idmessage] and an object by a tuple of
the form Object[object_id : Class-name attributes]. Note
also that the class name is the pattern BUFFER whose
exact format is the overwritable node Buffer with one
argument of unspecified type (ANY). The reason for
not using just Buffer (without an argument) for class id
and for having it declared as an overwritable node
(which is usually done for variables) will become appar-
ent in the rest of this section and the following one.

To illustrate how inheritance is achieved in this more
restrictive framework we give below the implementation
of a BUFFER2 subclass to BUFFER which, in addition,
can also serve a get2 message requesting the handling of
two elements at once.

in fact first class citizens. It has recently been shown [13]
that this approach helps in solving the so called inherit-
ance anomaly problem which arises often when inherit-
ance is combined with concurrency [22]. In particular, in
order to enforce a proper way of an object receiving
messages there is a need to impose synchronization con-
straints by means of associated synchronization code.
However, it is often the case that this synchronization
code cannot be inherited by other objects without requir-
ing extensive modifications. A typical case, which inci-
dentally requires multiple inheritance, is the bounded
buffer example just presented. Consider having a class
Lockable of lockable objects in general; a lockable
bounded buffer object then, which ignores get or put
messages when it is locked, could be defined by multiple
inheritance from bounded buffers and lockable objects
where the standard approach is to add a boolean value
attribute to ascertain whether the state of the object is
locked or unlocked. It becomes immediately apparent,
however, that although the issue of a buffer being locked
is orthogonal to that of receiving get or put messages, the
methods for these two messages must be redefined in
order to test the value of the boolean attribute before
accepting any of those messages.

MODULE Buffer2;
IMPORTS Messages; Objects; Buffer;
SYMBOL OVERWRITABLE PUBLIC OVERWRI-
TABLE Buffer2;
PATTERN PUBLIC BUFFER2 = Buffer [Bulfer2];

A way to solve this problem along the technique pro-
posed in [13] is to note that class names are first class
citizens, whose value can in fact change. We illustrate
this solution by first defining a class of lockable objects.

Message[object : BUFFER2 Get2[rep_object]],

Object[object Cons[iteml Cons[item% rest]]

limit : INTin : INTout : OUT] + *Object

[object rest limit in out], * Message[rep_object

Reply[iteml itema]];

ENDMODULE Buffer2;

MODULE Lockable;
IMPORTS Messages; Objects;
SYMBOL OVERWRITABLE PUBLIC OVERWRI-
TABLE Lockable;
PATTERN PUBLIC LOCKABLE = Lockable[ANY];

Message[obj_class Lock], r : Object[obj._class . . .]

-+ *r, obj_class :=* Locked[obj_class]]

Message[obj_class UnLock],

To understand how inheritance has been implemented
in this case, compare the (more restrictive) pattern of
BUFFER2 with the (more general) one of its superclass
BUFFER and note that the rewrite rules for the get and
put messages can still be used in BUFFER2. In particu-
lar messages of the form:

r : Object[cl : Locked[obj_class] . . .]

--+ *r, cl :=* obj_class;

ENDMODULE Lockable;

Message[object : BUFFER2 Put[item]]

Message[object : BUFFER2 Get[rep_object]]

will be accepted by the rewrite rules of Buffer without
any modifications.

4.3. Class name as first class citizen

where . . . denotes a variable number of arguments. Here
it becomes apparent why the class names are declared as
overwritable nodes; a lock or unlock message causes the
graph node representing the class name to be overwritten
to Locked[class_name] and back to class-name respect-
ively. Thus, a lockable bounded buffer can now be
defined as follows.

In all the previous approaches for modelling object- MODULE Lockable_BB;
oriented behaviour we must note that the class names are IMPORTS Messages; Objects; Buffer; Lockable;

546 G.A. Papadopoulos/Information and Software Technology 38 (19%) 539-547

SYMBOL OVERWRITABLE PUBLIC OVER-
WRITABLE Lockable_ Buffer;
PATTERN PUBLIC LOCKABLE-BUFFER =
(Buffer[ANY] + Lockable[ANYl);
ENDMODULE Lockable_BB;

where we recall that + is the union pattern operator. The
trick here is that if a buffer object receives a lock message,
its class name changes from Buffer[Aw to Locked[Buf-
fer[ANY]] and the rewrite rules for get, get2 or put
cannot match, thus preventing the object from accepting
messages until it receives an unlock message which will
change its class name back to Buffer[ANY& Note, how-
ever, that this is achieved without having to modify at all
the code for these particular methods. Note also that
there are no new rules for the class Lockable-Buffer
which simply inherits those of Buffer and Lockable with-
out having to modify them in any way. All messages such
as

Message[object : LOCKABLE-BUFFER

Put[item]],

Message[object : LOCKABLE-BUFFER Lock]

can be handled by the existing rules.

5. Conclusions-related and further work

We have presented a highly parallel execution model
for Object-Oriented Programming based on the Term
Graph Rewriting Systems computational model. The
advantages of using the TGRS based model for Object-
Oriented Programming which was presented in this
paper can be summarized as follows:

The model is highly parallel at all levels of interaction
between the concurrently executing entities (agents,
objects, messages, etc.).
The proposed framework is completely language inde-
pendent; for instance, there is no commitment to
adhering to, say, specific synchronization mechanisms;
thus, it can act as a basis for both implementing a
variety of concurrent object-oriented languages and
comparing various approaches to object-orientation
using TGRS as a common intermediate representation.
Since TGRS languages have been implemented on
parallel configurations [5,23] the mappings we have
described in this paper form effectively an imple-
mentation apparatus.

There are a couple of additional areas where we believe
this work is making some contribution. By mapping
some other computational model onto TGRS or by
showing how the latter can model the behaviour of the
former one does not only provide an implementation

route for the computational model in question but in
addition a further appreciation is gained of TGRS’
potential as a computational model and understanding
and re-interpretation of the model’s behaviour from
other computational models’ points of view. For
instance, we have seen how (multiple) root overwriting
can be used to model a linear behaviour needed in
consuming messages to objects and also the benefits of
modelling classes as OVERWRITABLE nodes and
finally the viewing of the union (+) operator as a form
of overloading.

The relationship between multi-headed rules and OOP
has been exploited in a number of other computational
models such as [24] and in fact our framework can be
used as a TGRS-based implementation route for a subset
of the model presented there without backtracking and
splitting of context. In the TGRS framework we first
introduced multi-headed rules in [8] albeit for a rather
different reason, namely to show that they can be used to
model the entailment relationship in concurrent con-
straint programming.

We are currently examining ways to implement effi-
ciently the multi-headed pattern matching and in the
process we draw expertise from other models [4,20,24]
which use similar mechanisms. There are a number of
problems that must be addressed; one is the issue of
pattern matching since graph nodes participating in a
multi-head rewriting can now be anywhere in the graph
forum. Another problem is atomicity of rewriting and in
particular whether upon matching a rule of the form

Headi [. . .], Headz[. . .], . . . , Headi[. . .] + RHS

all heads must be matched atomically or they can be
matched asynchronously. If the latter is allowed then it
is possible to collapse the multi-headed pattern matching
to the more efficient single-head pattern matching. We
believe that it is possible to enforce this restriction with-
out compromising heavily the model’s expressiveness.
Furthermore, a number of additional restrictions may
be enforced leading effectively to a model similar to
MONSTR [5,11] but allowing multi-headed pattern
matching and a form of interaction not only between
overwritable nodes [9] but also during multi-headed pat-
tern matching.

An interpretive approach is the most straightforward
way to provide a first implementation. This would be
very useful not only in further understanding the
repercussions of the proposed extensions but also
because (term) graphs can be used as object-oriented
based intermediate forms [23] for many applications.

Reference

[l] H.P. Barendregt, M.C.J.D. Eekelen, J.R.W. Glauert, J.R. Kenn-
away, M.J. Plasmeijer and M.R. Sleep, Tern graph rewriting,

A. Author/Information and Software Technology 38 (1996) 539-547 547

Proc. PARLE’87, Eindhoven, The Netherlands, 15-19 June, 1987.
LNCS 259, Springer-Verlag, pp. 141-158.

[2] M.R. Sleep, M.J. Plasmeijer and M.C.J.D. Eekelen (eds.), Term
Graph Rewriting: Theory and Practice, John Wiley, New York,
1993.

[3] K. Hammond, Parallel SML: A Functional Language and its
Implementation in Dactl, PhD Thesis, School of Information Sys-
tems, University of East Anglia, Norwich, UK, Pitman Publishers,
1990.

[4] J.R. Kennaway, Implementing term rewrite languages in Dactl,
Theoretical Computer Science 72 (1990) 225-250.

[5] R. Banach and G.A. Papadopoulos, Parallel term graph rewriting
and concurrent logic programs, Proc. Parallel and Distributed
Processing ‘93, Sofia, Bulgaria 4-7 May, 1993, Bulgarian Acad-
emy of Sciences, pp. 303-322.

[6] J.R.W. Glauert and G.A. Papadopoulos, A parallel implementa-
tion of GHC, Proc. FGCS’88, Tokyo, Japan, 28 Nov.-2 Dec.,
1988, pp. 1051-1058.

[7] G.A. Papadopoulos, A fine grain parallel implementation of
parlog, Proc. TAPSOFT’89, Barcelona, Spain, 13-17 March,
1989, LNCS 352, Springer-Verlag, pp. 313-327.

[8] R. Banach and G.A. Papadopoulos, A highly parallel model for
object-oriented concurrent constraint programming, Proc. IEEE
1st ICA3PP, Brisbane, Australia, 19-21 April, 1995, IEEE Press,
pp. 61-70.

[9] R. Banach and G.A. Papadopoulos, Linear behaviour of term
graph rewriting programs, Proc. ACM SAC’95, Nashville, TN,
USA, 26-28 Feb., 1995, ACM Press, pp. 157-163.

[lo] J.-Y. Girard, Linear Logic, Theoretical Computer Science, 50
(1987) l-102.

[l 1) R. Banach, J. Balazs and G.A. Papadopoulos, Translating the pi-
calculus into MONSTR, Journal of Universal Computer Science,
1 (1995) 335-394.

[12] J.R.W. Glauert, Asynchronous mobile processes and graph
rewriting, Proc. PARLE’92, Paris, France, 15-18 June, 1992,
LNCS 605, Springer-Verlag, pp. 63-78.

[13] J. Meseguer, Solving the inheritance anomaly in concurrent
object-oriented programming, Proc. ECOOP’93, Kaiserslautem,
Germany, 26-30 July, 1993, LNCS 707, Springer-Verlag, pp. 220-
246.

[14] J.R.W. Glauert, K. Hammond, J.R. Kennaway and G.A. Papa-
dopoulos, Using Dactl to implement declarative languages, Proc.
CONPAR’88, Manchester, UK, 12-16 Sept, 1988, Cambridge
University Press, pp. 116-124.

[15] J.R.W. Glauert, J.R. Kennaway and M.R. Sleep, Dactl: an experi-
mental graph rewriting language, Proc. GRA GRA, LNCS 532,
Springer-Verlag, 1990, pp. 378-395.

[16] J.A. Keane, An overview of the flagship system, Journal of Func-
tional Programming 4 (1994) 19-45.

[17] G. Agha, P. Wegner and A. Yonezawa (eds.), Research Directions
in Object-Based Concurrency, MIT Press, Cambridge, MA, 1993.

[18] A. Yonezawa and M. Tokoro (eds.), Object-Oriented Concurrent
Programming, MIT Press, Cambridge, MA, 1987.

[19] J. Sargeant, Uniting functional and object-oriented programming,
Proc. 1st JSST, Kanazawa, Japan, 4-6 Nov., 1993, LNCS 742,
Springer-Verlag, 1993, pp. l-26.

[20] Y. Goldberg, W. Silverman and E.Y. Shapiro, Logic programs
with inheritance, Proc. FGCS’92, Tokyo, Japan, l-5 June, 1992,
2, pp. 951-960.

[21] A. Guglielmi, Concurrency and plan generation in a logic pro-
gramming language with a sequential operator, Proc. ICLP’94,
Santa Margherita, Italy, 13-18 June, 1994, MIT Press, pp. 240-
254.

[22] S. Matsuoka, K. Taura and A. Yonezawa, Highly efficient and
encapsulated reuse of synchronization code in concurrent object-
oriented languages, Proc. 8th OOPSLA’93, Washington DC,
USA, 26-28 Sept., 1993, ACM Press, 1993, pp. 109-126.

[23] J.F.Th. Kamperman, GEL, a Graph Exchange Language, Tech-
nical Report, CWI, Amsterdam, The Netherlands, 1994.

[24] J.-M. Andreoli and R. Pareschi, Linear objects: logical processes
with built-in inheritance, Proc. ICLP’90, Jerusalem, Israel, 18-20
June, 1990, MIT Press, pp. 495-510.

