
INFORMATION 

ELSEVIER Information and Software Technology 38 (1996) 539-547 

AND 
SOF7WlRE 

IECH- 

Concurrent object-oriented programming 
techniques 

using term graph rewriting 

George A. Papadopoulos 

Department of Computer Science, University of Cyprus, 75 Kallipoleos Str., Nicosia, P.O.B. 537, CY 1678, Cyprus 

Received 24 December 1994; accepted 5 December 1995 

Abstract 

The generalized computational model of Term Graph Rewriting Systems is used as the basis for expressing concurrent object- 
oriented programming techniques exploiting the fine grain highly parallel features of TGRS in a language independent fashion that 
renders it able to act as the basis for developing specific languages based on object-orientation but also to study and compare existing 
approaches to the modelling of object-oriented programming techniques such as delegation, various forms of inheritance, etc. 
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1. Introduction 

The generalized computational model of Term Graph 
Rewriting Systems (TGRS) [1,2] has been used exten- 
sively as an implementation vehicle for a number of, 
often divergent, programming paradigms ranging from 
the traditional functional programming ones [3,4] to the 
(concurrent) logic programming ones [5-71. Recent 
studies have shown that TGRS are also able to act as a 
means for implementing languages based on computa- 
tional models such as Concurrent Constraint Program- 
ming [8], Linear Logic [9,10] and 7r-calculus [I 1,121. 

In this paper we use TGRS and we exploit the high 
degree of fine grain parallelism available in the model in 
expressing a variety of concurrent object-oriented pro- 
gramming techniques. Being our framework language 
independent, it can serve as a basis for designing new 
concurrent object-oriented languages, implementing 
existing ones or act as a point of reference in comparing 
different approaches proposed by various languages 
to modelling certain OOP techniques such as delegation, 
inheritance, etc. but also to solving any associated pro- 
blems encountered [ 131. 

The rest of the paper is organized as follows. The next 
section introduces the model of Term Graph Rewriting 
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Systems with some emphasis on the associated language 
Dactl which we will be using as our implementation 
platform. The following section introduces an extension 
to the model and shows how this extended TGRS frame- 
work can be used to model OOP techniques. The paper 
ends with some conclusions and a short discussion on 
further and related research. 

2. Term graph rewriting and Dactl 

The TGRS model of computation is based around the 
notion of manipulating term graphs or simply graphs. In 
particular, a program is composed of a set of graph 
rewriting rules L + R which specify the transformations 
that could be performed on those parts of a graph 
(redexes) which match some LHS of such a rule and 
can thus evolve to the form specified by the correspond- 
ing RHS. Usually [l], a graph G is represented as the 
tuple (No, rooto, Symo, Succo) where: 

No is the set of nodes for G; 
rooto is a special member of NG, the root of G; 
Symo is a function from No to the set of all function 
symbols; 
Succo is a function from No to the set of tuples N& 
such that if Succ (N) = (Ni . . . Nk) then k is the arity 
of N and Ni Nk are the arguments of N. 
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Note that the arguments of a graph node are identified 
by position and in fact we write Succ (N,i) to refer to the 
ith argument of N using a left-to-right ordering. The 
context-free grammar for describing a graph could be 
something like: 

graph : := node 1 node + graph 

node : := A(node, . . . , node) 1 identifier 1 identifier 

: A(node, . . . , node) 

where A ranges over a set of function symbols and an 
identifier is simply a name for some node. 

In the associated compiler target language Dactl 
[14,15], a graph G is represented as the tuple 

WG, rootG, Symo, SUCCG, NMarkG, AMarkG) 
where in addition to those parts of the tuple described 
above we also have: 

l NMarko which is a function from No to the set of 
node markings {e, *, #“}; 

l AMarkG which is a function from No to the set of 
tuples of arc markings {E,*}*. 

A Dactl rule is of the form: 

Pattern + Contractum, Xi := yi, . . . , Xi := yip 

where after matching the Pattern of the rule with a piece 
of the graph representing the current state of the compu- 
tation, the Contractum is used to add new pieces of 
graph to the existing one and the redirections 
x1 :=yi,..., xi := yi are used to redirect a number of 
arcs (where the arc pointing to the root of the graph 
being matched is usually also involved) to point to 
other nodes (some of which will usually be part of the 
new ones introduced in the Contractum); the last part of 
the rule plzl . . . /+ zj specifies the state of some nodes 
(idle, active or suspended). 

The Pattern is of the form F[xi : P1 . . . x, : P,] where F 
is a symbol name, x1 to x, are node identifiers and Pi to 
P,, are patterns. In particular a pattern Pi can be, among 
others, of the following forms with associated meanings: 

ANY 
INT, CHAR, STRING 

READABLE 

CREATABLE 

matches anything; 
with obvious mean- 
ings; 
matches a symbol 
name which can only 
be matched; 
matches a symbol 
name which can be 
matched and cre- 
ated; 

REWRITABLE 

OVERWRITABLE 

(P1+ P2) 

(p1 llP2) 

(PI - P2) 

matches a symbol 
name which can be 
rewritten with root 
overwrites; 
matches a symbol 
name which can be 
overwritten with 
non-root overwrites; 
matches a symbol 
name which is either 
P1 or P2; 
matches a symbol 
name which is both 
P1 and P2; 
matches a symbol 
name which is P1 but 
not P2. 

The Contractum is also a Dactl graph where, however, 
the definitions for node identifiers that appear in the 
Pattern need not be repeated. So, for example, the 
following rule: 

r : F[x : (ANY - 1NT)y : (CHAR + STRING) 

vl : OVERWRITABLE 

v2 : OVERWRITABLE] 

+ans: True,dl : 1, 

d2 : 2, r :=* ans, vl :=* dl, v2 :=* d2; 

will match that part of a graph which is rooted at 
a (rewritable) symbol F with four descendants where 
the first matches anything (ANY) but an integer, the 
second either a character or a string and the rest over- 
writable symbols. Upon selection, the rule will build in 
the contract= the new nodes ans, dl and d2 with 
patterns True, 1 and 2 respectively; finally, the redirec- 
tions part of the rule will redirect the root F to ans and 
the sub-roots nodes dl and d2 to 1 and 2 respectively. 
The last two non-root redirections model effectively 
assignment. A number of syntactic abbreviations can 
be applied which lead to the following shorter presenta- 
tion of the above rule: 

F[x : (ANY - INT) y : (CHAR + STRING) 

vl :OVERWRITABLE v2 : OVERWRITABLE] 

=+ *True, vl :=* 1, v2 :=* 2; 

where + is used for root overwriting and node identifiers 
are explicitly mentioned only when the need arises. 
Finally, note that all root or sub-root overwritings 
involved in a rule reduction are done atomically. So in 
the above rule the root rewriting of F and the sub-root 
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rewritings of vl and v2 will all be performed as an atomic 
action. 

The way computation evolves is dictated not only by 
the patterns specified in a rule system but also by the 
control markings associated with the nodes and arcs of 
a graph. In particular, * denotes an active node which can 
be rewritten and #” denotes a node waiting for n noti- 
fications. Notifications are sent along arcs bearing the 
notification marking *. Computation then proceeds by 
arbitrarily selecting an active node t in the execution 
graph and attempting to find a rule that matches at t. 
If such rule does not exist (as, for instance, in the case 
where t is a constructor) notification takes place: the 
active marking is removed from t and a “notification” 
is sent up along each ^-marked in-arc of t. When this 
notification arrives at its (necessarily) #“-marked source 
node p, the L mark is removed from the arc, and the n in 
p’s #” marking is decremented. Eventually, #’ is 
replaced by *, so suspended nodes wake when all their 
subcomputations have notified. 

Now suppose the rule indeed matches at active node t. 
Then the RHS of that rule specifies the new markings 
that will be added to the graph or any old ones that will 
be removed. In the example above, for instance, the new 
nodes ans, dl and d2 are activated. Since no rules exist 
for their patterns (True, 1 and 2 are “values”), when their 
reduction is attempted, it will cause the notification of 
any node bearing the # symbol and its immediate 
activation. This mechanism provides the basis for allow- 
ing a number of processes to be coordinated with each 
other during their, possibly concurrent, execution. 

The following piece of code implements a non-deter- 
ministic merge program: 

MODULE Merge; 
IMPORTS Lists; 
SYMBOL REWRITABLE PUBLIC CREATABLE 
Merge; 
SYMBOL OVERWRITABLE PUBLIC OVER- 
WRITABLE Var; 

Merge[Cons[x xs] ys zs : Var] + *Merge[xs ys zsl], 

zs :=* Cons[xzsl : Var]] 

Merge[xs Cons[y ys] zs : Var] =+* Merge[xs ys zsl], 

zs :=* Cons[y zsl : Var]] 

Merge[Nil ys zs : Var] =+ zs :=* ys] 

Merge[xs Nil zs : Var] =+ zs :=* xs] 

Merge[l 1 : Var 12 : Var zs] + #Merge[ *xs *ys zs]; 

ENDMODULE Merge; 
The module starts with a declaration of all the new 

symbols to be used in the program and the way they 

are supposed to be used. So, for instance, Merge can 
be rewritten in this module but can only be created in 
some other module whereas Var, playing the role of a 
“variable”, can be overwritten anywhere. 

The first four Dactl rules implement the actual merg- 
ing of the two lists. Note here the use of := to model 
assignment. The fifth rule models the suspension of the 
process if none of its first two input arguments is instan- 
tiated yet. Note here the use of two notification markings 
and just one suspension marking. In general, a node 
of the form #P[ *pi . . . *p,] will be activated in a non- 
deterministic way when some pi notifies. In our example 
this technique models the required non-deterministic 
merging of the lists. Rules separated by a 1 can be tested 
in any order whereas those separated by a ; will be tested 
sequentially. Non-determinism in this program is 
modelled by means of the ( rule separator in the first 
two rules which have overlapping input patterns (so if 
both the first two arguments of Merge are instantiated to 
a list, one of them will be selected arbitrarily) and by the 
way the suspension rule is written (which will be acti- 
vated when either of the two arguments get instantiated 
to a list). 

We should also stress again the point that the nodes of 
a graph are labelled with symbols for which an associated 
access class is specified. In particular, a REWRITABLE 
symbol (such as Merge) can be rewritten only by means 
of ordinary root redirections whereas an OVER- 
WRITABLE symbol (such as Var) can be rewritten 
only by means of non-root redirections; also a 
CREATABLE symbol can only be used as the name 
implies. An overwritable symbol can be “assigned” 
values by means of non-root overwrites as many times 
as it is required, and can thus play the role of either a 
declarative single-assignment variable or the usual 
imperative one. 

It should be apparent by now that TGRS is a powerful 
generalized computational model able to accommodate 
the needs of a number of languages, often with divergent 
operational semantics such as lazy functional languages, 
“eager” concurrent logic languages or combinations of 
them. In addition, the implementation of TGRS them- 
selves on a variety of (data-flow and graph rewriting) 
machines such as Flagship [ 161 has been extensively 
studied. Thus, TGRS can be viewed as playing the role 
of an interface between a variety of programming 
languages and computer architectures. 

In this paper particularemphasis is paid on languages 
based on object-oriented programming. In the rest of the 
paper we discuss language independent concurrent 
object-oriented programming techniques which can be 
used as the basis for designing new TGRS based 
languages with concurrent object-oriented features or 
act as an implementation model and comparison frame- 
work for existing languages [ 17,181, especially functional 
[19] and concurrent logic ones [20]. 
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3. Multi-headed rules 

Every TGRS rule as defined in the previous section is 
in fact translated to a kernel form where the relationship 
between the nodes becomes explicit. For example, the 
kernel form of the first rule of the merge program is as 
follows 

1 : Merge[ll 12 131, 11 : Cons[lll 1121, 

lll:ANY, 112:ANY, 12:ANY, 13:Var 

4 r : Merge[l12 12 131, rl : Cons[lll r12]; 

r12 : Var, 1 :=*r, 13 :* rl 1 

In traditional TGRS it is customary to enforce 
the restriction that all graph nodes comprising the LHS 
of some rule should be accessible from the special symbol 
root (in our example above the root is the node 
1: Merge). Here we propose extending the TGRS frame- 
work with the lifting of this restriction in the sense that 
all graph nodes should be accessible from some root node 
(there can be more than one) which effectively allows the 
formation of multi-headed rules. In particular, a rule 
now is of the form: 

Pattern + Contractum, Xi := yi,. . . ,Xi := yi, 

AZ1 ’ ’ ’ /Lj Zj 

where Pattern ::= node,. . . , node 

The enhancement of the model with multi-headed rules 
requires also extending its operational semantics. 
Whereas in a traditional rewrite rule: 

Head[. . .] + NewHead[. . .] 

Head is rewritten to NewHead and garbage collection is 
an implicit activity, in the case of a multiple-head rule: 

Head, [. . .], Headz[. . .], . . . , Headi[. . .] + RHS 

the fate of the heads comprising the LHS of the rule (i.e. 
whether they should remain active or removed) must be 
specified in the RHS. This can be accomplished in our 
framework by allowing the symbols Headi to Headi to 
be OVERWRITABLE rather than REWRITABLE 
symbols and use the redirection operator : = to overwrite 
them to a special symbol not used in the program, thus 
effectively eliminating them. As an example the following 
rule: 

rl : F[. . .], r2 : G[. . .] 

-+ *H[. . .],*rl, r2 :=* GARBAGE; 

creates a new potential redex H, retains F and removes G 
by redirecting it to the special symbol GARBAGE with 
an obvious meaning. Thus garbage collection becomes 
an active process triggered at pattern matching. 

Effectively, we have introduced a “linear” behaviour 
to the model where the left hand side of a rewrite rule 
denotes resources to be consumed and the right hand side 
denotes resources to be produced as in the following 
general rule 

Pl@P2@P3-Ql@Q2 

of Linear Logic [lo] where resources Pl to P3 must be 
consumed in order to produce Ql and 42. (Note that in 
our example above the resource rl has been consumed 
and then immediately produced; the inclusion of it in the 
RHS of the rule is an obvious optimization to the alter- 
native approach of redirecting it to GARBAGE only to 
create again a copy of it in the RHS of the rule.) This 
allows our model to be used in other frameworks such as 
planning [21] but we do not pursue this subject here any 
further. 

4. Object-oriented programming using multi-head TGRS 

The relationship between multi-headed TGRS rewrite 
rules of the form: 

Hl,. . . , Hn+B 

and Object-Oriented Programming can be understood if 
one views the multiple heads Hl, . . . , Hn as object 
“slots” for method invocation. Encapsulation and hiding 
is then modelled by having rewrite rules which use only a 
subset of Hl,... , Hn. Also, inheritance is achieved by 
creating objects which inherit heads Hi from either a 
single other object (single inheritance) or many objects 
(multiple inheritance). In particular, we can view such a 
set of multi-headed rewrite rules as defining some object 
class as follows: 

Class-Name, Message-Queue, Attributel, . . . , 

AttributeN + Class-Name, 

Updated-Message-Queue, 

Updated_ Attributel, . . . , 

Updated_ AttributeN] 

. . . 

Class-Name, Message-Queue, Attributel, . . . , 

AttributeN + Class-Name, 

Updated-Message-Queue, 

Updated_Attributel, . . . , 

Updated_ AttributeN; 

where messages sent to the object invoke object’s 
methods and we have a particular rule for each such 
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method. Note that the second argument is effectively a 
message queue where each message triggers a particular 
method by invoking the corresponding rewrite rule. 

We use the typical 2-D point example to show a parti- 
cular case of the above modelling apparatus. 

Point, Cons[Clear rest], X_COORD[x : INT], 

Y_COORD[y : INT] 4 Point, rest, 

X_COORD[O], Y_COORD[O]] 

Point, Cons[Move[dx dy] rest], 

X_COORD[x : INT], Y_COORD[y : INT] 

-i Point, rest, 

#X_COORD[ * *IAdd[dx xl], 

#Y_COORD[**IAdd[dyy]]; 

The first head plays the role of class id (an object of 
type Point), the second is a stream of messages to the 
object, and the rest are this object’s arguments; finally, 
each rule denotes a method invocation. One could also 
define the following method which projects the target 
point on the x-axis. 

Point, Cons[ProjectX rest], Y_COORD[y : INT] 

--+ Point, rest, Y_COORD[O]; 

Note that the particular method does not need to 
know the value of the x-coordinate. Now one is also 
able to define methods for a coloured 2-D point. 

Point, Cons[GetColour[m] rest], 

X_COORD[x : INT], Y_COORD[y : INT], 

Colour[c : COLOUR] -+ Point, rest, 

X_COORD[x], Y_COORD[y], 

Colour[c], m :=*c; 

The above method returns in m the colour of the 2-D 
point. Note that all previously defined methods for any 
2-D point are still applicable. In the same way methods 
for a 3-D coloured point can be defined as follows: 

Point, Cons[Set_3D_Black rest], 

X_COORD[x: INT], Y_COORD[y : INT], 

Z_COORD(z : INT], Colour[c : COLOUR] 

-+ Point, rest, X_COORD[x], Y_COORD[y], 

Z_ COORD [z] , Colour [Black]; 

Again all methods defined for a 2-D and 2-D coloured 
point are applicable to’s 3-D coloured one. 

4.1. Broadcast-like object communication 

If desired, a more flexible object invocation and com- 
munication strategy can be used where even messages 
themselves are heads in a multi-headed rewrite rule. 
We illustrate the repercussions of such an approach by 
means of the following example, similar to the previous 
one, and modelling a drawing agent. This example serves 
also in showing how a not fully defined class (what is 
referred to as deferred class in Eifel or abstract superclass 
in Smalltalk) can be modelled in the enhanced TGRS 
framework. 

Create-New-Figure + *Drawing, * Noshape, 

*ID[s : VAR], * Centre[point : PIO O]]; 

Drawing, ID[s], Centre[point : P[x y]], 

Move[snewcoord : C[dxdy]] -+ Drawing, ID[s], 

*Ack[s], #Centre[*##P[**IAdd[xdx] 

Drawing, ID[s], Noshape, Make_Square[s a] 

-+ Drawing, ID[s], * Ack[s], * Square, * Side[a]] 

Square, ID[s], Side[a], Centreboint], Print[s] 

+ *Square, * ID[s], * Side[a], * Centre[point] , 

*Line[ml : Var m2 : Var] , * Line[m2 m3 : Var] , 

*Line[m3 m4 : Var], * Line[m4ml]; 

The first rule creates a drawing figure comprising a 
class name (Drawing), an initial shape which is not 
defined yet (Noshape), an id (whose purpose will be 
explained shortly) and an initial position on the screen 
(coordinates 0,O). The second rule moves the (still 
abstract in form) object, the third one gives it a concrete 
shape (a square) and the final one displays it (here we 
assume the presence of some other agent receiving the 
Line messages and displaying the sides of the square after 
computing their length using the rest of the information 
available for the object). Note that this time there is no 
explicit stream of method invocation messages consumed 
by an object. Instead, the method messages 
(Move, Make-Square, Print, etc.) is posted on the 
forum by the requesting agent and captured by the 
pattern matching performed in the left hand sides of 
the rewrite rules. So how is it possible now to send 
messages to a specific object? This is achieved by means 
of the pointer equality and node sharing mechanisms 
available in TGRS [l]. In particular, we associate with 
every object creation a unique new graph node playing 
the role of an object id. In order to send a message to a 
specific object, the message is posted to the forum (i.e. the 
whole graph apparatus) but it carries with it the id of 
the object it is meant to be consumed by. The receiver 
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of the message is discovered by means of the pointer 
equality performed in the left hand side of the corre- 
sponding rewrite rule. So the rule 

involving redirection i.e.: 

Drawing, ID[s], Noshape, Make_Square[s a] 

+ Drawing, ID[s], * Ack[s], * Square, 

*Side[a] 1 

rl : Drawing, r2 : ID[s], r3 : Noshape, 

r4 : Make_Square[sa] --t *rl, * r2, * Ack[s], 

*Square, * Side[a], r3 :=* GARBAGE, 

r4 :=* GARBAGE] 

will be selected for the benefit of that object which is 
sharing the graph node s with the posted message 
Make-Square. The benefit of this approach is that it is 
more flexible than the traditional stream-based approach 
described in the previous section since it does not require 
possibly complex stream manipulation operations 
such as merging, one-to-many specific communication 
patterns, etc. However, there is still need for developing 
some sort of send-acknowledgment protocol between the 
concurrently executing agents. This is achieved by means 
of the Ack message sent back to the forum by the object 
receiving a method invocation message which denotes 
that the requested operation has been performed. 

To recapitulate, we can think of this framework as 
modelling a public forum (the graph structure) and a 
number of messages travelling and “interacting” with 
objects by means of rewrite rules, causing their elimina- 
tion from the forum and the changing of the object’s 
state. 

4.2. Tuple-based object handling 

Note that this approach is reminiscent of the Linda- 
type “tuple space”; in fact one can model the funda- 
mental Linda operations as illustrated by the following 
elementary rules: 

Datal[x:INT]-+...; 

More restrictive approaches to the issue of object 
representation, manipulation and invocation are also 
possible to be developed within our framework. In 
particular the rules could consist of two heads only 
where the first one denotes the received message and 
the second one is a tuple with all the information perti- 
nent to an object. Here again sharing and pointer equal- 
ity are used to denote the intended receiver object of 
some message as in the following bounded buffer 
example. 

r : Data2[x : INT] + . . . , r :=* GARBAGE; 

LHS --f* Data3[42]; 

r : Datal[x : Var] + #r; 

r : Data2[x : Var] + #r; 

MODULE Buffer; 
IMPORTS Messages; Objects; 
SYMBOL OVERWRITABLE PUBLIC OVER- 
WRITABLE Buffer; 
PATTERN PUBLIC BUFFER = Buffer[ANY]; 

which correspond to the operations rd(“datal”,?x), 
in(“data2”,?x) and out(“data3”,42) respectively i.e. 
read a tuple from the tuple space with an integer value 
and suspend if it is unavailable, remove a similar tuple 
and again suspend if it is unavailable and finally add to 
the forum a tuple. 

A final point regarding this particular approach which 
must be addressed is what happens to the messages 
received (by means of pattern matching) by some object. 
These messages should obviously be removed from the 
forum. So the actual operational interpretation of a rule 
such as 

Message[object : BUFFER Put[item]], 

Object[object contents : LISTlimit : INTin : INT 

out : INT] + #IF[^ILt[**ISub[in out] limit] 

then], then : #Object[object Cons[item contents] 

limit **IAdd[in l] out]) 

Drawing, ID[s], Noshape, Make_Square[s a] 

--) Drawing, ID[s], * Ack[s], * Square, * Side[a]] 

Message[object : BUFFER Get[rep_object]], 

Object[object Cons[item rest] limit : INT in : INT 

out : INT] --t #Object[object rest limit in 

A *IAdd[out l]], * Message[rep_object 

Reply [item]]; 

ENDMODULE Buffer; 

is that after matching the rule, all the nodes comprising The buffer object comprises five arguments being the 
the left hand side are removed from the graph (i.e. con- class name, a list of items (its contents), and three integer 
sumed) and those specified in the right hand side are values representing the bound, the number of items 
created. This is done by means of the usual technique inserted in the buffer and the number of items removed 
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from the buffer so far. The first rewrite rule handles a put 
message and before servicing it checks whether the buffer 
is not full (in-out should be less than limit). The second 
rewrite rule handles a get message; here the checking on 
whether the buffer is empty is done implicitly by the 
pattern matching performed in the left hand side of the 
rewrite rule which with respect to the second argument of 
Object should match a Cons-[item rest]. Note that a 
message is represented by a tuple of the form 
Message[object_idmessage] and an object by a tuple of 
the form Object[object_id : Class-name attributes]. Note 
also that the class name is the pattern BUFFER whose 
exact format is the overwritable node Buffer with one 
argument of unspecified type (ANY). The reason for 
not using just Buffer (without an argument) for class id 
and for having it declared as an overwritable node 
(which is usually done for variables) will become appar- 
ent in the rest of this section and the following one. 

To illustrate how inheritance is achieved in this more 
restrictive framework we give below the implementation 
of a BUFFER2 subclass to BUFFER which, in addition, 
can also serve a get2 message requesting the handling of 
two elements at once. 

in fact first class citizens. It has recently been shown [13] 
that this approach helps in solving the so called inherit- 
ance anomaly problem which arises often when inherit- 
ance is combined with concurrency [22]. In particular, in 
order to enforce a proper way of an object receiving 
messages there is a need to impose synchronization con- 
straints by means of associated synchronization code. 
However, it is often the case that this synchronization 
code cannot be inherited by other objects without requir- 
ing extensive modifications. A typical case, which inci- 
dentally requires multiple inheritance, is the bounded 
buffer example just presented. Consider having a class 
Lockable of lockable objects in general; a lockable 
bounded buffer object then, which ignores get or put 
messages when it is locked, could be defined by multiple 
inheritance from bounded buffers and lockable objects 
where the standard approach is to add a boolean value 
attribute to ascertain whether the state of the object is 
locked or unlocked. It becomes immediately apparent, 
however, that although the issue of a buffer being locked 
is orthogonal to that of receiving get or put messages, the 
methods for these two messages must be redefined in 
order to test the value of the boolean attribute before 
accepting any of those messages. 

MODULE Buffer2; 
IMPORTS Messages; Objects; Buffer; 
SYMBOL OVERWRITABLE PUBLIC OVERWRI- 
TABLE Buffer2; 
PATTERN PUBLIC BUFFER2 = Buffer [Bulfer2]; 

A way to solve this problem along the technique pro- 
posed in [13] is to note that class names are first class 
citizens, whose value can in fact change. We illustrate 
this solution by first defining a class of lockable objects. 

Message[object : BUFFER2 Get2[rep_object]], 

Object[object Cons[iteml Cons[item% rest]] 

limit : INTin : INTout : OUT] + *Object 

[object rest limit in out], * Message[rep_object 

Reply[iteml itema]]; 

ENDMODULE Buffer2; 

MODULE Lockable; 
IMPORTS Messages; Objects; 
SYMBOL OVERWRITABLE PUBLIC OVERWRI- 
TABLE Lockable; 
PATTERN PUBLIC LOCKABLE = Lockable[ANY]; 

Message[obj_class Lock], r : Object[obj._class . . .] 

-+ *r, obj_class :=* Locked[obj_class]] 

Message[obj_class UnLock], 

To understand how inheritance has been implemented 
in this case, compare the (more restrictive) pattern of 
BUFFER2 with the (more general) one of its superclass 
BUFFER and note that the rewrite rules for the get and 
put messages can still be used in BUFFER2. In particu- 
lar messages of the form: 

r : Object[cl : Locked[obj_class] . . .] 

--+ *r, cl :=* obj_class; 

ENDMODULE Lockable; 

Message[object : BUFFER2 Put[item]] 

Message[object : BUFFER2 Get[rep_object]] 

will be accepted by the rewrite rules of Buffer without 
any modifications. 

4.3. Class name as first class citizen 

where . . . denotes a variable number of arguments. Here 
it becomes apparent why the class names are declared as 
overwritable nodes; a lock or unlock message causes the 
graph node representing the class name to be overwritten 
to Locked[class_name] and back to class-name respect- 
ively. Thus, a lockable bounded buffer can now be 
defined as follows. 

In all the previous approaches for modelling object- MODULE Lockable_BB; 
oriented behaviour we must note that the class names are IMPORTS Messages; Objects; Buffer; Lockable; 
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SYMBOL OVERWRITABLE PUBLIC OVER- 
WRITABLE Lockable_ Buffer; 
PATTERN PUBLIC LOCKABLE-BUFFER = 
(Buffer[ANY] + Lockable[ANYl); 
ENDMODULE Lockable_BB; 

where we recall that + is the union pattern operator. The 
trick here is that if a buffer object receives a lock message, 
its class name changes from Buffer[Aw to Locked[Buf- 
fer[ANY]] and the rewrite rules for get, get2 or put 
cannot match, thus preventing the object from accepting 
messages until it receives an unlock message which will 
change its class name back to Buffer[ANY& Note, how- 
ever, that this is achieved without having to modify at all 
the code for these particular methods. Note also that 
there are no new rules for the class Lockable-Buffer 
which simply inherits those of Buffer and Lockable with- 
out having to modify them in any way. All messages such 
as 

Message[object : LOCKABLE-BUFFER 

Put[item]], 

Message[object : LOCKABLE-BUFFER Lock] 

can be handled by the existing rules. 

5. Conclusions-related and further work 

We have presented a highly parallel execution model 
for Object-Oriented Programming based on the Term 
Graph Rewriting Systems computational model. The 
advantages of using the TGRS based model for Object- 
Oriented Programming which was presented in this 
paper can be summarized as follows: 

The model is highly parallel at all levels of interaction 
between the concurrently executing entities (agents, 
objects, messages, etc.). 
The proposed framework is completely language inde- 
pendent; for instance, there is no commitment to 
adhering to, say, specific synchronization mechanisms; 
thus, it can act as a basis for both implementing a 
variety of concurrent object-oriented languages and 
comparing various approaches to object-orientation 
using TGRS as a common intermediate representation. 
Since TGRS languages have been implemented on 
parallel configurations [5,23] the mappings we have 
described in this paper form effectively an imple- 
mentation apparatus. 

There are a couple of additional areas where we believe 
this work is making some contribution. By mapping 
some other computational model onto TGRS or by 
showing how the latter can model the behaviour of the 
former one does not only provide an implementation 

route for the computational model in question but in 
addition a further appreciation is gained of TGRS’ 
potential as a computational model and understanding 
and re-interpretation of the model’s behaviour from 
other computational models’ points of view. For 
instance, we have seen how (multiple) root overwriting 
can be used to model a linear behaviour needed in 
consuming messages to objects and also the benefits of 
modelling classes as OVERWRITABLE nodes and 
finally the viewing of the union (+) operator as a form 
of overloading. 

The relationship between multi-headed rules and OOP 
has been exploited in a number of other computational 
models such as [24] and in fact our framework can be 
used as a TGRS-based implementation route for a subset 
of the model presented there without backtracking and 
splitting of context. In the TGRS framework we first 
introduced multi-headed rules in [8] albeit for a rather 
different reason, namely to show that they can be used to 
model the entailment relationship in concurrent con- 
straint programming. 

We are currently examining ways to implement effi- 
ciently the multi-headed pattern matching and in the 
process we draw expertise from other models [4,20,24] 
which use similar mechanisms. There are a number of 
problems that must be addressed; one is the issue of 
pattern matching since graph nodes participating in a 
multi-head rewriting can now be anywhere in the graph 
forum. Another problem is atomicity of rewriting and in 
particular whether upon matching a rule of the form 

Headi [. . .], Headz[. . .], . . . , Headi[. . .] + RHS 

all heads must be matched atomically or they can be 
matched asynchronously. If the latter is allowed then it 
is possible to collapse the multi-headed pattern matching 
to the more efficient single-head pattern matching. We 
believe that it is possible to enforce this restriction with- 
out compromising heavily the model’s expressiveness. 
Furthermore, a number of additional restrictions may 
be enforced leading effectively to a model similar to 
MONSTR [5,11] but allowing multi-headed pattern 
matching and a form of interaction not only between 
overwritable nodes [9] but also during multi-headed pat- 
tern matching. 

An interpretive approach is the most straightforward 
way to provide a first implementation. This would be 
very useful not only in further understanding the 
repercussions of the proposed extensions but also 
because (term) graphs can be used as object-oriented 
based intermediate forms [23] for many applications. 
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