

Automatic Generation of Executable Code from
Software Architecture Models

Aristos Stavrou1 and George A. Papadopoulos1
1 Department of Computer Science, University of Cyprus, {cs98sa2,george}@cs.ucy.ac.cy

Abstract. Our effort is focused on bridging the gap between software design and implementa-
tion of component-based systems using software architectures at the modeling/design level
and the coordination paradigm at the implementation level. We base our work on the clear
support of both software architectures and event-driven coordination models for Component
Based Software Engineering and the similarities we have identified between the fundamental
concepts of software architectures and the event-driven coordination model. Exploiting the
improvements realized by the latest version of UML towards the support of software architec-
ture descriptions, we present a methodology for automating the transition from software archi-
tecture design of component-based systems described in UML 2.0 to coordination code. The
presented methodology is further enhanced with a code generation tool that fully automates
the production of the complete code implementing the coordination-communication part of
software systems modeled with UML 2.0.

1 Introduction

Our effort is focused on bridging the gap between software design and implementa-
tion of component-based systems using software architectures at the modeling/design
level and the coordination paradigm at the implementation level. Our choice was
based on the clear support of both software architectures and event-driven coordina-
tion models for Component Based Software Engineering and the similarities we have
identified between the fundamental concepts of software architectures and the event-
driven coordination model.

In (Papadopoulos, Stavrou and Papapetrou 2006) we have presented a methodol-
ogy for mapping ACME (Garlan, Monroe. and Wile 2000), a generic language for
describing software architectures, down to event-driven coordination code in the
Manifold (Arbab, Herman and Spilling 1993; Papadopoulos and Arbab 2001) lan-
guage. The reason for using ACME was precisely in order to show the generality of
our approach: since ACME embodies the core features that any state-of-the-art Ar-
chitecture Description Language (ADL) would support, by mapping ACME to Mani-

2 Aristos Stavrou and George A. Papadopulos

fold we effectively provide the core of an implementation route for any other ADL
(Medvidovic and Taylor 2000).

Based on the results and experience of our first work and exploiting the im-
provements realized by the latest version of UML towards the support of software
architecture descriptions, we propose a new methodology for modeling the software
architecture of a component based system in UML 2.0 (OMG 2003) and the auto-
matic transition of this model to event-driven coordination code in Manifold. Our
latest work targets an improved support for the dynamic aspects of the software
architecture exploiting the powerful tools of UML for dynamic behavior. Further-
more, we use the standards (UML2.0, XMI) and approach proposed by the new
software development discipline which promises to be the next big step in software
development, similar to the move from machine language to compilers forty years
ago, namely the Model Driven Architectures (OMG MDA Website 2006). The pre-
sented methodology is further supported by a code generation tool that fully auto-
mates the production of the complete code implementing the coordination-
communication part of software systems modeled with UML 2.0.

2 From UML 2.0 Software Architectures to Coordination Code

Our methodology addresses the challenging task of automatic code generation. The
task of automating the translation of a system high-level model described in a gen-
eral purpose modeling language, such as UML, to executable code has nothing to do
with magic, but with:

1. The methodical construction of this high level model using the proper con-
structs provided by the modeling language having in mind the target pro-
gramming model. This means that the modeler (in our case the software
architect) should be guided on the way that s/he will use the modeling lan-
guage according to the desired goal. Modeling languages such as UML are
not associated with a specific methodology but they just provide the con-
structs and notation to model systems of different domains. Our models
must adequately describe all aspects of a system’s software architecture
and provide all necessary detail to our code generation tool in order to pro-
duce complete and functional code.

2. The accurate and clear mapping of these constructs to the lower-level con-
structs used by the target programming model.

Satisfying the first requirement, our methodology defines, at first stage, the con-
structs to be used to model both static and dynamic aspects of a component-based
system’s software architecture and then guides the software architect on how to use
these constructs.

The static aspects of a component-based system’s architecture include the defini-
tion of the components (and sub-components) that the system is composed of, the
functionality provided and required by each of them as well as the definition of all
possible interactions realized between components to accomplish the tasks that the
system is supposed to implement. In UML 2.0 these are adequately described by the
constructs provided for architecture modeling such as components, classes, ports,

Automatic Generation of Executable Code from Software Architecture Models 3

interfaces and connectors. Architecture modeling in UML 2.0 is realized by compo-
nent diagrams (also called architecture diagrams).

The dynamic aspects of a component-based system’s architecture include the
setup of the software architecture under certain execution scenarios. This includes
the subset of interactions taking place between components, realized by messages or
events exchanged between them. The dynamic aspects may also include the activa-
tion or deactivation of component instances (and subsequently the new setup of
interactions between them) in response to changing factors of the system’s execution
environment such as the load of the system at a specific time. The order in which the
above actions may take place in response to the dynamic behavior of the system is
very important and it has to be precisely defined in our model in order to produce the
corresponding coordination code. The constructs provided by UML 2.0 for scenario
(or interaction) modeling can adequately describe the above actions and the specific
order in which they might occur.

From diagrams provided by UML 2.0 for scenario modeling, we choose sequence
diagrams as the most suitable for precise and detailed description of a system’s ac-
tions and behavior.

Sequence diagrams are used to define:
• the messages and events exchanged between specific component and class

instances under certain scenarios,
• the details of other actions that may occur in a system such as activa-

tion/deactivation of component and class instances,
• the conditions under which such actions might take place,
• the specific sequence in which these actions will take place.
The two types of diagrams that are used in our methodology are perfectly interre-

lated, thanks to the new feature of UML 2.0 for structure and behavior gross integra-
tion. This means that the model elements specified in the architecture diagrams such
as components, classes, connectors, and interfaces are then directly associated with
the model elements included in sequence diagrams. For example, each lifeline of
sequence diagrams is directly associated with a component or class defined in archi-
tecture modeling, and the messages associated with this lifeline realize the interac-
tions that have been specified for this component or class in architecture diagrams
through connectors. The “call” type messages included in sequence diagrams invoke
operations defined to be provided or required by components through interfaces and
ports in architecture modeling. This useful feature of UML 2.0 provides us with the
ability for consistency checking between elements specified in different diagrams but
also makes the process of automatic translation of diagrams to programming con-
structs easier since we do not have to proprietary define the relationship between the
model elements of the different diagrams that we will use. However, although the
specific feature is provided by UML 2.0, this does not mean that it will be used by
the software architects. We give general guidelines to software architects for the way
that they use this feature during modeling in order to take advantage of it. Further-
more, we define constraints in the way that they will use the different constructs of
diagrams.

Satisfying the second requirement mentioned above, our methodology defines an
accurate and clear mapping of the higher-level constructs of UML 2.0 to lower-level

4 Aristos Stavrou and George A. Papadopulos

constructs provided by our programming model. Our construct (or concept) mapping
is aided by the precise and unambiguous semantic definitions of UML 2.0 (an im-
provement made to satisfy one of the main requirements for Model Driven Devel-
opment) and the explicit relationship realized between the constructs of UML 2.0
and Manifold, the formal representative of control-driven coordination model that
will form the target programming language of our methodology. Unlike in our previ-
ous methodology (Papadopoulos et al. 2006) where we had to define events, interac-
tion ordering and all other aspects relating to the dynamic behavior of the system in
the form of proprietary properties, UML 2.0 does not only provide us with first class
constructs that explicitly model these aspects but the semantic meaning of these
constructs, as this is defined in UML 2.0 superstructure (OMG 2003), is very similar
(in most cases identical) to the constructs realized by control driven coordination
models and Manifold for implementing the same aspects. This explicit mapping of
high-level model element to control driven coordination elements enable us to ex-
tract specific coordination constructs from each element included in our model dia-
grams, rather than proprietary extracting specific programming code parts out of
specific pieces of a modeling language notation.

In the following sections we present an overview of the steps defined by our
methodology to create the architecture and scenario model of a component-based
system in UML 2.0 as well as the general rules followed to map these models to
coordination code in Manifold. Due to space limitations, a detailed description of the
steps and mapping rules of our methodology cannot be included in this paper and
will appear in an extended version of it for a journal submission.

2.1 Creating the Architecture Model of a System’s Architecture

Architecture modeling is realized by a number of component (or architecture) dia-
grams describing the static aspects of a component-based system’s architecture,
which include:

• the definition of all different (types of) components, sub-components and
classes that the system is composed of ,

• the functionality provided and required by each of them realized by provided
and required interfaces of components and classes,

• all possible interactions between components and classes realized as connec-
tions between ports of them.

For the construction of architecture diagrams the UML 2.0 constructs that are
used by our methodology are: components, classes, ports, interfaces (operations,
signals, attributes) and assembly/delegation connectors.

Apart from the clear semantics given by UML 2.0 for each construct of architec-
ture modeling, the software architect has to be guided on the way that he will use
these constructs to create appropriate architecture diagrams that will adequately
describe the required information of the system under development and enable the
automatic transition of these diagrams to the target programming model which is
Manifold.

Automatic Generation of Executable Code from Software Architecture Models 5

Our methodology satisfies this need by defining a number of constraints on the
use of the UML 2.0 architecture constructs. Some of the constraints defined by our
methodology on the use of the above constructs are the following ones:

• Only one operation per interface is allowed. This helps us to clearly define
the connections between ports that interfaces are attached to and internal
parts that implement the functionality defined by this interface.

• Each port must be attached to either a required or a provided interface. This
enables us to easily and explicitly model the relationships between the ports
and the internal parts of the component.

• Both a name and type must be defined for each attribute of an interface.
A number of general guidelines on the way that architecture diagrams will be

constructed are also defined. Generally speaking, the software architect will have to
follow the principles of component based development to identify the components,
sub-components and classes of the system and describe the functionality provided
and required by them, but also the target programming model has to be considered.
The general steps for the construction of the diagrams are the following ones:

1. Identify the top-level components of the system architecture. Create a top
level diagram and add a special Main component. (This will represent the
special manifold process that every system in manifold should include). Add
the top-level components of the system as sub-components of the Main
Component.

2. For each component identify the different operations that are provided by
this component.

3. For each operation identify the different parameters that are needed to be
given to the component to execute this operation and the possible values re-
turned by this operation. Create an interface for each operation and add the
specific operation with its parameters and return values.

4. Identify the possible signals sent by the component providing this operation
to its environment in response to a call on this function. Add the signals to
the created interface.

5. Identify possible main variables related to the operation that can be identi-
fied at this stage and may affect the setup of the architecture. E.g. a variable
with name “requests_rate” that counts the number of requests per minute that
is used by the component to instantiate a new instance of a sub-component
or class if the rate exceeds a certain number. Add these attributes to the cre-
ated interface.

6. Identify the required operations and create an interface for each of them in a
similar way as above. For each required interface add a signal sent by the
component requesting the call of the related operation to its parent compo-
nent that coordinates it in order to create the needed setups (connections).

7. For each component add a port for each provided/required operation of the
component and attach it to the corresponding required or provided interface.

8. Identify all possible connections between the sub-components of a first level
component. Create an assembly connector for each connection between the
ports that the related provided and required interfaces are attached to.

6 Aristos Stavrou and George A. Papadopulos

9. Identify all possible connections from the top level component to its parts
(sub-components, classes). Create a delegation connector for each such con-
nection.

10. Decompose each of the sub-components to another diagram. Add in the new
diagram the specific sub-component as the top level component and add all
sub-components and classes that this component is composed of. Follow the
steps above to add the ports, required/provided interfaces as well as the con-
nections.

2.2 Mapping an Architecture Model to Equivalent Manifold Constructs

The translation of the architecture model constructs will give as the manifold coordi-
nator (manager) and atomic (worker) processes that the system will be composed of,
the input and output ports of each process as well as the possible events that are
raised by each process to its environment. Furthermore, all possible streams created
between ports of system processes will be extracted from the architecture model.
Finally some local variables used by processes for specific operations as well as
extra control ports and guards installed on these ports to notify the receipt of an op-
eration call will be created. More to the point:

A Component can be exactly mapped to a Manifold coordinator process. An Ac-
tive Class is mapped to a Manifold atomic process. Passive Classes will be used in
our architecture modeling to represent the different data types supported by Manifold
such as string, integer, tuple, etc.

An interface is not directly mapped to a specific Manifold construct but the set of
operations, attributes and signals defined for the specific interface are separately
mapped. For every operation that is defined in a provided or required interface at-
tached to a port, we create an input port for each input parameter and an output port
if the specific operation returns a value. A special input control port is also created
for each operation and a guard is installed on this port to notify the owning manifold
process for requests received for the specific operation. The set of signals defined in
provided and required interfaces attached to a component’s or class’ ports are de-
fined to be the events that can be raised by the corresponding manifold or atomic
process. Attributes of an interface attached to a component or class are mapped to
local variables of the corresponding Manifold coordinator or atomic processes. The
variables will be assigned an initial value if the corresponding interface attribute is
assigned a value.

Connectors are mapped to the streams required to pass the related parameters
values during an operation call and streams to pass the return values of an operation.

2.3 Creating the Scenario Model of a Software Architecture

Scenario modeling is realized by a number of sequence diagrams describing the
dynamic aspects of a component-based system’s architecture, i.e. the setup of the
software architecture under certain execution scenarios. Specifically, sequence dia-
grams describe:

Automatic Generation of Executable Code from Software Architecture Models 7

• the interactions taking place between components, realized by messages ex-
changed between them,

• the activation/deactivation of component and class instances,
• the conditions under which the above actions take place,
• the sequence within which the above actions take place.
For the construction of sequence diagrams the following constructs provided by

UML 2.0 will be used by our methodology: lifelines, messages (operation calls,
signals, create, destroy, display, set), timers, inline frames, message groups and
gates.

The goal of the software architect during the creation of the sequence diagrams is
to describe all possible execution scenarios of the system. As soon as the different
scenarios are identified, the software architect can create in a hierarchical top-down
approach the sequence diagrams of each scenario as follows:

1. Create a top level sequence diagram and include a lifeline for the “Main”
component and a lifeline for each instance of the first level components/classes
that are involved in the execution of the first execution scenario.

2. Use the constructs for scenario modeling described above to define the interac-
tions – messages taken place during the execution of the first execution sce-
nario. Bear in mind that this sequence diagram will describe the interactions-
actions from the perspective of the parent component, i.e. this sequence dia-
gram will produce the events received by a parent component from its parts and
the actions that the parent component has to make during the execution of the
current scenario for coordinating its parts.

3. Decompose every decomposable lifeline to another sequence diagram, describ-
ing the message exchanges taking place for the current scenario at a lower lever
(i.e. between the specific component and its part’s instances). In the new se-
quence diagram, add a lifeline representing the component that is decomposed
(i.e. the parent component) and then a lifeline for each instance of the compo-
nent’s parts.

4. Add all “signal” and incoming “operation” call messages of the higher level
sequence diagram that are attached to the lifeline currently being decomposed.

5. Between the already created messages, add all message exchanges taking place
between the decomposed lifeline (i.e. the parent component) and the other life-
lines.

6. For each component, create a new sequence diagram with a special name
“Component name - Init” in order to describe the initialization process of the
component such as the creation of process instances. The same diagram can in-
clude any finalization process that may exist or any other scenarios that has not
been described in diagrams before, e.g. the activation of a new component/class
instance when the load of the system is high.

2.4 Mapping a Scenario Model to Equivalent Manifold Constructs

A scenario model describes the dynamic aspects of the system architecture. In the
“world” of Manifold this is translated to a number of states for each component and a
number of actions (such as the creation of new instances, the creation of streams,

8 Aristos Stavrou and George A. Papadopulos

raising of events) executed by the specific component when it is in this state. Map-
ping of a scenario model is performed after the mapping of architecture diagrams
since the mapping of a scenario modeling builds upon (uses) the Manifold constructs
extracted while mapping the architecture model. In the architecture model we have
extracted the definitions of manifolds and atomics (i.e. names, events raised by them
to their environment, ports, local variables) of our system architecture and the hierar-
chy between them, i.e. which manifold coordinates which other manifolds or atom-
ics. We have also extracted all possible streams to be created between instances of
specific manifolds and atomics during operation calls in order to carry the needed
data (needed input parameters, possible return values). Guards for receiving of op-
eration calls were also extracted. In the sequence diagrams we will:

• Define specific instances of manifolds and atomics and specify when and by
which process these are activated/terminated.

• Put previously created streams in proper states of manifolds and specify the
sequence of them in a state. Before adding created streams to states we de-
fine the specific names of source and target process instances, since during
architecture modeling mapping instance names are not available.

• Specify when and under what conditions or in which state events previously
defined by manifolds/atomics are raised.

• Identify which manifolds/atomics receive these events and what are the reac-
tions to a specific event.

• Specify additional actions taking place under specific scenarios (and their
sequence) using special messages provided by sequence diagrams such as
the writing to ports by a manifold/atomic, the installation of a timer, the as-
signing of a local variable. etc.

The general steps for mapping sequence diagrams are the following ones:
1. Identify sequence diagrams of each component. These are the sequence dia-

grams in which the parent lifeline represents an instance of this component.
2. Map one by one the sequence diagrams of each component in the following

way:
2.1. Order the messages/actions contained in the specific diagram from top

to bottom irrespective of the lifelines that are attached to.
2.2. Group messages to states as follows:

2.2.1. Starting from the first message get all messages in order until next
“state transition message” where a “state transition message” is:
the next “signal” message sent by a lifeline other than a parent
component OR the next “signal” message sent by the lifeline of a
parent component to itself OR next “operation call” message re-
ceived by a parent component from its outside environment OR
next timeout event of a timer installed by a parent

2.2.2. Create a state with label=”name of first message” and put all
messages until (excluding) the “state transition message”.

2.2.3. Get the next message from the diagram. IF this is NOT a “state
transition message” then go to step “a” setting the label of the next
state, i.e. name of first message=“name of state transition mes-
sage”. ELSE get all subsequent messages until you find a message

Automatic Generation of Executable Code from Software Architecture Models 9

that is not a “state transition message”. Then go to step “a” setting
the label of the next state, i.e. name of first message=“name of
state transition message1 & name of state transition message2 & ..
& name of last transition message found”.

2.3. Map messages of each state to Manifold constructs using our mapping
rules (due to space limitations the mapping rules are not presented here)

3 The Code Generation Tool

Based on our methodology, we have developed a tool that automatically generates
the Manifold code implementing the coordination-communication part of software
architectures modeled with UML 2.0. Our code generation tool takes as input an
XMI document describing the architecture model of a system and outputs the full
Manifold code implementing the coordination part of the system. The full route of
creating and transforming a software architecture model to Manifold code is shown
below:

The creation of the software architecture of the system forms the first step. For
the modeling of the software architecture we use the Sparx Enterprise Architect
modeling tool (Sparx Systems Website 2006). Using the “export” function of Enter-
prise Architect we then export the modeled software architecture to an XMI (v.1.1)
document.

Since the latest version of XMI (v.2.1) that corresponds to UML 2.0 has recently
been released, the few tools that provided support of UML 2.0 after its official re-
lease on 2003 have used previous versions of XMI format to export the models and
added custom extensions to cover the needs not supported by these versions. Addi-
tionally, since XMI has to be general enough to represent not only UML models but
every kind of model, there are specific needs of UML tools that may not be sup-
ported. As it is stated in (Laird 2001) "the XMI standard itself doesn't support all that
is needed, and vendors unfortunately implement it differently". In order to make our
code generation tool more independent from specific UML modeling tools we first
parse XMI generated by Enterprise Architect and create an intermediate, tool inde-
pendent, representation of the model. The intermediate representation consists of
generic UML 2.0 Java classes that represent the elements of our software architec-
ture model.

For parsing the XMI document and creating the UML 2.0 object model we use
Apache Commons Digester (Jakarta Commons Digester Website 2006). Having an
intermediate representation of the software architecture enables the support for addi-
tional modeling tools in the future with minimum effort. If we wanted to add support
for a modeling tool other than Enterprise Architect that has a different implementa-
tion of XMI format, then we would only have to add another set of digester rules for
parsing the XMI document exported by this tool (or just the rules for parsing the
XMI parts that are implemented differently in this tool) and transform it to the com-
mon UML2.0 object model.

The next step is the transformation of the UML2.0 object model to the equivalent
Manifold object model by applying the mapping rules of our methodology. The

10 Aristos Stavrou and George A. Papadopulos

Manifold object instances are finally processed to generate the Manifold code by
applying the syntax rules of Manifold.

4 Evaluation-Contribution, Limitations and Future Work

The general approach of the work presented here, as well as the work presented in
(Papadopoulos et al. 2006), is the integration of software architectures and coordina-
tion models, which enables us to derive the advantages that both of them provide in
reducing the costs of the software development process. The modeling of system
architectures enables developers to define the more important properties and con-
straints of the system under development, but also to detect errors early at the design
time, thus saving development time. The generated code, which is consistent with the
previously modeled architecture, clearly separates the communication from the coor-
dination parts of the system, making the system maintenance much easier.

Furthermore, the integration of software architectures for specification, with co-
ordination models and languages for implementation, has a number of advantages for
both software architectures and coordination models as these are elaborately de-
scribed in (Papadopoulos et al. 2006). In summary: (a) coordination models offer to
software architecture an alternative approach to code generation which enjoys the
fundamental advantages of coordination models, such as programming language
independence (components may be written in different languages even within the
same application), and higher degree of component reusability (because of the clear
separation of the coordination code from the computational one). (b) Software archi-
tectures offer to coordination models a way of modeling and analyzing a system well
before its implementation begins. This work enhances the coordination languages
with a GUI front end, which can easily be learned and facilitated to generate most of
the coordination related code.

In our first work we use ACME, a generic ADL in order to show the generality of
our approach. In this way we provided a general route for mapping any particular
ADL to coordination code. However, this choice had leaded us to some limitations.
Our first methodology cannot generate the code implementing the dynamic configu-
ration of a system. We added a limited support for dynamism by defining the ac-
tive_on property that specifies which event triggers the construction of each possible
connection of a system’s software architecture.

Based on the results and experience of our first work and exploiting the im-
provements realized by the latest version of UML towards the support of software
architecture descriptions, we have built our second methodology which automates
the transition from software architecture design of component-based systems de-
scribed in UML 2.0 to coordination code. Our second work provides an improved
support for the dynamic aspects of the software architecture exploiting the powerful
tools of UML for dynamic behavior descriptions as well as the improved support of
UML 2.0 for interrelating structure and behavior-centric diagrams. Our second
methodology is also supported by an integrated code generation tool that fully auto-
mates the production of the complete code implementing the coordination-
communication part of software systems modeled with UML 2.0.

Automatic Generation of Executable Code from Software Architecture Models 11

Other advantages introduced by our latest work are the following ones:
• The way that the dynamic parts of a software architecture are described by

software architects in the latest methodology (i.e. by describing execution
scenarios using sequence diagrams) is much closer to their way of thinking
than the definition of the active_on property previously used. The methodol-
ogy makes this process easier by giving guidelines to software architects for
identifying all possible execution scenarios and describing them in a hierar-
chical way.

• The use of a standard, broadly accepted and established modeling language
for describing software architectures. Although ADLs have evolved and ma-
tured considerably over the last few years, UML is the standard notation lan-
guage for analysis and design of a system. UML is more familiar to software
developers and the one that is supported by many commercial tools. UML
2.0 and XMI standards that we use in our latest work are also two of the
main standards proposed and broadly used by the new general software de-
velopment approach of MDA.

• The two types of diagrams that are used in our methodology can be perfectly
interrelated, thanks to the new feature of UML 2.0 for structure and behavior
gross integration. The model elements specified in the architecture diagrams
such as components, classes, connectors, interfaces are then directly associ-
ated with the model elements included in sequence diagrams. This provides
us with the ability for automatic consistency checking between elements
specified in diagrams, but also makes the development of our tool easier
since we did not have to proprietary define the relationship between the
model elements of the diagrams that we use.

• By virtue of XMI, the software architecture descriptions can be exchanged
and used/edited by many modeling tools. Although we used a specific mod-
eling tool for software architecture design, we have designed our code gen-
eration tool in a way that additional modeling tools can be supported in the
future.

• Adhering to the main principles of the MDA approach, we tried to keep the
software architecture model constructed by our methodology “platform” in-
dependent. A "platform" is meaningful only relative to a particular point of
view. Since the underlying implementation paradigm that our work is based
on, is the coordination paradigm and specifically the IWIM coordination
model, we define as “platform” a specific coordination language that imple-
ments the IWIM model, such as Manifold. The constraints defined by our
methodology on the use of certain UML 2.0 constructs were based on the
IWIM principles and not specifically on the Manifold language. In this way
the same model can be used to generate code in another language imple-
menting the IWIM coordination model.

The software developer that will use our methodology and the associated code
generation tool will face a common, in the field of automatic code generation, prob-
lem: the maintenance of the generated code. Although in our latest methodology the
coordination code that can be generated is more complete limiting the need for the
programmer to manually add missing bits of coordination code, if the software archi-

12 Aristos Stavrou and George A. Papadopulos

tecture of the system changes in a subsequent stage (e.g. the system is extended with
new functionality and subsequently new components) the code has to be generated
again. However, the problem is limited to the atomics files that the tool generates for
the coordination-related code and where the programmer manually adds the compu-
tational code.

Our future work involves the enhancement of our code generation tool by:
• addressing the problem of code maintenance; we are currently in the process

of considering code-block recognition methods used in other code generation
tools,

• supporting additional modeling tools apart from Sparx Enterprise Architect,
• adding enhanced mechanisms for consistency checking and validation of the

imported software architecture model.

Acknowledgments

The authors of this paper would like to thank their partners in the MUSIC-IST pro-
ject and acknowledge the partial financial support given to this research by the Euro-
pean Union (6th Framework Programme, contract number 35166).

References

Arbab F., Herman I. and Spilling P.(1993) An Overview of Manifold and its Implementation,
Concurrency: Practice and Experience 5 (1), pp. 23-70.

Garlan D., Monroe R. T. and Wile D. (2000) ACME: An Architectural Description of Com-
ponent Based Systems, Foundations of Component-Based Systems, Cambridge University
Press, pp. 47-68..

Jakarta Commons Digester Website (2006) http://jakarta.apache.org/commons/digester.
Laird C. (2001) XMI and UML combine to drive product development, IBM Whitepapers,

available at http://www-128.ibm.com/developerworks/xml/library/x-xmi/.
Medvidovic N. and Taylor R. N. (2000) A classification and comparison framework for soft-

ware architecture description languages, IEEE Transactions on Software Engineering 26
(1) 70–93.

OMG MDA Website (2006) http://www.omg.org/mda/.
Papadopoulos G. A., Stavrou A., and Papapetrou O. (2006) An implementation framework for

Software Architectures based on the coordination paradigm, Science of Computer Pro-
gramming 60(1): 27-67.

G. A. Papadopoulos and F. Arbab (2001) Configuration and dynamic reconfiguration of com-
ponents using the coordination paradigm, Future Generation Computer Systems 17 (8)
1023-1038.

Sparx Systems Website (2006) http://www.sparxsystems.com.au/.
OMG (2003), Unified Modeling Language: Superstructure version 2.0.

