
31-01-01 IPA'99 1

Different Facets of Coordination

George A. Papadopoulos

Department of Computer Science

University of Cyprus

george@cs.ucy.ac.cy



31-01-01 IPA'99 2

Roots of Coordination _ 1

_ Multilinguality is able to:

– Support diverse programming paradigms

– Provide interoperability between them

– Accommodate diverse execution models

– Combine code written in a mixture of them but also

provide orthogonal programming interfaces

_ Typical cases of realizing a multilingual

framework is by means of Module Interconnection

Languages and Compiler Target Languages



31-01-01 IPA'99 3

Roots of Coordination _ 2

_ Multilinguality is closely related to heterogeneity,

since heterogeneous systems demand that the

language to be used must support different models

of computation (difficult)

_ Thus, we resort to using a mixture of languages

_ Related historical models are also those of:

– Blackboard systems, developed traditionally for DAI

– Objected-Orientation and Actor systems



31-01-01 IPA'99 4

The Coordination Paradigm

_ Separates the computational concerns in some

system from the other concerns

_ “Computational” can mean a number of things:

– Execution of software components

– Operation of hardware devices

– Behaviour of human beings

_ “Other concerns” can also have different meanings

such as communication, cooperation,

synchronization, etc.



31-01-01 IPA'99 5

What is Coordination

_ Coordination is managing dependencies between

activities (Malone and Crowston)

_ Coordination is the process of building programs

by gluing together active pieces (Carriero and

Gelernter)

_ Coordination is the additional information

processing performed when multiple, connected

actors pursue goals that a single author pursuing

the same goals would not perform



31-01-01 IPA'99 6

Coordination Models and Languages

_ A coordination model is the glue that binds

together active pieces

_ Ciancarini defines it as a triple <E, L, M>

– E are the entities being coordinated

– L the media used to coordinate them

– M the semantic framework, the mode adheres to

_ A coordination language is the linguistic

embodiment of a coordination model



31-01-01 IPA'99 7

Classification of Coordination

Formalisms

_ How one should classify coordination models and

languages?

– In terms of the nature of what is being coordinated

(types of components)?

– In terms of the kind of languages being involved?

– In terms of application domains?

– In terms of underlying architectures assumed?

– In terms of other issues such as scalability, openness,

etc?



31-01-01 IPA'99 8

Defining the State of Computation:

Data- vs Control-Driven Coordination

_ In the data-driven category of models, the state of

the computation is usually defined in terms of both

what is being coordinated (i.e. the data being sent

or received) and how coordination is achieved (i.e.

the coordination patterns employed

_ In the control-driven category, the state is usually

defined in terms only of the configuration

apparatus set up between the involved

components, data itself is of little significance



31-01-01 IPA'99 9

Bird-Eye’s View of Data-Driven

Coordination

_ A process is interested in both handling data as

well as setting up coordination patterns

_ Stylistically and linguistically, coordination code

is intermixed with computation code

_ Usually, the coordination “language” is a set of

primitives that have to use a host programming

language

_ The communication medium is essentially based

on the Virtual Shared Memory metaphor



31-01-01 IPA'99 10

Bird-Eye’s View of Control-Driven

Coordination

_ There is a clear separation of components

handling data from those that set up coordination

patterns

_ The two types of code are also clearly separated

_ A fully-fledged coordination language is required

to work together with some computational one(s)

_ Point-to-point “Occam” type of communication is

employed with processes having well defined

input-output interfaces



31-01-01 IPA'99 11

Data-Driven Coordination

Formalisms



31-01-01 IPA'99 12

Main Characteristics of Data-Driven

Coordination Formalisms

_ VSM is realized as as shared dataspace, a

common, content-addressable data structure

_ It is independent in time and space

_ Data is represented as a generic tuple structure, in

some cases flat, in other cases structured

_ Mechanisms for retrieving data vary, and include

pattern matching, multiset rewriting, etc.

_ Issues of security and openess are handled by

adopting a non-flat structure with localized access



31-01-01 IPA'99 13

Linda

_ A set of 4++ primitives (in and inp, rd and

rdp, out, eval) are used to access the Tuple

Space by associative pattern matching

_ Easy to use, less easy to implement efficiently,

issues of tuple storage, exact implementation of

eval, etc.

_ Linda has many friends: C, Prolog, Java, Eiffel, to

name but  a few; also, it can coexist nicely with

many paradigms (imperative, declarative, o-o)



31-01-01 IPA'99 14

Dining Philosophers in Linda

_ #define NUM 5

philosopher(int i) main()

{ {

while (1)  int i;

{  for (i=0, i<=NUM, i++)

think(); {

in(“room ticket”);  out(“fork”,i);

in(“fork”,i);  eval(philosopher(i));

in(“fork”,(i+1)%NUM);  if (i<(NUM-1))

eat();  out(“room ticket”);

out(“fork”,i);  }

out(“fork”,(i+1)%NUM);  }

out(“room ticket”);

}

}



31-01-01 IPA'99 15

Piranha: Better Load Balancing for

Linda _ 1

_ Features adaptive parallelism, i.e. processor

assignment to processes changes dynamically

_ A feeder distributes computation and collects

results, a number of piranhas perform

computations

_ Piranhas are statically distributed over a network

of w/s, and don’t migrate

_ They are active if the workload of the node on

which they reside allows it



31-01-01 IPA'99 16

Piranha: Better Load Balancing for

Linda _ 2

_ Piranhas retreat when the node on which they

reside is claimed back by the system, post the rest

of the work to the tuple space for other piranhas

_ Typical application areas of the model is scientific

computing (LU decompositions and Monte Carlo

simulations)



31-01-01 IPA'99 17

Typical Structure of a Piranha

program
_ #define DONE -999

int index;

feeder() piranha()

{ {

int count;  struct Result result;

struct Result result;

  while (1)

/* put out the tasks */   {

for (count=0; count<TASKS; count++)  in(“task”,?index);

out(“task”,count);  if (index==DONE)

{

/* help compute results */   /* all tasks are done */

piranha();  out(“task”,index);

 }

/* collect results */ else

for (count=0; count<TASKS; count++)    {

in(“result”,count,?result_data); /* do the task */

} do_work(index,&result);

out(“result”,index,result);

retreat() in(“tasks done”,?index);

{ out(“tasks done”,i+1);

/* replace current task */ if ((i+1)==TASKS)

out(“task”,index); out(“task”,DONE);

} }

}

}



31-01-01 IPA'99 18

Bonita: Finer notion of Tuple

Retrieval _ 1

_ Effectively differentiates in the the in and rd

operations between asking for a tuple and actually

getting it

_ rquid=dispatch(ts,tuple)

puts tuple in ts and returns a tuple id to be used

by other processes to retrieve it

_ rquid=dispatch(ts,template,d|p)

retrieves a tuple from ts matching template,

by removal (d) or copying (p), and returns its id



31-01-01 IPA'99 19

Bonita: Finer notion of Tuple

Retrieval _ 2

_ rquid=dispatch_bulk(ts1,ts2,templa

te,d|p)

moves (d) or copies (p) from ts1 to ts2 all

tuples matching template

_ arrived(rquid)

moves (d) or copies (p) from ts1 to ts2 all

tuples matching template

_ obtain(rquid)

suspends until the tuple rquid is available



31-01-01 IPA'99 20

Retrieving Tuples in Bonita

_ Linda   Bonita

  int rqid1, rqid2, rqid3;

in(“ONE”);   rqid1=dispatch(ts,”ONE”,d);

in(“TWO”);   rqid2=dispatch(ts,”TWO”,d);

in(“THREE”);   rqid3=dispatch(ts,”THREE”,d);

  obtain(rqid1);

  obtain(rqid2);

  obtain(rqid3);

_ All dispatches are done in parallel, retrieving of

tuples is overlapped



31-01-01 IPA'99 21

Finer Notion of Non-Deterministic

Retrieval in Bonita

_ Linda Bonita

int rqid1, rqid2;

rqid1=dispatch(ts,”ONE”,d);

rqid2=dispatch(ts,”TWO”,d);

while(1) while(1)

{ {

if (inp(“ONE”))  if (arrived(rqid1))

{do_first(); break;}   {do_first(rqid1); break;}

if (inp(“TWO”))  if (arrived(rqid2))

{do_second(); break;} {do_second(rqid2); break;}

} }



31-01-01 IPA'99 22

Bauhaus Linda: More sophisticated

Tuple Matching Based on Multisets

_ No differentiation between active and passive

tuples, tuples and tuple spaces, etc.

_ out {x->R} applied to {a {x y Q} {{z}}

P} by P yields {a {x y Q R} {{z}} P}

_ mset m:=rd {x} applied to {a b b {x y}

{{z}} P} by P makes m get the value {x y}

_ mset m:=in {x} applied to {a {x y Q}

{R {z}} P} by P makes m get the value {x y

Q} and becomes a live set (due to Q)



31-01-01 IPA'99 23

Bauhaus Linda: Structured Multisets

_ move {w} executed on

{a b b {x y Q} {w {z}} P} by P, yields

{a b b {x y Q } {w {z} P}}

_ Two variants of move, up and down, cause the

issuing process to move up and down the

hierarchy



31-01-01 IPA'99 24

Objective Linda: “Object-Oriented

Bauhaus Linda” for Open Systems

_ Tuples and tuple spaces are substituted by objects

and object spaces, the former described in an

Object Interchange Language

_ Object spaces are accessible through logicals, i.e.

object space references

_ Object spaces can be organized in hierarchies and

communication can be achieved via several object

spaces



31-01-01 IPA'99 25

Objective Linda’s Primitives _ 1

_ bool out(MULTISET *m, double tout)

moves the objects in m into the object space,

operation must be completed within tout secs

_ bool eval(MULTISET *m,double tout)

similar, but the objects are also activated

_ bool in(OIL_OBJECT *o, int min,

int max, double tout)

tries to remove at least min but not more than

max objects matching o within tout secs



31-01-01 IPA'99 26

Objective Linda’s Primitives _ 2

_ bool rd(OIL_OBJECT *o, int min,

int max, double tout)

same as before, but copies of these objects are

cloned

_ infinite_matches and infinite_time

are used to indicate infinite number of matched

objects in min or max, and no timeout constraints

in tout respectively



31-01-01 IPA'99 27

Law-Governed Linda: Logical

Regulation of Tuple Space Traffic

_ Whereas the previous models extend the basic

language, Law-Governed Linda introduces

controllers, which interpose themselves between

the Tuple Space and the processes accessing it

_ All controllers execute the “law” and allow traffic

between every process and the tuple space only if

it adheres to it

_ A law typically specifies access rights, creates

local spaces, enforces security mechanisms, etc.



31-01-01 IPA'99 28

A Secured Message Exchange in Law-

Governed Linda

_ out([msg,from(Self),to(_)|_])

:- do(complete).

in([msg,from(…),to(Self)|_])

:- do(complete) :: do(return).

out([X|_]) :- not(X=msg), do(complete).

in/rd([X|_]) :- not(X=msg),do(complete)

   :: do(return).

_ where a message is of the form

[msg,from(s),to(t),contents]



31-01-01 IPA'99 29

LAURA: Linda for Modelling Open

Distributed Systems

_ In LAURA, the common communication medium

is a service space where agents post and retrieve

offered services

_ These are described as interface signatures

comprising  a set of operation signatures

_ Communications among agents is realized by

exchanging forms of three types: service-offer,

service-request, and result-form

_ For signatures a Service Type Language is used



31-01-01 IPA'99 30

A Service Offered in LAURA

_ SERVE large-agency operation

(getflightticket : cc * <day,month,year> * dest

-> ack * <dollar,cent>;

getbusticket : cc *

<thedate.day, thedate.month,

thedate.year> * dest

-> ack * <dollar,cent> *line;

gettrainticket : cc * <day,month,year> * dest

-> ack * <dollar,cent>).

SERVE

_ Three services are offered, the code of the selected

service will be bound to operation



31-01-01 IPA'99 31

A Service Requested in LAURA

_ SERVICE small-agency

(getflightticket: cc * <thedate.day,

thedate.month,

thedate.year>

* dest

-> ack * <dollar,cent>).

SERVICE

_ small-agency invokes the specified service,

passes along parameters such as cc and dest and

waits for an ack message with the value of the

ticket



31-01-01 IPA'99 32

Ariadne/HOPLa: Linda for

Collaborative Computing

_ In Ariadne, the shared dataspace holds tree-shaped

data, structured or semi-structured and type

definitions governing its structure

_ The associated Hybrid Office Language is used to

model process behaviour in the form of flexible

records

_ Some useful constructors is Set for collections,

Action for tasks to be performed either

sequentially (Serie) or in parallel (Parl), etc.



31-01-01 IPA'99 33

Coordinating an Electronic Discussion

in Ariadne/HOPLa

_ Discussion<Process(

group -> Set+Action( type -> Actor;

value -> PS: set);

discuss -> Thread<Data+Serie(

message -> String+Action(actor

-> {p | p in PS});

replies -> Set+Parl(type -> Thread)))

_ First the group is defined, then the discussion

starts with a triggering message, followed by

replies in any order by the rest of the actors, each

one of them starting an independent thread



31-01-01 IPA'99 34

Sonia: Applying the Linda Metaphor

to Modelling Activities in I.S.

_ Sonia is not really an extension of Linda, but

rather an adaptation of the latter so that the Linda

metaphor can be used in an intuitive way by non

specialists in coordination or, indeed, C.S.

_ There is an agora, accessed by actors, the latter

communicating by posting messages formed as

named tuples

_ A timeout functionality is introduced, an integral

element of any framework modelling I.S.



31-01-01 IPA'99 35

Communicating in Sonia

_ The usual out, in, and rd names have been

replaced by more intuitive ones such as post,

pick, and peek

_ There is also a cancel primitive for timeouts

_ Posted tuples are named such as Tuple(:shape

“square” :color “red”), and are retrieved

via templates such as Template(:shape any

:color Rule(“value=‘red’ or

value=‘blue’”))



31-01-01 IPA'99 36

Jada/SHADE: Linda for the WWW

_ The shared dataspace paradigm can be realized

naturally and profitably in the WWW, and the

coordination paradigm can be used for

orchestrating the execution of web-based

applications, such as groupware, workflow, etc.

_ Jada (Java - Linda) can be seen as a basic

infrastructure for building such environments

_ It can be used for expressing mobile object

coordination and multithreading (e.g. PageSpace)



31-01-01 IPA'99 37

Jada Model

_ Classes such as TupleServer and

TupleClient are provided for realizing remote

access to a tuple space

_ Communication is done via sockets

_ A TupleClient must know the host and port-id

of the TupleServer

_ Jada can be used either per se, or as a means for

designing and implementing higher level

coordination languages for the WWW



31-01-01 IPA'99 38

A Ping-Pong in Jada

_ //--PING--

TupleClient ts = new TupleClient(ts_host);

while (true) {ts.out(new Tuple(“ping”));

              Tuple tuple = ts.in(new Tuple(“pong”));

  }

Ping ping = new Ping();

ping.run();

//--PONG--

TupleClient ts = new TupleClient(ts_host);

while (true) {ts.out(new Tuple(“pong”));

              Tuple tuple = ts.in(new Tuple(“ping”));

  }

Pong pong = new Pong();

pong.run();



31-01-01 IPA'99 39

The SHADE Model

_ SHADE can be seen as a higher level abstraction

of Jada

_ Whereas Jada peforms singleton level

transactions, SHADE is based on multiset

rewriting

_ Each SHADE object has a name, class and state;

the name is the pattern for delivering messages;

the type defines the object’s behaviour; the state is

the contents of the object’s multiset



31-01-01 IPA'99 40

A Ping-Pong in SHADE

_ class ping_class = class pong_class =

{ {

in do_ping; in do_pong;

send pong, do_pong send ping, do_ping

# #

in done; in done;

terminate terminate

} }

_ Each class has two methods; when the proper

message appears in an object’s multiset, say

ping, the method is triggered and sends pong,

etc. until a done appears for termination



31-01-01 IPA'99 41

GAMMA: Chemical Reactions via

Multiset Rewriting

_ GAMMA combines the notion of Chemical

reactions in CHAM-like models with multiset

rewriting

_ A program is viewed as a pair (Reaction

Condition, Action), and its execution involves

replacing those elements in a multiset satisfying

the reaction condition by the products of the action

_ This process continues until no more such

reactions are possible and the system is stable



31-01-01 IPA'99 42

The GAMMA Rewriting Operator

_ The above behaviour can be captured by means of

the G operator, which is defined as follows:

 G((R1,A1),…,(Rm,Am)) (M) =
if _   i _ [1,m] _ x1,…,xn _ M, �Ri(x1,…,xn)

then M

else let x1,…,xn _ M, let i _ [1,m]

such that �Ri(x1,…,xn) in

G((R1,A1),…,(Rm,Am)) ((M-{x1,…,xn})+Ai(x1,…,xn))

where {…} represents multisets and (Ri,Ai) are

pairs of closed functions representing reactions



31-01-01 IPA'99 43

A GAMMA Example

_ What the G operator says is that the effect of a pair

(Ri,Ai) on a multiset M is to replace in M a

subset of elements {x1,…,xn} such that

Ri(x1,…,xn) is true for the elements of

Ai(x1,…,xn)

_ A prime number generator is written as follows:
prime_numbers(N) = G((R,A))

   ({2,…,N}) where

   R(x,y) = multiple(x,y)

   A(x,y) = {y}



31-01-01 IPA'99 44

Other GAMMA Operators _ 1

_ Transmuter(C,f), applies operation f to all

the elements of the multiset until no element

satisfies the condition C

Reducer(C,f), reduces the size of the multiset

by applying the operation f to pairs of elements

satisfying C

Optimiser(<,f1,f2,S), optimises the

multiset according to a criterion expressed through

the ordering < between the functions f1 and f2,

while preserving the structure S of the multiset



31-01-01 IPA'99 45

Other GAMMA Operators _ 2

_ Expander(C,f1,f2), which decomposes the

elements of a multiset into a collection of basic

values according to the condition C and by

applying f1 and f2 to each element

S(C), which removes from the multiset all those

elements satisfying C



31-01-01 IPA'99 46

Fib in GAMMA

_ fib(n)=m where

{m}= sigma(gen({n}))

gen(N)=G((R1,A1),(R2,A2))(N) where

       R1(n)=n>1 A1(n) R2(0)=true A2(0)={1}

sigma(M)=G((R,A))(M) where

         R(x,y)=true A(x,y)={x+y}

_ fib(n) = add(zero(dec({n})))

dec = E(C,f1,f2)

      where C(x)=x>1, f1(x)=x-1, f2(x)=x-2

zero = T(C,f) where C(x)=(x=0), f(x)=1

add = R(C,f) where C(x,y)=true, f(x,y)=x+y



31-01-01 IPA'99 47

LO: Linear Logic Meets Multiset

Rewriting

_ Linear Objects view the shared dataspace as a

multiset; messages are broadcasted into it and also

retrieved by means of a set of interaction rules

_ Messages posted to the shared medium are treated

as resources which are “consumed” when taken

out from it, thus behaving as Linear Logic ops
_ <multiset> <broadcast> <built-ins> Ö  <goal>

multiset = a1 @ … @ an

broadcast = ^a | ^a @ broadcast

goal= a1 @ … @ an | goal1 & … & goaln | #t | #b



31-01-01 IPA'99 48

Coordination in LO

_ The code fragment below is part of a program for

the Mastermind game
coder(S) @ current(I) @ ^go(I) Ö  coder(S)

/* coder calls the player (“go(I)”) */

coder(S) @ try(I,G) players(N) @ ^result(I,G,A)

@ { answer(S,G,A) next_player(N,I,I1) } Ö

 coder(S) @ current(I1) @ players(N).

/* player I gets answer A to the guess G */

coder(S) @ try(I,G) @ ^victory(I,G) @

{ answer(S,G,G) } Ö  #t.

/* player I has guessed the answer A */



31-01-01 IPA'99 49

COOLL: Modular LO

_ COOLL extends LO with modularity and group

communication; a program is a set of theories:
theory theory_name Ö   method1 # … # methodN

_ Communication is either group or broadcast

Communications = ^A | !(dest,msg)

dest being the name of a theory to receive msg

_ Methods have the form Conditions =>

Communications=>Body where the first

invokes methods, the second broadcasts and the

third changes configurations



31-01-01 IPA'99 50

The Mastermind in COOLL

_ theory coder Ö

current(I) => !(players(N),go(I)) => #b

#

try(I,G) @ { code(S) @ players(N) } @

{ { answer(S,G,A),

next_player(N,I,I1) } }

=> !(players(N ),result(I,G,A))

=> current(I1)

#

   try(I,G) @ { code(S) } @

{ { answer(S,G,G)} }

=> ^victory(I,G)

=> #t.



31-01-01 IPA'99 51

Synchronizers: Law Enforcers on

Objects

_ Synchronizers can be seen as the equivalent of the

controllers in Law-Governed Linda for the case of

an Actor system

_ They express coordination patterns by specifying

and enforcing constraints that restrict access to a

set of objects

_ Constraints are defined in terms of object

interfaces rather than internal computations

performed by them



31-01-01 IPA'99 52

Xpect and CLF: Coordination for

Workflow

_ The Coordination Language Facility and its

system Xpect is another evolution of LO

_ In CLF coordinators coordinate resource

manipulations on participants by means of

scripting rules

_ The LHS of a scripting rule contains tokens which

are intended to be removed from participants

while the RHS contains tokens to be inserted into

the involved participants



31-01-01 IPA'99 53

CLF Rules and Signatures

_ The rule: p(X,Y) @ q(Y,Z) <> r(X,Z)

– (i) finds a resource satisfying the property p(X,Y) and

another one satisfying the property q(Y,Z) for

consistent values X, Y, Z

– (ii) extracts these two resources atomically

– (iii) inserts a resource satisfying r(X,Z)

_ Signatures are used to denote i-o relationships:

p(X,Y): -> X,Y q(X,Y): X -> Y

Here, p’s arguments are both output while q’s first

one is input (required) and the second one output



31-01-01 IPA'99 54

Hotel Reservation in CLF

_ customer(a,b): -> a,b is LOOKUP Agency.customer

roomRes(a,b): a,b -> is LOOKUP Agency.roomRes

vacancy(a,b,c): a,b -> c is LOOKUP Hotel.vacant

customer(name,date) @ vacancy(date,”single”,no)

<> roomRes(name,no)

_ Tokens are assigned services, customer generates

requests like (“George”,“1/1/00”),

(“John”,“2/2/99”), an instance of the rule

is created for every request proceeding in parallel

_ Further rules are needed to resolve conflicts



31-01-01 IPA'99 55

Synchronizers

_ Based on the Actor model, they are a set of tools

able to express coordination patterns within a

multi-object language framework

_ This is expressed by specifying and enforcing

constraints that restrict invocation of objects

_ Constraints are defined in terms of object

interfaces, rather than internal representations

_ An abstract syntax is used, independent of

particular languages



31-01-01 IPA'99 56

A Synchronizer for Dining

Philosophers

_ PickUpConstraint(c1,c2,phil)

{

 atomic((c1.pick(sender) where sender=phil),

        (c2.pick(sender) where sender=phil)),

(c1.pick where sender=phil) stops

}

_ The synchronizer enforces atomic access to the

two chopsticks c1 and c2; when phil has

successfully acquired both chopsticks, the

constraint is terminated. The synchronizer applies

only to pick messages (sent by an eat process)



31-01-01 IPA'99 57

MESSENGERS: Coordination of

Mobile Code for Distributed Systems

_ A messenger is a message carrying not only data

but also a process to manipulate the data

_ Each node in a distributed system visited by a

messenger executes the process until some

navigational command tells it to move elsewhere

_ A distributed applications is viewed as a collection

of functions whose coordination is managed by a

group of messengers

_ Inter- and Intra-object coordination is supported



31-01-01 IPA'99 58

A Manager-Worker Mobile farm in

MESSENGERS _ 1

_ manager_worker()

{

 create(ALL);

 hop(ll = $last);

 while ((task = next_task()) != NULL)

{

 hop(ll = $last);

 res = compute(task);

 hop(ll = $last);

 deposit(res);

}

}



31-01-01 IPA'99 59

A Manager-Worker Mobile farm in

MESSENGERS _ 2

_ The Messenger script is injected into the init node

of some daemon

_ Logical nodes are created connected to the current

node on every neighboring daemon, replicas of the

script are created on each node and activated

_ Each Messenger hops back to the original node via

the most recently traversed logical link ($last),

gets a new task to perform, hops back to its node,

does the task and deposits the result back



31-01-01 IPA'99 60

The hop Primitive

_ hop(ln=n; ll=l; ldir=d)

ln is a logical node, ll a logical link, ldir the

link’s direction

_ (n,l,d) is a destination specification, n being

an address, variable or constant (including the

special node init), l a virtual link, variable or

constant (denoting a jump to the designated node),

d a symbol denoting direction (“forward”,

“backward”, “either”)



31-01-01 IPA'99 61

Compositional Programming

_ Shares the same goals with coordination, namely

reusability of code, separation of communication

from computational concerns, etc

_ In a compositional system, the properties of

program components are preserved when

combined with other components

_ Recurring patterns of parallel computation

(mergers, streamers) can be identified, isolated

and reused



31-01-01 IPA'99 62

Compositional Programming Derived

from Concurrent Logic Programming

_ Essentially the CLP formalism is used to express

the coordination patterns, the computational parts

written in other languages

_ Over the years some particular coordination

patterns in CLP have been identified and are

offered to the user as logical “skeletons”

_ These skeletons can be realized in either a

concrete CLL (e.g. Strand) or by means of a

generic notation (e.g. PCN)



31-01-01 IPA'99 63

Strand

_ Strand is the simplest of CLLs, derived from

Parlog and Flat Concurrent Prolog

_ It features one-way unification, flat guards,

dependent AND-parallelism, list composition and

shared single-assignment variables

_ The WAM-based implementation of Strand is

considered to be one of the fastest in the family of

CLLs (the Janus group being the fastest)

_ Computational models are written in C, Fortran



31-01-01 IPA'99 64

Genetic Sequence Alignment

Algorithm in Strand (part of the code)

_ cps([Seq|Sequences],CpList) :-

CpList := [CPs|CpList1],

c_critical_points(Seq,CPs),

cps(Sequences,CpList1).

cps([],CpList) :- CpList := [].

divide(Seqs,Pin,Alignment) :-

Pin =\= [] | split(Seqs,Pin,Left,Right,Rest),

align_chunk(Left,LAlign) @ random,

align_chunk(Right,RAlign) @ random,

align_chunk(Rest,RestAlign) @ random,

 combine(LAlign,RAlign,RestAlign,Alignment).

divide(Seqs,[],Alignment) :-

c_basic_align(Seqs,Alignment).



31-01-01 IPA'99 65

Program Composition Notation (PCN)

_ Strand is a concrete CL language and therefore

requires a WAM-based implementation

_ PCN is a set of notations, able to express

concurrent logic coordination patterns

_ Being essentially a set of add-on primitives, PCN

can be implemented as an extension of some host

computational language (typically C, C++,

Fortran, etc.)

_ Of course, the system is now also faster



31-01-01 IPA'99 66

Genetic Sequence Alignment

Algorithm in PCN (same code)

_ cps(sequences,cplist)

{ ? sequences ?= [seq|sequences1] ->

{ ||cplist = [cps|cplist1],

c_critical_points(seq,cps),

cps(sequences1,cplist1)

},

sequences ?= [] -> cplist = []

}

divide(seqs,pin,alignment)

{ ? pin != [] ->

{ || split(seqs,pin,left,right,rest),

 align_chunk(left,lalign) @ node(random),

            align_chunk(right,ralign) @ node(random),

align_chunk(rest,restalign) @ node(random),

combine(lalign,ralign,restalign,alignment)

},

pin == [] -> c_basic_align(seqs,alignment)

}



31-01-01 IPA'99 67

Compositional Programming Derived

from Functional Programming

_ Here skeletons are realized as higher order

functions which represent reusable coordination

patterns, related to data partitioning, placement

and communication

_ The virtues of functional programming (such as

compositionality of functions, lack of side-effects,

ability to transform programs while preserving

their properties, etc.) allow reasoning of programs

to be done at the functional specification level



31-01-01 IPA'99 68

Configuration Functional Skeletons

_ distribution (f,p) (g,q) A B

= align (p _ partition f A)

(q _ partition g B)

_ functions f and g specify the partitioning strategy

of A and B, respectively, and p and q specify any

initial data rearrangement that may be required

_ partition divides a sequential array into a

parallel array composed of sequential subarrays

_ align pairs subarrays in two distributed arrays

together into a new configuration, an array of tupls



31-01-01 IPA'99 69

Computational Function Skeletons

_ A skeleton for a matrix addition performed in

parallel using the previous configuration skeleton:

_ matrixAdd A B = (gather _ map _ SEQ_ADD)

(distribution fl dl)

where C = SeqArray ((1..SIZE(A,1)), (1:SIZE(A,2)))

fl = [((row_block p),id),

 ((row_block p),id),

 ((row_block p),id)]

dl = [A,B,C]

_ Note that SEQ_ADD is defined in some other

computational language



31-01-01 IPA'99 70

CoLa: Coordination for DAI

_ CoLa is a set of primitives, independent from the

host language, especially suited for Distributed AI

_ In CoLa one can express communication

abstractions (correspondents) and topologies, and

local views of computation for a process

_ For each process, there is a Range of View which

defines the set of correspondents the process can

communicate with, and a Point of View indicating

the specific communication topology adopted



31-01-01 IPA'99 71

A Point of View in CoLa

_ with csTopoVision -- CoLa base topology class

class csTreeVision is -- Define Point of View

father(csCor, const csCor); -- father node in PV

son(csCor, const csCor); -- son node in PV

end class;

implementation csTreeVision is -- Implem of the PVs

son is rule son(X,Y)

:- csTopoVision.isLinked(X,Y).

father is rule father(X,Y) :- son(Y,X).

-- Prolog like clauses

end implementation;



31-01-01 IPA'99 72

A Range of Vision in CoLa

_ procedure p(T: in csTreeVision) is

F: csSet := {X in T | father(X,self)};

-- Compute correspondence

S: csSet := {X in T | son(X,self);

myMsgDep :=

csMsgSendAssDep(highest_prio(S),T,csREAD);

myMsgId :=

csMsgAss(myMsgBody,myMsgDep,csFIFO);

csMsgSend(myMsgId-- Send in the tree topology

 … … …

end procedure



31-01-01 IPA'99 73

Combining Task and Data Parallelism

_ The issue of combining task parallelism with data

parallelism is closely related to that of

coordinating multidisciplinary applications

_ In a way, data parallelism can be viewed as the

computational part of a coordination based

framework, whereas task parallelism plays the role

of communication

_ Many of the models proposed here (Braid, Fx,

Opus, Orca) use a shared communication medium



31-01-01 IPA'99 74

Braid

_ Braid is a data parallel extension to the object-

oriented, C++ like, task parallel language Mentat

_ Braid extends Mentat by introducing data parallel

Mentant classes, whose objects are partitioned

among a number of available processes;

operations on these objects are executed in a data

parallel way

_ Communication between tasks is achieved by

means of shared objects



31-01-01 IPA'99 75

Combining Task and Data Parallelism

in Braid

_ dataparallel mentat class data_par_obj {

// private member variables

public:

int AGG row_sums ROW();

…

}

float x,z; int y;

control_par_obj A, B;

data_par_obj my_image;

x=A.op1(); y=my_image.row_sums();

z=B.op1(x,y);



31-01-01 IPA'99 76

Fx

_ Fx adds task parallel directives to HPF

_ A task corresponds to an execution of a task

subroutine, which is a data parallel subroutine

where only its actual arguments can be modified

_ A number of task subroutines can be invoked

within a parallel session (task parallelism)

_ Communication is done via a shared medium at

procedure boundaries and is the responsibility of

the compiler rather than the programmer



31-01-01 IPA'99 77

Data Parallelism in Fx

_ template t(n)

align A(i,j) with t(i)

align B(i,j) with t(j)

distribute t(cyclic)

do i=1,n

A(i,:) = A(i,:) + B(:,i)

enddo

_ The template, align, and distribute

directives are used to distribute the rows of A and

the columns of B cyclically across the node array;

loop iterations are independent and can execute in

parallel



31-01-01 IPA'99 78

Task Parallelism in Fx

_ begin parallel

do i=1,10

call src(A,B) output:A,B

call p1(A) input:A output:A

call p2(B) input:B output:B

call sink(A,B) input: A,B

enddo

end parallel

_ Forty tasks are created, in each iteration src

sends the two arrays to p1 and p2, the latter after

operating on them pass them to sink; p1 and p2

can execute in parallel, and pipelining is supported



31-01-01 IPA'99 79

Opus

_ A coordination superlanguage for HPF, where

processes communicate via a Shared Abstraction

(SDA), a Linda-like common forum

_ An SDA is in fact an ADT, containing data

specifying its state and methods for manipulating

this state

_ SDAs can be used either as data servers between

concurrently executing processes (data par) or as

computation servers driven by a controlling task



31-01-01 IPA'99 80

A Data Server for a FIFO Bounded

Buffer in Opus

_ SDA TYPE buffer_type(size)

INTEGER ::size

REAL, PRIVATE ::fifo(0:size-1) ! FIFO buffer

INTEGER, READ ONLY ::count=0 ! no of full elements

INTEGER, PRIVATE ::px=0 ! producer index

INTEGER, PRIVATE ::cx=0 ! consumer index

…

CONTAINS

SUBROUTINE put(x) WHEN (count .LT. size)

! implementation in Fortran

END

SUBROUTINE get(x) WHEN (count .GT. 0)

! implementation in Fortran

END

…

END buffer_type



31-01-01 IPA'99 81

Managing the Task Parallelism for the

FIFO Buffer

_ PROCESSORS R(128)

SDA(buffer_type)::buffer1, buffer2

…

CALL buffer1%CREATE(256) ON PROCESSORS R(1)

CALL buffer2%CREATE(1024) ON PROCESSORS R

_ Each one of the two CREATE statements generates

an SDA with some buffer size, the first goes to

R(1) and the second to the rest of the processors;

buffer1 and buffer2 are used as handles



31-01-01 IPA'99 82

Orca

_ Orca is quite similar to Opus and can be seen as an

object-based DSM system

_ Communication in Orca is done via shared

objects, instances of ADTs, by applying user-

defined ADT operations on them

_ Data parallelism is expressed through partitioned

objects, containing arrays that can be distributed

among multiple processors



31-01-01 IPA'99 83

Mixed Task and Data Parallelism in

Orca

_ PROCESS Worker(P,M1,M2:integer; procs:CPUlist)¨

A: fftObject[1..N];

BEGIN

A$$partition(N);

A$$distribute_on_list(Procs,P,BLOCK);

FOR i IN M1..M2 DO readmatrix(i,A); 2Dfft(A); OD;

END;

PROCESS Coordinator(Ncpus,NWorkers,NMatrs: integer);

P,S: integer;

BEGIN

P:=Ncpus/NWorkers; S:=NMatrs/NWorkers;

FOR i IN 0..NWorkers-1 DO

FORK Worker(P, i*S, (i+1)*S-1, [i*P..(i+1)*P-1])

ON (i*P); OD;

END;



31-01-01 IPA'99 84

Control-Driven Coordination

Formalisms

Prod

Cons1

Cons2

Pi

Po1

P02

C1i C1o

C2i1

C2i2

C2o

e1, e2

e3



31-01-01 IPA'99 85

Main Characteristics of Control-

Driven Coordination Formalisms

_ Processes communicate in a point-to-point manner

by means of well defined interfaces, usually

referred to as (input or output) ports which are

used to set up streams or channels

_ Changes to such network configurations are often

triggered by means of raising and observing events

_ Processes are normally treated as black boxes and

the actual data being exchanged do not affect the

state of the computation



31-01-01 IPA'99 86

Configuration and (Dynamic)

Reconfiguration Languages

_ Configuration Management is effectively  control-

driven coordination for the following reasons:

– Configuration languages are separate entities from

computational ones used to implement components

– Components are context independent and specify

visible behaviour via well defined interfaces

– Complex components are definable as composition of

simpler ones

– Changes are expressed at the configuration level as

changes to component instances or interconnections



31-01-01 IPA'99 87

Architecture Description Languages

(ADL) and Software Architectures

_ ADLs and Software Architecture languages is yet

another way of viewing coordination, because

they share a number of common requirements

such as: component abstraction and composition,

communication abstraction, ability to model

dynamic behaviour, etc.

_ Often, components are represented as black boxes,

with ports as interfaces being connected by means

of connectors (the control-driven paradigm)



31-01-01 IPA'99 88

Proteus Configuration Language

_ In PCL the unit of configuration is a family entity,

representing one or more versions of a component

_ A family entity comprises a composition structure,

a type, attributes, a parts section specifying its

composition, and version descriptors

_ A component may have a number of ports,

signifying offered and required services

_ Evolution is specified by version descriptions

triggered by action ports



31-01-01 IPA'99 89

Specifying Components in PCL

_ family nurse inherits application_component is

classification

REALISATION => concrete

end

attributes

persistent_state = true

monitors: integer range 0..3

end

parts

IN_PORTS =>  alarm_in[monitors]

OUT_PORTS => data_out[monitors]

 quit -- action port for removal

end

end



31-01-01 IPA'99 90

Dynamic Reconfiguration in PCL

_ version initial_pms of ward is

attributes

nurses := 3, monitors := 4

relationships

CB1:component_binding => nurse[1],monitor[1]

CB2:component_binding => nurse[2],monitor[2]

CB3:component_binding => nurse[3],monitor[3,4]

end

version nurse[3]_quit inherits initial_pms of ward is

attributes

nurses := 2

relationships

CB2:component_binding => nurse[2],monitor[3,4]

end



31-01-01 IPA'99 91

Conic

_ Conic is based on a variant of Pascal and features

logical nodes configured together by means of

links established between entry and exit ports

_ Logical nodes are system configuration units,

comprising sets of tasks executing concurrently;

sets of nodes form groups

_ Dynamic reconfiguration is limited; evolutions

must be completely specified at compile time and

the system must be quiescent or info may be lost



31-01-01 IPA'99 92

Specifying Components in Conic

_ group module patient;

use monmsg: bedtype, alarmstype;

exitport alarm: alarmstype;

entryport bed: signaltype reply bedtype;

<< code >>

end.

group module nurse;

use monmsg: bedtype, alarmstype;

entryport alarm[1..maxbed]: alarmstype;

exitport bed[1..maxbed]: signaltype

reply bedtype;

<< code >>

end.



31-01-01 IPA'99 93

Dynamic Reconfiguration in Conic

_ system ward;

create

bed1: patient at machine1;

nurse: nurse at machine2;

link

bed1:alarm to nurse.alarm[1];

nurse.bed[1] to bed[1].bed;

end.

manage ward;

create

bed2: patient at machine1;

unlink

bed1:alarm from nurse.alarm[1];

nurse.bed[1] from bed[1].bed;

link

bed2:alarm to nurse.alarm[1];

nurse.bed[1] to bed[2].bed;

end.



31-01-01 IPA'99 94

Darwin & Regis

_ Darwin and its associated system Regis extend

Conic in a number of ways:

– Language independence

– Stronger notion on dynamic reconfiguration by means

of direct component instantiation specified at run-time

– Components can interact through user-defined

communication primitives

– Input ports of a component are provided to the

environment for other processes to post there data and

output ones are requiring a port reference to post data



31-01-01 IPA'99 95

Specifying Components in Darwin

_ component supervisor (int w)

{ provide result <port,double>;

require labour <component,int,int,int>;

}

component worker (int id, int nw, int intervals)

{ require result <port,double>;

}

component calcpi2(int nw)

{

inst

S:supervisor(nw);

bind

worker.result -- S.result;

S.labour -- dyn worker;

}



31-01-01 IPA'99 96

Dynamic Reconfiguration in Darwin

_ supervisor::supervisor(int nw)

{

const int intervals=400000;

double area=0.0;

for (int i=0; i<nw; i++)

{ labour.at(i);

labour.inst(i,nw,intervals);

}

for (int i=0; i<nw; i++)

{ double tmp;

result.in(tmp);

area+=tmp;

}

printf(“Approx pi %20.15lf\n”,area);

}



31-01-01 IPA'99 97

Durra

_ Components consist of application tasks featuring

input-output ports and communication channels

_ At run-time, tasks create processes and channels

create links

_ Dynamic reconfiguration is done by raising and

observing events; however, as in Conic,

unrestricted dynamic creation of tasks is not

possible; also, before breaking a link, a task must

raise a safe message so that data is not lost



31-01-01 IPA'99 98

Specifying Components in Durra

_ task producer   task consumer

ports   ports

 output: out message;    input: in message;

attributes   attributes

 processor=“sun4”; processor=“sun4”;

 procedure_name=“producer”; procedure_name=“consumer”;

 library=“/usr/durra/srclib”; library=“/usr/durra/srclib”;

end producer;   end consumer;

channel fifo(msg_type:identifier, buffer_size:integer)

ports

input: in msg_type; output: out msg_type;

attributes

processor=“sun4”; bound=buffer_size;

package_name=“fifo_channel”;

library=“/usr/durra/channels”;

end fifo;



31-01-01 IPA'99 99

Dynamic Reconfiguration in Durra

_ task dynamic_producer_consumer

components

p: task producer; c[1..2]: task consumer;

buffer: channel fifo(message,10);

structures

L1: begin

baseline p, c[1], buffer;

buffer: p.output >> c[1].input;

end L1;

L2: begin

baseline p, c[2], buffer;

buffer: p.output >> c[2].input;

end L2;

reconfigurations

enter => L1;

L1 => L2 when signal(c[1],1);

end dynamic_producer_consumer;



31-01-01 IPA'99 100

The Programmer’s Playground

_ This configuration formalism is based on the

notion of I/O abstractions, where each module has

a presentation that consists of data structures that

may be externally observed and/or manipulated

_ An application consists of a set of modules and a

configuration of logical connections among the

data structures in the module presentations

_ Updating data structures, causes communication to

occur implicitly based on the logical connections



31-01-01 IPA'99 101

Dynamic Reconfiguration in the

Programmer’s Playground

_ This is achieved by means of logical handles,

which define virtual connections between input

and output “ports”

_ Every logical handle defines an i-o relationship

between a number of ports; associating a handle

with another one, effectively creates a set of

virtual links between the two groups of ports

_ At a physical level, however, connections are

implemented as being point-to-point



31-01-01 IPA'99 102

The Graphical Form of a Program in

the Programmer’s Playground



31-01-01 IPA'99 103

Textual Programming in the

Programmer’s Playground: Producer

_ #include “PG.hh”

PGint next=0;

PGstring mess;

send_next(PGstring mess, static int i)

{ if (strcmp(mess,”ok”)==0) next=i++; }

main()

{

PGinitialise(“producer”);

PGpublish(next,”next_int”,READ_WORLD);

PGpublish(mess,”ok”,WRITE_WORLD);

while (1)

PGreact(mess,send_next);

PGterminate();

}



31-01-01 IPA'99 104

Textual Programming in the

Programmer’s Playground: Consumer

_ #include “PG.hh”

PGint next=0;

PGstring mess;

void consume_int(PGint i)

{ /* consumes list of integers */ }

main()

{

PGinitialise(“consumer”);

PGpublish(mess,”ok”,READ_WORLD);

PGpublish(next,”next_int”,WRITE_WORLD);

while (1)

{ PGreact(next,consume_int); mess=“ok”; }

PGterminate();

}



31-01-01 IPA'99 105

Olan

_ Olan is an object-oriented configuration language

where a configuration is viewed as a hierarchy of

interconnected components

_ Components have well-defined interfaces called

services, either provided or required; service

exchange is realized by means of connectors

_ Notifications are used as an event broadcasting

mechanism (through connectors though), which

can cause reactions by the observing processes



31-01-01 IPA'99 106

Graphical Presentation of Olan

Components



31-01-01 IPA'99 107

Textual Presentation of Olan

Components

_ component class UserSession

interface

require SendOp (in operation);

provide ReceiveOp (in operation);

…

implementation

theCont = dyn inst CoopController; // dynamic inst

theAppl = inst SharedAppl;

// mapping using methodcall connector

connector

ReceiveOp => theCont.ReceiceOp;

theCont.SendOp => SendOp;

// interactions

theCont.Launch => theAppl.Init;

theCont.SendOp => theAppl.ReceiveOp;



31-01-01 IPA'99 108

C2

_ C2 is a style for building systems with complex
user interfaces

_ Architectures consist of components (written in
any language) and connectors

– Architecture is layered

– Connectors broadcast messages up or down one layer

– Request messages only go up; Notifications only go
down

– Components connect to one connector above and one
below



31-01-01 IPA'99 109

A Graphical C2 Example

Database Component

Admin IU User IU

Window System



31-01-01 IPA'99 110

A Textual C2 Component Description

_ component StackADT is

interface

top_domain in null; out null;

bottom_domain

in  PushElement (value : stack_type);

out ElementPushed (value : stack_type);

parameters null;

methods

procedure Push (value : stack_type);

function Pop () return stack_type;

behavior

received_messages PushElement;

invoke_methods Push;

always_generate ElementPushed;

end StackADT;



31-01-01 IPA'99 111

UniCon

_ In UniCon, a system is comprised of (possibly

nested) components which have, among other

things, a number of players (i.e. ports)

_ In addition, there exist connectors associated with

roles, that specific named entities of the

components (i.e. the players) must play

_ Both components and connectors are defined in

terms of a name, a type, an interface and an

implementation



31-01-01 IPA'99 112

A Primitive Component and

Connector in UniCon

_ COMPONENT Sort CONNECTOR Unix-pipe

INTERFACE IS PROTOCOL IS

TYPE Filter  TYPE Pipe

PLAYER input is StrIn ROLE source is source

SIGNATURE(“line”) MAXCONNS(1)

PORTBINDING(stdin) ROLE sink is sink

PLAYER output is StrOut MAXCONNS(1)

SIGNATURE(“line”) IMPLEMENTATION IS

 PORTBINDING(stdout) BUILTIN

IMPLEMENTATION IS END

VARIANT sort IN “sort”

IMPLTYPE (Executable)

INITACTUALS (“-f”)

END



31-01-01 IPA'99 113

Architecture Description Interchange

Language (ACME)

_ ACME features the usual constituents of an ADL:

components forming systems, and communicating

by means of connectors via (typed) ports

_ There are roles associated with connectors, e.g. an

event broadcast connector has an event-announcer

role and a number of event-receiver roles

_ There may be more than one description for some

component; rep-maps are then used to associate

internal representations with external interfaces



31-01-01 IPA'99 114

An ACME Component System



31-01-01 IPA'99 115

Textual ACME

_ System simple_cs = {

Component client = { Port send-request; };

Component server = { Port receive-request; };

Connector rpc = { Roles { caller, callee}};

Attachments {

client.send-request to rpc.caller;

server.receive-request to rpc.callee;

}



31-01-01 IPA'99 116

Rapide

_ Rapide, features components defined by means of

interfaces, connections and constraints

_ Interfaces define the behaviour of components,

connections define communication among

components using only those features specified by

their interfaces, and constraints restrict the

behaviour of components and interfaces

_ There exist events which can be parameterized

with types and values



31-01-01 IPA'99 117

A Producer-Consumer Scenario in

Rapide _ 1

_ type Producer(Max: Positive) is interface

action out Send(N: Integer);

action in Reply(N: Integer);

behavior

Start => Send(0);

(?X in Integer) Reply(?X)

where ?X < Max => Send(?X+1);

end Producer;

type Consumer is interface

action in Receive(N: Integer);

action out Ack(N: Integer);

behavior

(?X in Integer) Receive(?X) => Ack(?X);

end Consumer;



31-01-01 IPA'99 118

A Producer-Consumer Scenario in

Rapide _ 2

_ architecture ProdCons() return SomeType is

Prod: Producer(100);

Cons: Consumer;

connect

(?n in Integer)

Prod.Send(?n) => Cons.Receive(?n);

Cons.Ack(?n) => Prod.Reply(?n);

end architecture ProdCons;

_ The coordinator above creates two process

instances, one for producer and one for consumer,

and associates the output event of the former with

the input event of the latter and vice versa



31-01-01 IPA'99 119

POLYLITH

_ POLYLITH is effectively a MIL, enhanced with

functionality usually found in coordination

languages such as ports and events

_ Components are modules with interfaces for each

communication channel upon which running

instances of a module will exchange messages

_ An abstract decoupling agent, a software bus, is

used as a communication channel; processes  can

be “plugged”  into or “unplugged” from it



31-01-01 IPA'99 120

A Producer-Consumer Example in

POLYLITH _ 1

_ main(argc,argv) main(argc,argv)

/* a.c (exec in a.out) */ /* b.c (exec in b.out) */

{ {

char str[80]; char str[80];

… …

mh_write(“out”,…,”msg1”); mh_read(“in”,…,str);

… …

mh_read(“in”,…,str); mh_write(“out”,…,”msg2”);

… …

} }

service “A”: service “B”:

{ {

implementation:  implementation:

{binary: “a.out”} {binary: “b.out”}

source “out”: {string} source “out”: {string}

source “in”: {string} source “in”: {string}

} }



31-01-01 IPA'99 121

A Producer-Consumer Example in

POLYLITH _ 2

_ orchestrate “example”:

{

 tool “foo”: “A”

 tool “bar”: “B”

 tool “bartoo”: “B”

 bind “foo out” “bar in”

 bind “bar out” “bartoo in”

 bind “bartoo out” “foo in”

}

_ Using the primitives mh_read and mh_write,

the two modules send a message msg1 or msg2

to their out (source) ports and receive a message

of type string into their in (sink) ports



31-01-01 IPA'99 122

TOOLBUS

_ TOOLBUS is similar to POLYLITH, in that a

software bus (toolbus) is used as the

communication medium

_ The building block is a “tool”; types and numbers

of tools must be defined statically; however, any

number of instances of these tools may be active

_ Adapters are used for data compatibility between

different tools; configurations are expressed in

terms of T-scripts which can be formally reasoned



31-01-01 IPA'99 123

Coordinating a Set of Tools in

TOOLBUS

_ define COMPILER =

( rec-msg(compile,Name) . snd-eval(compiler,Name) .

( rec-value(compiler,error(Err),loc(Loc)) .

snd-note(compile-error,Name,error(Err),loc(Loc))

) * rec-value(compiler,Name,Res) .

snd-msg(compile,Name,Res)

) * delta

define EDITOR =

subscribe(compile-error) .

( rec-note(compile-error,Name,error(Err),loc(Loc)) .

snd-do(editor,store-error(Name,error(Err),loc(Loc)))

+ rec-event(editor,next-error(Name)) .

snd-do(editor,visit-next(Name)) .

snd-ack-event(editor)

) * delta



31-01-01 IPA'99 124

COCA: Groupware Using

Coordination

_ COCA is a Prolog-based groupware coordination

language, featuring channels and roles

_ Communication is realized using IP multicast, the

metaphor being a dual bus architecture:

– A collaboration bus connects all participants and

provides basic communication among them

– A conference bus connects a local instance of the

COCA virtual machine with the various collaboration

tools (video, audio, drawing, etc.); the VM is also

connected to the collaboration bus



31-01-01 IPA'99 125

A Presentation Scenario in COCA

_ collaboration “presentation”

{ collaboration-bus { channel(remote). }

  role “slide viewer”

  { conference-bus { channel(l-in), channel(l-out) }

  on-arrive(gate(remote),id(URL),slide(X)) :-

l-out(id(URL),slide(X)).

  on-arrive(gate(l-in),id(URL),slide(X)) :-

remote(id(URL),slide(X)).

}

_ COCA VMs communicate via remote, and

actors within some VM communicate via the local

i/o channels, l_out to display received slides and

l_in to forward local ones for remote display



31-01-01 IPA'99 126

MANIFOLD

_ MANIFOLD is a “traditional” coordination

language (i.e. not an ADL, configuration

language, etc.) featuring ports, events and streams

_ Coordinators are written in a fully fledged control-

driven language which clearly separates the

coordination patterns from the computational ones

_ Changes to a system are done dynamically by

state transitions triggered by observing raised

events



31-01-01 IPA'99 127

A Conferencing System Modelled in

MANIFOLD _ 1

_ event leave.

manifold Session(event) import.

manifold Connect(process p1, process p2)

{

 begin: (p1 -> p2, p2 -> p1, terminated(self)).

 leave.p1|leave.p2: .

}

manifold Participate(process me)

{

 ignore join.me.

 begin: while true do

          {

           begin: terminated(self).

           join.*other: Connect(me,other).

          }.

 leave.me: .

}



31-01-01 IPA'99 128

A Conferencing System Modelled in

MANIFOLD _ 2

_ manifold User()

{

 event remove_me.

 begin: (Participate(self),

         raise(join),

         Session(remove_me),

         terminated(self)).

 remove_me: raise(leave).

}

_ Session implements the actual conferencing

activity, Connect establishes a communication

link between two processes, Participate

creates a Connect process for every new User



31-01-01 IPA'99 129

ConCoord

_ ConCoord can be seen as a “structured”

MANIFOLD, comprising the same structures as

the latter; events can be parameterized with data

_ Coordinators in ConCoord are created in a

hierarchical manner, where inner ones have no

access to outer ones, in terms of observing raised

signals or establishing i/o connections

_ State changes are communicated by message

passing and communication can be synchronous



31-01-01 IPA'99 130

A Pipeline of Generic Processes in

ConCoord

_ coordinator <t_node, t_data> gen_dyn_pipeline

{

inport <t_data> in;

outport <t_data> out;

states error(), done();

create t_node n bind in -- n.left, n.out -- out;

loop

{ choose

{

sel(t_node n | n.new and not n.right--)

=> create t_node new_n

bind n.right -- new_n.left,new_n.out -- out;

sel(t_node n | n.new and n.right--)

=> error();

}

}

}



31-01-01 IPA'99 131

Little-JIL

_ A graphical coordination language featuring:

– Explicit resource specification and dataflow

– Proactive and reactive control constructs

– Hierarchical decomposition of steps which are the

central abstraction in the language

– Control flow operators restrict execution of substeps

» Sequential & Parallel (AND), Choice & Try (OR)

– Processes are viewed as agents who need coordination

– Precondition and postcondition guards

– Exception Handling



31-01-01 IPA'99 132

Little-JIL Step Notation

TheStepName

Interface Badge

Precondition Badge Postcondition Badge

Control Flow

Operator
Reactions

Exception Handlers



31-01-01 IPA'99 133

Agent Coordination in Little-JIL



31-01-01 IPA'99 134

Cooperative Systems Design Language

(CSDL): Cooperation Using

Coordination
_ CSDL supports the definition of the coordination

aspects of a cooperative system

_ Configurations comprise users and applications

managed by coordinators; the latter consist of:

– a specification defining groups and cooperation policies

in terms of requests exported selectively to members of

different groups

– a body defining access rights associated with groups

– a context defining coordinator dependencies in terms of

groups mapping



31-01-01 IPA'99 135

A Cooperative System in CSDL



31-01-01 IPA'99 136

Specifying ab X-Windows

Coordinator in CSDL _ 1

_ coordinator XWindow

{ group ConnectedUsers;

group Output nestedIn ConnectedUsers;

group Input nestedIn Output;

invariant #Input <= 1;

requests

{ exportedTo extern

{ join Output other

{ actions: insert ConnectedUsers other;

insert Output other; }

join Input other

{ requires: other in Output and #Input = 0;

actions: insert Input other; } }

leave Output other

{ actions: extract Output other;

extract ConnectedUsers other; }

}



31-01-01 IPA'99 137

Specifying ab X-Windows

Coordinator in CSDL _ 2

_ coordinator body XWindow

{

S: switcher inOut XSwitcher;

group ConnectedUsers { connected; inOff; outOff; }

group Output { outOn; }

group Input { inOn; }

}

_ The specification includes an invariant stating

constraints on group cardinality and membership,

and requests (join, leave) exported selectively

_ Exchange of information is done via logical

switches that model multiplexing of data streams



31-01-01 IPA'99 138

Conclusions _ 1

_ In the traditional coordination languages, there

will be further work and convergence on the issue

of the communication medium: structured and

localized, but not unrestricted broadcasting or

point-to-point

_ With the development of Internet technologies,

there will be a new class of coordination

formalisms, especially suited for that purpose,

such as XML



31-01-01 IPA'99 139

Conclusions _ 2

_ Also, new application areas will be explored such

as Cooperative Information Systems, Open and

Distributed Multimedia, E-Commerce, Mobile

Computing, etc.

_ Thus, there will be a closer collaboration between

traditional coordination programming groups and

ones using coordination in a different setting

(CSCW, workflow, collaboration, groupware, etc.)

_  Coordination will (successfully?) marry CORBA


