
Guadalupe Ortiz
University of Cádiz, Spain

Javier Cubo
University of Málaga, Spain

Adaptive Web Services
for Modular and Reusable
Software Development:
Tactics and Solutions

Adaptive web services for modular and reusable software development: tactics and solutions / Guadalupe Ortiz and Javier
Cubo, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: “The book comprises chapters that present tactics and solutions for modular and reusable software development
in the field of adaptive Web services”--Provided by publisher.
 ISBN 978-1-4666-2089-6 (hardcover) -- ISBN 978-1-4666-2090-2 (ebook) -- ISBN 978-1-4666-2091-9 (print & perpetual
access)
1. Web services. 2. Computer software--Reusability. 3. Component software 4. Computer software--Development. I.
Ortiz, Guadalupe, 1977- II. Cubo, Javier, 1978-
 TK5105.88813.A365 2012
 006.7’8--dc23
 2012013952

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather A. Probst
Book Production Manager: Jennifer Romanchak
Publishing Systems Analyst: Adrienne Freeland
Managing Editor: Joel Gamon
Development Editor: Hannah Abelbeck
Assistant Acquisitions Editor: Kayla Wolfe
Typesetter: Travis Gundrum
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

278

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Achilleas P. Achilleos
University of Cyprus, Cyprus

Kun Yang
University of Essex, UK

George A. Papadopoulos
University of Cyprus, Cyprus

Addressing Device-Based
Adaptation of Services:

A Model Driven Web Service
Oriented Development Approach

ABSTRACT

The rapid growth of the mobile devices market and the increasing requirements of mobile users augment
the need to develop Web Service clients that could be deployed and run on both mobile and desktop
devices. Different developers attempt to address this heterogeneity requirement and provide solutions
that simplify and automate the development of device-aware services. This chapter proposes a Model-
Driven Web Service oriented approach, which allows designing and automatically generating mobile
and desktop-based clients that are able to invoke ubiquitously Web Services from different devices. This
is further enabled via the Web Services Description Language that allows generating the required proxy
classes, which support the communication with platform-specific clients. The applicability and efficiency
of the approach is demonstrated via the design and development of a device-aware Web Service prototype.

DOI: 10.4018/978-1-4666-2089-6.ch012

279

Addressing Device-Based Adaptation of Services

INTRODUCTION

Mobile devices have obtained great prominence
in the marketplace (Bartolomeo et al., 2006) and
mobile users requirements have significantly
increased in terms of running mobile services
on these devices (Kapitsaki et al., 2009). The
continuous development of existing technologies
(e.g. J2ME, C#) and the introduction of brand
new technologies (e.g. Android) raises new re-
quirements and imposes new restrictions when
developing service-clients (Daniel Dern, 2010).
Consequently, an all-important constraint arises,
which is principally associated with the inter-
face limitations and restrictions imposed when
developing platform-specific service clients for
invoking and utilising Web Services from differ-
ent devices.

During the early days of computing, the de-
velopment of complete desktop-based applica-
tions was the main focus of developers. With the
advent of Web Services the focus shifted to the
development of services designed to be accessible
from resource-rich (i.e. desktop, laptop) devices.
Nowadays, the rapid and continuous growth of
mobile devices hardware and software technolo-
gies shifted the focus towards mobile computing.
Thus, the necessity arises to design Web Services
in a flexible way because of the requirement to
invoke them from different types of devices; i.e.
mobile and stationary. This prerequisite perplexes
the development of platform-specific service cli-
ents (running on different mobile devices) mainly
because of interface limitations and restrictions;
e.g. screen size, resource-constraints, processing
power.

In this chapter we concentrate on the formula-
tion of a model-driven approach, which attempts
to exploit also the benefits of the Web Services
technology. The key point is the separation of
the development of the service clients from the
implementation of the functionality of the Web
Services. This offers a flexible, modular and ab-
stract approach, which simplifies and accelerates

the development of device-aware Web Services.
The term device-aware Web Services refers to
the development of both the service clients and
the server-side functionality (i.e. Web Service).
Hence, such an approach automates and speeds
up development for the following categories of
devices (Ortiz and Prado, 2009):

• Resource-Rich Devices: These refer to
powerful desktop and laptop devices that
do not impose restrictions in terms of pro-
cessing power, memory, screen size, etc.

• Resource-Competent Devices: An inter-
mediate category of devices that are not
as powerful as the above but have higher
computing resources than mobile devices
and smartphones; e.g. Netbooks, IPad,
Kindle.

• Resource-Constrained Devices: Devices
such as smartphones and mobile phones
that have inferior computational power,
memory, interface capabilities, etc. Also,
they support a restrictive set of Application
Programming Interfaces (APIs).

In order to accomplish this objective, the
Presentation Modelling Language (PML) is de-
fined that allows designing and automating the
implementation of service clients for the above
categories of devices. Moreover, the Web Services
Description Language (WSDL) is exploited since
it allows designing and automatically generating
the required device-specific proxy classes for
each service client, which support communica-
tion with the Web Service. In this way, we allow
users to design Web Service clients in the form of
graphical user interfaces (GUIs) and collections of
communication endpoints capable of exchanging
messages (W3C, 2001) with implemented Web
Service(s). Both definitions are specified in the
form of graphical models that are transformed
to different platform-specific implementations
and deployed on the corresponding devices to
enable access to the Web Service(s). Thus, an

280

Addressing Device-Based Adaptation of Services

experienced developer only requires to imple-
ment the main functionality of the Web Service
(at the server-side) in one of the many possible
implementations; e.g. Java, .NET.

In this work, the BookStore Web Service
is manually implemented in Java. This service
enables the user of a mobile or desktop device
to search and retrieve information on specific
books. Following, it enables the user to provide
his personal and payment details to complete the
purchase of the book. The service clients of this
prototype device-aware Web Service are designed
in the form of a single platform-independent GUI
model that is subsequently transformed to vari-
ous target implementation technologies (e.g. C#,
Android, J2ME). In addition, the communication
endpoints of the clients with the Web Service are
defined in the form of a WSDL model. In par-
ticular, the model describes in an abstract form
the operations and parameters of the methods
implemented in the Web Service. Hence, both the
PML and WSDL models are transformed to the
corresponding implementation technologies to
enable the communication with the Web Service.
Note that the transformation of GUI models is
accomplished using the code generators defined
in this work, while the transformation of WSDL
models is achieved via the use of existing platform-
specific code generators.

The rest of the chapter is structured as follows:
The following section presents related work,
which motivates the research steps undertaken
in this work to extend the current state of the art
on device-aware Web Service development. The
third section introduces the architecture of the
Model-Driven Web Service oriented approach
proposed in this research work. Following, an
initial requirement analysis of the GUI model-
ling domain is performed, the PML is defined
in the form of an Eclipse Modelling Framework
(EMF) (EMF, 2011) metamodel and the neces-
sary domain-specific constraints are defined and
imposed onto the PML. The fifth section intro-
duces the PML code generation process and the

platform-specific code generator tools defined and
used in this work. It also presents example code
generation scripts and template definitions for
the Android implementation technology, in order
to showcase how code generators are developed
for the different target implementations. The
following section demonstrates the design and
implementation of the BookStore device-aware
Web Service prototype. Finally, conclusions and
plans for extension of this research work are
presented in the final section.

BACKGROUND

The development of GUIs is a difficult and
essential task in software development. In par-
ticular, the development overheads are largely
increased while developing the same software
service for miscellaneous platforms that have
different requirements and impose different re-
strictions (Jelinek and Slavik, 2004). This applies
explicitly to mobile services since the complexity
of implementing GUIs is increased due to the
advanced user-service interaction and the hetero-
geneity requirement. Thus, the capability must be
provided to define GUIs in an abstract manner,
which can support the advanced interaction of the
user with the software application (Sauer et al.,
2006), (Heines and Schedlbauer, 2007). Moreover,
generation of different implementations from the
same GUI models should be feasible in order to
enable the invocation of Web Services from dif-
ferent mobile devices. In conclusion, the MDD
approach should provide the capability to generate
the implementation that enables communication
with the implemented Web Service(s). Thus, the
developer would only require implementing the
main functionality of the Web Service in a single
programming language or using an existing Web
Service.

One initial research work on GUI modelling
focuses on the design of the structure of the user
interface using presentation diagrams and its

281

Addressing Device-Based Adaptation of Services

behaviour with hierarchical statechart diagrams
(Sauer et al., 2006). This design step is performed
using the developed GuiBuilder modelling tool
that supports also the transformation of the mod-
els to the corresponding Java-based code. Also,
the GuiBuilder supports the simulation of the
modelled behaviour being generated. The main
objective though of this work is to develop a tool
that supports the model-driven development of
graphical multimedia user interfaces. As a result
the approach does not deal with the development of
complete applications but sticks simply to the de-
velopment of Java-based GUIs for the multimedia
domain. The authors do state that in future work
the attempt will be to demonstrate the flexibility
of the transformation approach by tailoring the
generator function to other implementations; i.e.
addressing application heterogeneity.

Link et al. (2008) concentrate also on the
aspect of user interaction by proposing a simple,
tool-supported approach for the model-driven
development of graphical user interfaces for
miscellaneous target platforms. The goal is to
define GUI features of the application via mod-
elling and transforming these features to source
code. In particular, explicit transformation rules
are defined that allow transforming platform-
independent models (PIMs) to platform-specific
models (PSMs). Then additional transformation
rules (i.e. code generators) are defined that sup-
port the transformation of PSMs to GUI-specific
source code. This provides an increased automa-
tion in software development but solely for the
development of the GUIs of the application.

Balagtas-Fernandez and Hussmann (2008)
take the above research work a step further since
they address the development of fully functional
software applications for mobile platforms; by
developing PIMs of an application. Their main goal
is to provide the capability to non-expert users to
design specialised mobile applications with ease.
In particular, the authors state that: it still takes a
large amount of skill and familiarity with different
APIs to create a simple mobile application. Thus,

developers need to consider the different API
restrictions imposed on mobile applications such
as device limitations (e.g. memory, screen size,
power consumption) and finally, even setting up
the different development environments remains
still a complex task. Hence, a modelling tool named
Mobile Applications (MobiA) modeller is devel-
oped, which allows designing mobile applications
that could be transformed to the corresponding
platform-specific code. Note that the development
of transformation tools is considered as future work
and thus no documented results are reported on
the capability of addressing heterogeneity. Also
the approach does not exploit the potential of the
Web Services technology, which means that the
functionality of the application is implemented on
the actual device. Thus a great burden is enforced
on resource-constrained devices and interoper-
ability still remains an open issue.

The work performed by Dunkel and Bruns
(2007) also attempts to provide a simple and flex-
ible approach for developing mobile applications.
The authors acknowledge that despite significant
progress in the development of mobile applica-
tions, there is still a lot of space for improvements
by employing code generation and declarative
approaches. Hence, a model-driven approach is
presented that allows modelling the user interface
of the client and the service workflow in the
form of graphical models. From these models the
XML-based descriptions are generated as XForms
code. The XForms W3C standard was specifically
selected due to its close correlation with the Mo-
bile Information Device Profile (MIDP) of J2ME.
Hence, it allows mapping XForm elements to
MIDP elements and generating the corresponding
source code; e.g. service-client J2ME code. This
discloses that the approach is tailored to the J2ME
technology, although it can be extended by defin-
ing additional code generation tools for addressing
different mobile implementation technologies.
Moreover, as the authors state, a drawback of the
approach is that miscellaneous Unified Modelling
Language (UML) (OMG UML, 2007) tools must

282

Addressing Device-Based Adaptation of Services

be integrated and used that do not fully support
metamodelling and provide proprietary and not
yet stable code generation tools.

Ortiz et al. (2009) state that device diversity
and their non-stop use in everyday life activities
reveals the necessity to access Web Services from
these mobile devices. The main objective of their
approach is to adapt the result of the Web Service
invocation in accordance to the type of the client’s
device. Thus, they propose a server-side approach
that allows developers to extend the implemented
service through aspect-oriented development, so
as to enable the adaptation of the result depending
on the client device. Note that the Web Service
code is not directly affected but rather an aspect
is developed that intercepts the invocation of the
service operation and adapts it according to the type
of device it detects. The approach suffers though
from three main issues: (i) the necessity arises to
implement on the client-side the functionality that
allows detecting the type of the device that invokes

the Web Service, (ii) it increases response time
since the aspect code must process and adapt the
result in accordance to the content of the Simple
Object Access Protocol (SOAP) header and (iii) it
does not consider the implementation of platform-
specific service clients (i.e. GUIs); authors state
that GUI restrictions imposed by mobile platforms
increase the complexity of developing clients
(Ortiz & Prado, 2009).

MODEL-DRIVEN WEB SERVICE
ORIENTED ARCHITECTURE

The proposed approach combines the Model
Driven Architecture (MDA) paradigm (Kleppe
et al., 2003; Singh and Sood, 2009) and Web
Services technology in an attempt to exploit their
potentials and overcome their limitations. Figure
1 presents the architecture of the MDD approach
that comprises the client-side and the service-side.

Figure 1. Model-driven Web service oriented architecture

283

Addressing Device-Based Adaptation of Services

The client-side refers to the graphical user inter-
faces deployed on the mobile or desktop device,
which allow the user to interact with the service
by exchanging the necessary information. In order
to accomplish this interaction the required com-
munication classes (i.e. proxy classes) are used
that act as the client-side connection endpoints.
These end-points allow invoking Web Service(s)
operations and retrieving responses through the
exchange of SOAP messages.

Both the GUIs and the communication class-
es are automatically generated from the abstract
models (i.e. PML, WSDL); as shown in Figure
1. In particular, different code generators (G1,
G2, ..., GN) are defined in this work that allow
transforming the PML model to different target
implementations; e.g. Android, Windows Mobile.
Also, existing code generation tools are utilised
that support the transformation of the WSDL
model to platform-specific implementations. For
instance, in the case of the Android platform, the
Android GUI classes utilise the Android proxy
classes to invoke the Web Service, receive the
appropriate response and display the information
on the corresponding Android mobile device. The
aforesaid communication method described for
the Android platform is valid for the rest of the
implementation technologies.

On the service-side the Web Service functional-
ity is the only part that requires to be implemented
manually by developers. The service functionality
is coded though in one implementation technology
(in this case the implementation is Java-based) and
can be consumed using the capabilities of the Web
Services technology by different clients. These
clients do not need to be implemented using the
same implementation platform (i.e. Java) but can
be coded in different target implementations. This
is possible since the communication is performed
using SOAP, which is a simple protocol speci-
fication for exchanging XML-based structured
information in computer networks. It also relies
on Remote Procedure Call (RPC) and HyperText
Transfer Protocol (HTTP) protocols for connec-

tion negotiation and message transmission. Thus,
a service-client implemented in .NET or C# (i.e.
Windows mobile) is able to communicate with the
Java-based Web Service deployed and executed
on a GlassFish Axis Web Server. This enables as a
result interoperability, which is a widely-accepted
and proven characteristic of Web Services (Kapit-
saki et al., 2008), between the different platforms
and simplifies and enables the rapid development
of fully functional device-aware Web Services.

THE PRESENTATION
MODELLING FRAMEWORK

Requirement Analysis

Service heterogeneity refers to the capability to
deploy the same software service (i.e. applica-
tion) on different devices. In this work service
heterogeneity is satisfied via a model-driven, Web
Service oriented approach that allows designing
the different artefacts of the application in the form
of models. Therefore, from the models (i.e. GUI,
WSDL) the source code is generated for different
platform-specific implementations. As aforesaid
the implementation includes the service-client
GUIs and the proxy classes that enable the com-
munication with the Web Service. In particular,
the generation of the source code that implements
the graphical user interfaces for the client-side is
very important. This aspect is fundamental due
to the difficulties imposed on developers when
implementing GUIs, due to the restrictions and
limitations that each technology imposes. Thus,
by automating the implementation of GUIs for
the service-clients the development of the com-
plete device-aware Web Service is simplified and
expedited.

In addition to service heterogeneity the inter-
action of the user with mobile services should be
simplified by providing easy-to-use and highly-
capable graphical user interfaces. Due to user’s
mobility and the diversity of devices that need

284

Addressing Device-Based Adaptation of Services

to run mobile services, the requirement arises to
design GUIs in an abstract manner that allows
generating the different implementation for this
assortment of devices. This ensures as a result that
there is no compromise in terms of developing
GUIs and thus the interaction of the user with the
service remains quite straightforward but still of
the highest quality.

To gratify these requirements it is imperative
to provide a flexible and extensible model-driven
approach that allows designing GUIs and generat-
ing the implementation code using model-to-text
transformations. Hence, the Presentation Model-
ling Language must include abstract concepts that
can be mapped using the necessary transformation
rules to different implementations. For example,
the top element component for implementing GUIs
in Java is provided either using the javax.swing.
JFrame or the java.awt.Frame implementation
classes. Similarly, the javax.microedition.lcdui.
Display class is the top-level component of the
J2ME technology, the android.app.Activity class
is the top-level of the Android technology and
the System.Windows.Forms.Form class is the top
level of the Windows Desktop and Mobile tech-
nologies. Thus, we define a modelling element
of the PML that represents in an abstract form
any of the above top level components without
considering the final implementation technology.
Furthermore, we define abstract properties for this
element that can be mapped using transformation
rules to the respective graphical properties of each
implementation technology.

Apart from the aforementioned components,
the most important and widely used components
of the implementation technologies are identified
and included in the form of abstract modelling
elements in the PML metamodel. In particular,
the platform-specific components selected, are the
ones that represent equivalent/comparable graphi-
cal concepts in all the implementation technolo-
gies. For instance, the java.awt.Label, the javax.
microedition.lcdui.StringItem and the android.
widget.TextView classes serve a similar purpose,

since they all represent a component capable of
displaying a single-line of read-only text. Another
example is the graphical component that serves the
task of editing a single line of input text, which is
implemented in the Java technology via the java.
awt.TextField or javax.swing.JTextField class, in
the J2ME technology via the javax.microedition.
lcdui.TextField class and in the Android technol-
ogy platform via the android.widget.EditText
class. Thus (considering all cases) the abstract
representation of the platform-specific graphical
components is deducted and defined accordingly
in the PML. Moreover, an additional requirement
is captured in the PML definition that refers to the
capability to represent the relationships between
displays, containers and secondary components.

Finally the capability is provided to define dif-
ferent graphical properties for each of the above
components. The different restrictions and limita-
tions imposed by the different platforms call for
a flexible and extensible approach when defining
graphical properties. This provides the capability
to extend the PML definition and introduce new
properties, which may be added in any of the
implementation technologies addressed in this
work. The only prerequisite is that the transforma-
tion of these properties to implementation code
is supported by the transformation rules defined
within the code generators. Also the coherency of
the PML definition (in terms of the many differ-
ent properties that can be defined) is preserved
by imposing and enforcing the necessary Object
Constraint Language (OCL) (OMG OCL, 2006)
rules. These OCL constraints ensure that only the
permitted graphical properties can be specified in
the PML model definition.

Presentation Modelling Language

The requirements analysis presented in the previ-
ous subsection drives the derivation and definition
of the GUI concepts in the Presentation Modelling
Language. In this work the PML is defined in
the form of an EMF-based metamodel using the

285

Addressing Device-Based Adaptation of Services

Graphical Modelling Framework (GMF) Ecore
diagram tool included in the MDD environment
presented in our previous work (Achilleos et al.,
2007; Achilleos et al., 2008). Figure 2 illustrates
the PML metamodel that defines the modelling
elements, associations and properties that support
the design of PML models; i.e. abstract notions
of graphical user interfaces.

The top-level modelling element defines the
PML model and is specified in the PML definition
using the DocumentRoot metaclass. From the root

metaclass aggregations are defined that represent
the containment relationships with the rest of the
modelling elements of the GUI model. Initially,
the displays aggregation showcases that each PML
model may contain different displays (i.e. screen
of a mobile device). In order to reduce though the
complexity of a PML model an OCL constraint
is defined that restricts the definition to a single
display within each model. This improves also
the comprehension of a PML model and avoids
designing large and complex PML models. Each

Figure 2. EMF metamodel definition of the presentation modelling language

286

Addressing Device-Based Adaptation of Services

display element is defined as an instance of the
Display metaclass, which includes common
graphical properties such as name, title, size,
layout, visibility and location. The first property
defines the element’s name, while the second
property defines the title that will be displayed
on the frame. In addition, the size and layout
properties refer respectively to the size of the
frame and the layout of containers on the frame.
Finally the visibility property defines if the frame
is visible or not and the location specifies the
actual position of the frame on the device’s screen.

Some of these graphical properties are es-
sential for some platforms (i.e. Java) but not for
others (i.e. J2ME). For instance, the layout and
size properties are not necessary for J2ME code
generation since a default layout manager handles
the size and positioning of components on the
display. Following, the containers aggregation
defines that each PML model can include one or
more container components. These components
are described as the carriers of secondary graphi-
cal components (e.g. labels, textfields), which are
represented for example in Java using the javax.
swing.JPanel API class and in J2ME using the
javax.microedition.lcdui.Form API class. Each
container element includes also the name, layout
and position properties that control the look-and-
feel of containers. Once again these properties
could be required by some implementation plat-
forms, while for others may not be as important
due to the use of layout managers.

Apart from the single display and its contain-
ers, the PML definition includes also miscella-
neous important graphical components that are
common and widely-used in all implementation
platforms. Foremost the Component abstract
metaclass defines the superclass of the subclasses:
Message, Label, Button, TextPane, RadioBut-
ton, ComboBox, CheckBox, TextField, List and
SelectionGroup. By creating instances of these
metaclasses the designer is able to model different
secondary graphical components (e.g. Android
TextView, J2ME StringItem, Java JLabel) using

an abstract representation. For instance, the Text-
Pane metaclass represents input text-components
that allow to display and/or edit large text. In the
case of the Java abstract TextPane elements are
represented by javax.swing.JTextPane API class,
while in the case of Windows they are represented
by the System.Windows.Forms.TextBox API class.

The discontainers, discomponents and
concomponents associations complement the
aforementioned modelling elements since they
define the relationships between them. Foremost
the discontainers association represents the
containment relationship of the display element
with one or more container modelling elements.
In the case of J2ME, this corresponds to the
containment relationship of the MIDlet display
component with its Form container components.
Next, the discomponents association defines a
containment relationship of the display element
with one or more secondary containers. Finally,
the concomponents association defines that each
container component may include one or more
secondary components. For instance, in the case
of Java technology, the association represents the
containment of secondary graphical components
(e.g. JLabel) within container components (e.g.
JPanel).

The last element defined in the PML metamodel
is the Property metaclass. This modelling element
allows defining different graphical properties for
display, container and component modelling ele-
ments. In fact, the aggregation associations named
dproperties, conproperties and compproperties
define clearly that each of the aforesaid model-
ling elements may contain one or more graphical
properties defined as an instance of the Property
metaclass. These properties are defined using the
name attribute in the form of keywords and can
be parsed via the transformation rules defined in
the code generators. Furthermore, using a single
OCL constraint we are able to ensure that the
designer will be permitted to define keywords
(i.e. graphical properties) that are supported in
the current version of the PML. This provides

287

Addressing Device-Based Adaptation of Services

the flexibility and extensibility to add/remove
new properties by adding/removing keywords to
this OCL rule. Finally the value attribute defines
the value of the Property element, which may
represent (for example) the actual text that will
appear on a label.

Presentation Modelling Language
Constraints Definition

The definition of the PML as an EMF-metamodel
allows the design PML models that represent
graphical user interfaces. It is not possible to
ensure the design of coherent PML models via
the metamodel definition. Thus, it is important
to define the domain-specific modelling rules
that restrict the definition of PML models to
valid graphical user interfaces. This provides a
complete and coherent PML definition and al-
lows generating the corresponding Presentation
Modelling Framework (PMF), using the capabili-
ties of the generic MDD environment (Achilleos
et al., 2007; Achilleos et al., 2008). The PMF
comprises a modelling editor with drag-and-drop
capabilities that permits the design and validation
of PML models.

From the complete set of OCL rules imposed
to the PML the following two are selected to
showcase their importance and reveal also how
the flexibility and extensibility of the PML is
preserved. The primary OCL constraint is imposed
onto the Display metaclass in order to restrict the
definition of the container’s position property in
accordance to the layout property of the display.
In particular, the constraint defines that in the
case that the layout property is set as “default”
the position property of the associated containers
should be defined using the following values: (i)
CENTER, (ii) EAST, (iii) WEST, (iv) NORTH
and (v) SOUTH. For instance, in the case of the
Java platform the “default” value defines that the
corresponding BorderLayout API class should
be generated and used. This class permits plac-

ing the display’s containers in one of the above
positions; e.g. CENTER. Furthermore, the “else”
conditional statement specifies that the position
property should be defined as an Integer since
the current layout refers to the GridLayout API
class. The integer indicates as a result the index
number that reveals the position of the container.
Note that in the current version of the PML only
the BorderLayout and GridLayout managers are
supported for the design and transformation of
GUI models to Java-based code.

context Display
inv: if self.layout = ‘default’
then self.discontainers→forAll(con:
Container | con.position = ‘CENTER’)

or self.discontainers→forAll(con:
Container | con.position = ‘EAST’)

or self.discontainers→forAll(con:
Container | con.position = ‘WEST’)

or self.discontainers→forAll(con:
Container | con.position = ‘NORTH’)

or self.discontainers→forAll(con:
Container | con.position = ‘SOUTH’)

else self.discontainers→forAll(con:
Container | con.position.toInteger().

oclIsTypeOf(Integer))

endif

The second OCL constraint presented in this
work showcases the importance of OCL rules and
reveals also how the flexibility and extensibility
of the PML is preserved. This domain rule defines
the keywords that are currently supported by the
PML and can be defined as graphical properties
of the PML elements. In the case the designer
attempts to assign a non-supported property to
any modelling element then a constraint viola-
tion is raised that reveals the design error. In this
way the capability is provided to extend the PML
definition simply by adding new keywords to the
following OCL constraint. Thus, the flexibility and
extensibility of the PML is preserved, providing

288

Addressing Device-Based Adaptation of Services

also the capability to address the miscellaneous
graphical requirements and restrictions that dif-
ferent platform-specific implementations impose.
The definition of OCL constraints completes the
PML definition and enables the design and valida-
tion of PML models.

context Property
inv:Property.allInstances()→forAll(p:
Property | p.name = ’text’ or p.name
= ’title’ or p.name =
’message’ or p.name = ’rows’ or
p.name = ’columns’ or p.name = ’line-
Wrap’ or p.name =
’stringArray’ or p.name = ’command’)

PLATFORM-SPECIFIC CODE
GENERATORS DEFINITION

In order to support the transformation of PML
models to the necessary platform-specific imple-
mentations it is required to define precise trans-
formation rules that compose the code generators.
The definition of precise transformation rules is
imperative, in order to ensure the correctness of
the operational semantics of the generated imple-
mentation. Therefore, apart from the necessity to
design precise PML models it is required to exploit
a widely-used MDD approach that simplifies and
aids the definition of coherent platform-specific
code generators. Moreover, existing WSDL code
generation tools are utilised in this work to gen-
erate the service-client proxy classes that enable
communication of the service clients with the
Web Service.

Presentation Modelling
Language Code Generation

The part of the Web Service stubs generation is
not addressed in the current work. In the literature
existing works on generation from WSDL descrip-
tions exist and are employed in this work. WSDL,

serving as the specification descriptor language
for WSs, offers an abstract layer depicting the
service functionality. Clients that wish to consume
specific WSs rely on this WSDL specification in
order to discover the operations supported, the
input arguments needed and the expected response
messages. WSDL provides a generic description
independently of the network protocols that can be
adopted for communication purposes. WSDL code
generators can be found in Java WS frameworks,
such as the Novell exteNd Director Development
environment and the Axis2 Service Archive Gen-
erator Wizard offering the wsdl2java tool. .NET
offers its own custom wsdl code generation tool. In
the proposed framework the two latter tools have
been employed along with the J2ME generator that
forms part of the Sun Java Wireless Toolkit for
CLDC. However, since no such tool is available
for the Android platform, in the current stage of
the presented work the WS communication classes
were developed manually. Further discussion on
code generators for WSs is not included in the
current work, which focuses on the applicabil-
ity of the presentation code generation tools on
multi-platform environments. However it should
be noted that in the framework of MDE some
works exploit WS models and introduce tools
for model transformation procedures. For further
information on such issues the reader can refer
to relevant publications (Kapitsaki et al., 2009,
Gronmo et al., 2004, Sheng et al., 2005).

In terms of the presentation layer, the code
generation process allows transforming PML
models to the appropriate platform-specific code.
A set of generators targeting various platforms of
stationary and mobile devices have been imple-
mented: Java, J2ME, Android, Windows Mobile
and Windows Desktop. In this subsection the An-
droid specific code generator is described in order
to showcase the flexibility of the code generation
approach. To keep the chapter comprehensive
and due to space limitations it is not possible to
describe the whole generators set.

289

Addressing Device-Based Adaptation of Services

The MDD environment (Achilleos et al., 2007;
Achilleos et al., 2008) proposed in previous work
features the openArchitectureWare (oAW) soft-
ware tool. oAW is a MDA generator framework
implemented in Java, which supports explicitly the
definition of model-to-text transformation rules. It
includes the Xpand template language, a template
text-editor and the workflow execution engine.
Also it features additional languages, namely
Check and Xtend, which include their individual
text-editors. Foremost, the Xpand template lan-
guage supports the definition of advanced code
generators in the form of templates that capture
the transformation rules and control the output
document generation; e.g. XML, Java, C#, HTML.
These templates are defined using the Xpand
text-editor and include references to extension
functions defined using the Xtend language. Exten-
sion functions are considered as utility functions
(i.e. similarly to Java utility functions) that sup-
port the definition of well-formulated generators
and improve the structure of the generated code.
Moreover, the Check language supports the defini-
tion of additional constraints using a proprietary
language. Finally the workflow execution engine
drives the code generation in accordance to the
defined templates.

Figure 3 illustrates the code generation pro-
cess that is driven by the workflow engine. The

executable workflow script presented in Listing
1 allows delegating calls to the necessary Java-
based classes of the oAW component. It creates
an “XmiParser” component and calls the “org.
openarchitectureware.emf.XmiReader” that al-
lows loading and parsing the model into memory.
In fact, the PML model (“WebServiceClients.
pres”) is serialised in the form of XML-Metadata
Interchange (XMI) format. The metamodel de-
fined in this work is referenced also in the script,
so as to be able to recognise, parse and load
elements, associations and properties defined in
the PML model; i.e. making them accessible at
runtime. Following, the important “Generator”
component is defined, by referencing the “org.
openarchitectureware.xpand2.Generator” class.
Also the flag skipOnErrors= “true” allows ter-
minating code generation if errors are detected in
the template definition. Moreover, the component
defines that the input PML model is an instance of
an EMF-based metamodel (i.e. PML metamodel)
and that the template definition is based on the
PML metamodel.

The most important artefact in the workflow
script is the template definition, which describes
the rules for transforming the PML model to the
corresponding code. Listing 2 presents a sample
part of the Android template definition that allows
demonstrating how code generation is achieved.

Figure 3. The PML code generation process

290

Addressing Device-Based Adaptation of Services

Listing 1. PML code generation workflow script

1. <workflow>

2. <component id=”xmiParser” class=”org.openarchitectureware.emf.XmiReader”>

3. <modelFile value=”models/WebServiceClients.pres”/>

4. <metaModelPackage value=”presentation.PresentationPackage”/>

5. <outputSlot value=”model”/>

6. <firstElementOnly value=”true”/>

7. </component>

............

10. <component id=”generator” class=”org.openarchitectureware.xpand2.Generator”

11. skipOnErrors=”true”>

12. <metaModel id= “mm” class=”org.openarchitectureware.type.emf.EmfMetaModel”>

13. <metaModelPackage value=”presentation.PresentationPackage”/>

14. </metaModel>

15. <expand value=”templates::AndroidPresentation::Root FOR model”/>

.............

18. </component>

19. </workflow>

Listing 2. Part of the Android template definition

1. <<EXTENSION templates::AndroidPresentation>>

2. <<DEFINE Root FOR presentation::DocumentRoot>>

30. <<REM>>Starts iteration and creates a View for each container.<<ENDREM>>

31. <<FOREACH this.discontainers AS discon->>

32. public View <<discon.name+”View”>>(){

33. this.setTitle(<<discon.conproperties.select(e|e.name.contains(“title”)).

 value.first()>>);

34. <<discon.name>> = new TableLayout(this);

35. <<REM>>Create the respective components contained in each View.<<ENDREM>>

36. <<FOREACH discon.concomponents AS concomp->>

37. <<IF concomp.metaType.name.matches(“presentation::Label”)->>

38. <<concomp.name>> = new TextView(this);

39. <<concomp.name>>.setText(<<concomp.compproperties.select

 (e|e.name.contains(“text”)).value.first()>>);

40. <<ELSEIF concomp.metaType.name.matches(“presentation::TextField”)->>

41. <<concomp.name>> = new EditText(this);

71. <<REM>>Ends the loop associated with the components collection.<<ENDREM>>

72. <<ENDFOREACH>>

73. <<REM>>Ends the loop associated with the containers collection.<<ENDREM>>

74. <<ENDFOREACH>>

291

Addressing Device-Based Adaptation of Services

The main part of the sample generator presented
in this work is included in lines 31-74. This part
is repeated for all display containers of the
model enabling access to the graphical properties
of the containers and the secondary components
associated to them. For instance, line 34 illustrates
how we can generate an Android TableLayout
object and set accordingly its name in accordance
to the name of the current container in the itera-
tion, i.e. << discon:name >>. The iteration
through the collection of secondary components
associated with each container is performed in
lines 36-72. Depending on the type of element
read and parsed (indicated by the properties of
concomp) the respective object is generated. For
instance a TextView object is generated for each
Label element as indicated in lines 37-39, where
the keyword “text” used at line 39 provides the
capability to set the text on the label to the value
parsed from the Label element definition. The list
of conditional statements allows reading, parsing
and generating other types of secondary compo-
nents using the same reasoning. An equivalent
approach was followed for defining the templates
that support the transformation of the models to
the other four platform-specific implementations;
e.g. Java, J2ME, Windows Mobile and Desktop.

Web Service Description Language
Code Generation

In the previous subsection the code generation
process was explained, which allows transforming
PML models and generating the service clients.
This subsection introduces briefly the transfor-
mation of WSDL models (see Figure 4) to the
corresponding proxy classes that support the
communication with the Web Service. The WSDL
serves as a common specification language for the
Web Services domain, which allows defining the
Web Service functionality using abstract models.
Therefore, different implementation technologies
have developed their own code generation tools
that allow transforming these abstract WSDL
models to the respective implementation classes
that permit to invoke and retrieve responses from
the Web Service. In this work we exploit existing
WSDL code generation tools (e.g. Axis2 wsdl2java
tool, .NET wsdl tool) and refrain from applying a
similar code generation process such as the one
described in the previous subsection. Details on
the implementation of the WSDL code generation
tools are out of the scope of this work.

Figure 4. The BookStore Web service description language model

292

Addressing Device-Based Adaptation of Services

THE BOOKSTORE WEBSERVICE
PROTOTYPE

The prototype is a BookStore Web Service that
allows a user to search, find and purchase books.
In particular, the user enters the necessary infor-
mation on the book (i.e. book title) and invokes
through a button generated event the function
“getBookDetails” of the Web Service; see Figure
4. This function accepts as input parameter the title
of the book and returns as output parameter the
details of the book (e.g. book description, book
price). The user is then able to purchase the book
by invoking the “setBookOrderDetails” operation
of the Web Service that stores the necessary details
of the book order into the database. The next two
screens allow the user to enter personal and pay-
ment information to confirm the transaction. This
is performed by invoking the corresponding func-
tions of the Web Service through user-generated
events, which allow performing the necessary
operations. The final screen displays to the user
details on the purchase and the user may continue
shopping or choose to terminate the application.
Note that the functionality of the BookStore Web
Service is implemented manually and utilises
Java Open Database Connectivity (ODBC) that
allows accessing database management systems
(DBMS) and querying and retrieving data from
the database. Moreover, different service-clients
are generated by transforming automatically the
PML model to different implementations and the
WSDL model to proxy classes that enable com-
munication with the Web Service.

Figure 4 presents the WSDL model that repre-
sents the abstract functionality of the BookStore
Web Service. This model is defined using the
Eclipse WSDL modelling editor plug-in integrated
in the MDD environment used in this work. The
model defines the abstract functions of the Web
Service and their input and output parameters. As
aforementioned, the necessary proxy classes are
automatically generated from the WSDL model

using existing code generation tools. These classes
enable the communication with the Web Service
by allowing the invocation of the implemented
operations using the SOAP protocol, which allows
exchanging messages represented as structured
XML-based information. In particular, connec-
tion negotiation and message transmission are
performed through the network using the RPC and
HTTP protocols. In this work the functionality of
the Web Service is implemented in Java and it is
deployed and executed on a GlassFish Axis web
server. Consequently, the different service-clients
(e.g. Android, Windows mobile, and J2ME) gener-
ated from the PML model are able to invoke and
utilise the functionality of the Web Service using
the corresponding proxy classes.

Figure 5 illustrates the designed PML model
that represents the GUIs of the service clients
and its actually an instance of the DocumentRoot
metaclass. The model defines at the center an
instance of the Display metaclass, which is the
main screen of the service. The display element
is associated with four different container com-
ponents that represent the different views of the
service during its execution. They are defined as
instances of the Container metaclass. The primary
container (i.e. searchForBooks) is associated with
secondary components that represent the GUI
components that allow searching for a book by
entering the title and invoking the corresponding
Web Service operation. The second container (i.e.
proceedToShipping) is the GUI view that includes
the graphical components that allow displaying
details of the book in case it is available. At this
stage the user is able to invoke the Web Service
function, which allows storing the information
of the book into the database as part of the order
details. The user is then presented with the third
container (i.e. customerDetails), which allows
entering personal and shipping information.
Following, the user-generated event invokes the
service function that stores this information in
the database as additional order details. Finally

293

Addressing Device-Based Adaptation of Services

Figure 5. The bookstore presentation modelling language model

294

Addressing Device-Based Adaptation of Services

the user is presented with the next container (i.e.
paymentDetails) that allows filling in the required
details for completing the book purchase.

In terms of graphical representation the
model is rather complex in the current version of
the PML language. It can be easily adapted though
so as to permit a simpler graphical representation
of the elements, their associations and properties.
The key point addressed in this work is the capa-

bility provided to automate the implementation
of the Web Service clients by transforming the
PML model to the necessary GUI implementa-
tions. Listing 3 illustrates part of the code gener-
ated from the transformation of the PML model
to the Android implementation. In particular, two
functions are displayed in Listing 3 that refer to
the functionality that enables searching for a book.
For instance, lines 1-20 are automatically gener-

Listing 3. The GUI code generated for the Android target platform

1. public View searchForBooksView() {

2. this.setTitle(“BookStore - Multi-platform Web Service”);

3. searchForBooks = new TableLayout(this);

4. bookTitle = new TextView(this);

5. bookTitle.setText(“Enter Book Title:”);

6. titleOfBook = new EditText(this);

7. findBook = new Button(this);

8. findBook.setText(“Find Book”);

9. findBook.setTextSize(10.0f);

10. findBook.setTextColor(Color.rgb(100, 200, 200));

11. findBook.setOnClickListener(this);

12. searchForBooks.addView(bookTitle);

13. searchForBooks.addView(titleOfBook);

14. searchForBooks.addView(findBook);

15. /*PROTECTED REGION ID(searchForBooksAddToView) ENABLED START*/

16. /** TODO starts */

17. /** TODO ends */

18. /*PROTECTED REGION END*/

19. return searchForBooks;

20. }

442. /** Called when a user event is generated.*/

443. public void onClick(View event) {

444. if (event.equals(findBook)) {

445. /*PROTECTED REGION ID(findBook) ENABLED START*/

446. /** TODO starts */

447. proxy_stub = new AndroidServerProxy();

448. try {

449. _book_Details =

 proxy_stub.getBookDetails(titleOfBook.getText().toString());

295

Addressing Device-Based Adaptation of Services

ated via the execution of the transformation rules
defined in lines 30-74 of Listing 2. These rules
are applied on the Container, Label, TextField and
Button elements of the searchForBooks con-
tainer illustrated in Figure 5. The developer must
implement manually a few lines of code (i.e.
protected TODO branches), which handle adding
components on the container and invoking the
appropriate Web Service function (lines 445-449)
using the proxy classes generated from the WSDL
model. Therefore, the implementation effort is
significantly reduced since a large percentage of
the GUI code is generated from the PML model.
Equivalent transformation rules are defined and
applied for generating the GUI implementation
for Java, J2ME, Windows Mobile and Desktop
platforms. Therefore Web Service heterogeneity
is achieved via the automatic generation of the
service-clients GUI implementation for miscel-
laneous platforms.

Figure 6 demonstrates screenshots captured
during the use of the BookStore Web Service on
mobile clients deployed on the Android and Win-
dows Mobile platforms. The screens for search-
ing for a book, displaying the results and filling
out the information for purchasing the book are

displayed in the figure. Alternated screenshots
capture different steps during the execution of
the service on these platforms. Moreover, a brief
evaluation of our approach using the LoC software
metric is performed. Our attempt is to showcase
the reduction of the coding effort when develop-
ing the BookStore Web Service for the platforms
presented in our case study.

Table 1 presents the results obtained by com-
paring the code generated from the models (i.e.
PML, WSDL) against the full implementation
code for each platform-specific service client. It

Figure 6. The bookstore Web service deployed on different platforms

Table 1. Evaluation results on the model-driven,
Web Service-oriented approach

LoC Metric
(per

platform)

Generated
Code

Overall
Code

Generated/
Overall

(%)

Java 189 334 56.59

J2ME 267 369 72.39

Android 244 361 67.59

Windows
Mobile

360 481 74.84

Windows
Desktop

360 475 70.3

All Platforms 1420 2020 70.3

296

Addressing Device-Based Adaptation of Services

is important to point out that the Web Service
functionality is implemented only once using Java
and is consumed by different clients. Therefore,
the Web Service functionality implementation
(i.e. 55 lines of code) is considered when deriving
the percentage for all the target platforms. As can
be observed from the results a significant part of
the clients’ code has been generated for different
platforms; i.e. percentages are well above 50%.
Moreover, our experience in defining transforma-
tion rules for the Java and J2ME platform (Achil-
leos et al., 2009) suggests that code generators
can be further optimised in order to achieve
higher-degree of automation. For instance, the
generation percentage for Java is significantly
lower since the code for placing components on
containers must be manually implemented. In all
other platforms a default layout manager handles
placing components on the container. Thus, for
those platforms it is only necessary to add the
components to the container. Finally, the number
of platforms considered in this work showcases
the flexibility and applicability of the transforma-
tion method so as to be applied successfully to
other platforms; e.g. Nokia Symbian OS, Apple
iOS, BlackBerry RIM.

COMPARISON WITH EXISTING
WORK

In terms of our approach we focus on the follow-
ing requirements for simplifying and expediting
the development and deployment of device-aware
Web Services. These are: (i) the degree of auto-
mation in service development and (ii) device
heterogeneity. Additional requirements consid-
ered have to do mainly with the Web Services
technology. These were extracted from the study
of existing work that deals with the development
of Web Service-oriented device-aware applica-
tions. These requirements are namely: (i) service
interoperability, (ii) service transparency, (iii)
service consistency, (iv) code duplicity and (v)
user-awareness (Ortiz & Prado, 2009). Table 2
illustrates a comparison with existing work, which
focuses on two development aspects. At first, re-
search work focuses on model-driven development
of graphical user interfaces, so as to simplify and
accelerate the development of complete mobile
applications. More recent research work focuses
on simplifying and automating the development
of device-aware Web Services using either model-
driven and/or aspect-oriented approaches.

The initial research effort conducted by Sauer
et al. (2006) addresses the model-driven devel-

Table 2. Comparative analysis of MDD approaches for device-aware Web services

Main requirements Web Service Requirements

Development
Automation

Heterogeneity Interoperability Service-side
Transparency

Service Con-
sistency

Non-
duplicity

User-aware-
ness

Sauer et al. M/H M/H NA NA NA NA NA

Link et al. H H NA NA NA NA NA

Balagtas &
Hussmann

L L NA NA NA NA NA

Dunkel &
Bruns

H H H + + x x

Ortiz et al. M H VH + x + x

Our approach VH VH VH + + x x

L: Low, M: Medium, H: High, VH: Very High
NA: Not Applicable, +: Satisfied, x: Not Satisfied

297

Addressing Device-Based Adaptation of Services

opment of GUIs in an attempt to simplify the
development of multimedia applications. The
authors have build a prototype GUI modelling
tool (i.e. GuiBuilder) that allows to design the
structure of a multimedia user interface using
presentation diagrams and its behaviour with
hierarchical statechart diagrams. This initial
work demonstrates the potential of modelling
multimedia GUIs and generating automatically
the Java SWT implementation for the multimedia
application. The approach though does not reveal
how transformation rules can be tailored, so as to
address the heterogeneity requirement. Also, the
modelling tool is manually implemented using
the Plug-in Development Toolkit (PDT) and the
Graphical Editor Framework (GEF) of Eclipse.
In this work we claim that a model-driven de-
velopment approach should allow generating the
modelling tools being used. Thus, a fully integrated
MDD environment is preferred that provides the
capability to generate the modelling tools and
allows to easily define transformation rules that
target different implementations. Moreover, such
an approach allows extending/modifying the
modelling language and regenerating its modelling
tool. Finally this approach does not deal with the
Web Services technology.

A similar approach is defined by Link et al.
(2008) that concentrates on the aspect of the in-
teraction of the user with the application. Their
objective is to define GUIs in the form of models
and transform these models into source code; i.e.
targeting miscellaneous platforms. The proposed
MDD approach defines in fact two UML profiles
that support the model-driven development of
GUIs and specifies transformation rules using the
Query/View/Transformation (QVT) standard.
Hence, the approach complies largely with the
MDA paradigm and provides as a result general
applicability and flexibility in terms of modelling
and definition of transformation rules. Therefore,
the degree of automation in software generation
is considerably high and the capability is also
provided to easily define transformation rules for

miscellaneous platforms. The only predicament
is that UML tools do not satisfactorily support
metamodelling and do not provide highly-com-
petent and stable code generation tools. Once
again the approach tackles merely the develop-
ment of GUIs, although it can be tailored to address
also the development of complete Web Service-
based applications.

The approach proposed by Balagtas-Fernandez
and Hussmann (2008) considers the model-driven
development of fully functional mobile applica-
tions rather than just the GUIs of the application.
This preliminary research work developed an
initial modelling prototype tool that allows de-
fining a user interface model that describes the
GUIs, a navigation model that defines how the
mobile application navigates from one screen to
the next and the information retrieval model that
helps in showing how information is exchanged
between models. The development of the neces-
sary transformations rules is not a main focus of
this work. Authors do state though that in future
work the objective is to provide rules that trans-
form the graphical models to XML-based models
and then to code. Consequently, the merits of the
approach in terms of development automation and
application heterogeneity are still to be proven.
Moreover, the approach examines the develop-
ment of complete applications that run on the
mobile device, which is not highly-suitable for
resource-constrained mobile devices.

Dunkel and Bruns (2007) declare that a pow-
erful architecture is indispensable for applying
model-driven development of mobile applications
and achieving automation and heterogeneity.
The authors propose the BAMOS platform that
comprises different architectural components: (i)
Service Provider - offers implemented services
(i.e. Web Services) to other systems, (ii) Service
Broker - acts as the mediator between Service
Providers and Adhoc Clients and (iii) Adhoc Client
- software component running on a mobile device.
Hence, the BAMOS architecture provides the nec-
essary interoperability and allows an Adhoc Client

298

Addressing Device-Based Adaptation of Services

to use different services; e.g. Web Services. The
approach provides a Domain Specific Language
(DSL) (Dunkel & Burns, 2009) defined as a UML
profile (similar to a metamodel) for developing
mobile applications based on BAMOS. The de-
fined models describe the Adhoc client (i.e. GUIs)
and the service work flow specification that can
be transformed to XForms code. Subsequently,
the XForms representation can be transformed
to J2ME code due to its strong correlation with
MIDP. Thus the approach is bound to the J2ME
implementation and the BAMOS platform, al-
though it can be adapted to target other platforms.

The architecture of the approach, i.e. being
Web Service oriented, allows evaluating the ap-
proach against the Web Service requirements. First
the approach satisfies service-side transparency
because the Web Service does not need to imple-
ment complex code, which allows detecting from
which device the service is invoked. A simple
option will be to duplicate methods in the Web
Service and thus each client may invoke a different
method according to the device that the client is
deployed. This implies though that some code is
duplicated in the Web Service implementation.
Also service consistency is preserved since the
generated service implementation is consistent
with the original service definition; i.e. no ad-
ditional code needs to be inserted at the service-
side. In addition, the approach does not consider
user-awareness, which means that the user is not
able to intervene and adapt the service response in
accordance to his/her preferences; e.g. displaying
fewer output information.

One of the most competent approaches
(especially in terms of satisfying Web Service
requirements) is the model-driven, aspect ori-
ented approach proposed by Ortiz et al. (2009).
The authors describe different techniques for
adapting Web Services for different devices and
choose from these alternatives the model-driven,
aspect-oriented technique. This technique allows
adding an optional tag in the SOAP message
header so as to adapt the results in accordance to

each device. The technique is characterised by
service transparency and non-duplicity of code at
the service-side. It does not satisfy though service
consistency since the SOAP header is modified and
through the adaptation imposed by the aspect-code
handler the service returns different results with
the same input parameters. Also, the approach
cannot be adapted to address user-awareness since
the adaptation functionality is hard-coded in the
application. Non-satisfied Web Service require-
ments can be addressed in this approach using one
of the proposed techniques (Ortiz et al., 2009).
In terms of development automation and service
heterogeneity the approach allows generating
Web Service skeletons for the main functional-
ity and service-side aspect-oriented code that
enables device-specific adaptation. Therefore, the
approach reduces significantly the coding effort
but does not support the automatic development
of client-side GUIs for different platforms. In
addition, the approach targets Java and J2ME
implementation technologies and does not attest
as to the flexibility in adapting code generation
for additional platforms.

In contrast to the aforementioned approaches
our proposed method provides a fully extensible
MDD approach that provides high-degree of
automation in developing device-aware Web
Services. The proposed approach automates the
development of the GUIs and the Web Service
proxy classes for different target implementations.
Moreover, we have illustrated the extensibility of
our approach in terms of adding new graphical
features to the PML and also the efficiency pro-
vided in defining transformation rules for different
implementations. In addition, via the BookStore
Web Service prototype we have demonstrated
that it is possible through our approach to address
heterogeneity. Finally the proposed approach
satisfies half of the Web Service requirements,
since non-duplicity and user-awareness are not
achieved. We also argue that duplicating some
code in the Web Service implementation is a small
price to pay for achieving adaptation based on the

299

Addressing Device-Based Adaptation of Services

device. To further clarify this point, advanced-
adaptation might be required in cases where it
might be essential to show less information on a
mobile device; e.g. due to resource limitations.
Thus the best option would be to duplicate some
methods at the service-side, which would return
less amount of information. Concluding, user-
awareness is an essential requirement that can be
considered in future work.

CONCLUSION

In this work, a Model-Driven framework has
been presented that automates the development
of device-aware Web Services. The proposed ap-
proach allows modelling GUIs using the notation
of the Presentation Modelling Language, whereas
the key contribution refers to the transformation of
PML models to functional code targeting different
platforms encountered on mobile and stationary
devices. The code generators proposed have been
implemented using a set of tools provided by the
openArchitectureWare modelling component of
the generic MDD environment. Regarding the
communication of the client with the Web Ser-
vice existing code generation tools (e.g. Axis2
wsdl2java tool, .NET wsdl tool) that support the
transformation of WSDL models to corresponding
proxy classes have been used.

The developed prototype showcased the ap-
plicability and efficiency of the proposed Model-
Driven Web Service oriented framework. The
efficiency of the approach has been discussed on
the basis of the prototype and the results derived
using the LoC metric. The proposed Model-Driven
Web Service oriented framework consisting of the
PML, WSDL and the code generators revealed the
capability to address heterogeneity. In particular,
the approach enables developers to automatically
generate the required source code of Web Service
client applications that allow invoking services
from different platforms. An interesting exten-
sion of this work is to consider the preferences

of the user when adapting the Web Service. For
instance, a user might want to receive full details
of a book even while using a resource-constrained
device. Another user might be satisfied simply
by receiving in the response message the book’s
title and price.

REFERENCES

W3C. (2001). Web services description language
(WSDL) specification v1.1.

Achilleos, A., Georgalas, N., & Yang, K. (2007).
An open source domain-specific tools framework
to support model driven development of OSS. In
ECMDA-FA, Lecture Notes in Computer Science,
Vol. 4530 (pp. 1 – 16).

Achilleos, A., Yang, K., & Georgalas, N. (2008).
A model-driven approach to generate service
creation environments. In Proceedings of the
IEEE Globecom, Global Telecommunications
Conference (pp. 1 – 6).

Achilleos, A., Yang, K., & Georgalas, N. (2010).
Context modelling and a context-aware framework
for pervasive service creation: A model-driven ap-
proach. Elsevier Journal on Pervasive and Mobile
Computing, Context Modelling. Reasoning and
Management, 6(2), 281–296.

Balagtas-Fernandez, F. T., & Hussmann, H.
(2008). Model-driven development of mobile
applications. In Proceedings of the 23rd IEEE/
ACM International Conference on Automated
Software Engineering, (pp. 509-512).

Bartolomeo, G., Blefari-Melazzi, N., Cortese,
G., Friday, A., Prezerakos, G., Walker, R., &
Salsano, S. (2006). SMS: Simplifying Mobile
Services - For users and service providers. In
Proceedings of the Advanced International Con-
ference on Telecommunications and International
Conference on Internet and Web Applications and
Services, (p. 209).

300

Addressing Device-Based Adaptation of Services

Dern, D. (2010). Cross-platform smartphone apps
still difficult. IEEE Spectrum, 2010.

Dunkel, J., & Bruns, R. (2007). Model-driven ar-
chitecture for mobile applications. In Proceedings
of the 10th international conference on Business
information systems, (pp. 464-477).

Eclipse Foundation Incorporation. (2011). Eclipse
modelling framework. EMF.

Evermann, J., & Wand, Y. (2005). Toward formal-
izing domain modelling semantics in language
syntax. IEEE Transactions on Software Engineer-
ing, 31(1), 21–37.

Gronmo, R., Skogan, D., Solheim, I., & Oldevik,
J. (2004). Model-driven Web services develop-
ment. In IEEE International Conference on
e-Technology, e-Commerce and e-Service, (pp.
42-45). IEEE Press.

Heines, J. M., & Schedlbauer, M. J. (2007).
Teaching object-oriented concepts through GUI
programming. In Proceedings of the 11th Work-
shop on Pedagogies and Tools - Teaching and
Learning Object Oriented Concepts.

Jelinek, J., & Slavik, P. (2004). GUI generation
from annotated source code. In Proceedings of
the 3rd Annual Conference on Task Models and
Diagrams, (pp. 129-136).

Kapitsaki, G. M., Kateros, D. A., Prezerakos,
G. N., & Venieris, I. S. (2009). Model-driven
development of composite context-aware Web
applications. Elsevier Journal Information and
Software Technology, 51(8), 1244–1260.

Kapitsaki, G. M., Kateros, D. A., Prezerakos,
G. N., & Venieris, I. S. (2009). Model-driven
development of composite context-aware web
applications. Information and Software Technol-
ogy, 51(8), 1244–1260.

Kapitsaki, G. M., Kateros, D. A., & Venieris, I.
S. (2008). Architecture for provision of context-
aware web applications based on Web services. In
IEEE 19th International Symposium on Personal,
Indoor and Mobile Radio Communications, (pp.
1-5).

Kleppe, A. G., Warmer, J., & Bast, W. (2003).
MDA explained: The model driven architecture:
Practice and promise. Boston, MA: Addison-
Wesley Longman Publishing Co.

Link, S., Schuster, T., Hoyer, P., & Abeck, S.
(2008). Focusing graphical user interfaces in
model-driven software development. In Proceed-
ings of the First International Conference on
Advances in Computer-Human Interaction, (pp.
3-8). IEEE Computer Society.

Object Management Group. (2006). Object con-
straint language (OCL) specification v.2.0.

Object Management Group. (2007). Unified
modelling language (UML) specification v.2.1.2.

Ortiz, G., & Prado, A. G. (2009). Adapting Web
services for multiple devices: A model-driven,
aspect-oriented approach. In Proceedings of the
IEEE Congress on Services, (pp. 754-761).

Ortiz, G., & Prado, A. G. (2009). Mobile-aware
Web services. In International Conference on
Mobile Ubiquitous Computing, Systems, Services
and Technologies, (pp. 65-70).

Sauer, S., Drksen, M., Gebel, A., & Hannwacker,
D. (2006). GUIbuilder: A tool for model-driven
development of multimedia user interfaces.

Serral, E., Valderas, P., & Pelechano, V. (2010).
Towards the model-driven development of con-
text-aware pervasive systems. Elsevier Journal
on Pervasive and Mobile Computing, Context
Modelling. Reasoning and Management, 6(2),
254–280.

301

Addressing Device-Based Adaptation of Services

Sheng, Q. Z., & Benatallah, B. (2005). Contex-
tUML: A UML-based modeling language for
model-driven development of context-aware web
services. In International Conference on Mobile
Business, (pp. 206-212). IEEE Computer Society
Press.

Singh, Y., & Sood, M. (2009). Model driven ar-
chitecture: A perspective. In IEEE International
Advance Computing Conference, (pp. 1644-1652).

KEY WORDS AND DEFINITIONS

Code Generation: Defines the process that
enables the transformation of a model to the cor-
responding implementation code, which can be
readily executed on a specific platform.

Metamodelling: The process that guides the
definition of a metamodel, which describes the ele-
ments, properties and relationships of a particular
modelling domain; i.e. domain specific language.

Mobile Services: Define software services
that can be accessed and used through mobile

or wireless networks from any type of device;
smartphone, laptop, etc.

Model-Driven Development: A software
development methodology that focuses on the
design and implementation of software applica-
tions at an abstract platform-independent level.

Service Development: Defines the systematic
procedure that includes the phases of requirement
analysis, design, implementation and deployment
of a software service.

Services Adaptation: Refers to the capability
of the software service to be accessible and adapt
its behaviour in accordance to the type of mobile
client from which it is executed and the context
information.

Web Services: Software systems designed to
support interoperable computer interaction over
a network. They are implemented as application
programming interfaces (API) or Web APIs ac-
cessed in a standardized way using the XML,
SOAP, WSDL and UDDI open standards over an
Internet protocol backbone.

