
Modern Software
Engineering Concepts and
Practices:
Advanced Approaches

Ali H. Doğru
Middle East Technical University, Turkey

Veli Biçer
FZI Research Center for Information Technology, Germany

Hershey • New York
InformatIon scIence reference

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Joel Gamon
Production Coordinator: Jamie Snavely
Typesetters: Keith Glazewski & Natalie Pronio
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Modern software engineering concepts and practices : advanced approaches / Ali
H. Doğru and Veli Biçer, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book provides emerging theoretical approaches and their
practices and includes case studies and real-world practices within a range of
advanced approaches to reflect various perspectives in the discipline"--
Provided by publisher.
 ISBN 978-1-60960-215-4 (hardcover) -- ISBN 978-1-60960-217-8 (ebook) 1.
Software engineering. I. Doğru, Ali H., 1957- II. Biçer, Veli, 1980-
 QA76.758.M62 2011
 005.1--dc22
 2010051808

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

333

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

DOI: 10.4018/978-1-60960-215-4.ch014

Achilleas Achilleos
University of Cyprus, Cyprus

Nektarios Georgalas
British Telecom (BT) Innovate, UK

Kun Yang
University of Essex, UK

George A. Papadopoulos
University of Cyprus, Cyprus

A Software Cost Model to
Assess Productivity Impact

of a Model-Driven Technique
in Developing Domain-
Specific Design Tools

ABSTRACT

Programming languages have evolved through the course of research from machine dependent to high-
level “platform-independent” languages. This shift towards abstraction aims to reduce the effort and
time required by developers to create software services. It is also a strong indicator of reduced develop-
ment costs and a direct measure of a positive impact on software productivity. Current trends in software
engineering attempt to raise further the abstraction level by introducing modelling languages as the key
components of the development process. In particular, modelling languages support the design of software
services in the form of domain models. These models become the main development artefacts, which are
then transformed using code generators to the required implementation. The major predicament with
model-driven techniques is the complexity imposed when manually developing the domain-specific design
tools used to define models. Another issue is the difficulty faced in integrating these design tools with

334

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

INTRODUCTION

The escalating and rapidly changing user require-
ments contribute towards increased complexity in
the software development process. Furthermore,
the advancements and diversity in technologies
currently present escalate further the complex-
ity introduced to the process. Consequently, the
software engineering community seeks innovative
and abstract techniques that provide the capability
to scale down the complexity problem, in order
to simplify and expedite the development of
domain-specific software services. The objective
is to provide “platform-independent” techniques
that support the creation of software services at
an abstract level steering the developer away from
platform-specific implementation complexities.

During the early years of Software Engineering
the difficulties and pitfalls of designing complex
software services were identified and a quest for
improved software development methodologies
and tools began (Wirth, 2008). The first steps
towards this goal introduced formal notations,
known as programming languages, used mainly
for performing mathematical analysis computing
tasks. Examples of such numerical programming
languages are FORTRAN, Algol and COBOL.
Since then demand for more powerful software
applications that perform complex computational
tasks, rather than simple mathematical tasks, has
largely grown. Therefore, it was acknowledged
that more competent programming languages,
software tools and automation capabilities were

required to successfully implement these complex
computing tasks (Wirth, 2008).

The software engineering discipline concen-
trated on the development of high-level program-
ming languages, which simplify the development
of software applications. A minor setback in the
inclination towards programming abstraction was
the machine dependent C language. As Wirth
(2008, p. 33) clearly states:

“From the point of view of software engineering,
the rapid spread of C therefore represented a great
leap backward....... It revealed that the community
at large had hardly grasped the true meaning of
the term “high-level language”, which became a
poorly understood buzzword. What, if anything,
was to be “high level” now?”

Although the C language provides efficiency
in creating simple hardware-dependent software
services, it proved scarce and complex in devel-
oping, testing and maintaining large and versatile
software applications (Wirth, 2008). The lessons
learned from using the C language guided though
software engineers to devise abstract and disci-
plined software techniques, like the predominant
Object-Oriented (OO) programming model
(Chonacky, 2009). On the basis of this model
different 3GLs were developed such as Smalltalk,
C++, Java and C#. These languages aimed to raise
the level abstraction in software engineering and
facilitate the definition of disciplined, systematic
and object- oriented techniques for software devel-
opment. 3GLs allow building advanced software

model validation tools and code generators. In this chapter a model-driven technique and its supporting
model-driven environment are presented, both of which are imperative in automating the development
of design tools and achieving tools integration to improve software productivity. A formal parametric
model is also proposed that allows evaluating the productivity impact in generating and rapidly integrat-
ing design tools. The evaluation is performed on the basis of a prototype domain-specific design tool.

335

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

services that feature visual objects (e.g. buttons,
labels) with distinct state and behaviour.

The continuous development of programming
languages can be considered as a sign of healthy
evolution (Chonacky, 2009), which stems from the
necessity to overcome complexities imposed by
the software development process. In particular,
this pragmatic progress leaded to the creation of
many Domain-specific Languages (DSLs) that
tackle software development at a higher abstrac-
tion level (Deursen et. al., 2000; Graff et. al.,
2007; Iscoe et. al., 1991) and introduce a shift
from code-centric to model-centric development
(Staron, 2006; Afonso et. al., 2006). This category
of languages can be divided into two closely
related subcategories: (i) text-based DSLs and
(ii) model-based DSLs. Examples of such DSLs
are Matlab, Simulink and SolidWorks, which de-
scribe and/or combine text-based and modelling
software capabilities. These languages are proven
to be highly competent in terms of their targeted
problem domain rather than being all-around
General-Purpose Languages (GPLs). Therefore,
the semantics of these languages can be interpreted
precisely to a platform-specific implementation
since they are very precise and leave no room for
miscellaneous interpretations (Evermann et. al.,
2005; Clark et. al., 2004). The well-acknowledged
success of DSLs comes as an outcome of the fol-
lowing: (i) satisfying the domain’s requirements,
(ii) using proficient software tools to support them
and (iii) restricting user input to properties of
the target domain while providing easy access to
artefacts (Sprinkle et. al., 2009). Moreover, they
provide modelling and coding simplicity and aim
for platform-independence (Chonacky, 2009).

Domain-specific Modelling (DSM) refers
to the activity that allows developing and using
graphical DSLs. It is a software engineering
paradigm that raises the level of abstraction by
introducing models as the prime entities of the
development process. Although DSM is currently
at its peeks, it is rather a revived and improved
concept that shifts the focus to narrower applica-

tion domains of increased abstraction (Sprinkle
et. al., 2009). In particular, early programming
languages such as FORTRAN and COBOL can
be also regarded as DSLs, which embrace though
the much broader domains of scientific and busi-
ness computing. As aforesaid the added-value of
DSLs lies in their focused expressive power and
not their broad applicability (Freudenthal, 2009).
Therefore, the success of DSLs lies in addressing
smaller domains and defining concepts restricted
to these problem-specific domains. In addition,
tools have evolved significantly in terms of provid-
ing the software capabilities that allow defining
DSLs, validating and transforming models and
automatically generating the implementation
from models.

In this chapter we introduce a model-driven
technique and a supporting environment, which
allow automatically generating concrete, custom-
isable, extensible and bug-free domain-specific
design tools. Our focus is to provide a quantita-
tive evaluation method that considers a large
number of parameters to assess the impact of the
proposed model-driven technique and its sup-
porting environment on software productivity. In
particular, the evaluation method should provide
the capability to assess the productivity impact in
generating and rapidly integrating design tools into
a unified environment. The evaluation is based on
a well-documented and widely accepted formal
model (i.e. COCOMO II.2000 - Post-Architecture
model), which allows estimating the effort, time
and cost related to software development (Boehm
et. al., 2000; Chen et. al., 2005). In particular, due
to the nature of the model-driven technique the
evaluation method takes into consideration an
extension of the Use of Software Tools (TOOLS)
parameter defined in the model. Using this exten-
sion the critical role of software tools is heavily
considered in the estimation of the impact on
software productivity. Finally, the evaluation takes
into consideration the following requirements,
which should be satisfied to efficiently accom-
plish design tools generation. Figure 1 illustrates

336

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

explicitly these requirements (i.e. artefacts), which
are imperative for developing a DSL and its sup-
porting design tool.

R1. A standardised language is required that
provides rich syntax, semantics and a supporting
tool for defining the abstract syntax of DSLs.

R2. The capability to define constraints should
be provided using a software tool that conforms
to a standardised language and allows defining
rules that restrict the abstract syntax of the DSL.

R3. A widely-used modelling language and a
supporting tool is required that allows defining
the concrete syntax of DSLs.

R4. The capability to merge the abstract syntax,
constraints and concrete syntax into a common
representation (i.e. a model) that allows generat-
ing automatically the modelling tools of DSLs.

The chapter is structured as follows: Section
2 presents background information on Model-
Driven Development (MDD) environments, which
target explicitly the generation of domain-specific
design tools. Moreover, Section 3 introduces re-
lated work that uses MDD environments for auto-

mating the development of domain-specific design
tools. In Section 4 we present the model-driven
technique with particular focus in automating the
generation of DSLs and their supporting model-
ling tools. Section 5 presents the architectural
design of the proposed model-driven environment.
Following, Section 6 showcases the automatic
generation of a prototype design tool used in
the Product Lifecycle Management process. A
quantitative evaluation is then performed on the
basis of the above requirements and the selected
software cost estimation model. Finally, Section
7 summarises, concludes and proposes directions
for future research work.

BACKGROUND

The progress of research work on MDD acknowl-
edges that practising domain-specific modelling in
conjunction with the Model Driven Architecture
(MDA) paradigm (Frankel, 2003; Kleppe, 2005;
OMG MDA, 2003) can increase software produc-
tivity (Kelly & Pohjonen, 2009; Balasubramanian
et. al., 2005). These research efforts recognize
also the main issue with domain-specific model-
ling, which is the necessity to rapidly develop the
modelling tools that support the DSLs. The growth

Figure 1. The necessary artefacts for defining a domain-specific modelling language

337

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

of MDD environments and the capabilities they
currently provide allow overcoming this issue to
a great extend. Most of these environments pro-
vide automation in developing domain-specific
languages and their supporting modelling tools.
However, deficiencies still exist due to the failure
to adopt a common, systematic model-driven
technique and align fully with the MDA standards.
In this section we present the most competent and
widely-used environments, which are capable of
providing proprietary or standardised support to
the proposed model-driven technique, to identify
possible limitations.

The Generic Modelling Environment (GME)
is a research environment that practises Model
Integrated Computing (MIC). MIC is actually a
methodology developed to steer the GME in the
development of embedded software systems. The
tool stemmed from earlier research on domain-
specific visual programming environments to
become a highly competent domain-specific
modelling environment (Molnár et. al., 2007). In
particular, it can be adapted and configured at the
meta-level to obtain a domain-specific modelling
tool that is tailored to an explicit engineering do-
main. The GME defines a proprietary metamodel-
ling language that includes the concepts built-in
to the tool. Therefore, a DSL can be defined using
a UML-like Class Diagram (i.e. metamodel) that
describes the concepts of the engineering domain.
Furthermore, it provides additional tools for de-
fining domain rules using the Object Constraint
Language (OCL) (OMG OCL, 2005) and GME-
specific configurable model visualization proper-
ties. Although MetaGME is conceptually similar
to the Meta-Object Facility (MOF) specification
(OMG MOF, 2005) it is still not MOF-based.
Hence, model-to-model transformations need to
be defined to translate between the two languages
(Emerson & Sztipanovits, 2004). Essentially, the
requirement for compliance to MDA standards
and the common interest on metamodelling mo-
tivated the GME research community to bridge

with the Eclipse modelling community into a
joined initiative.

AndroMDA is an extensible generator envi-
ronment that utilises UML tools to define models
that can be transformed to a platform-specific
implementation. In particular, the environment
adheres to the MDA paradigm by utilising UML
profiling rather than focusing on metamodel-
ling. The environment is bound mainly to the
notion of a “cartridge”, which allows processing
model elements with specific stereotypes using
the template files defined within the cartridge.
Templates describe how the models are trans-
formed to deployable components that target
well-known platforms such as J2EE, Spring,.
NET. Consequently, the environment does not
provide any inherent support for metamodelling
and domain-specific modelling, since it is largely
based on UML. In a latest snapshot release (i.e.
AndroMDA 4.0-M1) the environment shifts its
focus towards metamodelling using Eclipse-based
modelling implementations and the concept of
domain-specific modelling.

The XMF-Mosaic is a model-driven environ-
ment, which is based on the concept of metamod-
elling and provides support for domain-specific
modelling. In particular, the metamodelling
environment provides advanced capabilities for
defining and generating DSLs and their support-
ing modelling tools. Furthermore, the software
tools provided by the model-driven environment
are largely aligned with the MDA specifications
defined by the Object Management Group (OMG).
Although the XMF-Mosaic is a powerful open-
source model-driven environment built on top of
the Eclipse platform, its development was termi-
nated. In its latest version the tool interoperates
closely with the Eclipse modelling implementa-
tions. This is basically due to the wide-acceptance
of these implementations by the larger modelling
community. Finally, the environment is to become
part of the Eclipse Generative Modelling Tech-
nologies (GMT) project, which sole purpose is to

338

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

produce a set of prototypes in the area of Model
Driven Engineering.

Microsoft DSL Tools is a powerful model-
driven environment that supports model-driven
development with particular focus on domain-spe-
cific modelling. The software factory comprises
a bundle of proprietary software tools developed
on top of the Visual Studio development platform.
In particular, DSL Tools facilitate explicitly the
definition of the abstract syntax and the constraints
that govern the DSL, which provides the capability
to validate the designed models. Furthermore, the
capability is provided to define the concrete syntax
of the modelling language, in order to facilitate
the generation of the required modelling tools
for the language. The only predicament with the
DSL factory is the necessity to learn how to use
the proprietary languages and tools since the fac-
tory does not conform to the OMG specifications.
Microsoft Corporation recently joined the OMG
in an attempt to meet the standards so as to fulfil
their strategy and assist in taking modelling into
mainstream industry use.

Borland Together is the final model-driven
environment examined in this chapter that pro-
vides the necessary tools to support the definition
of DSLs and the generation of the accompanying
modelling tools. First, the environment allows
defining the abstract syntax and constraints that
govern domain models. Moreover, the concrete
syntax can be defined to provide a graphical nota-
tion for the artefacts of the DSL and the necessary
tooling for the generated modelling tool. The
environment is composed mainly by open-source
Eclipse modelling implementations, which are
customised to improve user experience and aid
designers and developers to perform efficiently
the required modelling and implementation tasks.
The Eclipse implementations composing the
environment are highly compliant to the OMG
standards and are widespread and widely-known
to an extensive group of designers and develop-
ers. Borland Together, like Microsoft DSL tools,
is a commercial product that is not freely avail-

able and as a result does not allow designers and
developers to extend it or customise it to satisfy
their explicit requirements.

Most of these Eclipse implementations were
introduced as new software capabilities in Bor-
land Together 2008. These implementations are
equivalent to the ones composing the model-driven
environment initially proposed in (Achilleos et.
al., 2007) and evaluated in this chapter. To the
author’s best knowledge when the environment
was initially designed the existing literature and
documentation (Borland, 2006) did not disclose
such software capabilities. This does not abolish
the fact that analogous attempts were made by
Borland during that period to develop and de-
liver a unified model-driven environment with
analogous software capabilities. Regardless of
that fact, the objective of this chapter is not to
perform a comparison of existing model-driven
environments but rather to propose an evaluation
method that can be applied for each environment
to assess their impact on software productivity. In
particular, the objective is to evaluate the capabil-
ity of the environment to support a model-driven
technique for automatically generating domain-
specific modelling languages.

RELATED WORK

Different MDA approaches have been proposed
in the literature that attempt to automate the
development of DSLs, so as to simplify MDD.
An approach that differentiates from mainstream
DSL development (Santos et. al., 2008) proposes
the extension of generic frameworks with an ad-
ditional layer that encodes a DSL. The approach
is solely based on a generic language workbench
that allows extracting DSL concepts (i.e. DSL
metamodel) from the DSM layer and transform-
ing model instances into code that conforms to
that particular DSM layer. Thus, developers are
able to define DSL models like if they were us-
ing a conventional modelling tool. Moreover, the

339

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

generic language workbench allows processing
domain models for generating code, rather than
developing individual code generators for each
DSL. The main shortcoming is that the definition of
a concrete syntax for the DSL is not addressed by
the approach but it is regarded as a separate issue
that is handled independently from the abstract
syntax. We argue though that the definition of a
DSL should involve also the specification of its
concrete syntax.

As aforesaid, GME is a metamodelling en-
vironment that enables the creation of domain-
specific modelling environments from metamod-
els (Lédeczi et. al, 2001). It uses the MetaGME
metamodelling language that allows defining
domain concepts in a proprietary form, which is
similar to a UML class diagram. Consequently,
since the metamodel is proprietary, it can only
be used within the GME environment and can-
not be imported in different modelling tools; e.g.
UML tools. This limits the applicability of the
domain-specific modelling language to designers
and developers that are acquainted with GME. In
addition, designers and developers are not familiar
with the domain concepts described in such a pro-
prietary metamodel and cannot comprehend and
transform as a result the domain models. Finally,
the flexibility of DSL definition is restricted to the
semantics of MetaGME and does not conform to a
widely used metamodelling language (e.g. MOF)
that provides a richer set of semantics.

A comparable approach (Zbib et. al., 2006),
which follows the conventional DSL development
process proposes the automatic generation of
domain-specific modelling editors directly from
metamodels. In particular, the metamodel is de-
fined as an extension of the UML metamodel that
captures domain modelling concepts. This can be
described as the notion of UML profiling where
each stereotype of the DSL extends an artefact
of the UML metamodel; e.g. class, package, at-
tribute. The benefit of using such an approach is
that the metamodel can be imported and used in
many UML tools. However, no standard way is

defined to access model stereotypes in these UML
tools, so as to enforce constraints and develop the
necessary code generators. In addition, as admitted
also in (Zbib et. al., 2006), there is greater flex-
ibility in defining the DSL using MOF constructs;
rather than being bounded by the UML semantics.
Hence, we argue in this work that an approach
that adheres to the MOF specification (i.e. EMF)
and utilises an open-source MDD environment is
largely beneficial and preferred. Furthermore, this
work proposes an evaluation method that allows
determining the efficiency and applicability of the
MDA approach. This is an important point that is
not addressed by existing work.

AUTOMATING THE DEVELOPMENT
OF DOMAIN-SPECIFIC
MODELLING LANGUAGES

As aforementioned, the principal issue that
hinders the application of MDD is the difficulty
faced with the development of domain-specific
modelling languages (DSMLs). Note that we
refer to the development of a DSML, rather than
its definition, since it involves both the defini-
tion of the DSML and the implementation of its
necessary supporting modelling tool. In particular,
each DSML requires a supporting modelling tool
that allows designing models that conform to the
syntax, semantics and constraints of the DSML.
Developing a DSML from scratch involves a
time-consuming and error-prone process that
necessitates high development effort; especially
the implementation of the modelling tool (Nytun
et. al., 2006). Consequently, the following ques-
tions arise that necessitate effective solutions for
rapidly developing a DSML:

i. 	 How to define the abstract syntax and con-
straints of the modelling language?

ii. 	 How to define the concrete syntax of the
modelling language?

340

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

iii. 	 How to develop a supporting software mod-
elling tool for the language?

In this chapter we argue that explicit focus
should be given to software tools in order to im-
prove automation in domain-specific modelling
tools generation. In particular, the capabilities of
model-driven development tools should be fully
exploited to automate the definition of DSMLs
and the generation of offspring domain-specific
design tools. The idea put-forward in this chapter
is to utilise common, standardised and widely-used
specifications to automate the development of
DSMLs. Therefore, since existing MDA specifi-
cations do not provide the necessary tooling, we
need to identify and/or develop software tools
with high conformance to the standards. Further-
more, a disciplined and systematic model-driven
technique is required that automates the develop-
ment of DSMLs by utilising the capabilities of the
selected software tools.

Figure 2 presents such a model-driven tech-
nique that refers to the primary phase of the meth-
odology introduced by Achilleos et. al. (2008).
This technique illustrates the tasks undertaken to
accomplish the generation of DSMLs. Irrespective
of the model-driven environment used, these tasks
should form the baseline in order to effectively

achieve increased automation in DSMLs genera-
tion. The primary task involves a requirements
analysis, which helps to identify domain concepts
and formulate the Abstract Syntax of the modelling
language. In particular, the elements, properties
and relationships are identified that symbolize the
concepts of the domain. These concepts are then
represented using a graphical notation that defines
the Abstract Syntax of the modelling language.

The next task involves restricting the design
of models to non-erroneous instances by imposing
the necessary rules onto the Abstract Syntax of
the language. This enables the execution of the
third task because it allows extracting the Concrete
Syntax of the language from its Abstract Syntax
using model-to-model transformations. The Con-
crete Syntax of the language maps the language’s
domain concepts to a suitable graphical represen-
tation. For instance, an element of the language
maybe mapped to a rectangle figure while a
property of the language maybe mapped to a label
figure. Furthermore, Task 5 illustrates the capabil-
ity to customise the graphical representation of
the language for human structuring purposes; i.e.
improve understanding of the designed models.
The next task involves merging the Abstract and
Concrete Syntax of the language into a common
representation that includes all the required arte-

Figure 2. Model-driven technique for automating DSMLs generation

341

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

facts of the modelling language to facilitate its
tool generation (i.e. Task 7). The execution of the
final task is based on the capability to translate
the common representation of the modelling
language to the required implementation using
an existing code generator. The resulting code
implements a domain-specific modelling tool that
conforms to the abstract syntax, constraints and
concrete syntax of the defined modelling language.

The technique provides a set of unambigu-
ous tasks that steer the development of DSMLs.
In addition the nature of the tasks allows using
model-driven software tools that provide the ca-
pability to support and automate their execution.
The next section describes an architectural design
and proposes an environment composed by a set
of Eclipse modelling implementations to support
and automate the development of DSMLs.

ARCHITECTURAL DESIGN OF THE
MODEL-DRIVEN ENVIRONMENT

Architectural design refers to the composition of
the necessary components of a system into a co-
herent unit that follows a methodology for accom-
plishing explicit tasks in an efficient manner. The
architectural design described in this subsection
is based on the plug-in architecture of the Eclipse

platform. Eclipse is a software platform designed
for building Integrated Development Environ-
ments (IDEs) and arbitrary tools (IBMC, 2009).
Hence, in accordance to the Eclipse architecture
each developed software tool can be installed
directly as a plug-in of the platform. The only
requirement is to export the deployable plug-in
(i.e. a packaged JAR file) into the “plugins” direc-
tory of the Eclipse platform. This is a dedicated
directory for loading software tools or capabilities
during start-up, which can be used as necessary
by the designer or developer. Keeping in line with
the architecture of the Eclipse platform allows
satisfying the main prerequisite, which refers to
the automatic generation and rapid deployment
of domain-specific design tools. Furthermore, the
Eclipse platform provides an extensive library of
software tools many of which are dedicated to
modelling and adhere to the MDA specifications.

In principle the architectural design of the
environment comprises of core software tools,
which support the generation of offspring domain-
specific design tools. The generated design tools
can be integrated directly into the model-driven
environment to compose a domain-specific soft-
ware service creation environment. Figure 3 illus-
trates the architectural design of the environment;
composed by four core modelling components
(i.e. software tools) developed by the Eclipse

Figure 3. Architectural design of the model-driven environment

342

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

modelling community and associated alliances.
Note that the selection of these four components is
not an arbitrary one but it is decided on the basis
of the requirements proposed and examined by
Achilleos et. al. (2007). The rationale behind the
components’ selection can be summarised into
three key points: (i) the components should provide
the necessary software capabilities to support the
generation of domain-specific modelling tools
(DSMTs), (ii) the components should conform
to the MDA standards and (iii) the components
should provide the required capabilities for trans-
forming and generating code from models. Figure
1 illustrates the components that are namely, the
Eclipse Modelling Framework (EMF), Graphical
Modelling Framework (GMF), Atlas Transforma-
tion Language (ATL) and openArchitectureWare
(oAW).

The root component is the EMF that started
initially as an implementation of the Meta-Object
Facility formal specification (OMG MOF, 2005).
Both describe (meta-) modelling languages that
facilitate the definition of domain-specific mod-
elling languages. As a matter of fact they are
conceptually similar and express comparable
metamodelling concepts (Gerber & Raymond,
2003; Mohamed et. al., 2007). In principle EMF
emphasises on the development of the essential
tooling for defining metamodelling concepts,
while the MOF specification provides more rigor-
ous and expressive meta-modelling concepts for
defining modelling languages; i.e. metamodels.
In its current version, that is MOF 2.0, the OMG
introduces a subset of the concepts described in
the full specification, called Essential MOF
(EMOF). The EMOF metamodelling language is
conceptually identical to EMF, whereas differ-
ences are predominantly on naming. Conse-
quently, EMF can read and write serialisations of
the EMOF metamodel. As it is realised EMF has
influenced heavily the MOF specification towards
the critical direction of software tools integration
and can be considered in this aspect as the most

suitable candidate to drive the vision of model-
driven development.

As aforesaid, the EMF is the heart of the en-
vironment that allows defining DSMLs using its
Ecore metamodelling language. In particular, it
allows defining the abstract syntax and semantics
of the modelling language in the form of a domain
metamodel. Furthermore, it provides a code gen-
eration capability that is based on Java Emitter
Templates (JET) engine. This software capability
enables the transformation of the metamodel into
EMF-based Java implementation code, which
is delivered as deployable plug-ins. The model
plug-in provides the Java interfaces and imple-
mentation classes that represent the artefacts of
the modelling language and the adapter plug-in
provides the implementation classes that adapt the
domain metamodel classes for editing and display.
The final generated editor plug-in provides the
classes that implement a modelling editor that
conforms to the tree-based representation of the
EMF. This editor supports the definition of domain
models that conform to the modelling language
in the form of abstract trees that include parent
nodes and children as leafs.

The GMF is another important component of
the environment that complements the function-
ality of the EMF. A modelling language requires
apart from its abstract syntax and a concrete syntax
that defines the graphical notation and the palette
of a visual modelling tool. This is where the
GMF comes in place since it provides the neces-
sary software capabilities that allow deriving the
concrete syntax of the modelling language from
its abstract syntax. The concrete syntax of the
modelling language is defined, in accordance to
the terminology of the GMF, using the graphical
and tooling metamodels. The former describes
the graphical notation (e.g. rectangles, ellipses,
arrows) that map to the abstract concepts defined
in the Ecore metamodel, while the latter describes
the tooling capabilities of the modelling editor,
which are basically the palette buttons that enable
its drag-and-drop functionality.

343

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

Having at hand the domain, graphical and
tooling metamodels we can combine them using
additional software capabilities of the GMF into a
mapping metamodel to generate the visual editor
plug-in. The plug-in includes the implementa-
tion classes that contribute the functionality of a
structured GMF-based editor. Therefore, the set
of generated plug-ins composes a fully-fledged
domain-specific modelling tool, which is inte-
grated into the original environment to deliver
a software service development environment.
Note that, a problem domain can be described
by a single or multiple complementary model-
ling languages. Hence, multiple design tools
might be generated and integrated into a unified
environment for software service development;
as illustrated in Figure 3. Examples of our work
reveal that dividing the problem domain into
smaller complementary sub-domains aids in terms
of reducing models complexity and improve un-
derstanding (Achilleos et. al., 2008, Georgalas et.
al., 2007). Finally, apart from the components that
deal with the development of DSLs, the environ-
ment comprises of two supplementary frameworks
that aid the transformation of models and the
generation of implementation code from domain
models. In this chapter, the focus is basically on
the automation of the development of DSMLs and
their accompanying tools. Consequently, it is out
of the scope of this chapter to provide details on
the operation of these frameworks.

A PROTOTYPE DESIGN
TOOL FOR PRODUCT
LIFECYCLE MANAGEMENT

The rapid development of large volumes of indus-
trial software products and services is generally
based on automated Product Lifecycle Manage-
ment (PLM) systems (Georgalas et. al., 2009).
This type of systems merge together all engineer-
ing disciplines involved and aid organisations to
manage the complexity of the software devel-

opment process. Telecommunication providers
have recently began adopting such systems (i.e.
PLM systems) because technologies such as 3G
and IP are currently common practice also in the
communications field. Furthermore, companies
that are not inherently associated to the telecom-
munications field have entered the market and
competition became incredibly fierce. Another
factor that contributed in the adoption of PLM
systems is the complexity involved in developing
new software products and services. Mainly the
requirement to assemble diverse components and
services developed by different vendors introduces
immense complexity that needs to be effectively
managed. Therefore, telecommunication provid-
ers decided to adopt and adapt the PLM process,
whose success is acknowledged in other industrial
fields, so as to expedite and increase the efficiency
in developing, deploying and offering software
product and services (Georgalas et. al., 2009).

Developing a Product Lifecycle
Management Design Tool

This subsection presents an industrial-based case
study that involves the development of a prototype
domain-specific design tool. The developed and
adopted product design tool allows designers to
unambiguously model products, share product
specifications with other stakeholders and ex-
change product data amongst different Opera-
tional/ Business Support Systems (OSS/BSS) in
different formats. The objective is to tackle the
deficiencies introduced to the PLM process by the
current techniques and tooling, used to develop
software products and services. In particular,
Georgalas et. al. (2009) identify the following
issues with the PLM process:

1. 	 Current practice does not automatically drive
the process from the formulation of the con-
cept all the way through to the deployment
of the product in the OSS.

344

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

2. 	 It does not minimize the effort spend by the
iterative interactions amongst the managers,
designers and developers involved.

3. 	 It does not provide and maintain an enter-
prise-wide understanding of the software
product, mainly due to the method high-level
product information is disseminated; i.e.
enormous MS Word documents.

In this chapter we utilize the proposed model-
driven technique and the accompanying environ-
ment to develop a domain-specific design tool that
steers efficiently the PLM process. It should be
noted that in this PLM case study we have used both
the proposed environment and Borland Together
2008 to perform a preliminary comparison during
the evaluation phase. The design tool is based
on the abstract syntax, constraints and concrete
syntax of the product modelling language used to

generate it. The language is actually derived from
a corresponding information model that defines
the necessary concepts, which allow a designer
to specify information regarding a software prod-
uct in the form of a domain model; i.e. product
specification. The information model describes
concepts such as product offering, product speci-
fication, pricing information and domain rules.
In particular, the information model used for the
definition of the product modelling language is
the Common Capability Model (CCM) defined
by the British Telecom (BT) Group. The CCM
describes common capabilities of BT’s Matrix
architecture and its portfolio package is a Unified
Modelling Language (UML) Class Diagram that
defines product specification concepts (Georgalas
et. al., 2009).

The product-specific design tool is developed
by following the tasks defined by the model-driven

Figure 4. Defining the product modelling language in the model-driven environment

345

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

technique introduced in this chapter. Initially,
product modelling concepts are derived directly
from the existing UML Class Diagram of the CCM
information model. Therefore, the primary task
of requirement analysis is not executed since the
concepts described in the product information
model are taken for granted. The second task in-
volves adapting the concepts of the CCM model
to meet the expectations of the Ecore metamodel-
ling language. This is straightforward since the
artefacts defined within class diagrams are reason-
ably similar to metamodel artefacts. Therefore,
the elements, relationships and properties of the
product specification language are captured in the
form of an Ecore metamodel. Figure 4 presents
the product metamodel defined using the proposed
model-driven environment, which defines the
Abstract Syntax of the modelling language. The
following task involves determining the rules that
govern the product specification language and
imposing, as illustrated in Figure 5, the required
constraints onto the abstract syntax of the model-
ling language. This provides the capability to limit
the designer input so as to avoid the definition of
erroneous product models.

The definition of the abstract syntax and con-
straints is followed by the automated extraction
of the concrete syntax of the modelling language.
A suitable wizard allows the designer to select

the product metamodel as the input model and
fine-tune the model-to-model transformation by
choosing the desired graphical notation for each
metamodel artefact. The result obtained is an
output model, called a graphical metamodel,
which represents graphical objects such as rect-
angles, ellipses and connectors. In particular, the
GMF component of the model-driven environment
includes a visual library of objects from which
the designer is able to select the desired ones in
order to fine-tune the output graphical metamod-
el. Consequently, the graphical metamodel defines
a mapping of the concepts of the modelling lan-
guage to visual objects that allow representing
the language concepts in a diagram.

Figure 5 illustrates that apart from the graphi-
cal notation, the Concrete Syntax of the modelling
language includes also the necessary software
tooling; i.e. tooling metamodel. The software
tooling is obtained via an analogous wizard that
allows mapping each metamodel artefact to the
corresponding palette tooling of the product design
tool to be generated. This step allows organising the
concepts of the product specification language in
separate groups of software tooling (i.e. buttons) on
a palette. The palette is made available in the gen-
erated design tool and enables the drag-and-drop
functionality, which allows designing the product
model in the drawing canvas. Figure 4 illustrates

Figure 5. Developing the product design tool using the model-driven technique

346

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

an analogous palette on the right hand-side of the
figure, which refers to the software tooling of
the Ecore metamodelling language. The gener-
ated product design tool resembles an equivalent
modelling editor to the one illustrated in Figure
4, with the only difference that it incorporates
the concepts of the product modelling language.

The subsequent task is optional since it allows
customising the graphical and tooling metamodels
in order to improve the presentation characteris-
tics of the design tool. This is possible using the
tree-based GMF editors that provide the capability
to add, for instance, stereotypes (i.e. labels) to
the visual objects that represent the language’s
concepts. Also the capability is provided to load
icons for an artefact of the language instead of
using graphical figures included within the GMF
pool of visual objects. Further customisation ca-

pabilities are also provided in accordance to the
requirements of the designer.

Having customised the concrete syntax of
the language the software capability is provided
that allows associating the artefacts of the prod-
uct, graphical and tooling metamodels into a
common mapping representation; i.e. mapping
metamodel. For instance, an association describes
how a metamodel concept (e.g. “Specification”
inFigure 4) is mapped to the corresponding visual
object (e.g. rectangle figure) and the respective
palette tooling (i.e. design tool palette button).
Therefore, the mapping defines all the necessary
artefacts so as to facilitate the generation of the
product design tool. This final task is actually
an automated one since existing code generators
are used to translate the mapping metamodel
into an EMF-based Java implementation. As
aforementioned the implementation of the design

Figure 6. Definition of the “BTEverywhere” software product using the product design tool

347

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

tool is delivered as Eclipse plug-ins, which are
immediately integrateable and deployable as new
capabilities of the environment.

The result is a product modelling tool (as
illustrated in Figure 6) strictly dedicated to the
abstract syntax, constraints, concrete syntax and
semantics of the product modelling language.
Figure 6 showcases an example domain model
designed using the modelling tool that represents
a software product called “BTEverywhere”,
which provides the user with telephony, VoIP and
broadband services. The software product actually
offers the capability to shift seamlessly from the
conventional telephony service while away from
home to the VoIP service offered via broadband
when located at home. This concludes the domain-
specific modelling language development phase
that delivers a fully-fledged product modelling tool
to satisfy the designers and developers require-
ments. Hence, the proposed technique provides
solutions to the aforementioned issues of the PLM
process. It provides an enterprise-wide under-
standing of the software product, minimising the
time and effort spend for interaction and product
iterations amongst stakeholders and automates
the process from concept inception all the way
to product deployment.

Although the focus is on the development of
design tools, we touch briefly how the product
model is actually transformed into a fully-fledged

deployable software product, so as to exemplify
the end-to-end PLM-based development process.
More details, on the transformation and the ac-
tual mapping can be found in (Georgalas et. al.,
2009). Figure 7 illustrates at the top of the chain
the Toolsmiths that are responsible to utilise the
proposed Model-Driven Environment to generate
the necessary Product Design Tool. Product De-
signers engage then with the definition of product
models, which are subsequently transformed to
Product Master Data. These data are captured in
a specific format defined by an accepted enterprise-
wide data model of the Master Data Management
Platform (MDMP). Therefore, using the capa-
bilities of the ATL and oAW frameworks of the
model-driven environment the necessary data
transformation scripts are defined that facilitate
the transformation of product models to Product
Master Data that populate respectively the MDMP
repository. The generated product data captured
in an XML format drive the configuration of OSS
and BSS, so as to support the deployment of the
new software product. Consequently, existing
XML-based access interfaces defined in the form
of adapters allow communicating Product Master
Data to the OSS and BSS by transforming them
to the system’s native format as it flows to and
from the MDMP. MDMP is the foundation for
SOA capabilities across BT’s Matrix architecture
that makes OSS and BSS platforms data-driven

Figure 7. Master data management and PLM tooling driving OSS/BSS platforms (Georgalas et. al., 2009)

348

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

(Georgalas et. al., 2009). This removes laborious
hard-coding tasks and maximizes data reuse in
the PLM process.

Quantitative Evaluation using a
Software Cost Estimation Model

This section examines the model-driven technique
and environment introduced in this chapter and
assesses their impact on software productivity. In
particular, the capability to automate the develop-
ment of domain-specific design tools is evaluated
so as to determine the impact on software produc-
tivity. The evaluation examines the effect of the
model-driven technique on the time, effort and cost
required to develop the prototype product design
tool using the following approaches:

1. 	 Developing the product design tool using
the proposed model-driven technique and
its supporting intergrated Model Driven
Environment (iMDE).

2. 	 Developing the product design tool using
the proposed model-driven technique and
Borland Together 2008.

3. 	 Manually implementing the product design
tool from scratch without following any
explicitly stated development process.

The evaluation is performed using the Post-
Architecture model of COCOMO.II that allows
estimating the Effort in Person-Months (PM) and
the Time to Develop (TDEV) a software applica-
tion taking into consideration an extensive set of
parameters. Moreover, it provides the capability
to estimate the necessary budget for developing
the software application. The model considers
the following inputs and defines the later equa-
tions, which allow deriving the effort and time to
develop the software application.

1. 	 The application’s software size measured in
thousand of lines of code (KLOC).

2. 	 Five Scale Factors (SFs) that affect the
development of the software application.

Seventeen Effort Multipliers (EMs) from which
the TOOLS multiplier is divided and calibrated
into three complementary (sub-) multipliers.

PM = A × (KLOC) E ×
i=
∏
1

17

EMi, where E = B +

(0.01 ×
j=
∑
1

5

SFi),

A = 2.94 and B = 0.91 (COCOMOII.2000) 	
	 (1)

TDEV = C × (PM) F, where F = D + 0.2 × (E -
B),

C = 3.67 and D = 0.28 (COCOMOII.2000) 	
	 (2)

Due to the importance of software tools in
automating the development of design tools an
extension of the model is considered (Baik et. al.,
2002). The extension calibrates and divides the
TOOLS multiplier into three complementary (sub-
) multipliers, which are namely the completeness
of Tool COVerage (TCOV), the degree of Tool IN-
Tegration (TINT) and the Tool MATurity (TMAT).
These (sub-) multipliers are very important in the
case of the model-driven technique since they
describe important features of the model-driven
environment that affect software productivity.
In particular, the TCOV multiplier provides the
capability to define and evaluate the coverage of
activities undertaken in the software development
process by the supporting tools. Furthermore, the
TINT multiplier allows defining and evaluating the
degree of integration of the tools used throughout
the process and the effectiveness in achieving this
integration. Finally, the TMAT multiplier allows
stating and evaluating the maturity of the adopted
toolset on the basis of the time it is used in the
market and the technical support provided. This

349

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

extension provides a more comprehensive esti-
mate of the TOOL effort multiplier by calibrating
the above (sub-) multipliers using the following
equation (Baik et. al., 2002).

TOOL = 0.51 × TCOV + 0.27 × TINT + 0.22 × 	
TMAT	 (3)

Prior to performing the calculations using the
formal model, we assess the technique in a subjec-
tive manner against the requirements introduced
in Section 1. Table 1 presents the software capa-
bilities of the iMDE and Borland Together 2008,
which satisfy the four necessary requirements for
automating the development of design tools. The
interesting point is that the same set of software
capabilities is supplied by both environments
for generating modelling tools. Firstly, the EMF
provides a metamodelling language that conforms
to the MOF standard and provides the capabil-
ity to unambiguously define the abstract syntax
of the modelling language. Secondly, the OCL
specification is used as a common capability to
impose the necessary rules that restrict the design

of domain models. In addition, GMF facilitates the
definition of the concrete syntax of the language
and in conjunction with the EMF support the
generation of design tools. It is important to point
out that we have developed the prototype design
tool using both environments in order to identify
the differences in the development process. The
dissimilarities identified are limited and have
to do mainly with the enhanced graphical user
interfaces provided by Borland Together, which
eases to some extent the model-driven develop-
ment tasks. Both environments provide though
widely-used software capabilities that conform to
the standards and support precisely the necessary
development tasks.

Complementing the above subjective evalua-
tion, we have utilised the software cost estimation
model to carry out a quantitative assessment of
the impact of the model-driven technique on
software productivity. Note that the assessment
is based on the assumption that developing the
product design tool by manual coding, involves
writing the same lines of code as in the case of
the code generated for the design tool using the

Table 1. Satisfying the requirements for automating design tools development

R1 - Abstract Syntax
Definition

R2 – Imposing Con-
straints

R3 - Concrete Syntax Defi-
nition

R4 – Design Tools Gen-
eration

iMDE MOF (EMF) OCL GMF EMF, GMF

Borland Together
2008

MOF (EMF) OCL GMF EMF, GMF

Table 2. Rating scales for completeness of tool coverage

TCOV

Very Low (1.17) Text-Based Editor, Basic 3GL Compiler, etc.

Low (1.09) Graphical Interactive Editor, Simple Design Language, etc.

Nominal (1.00) Local Syntax Checking Editor, Standard Template Support, Document Generator, Simple Design Tools, etc.

High (0.9) Local Semantics Checking Editor, Automatic Document Generator,
Extended Design Tools, etc.

Very High (0.78) Global Semantics Checking Editor, Tailorable Automatic Document Generator, Requirement Specification
Aids and Analyser with Tracking Capability, etc.

Extra High (N/A) Groupware Systems, Distributed Asynchronous Requirement Negotiation and Trade-off Tools, etc.

350

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

iMDE. Table 2 presents the ratings scales (Baik
et. al., 2002) used to derive the TCOV multiplier,
which serves as an example of how the rest of the
ratings used in the calculations are derived. First,
when the design tool is developed using the iMDE
the TCOV rating is derived as “HIGH” (i.e. TCOV
= 0.9) since the core components of the environ-
ment support most of the properties defined in
this rating scale. For instance, automatic document
generation is provided by the EMF component,
extended design tools are also provided using the
EMF and GMF components and local syntax
checking by the GMF component.

By applying the same reasoning the TINT and
TMAT sub-multiplier ratings are derived from
the corresponding rating scales defined in (Baik
et. al., 2002) and applied to Eq.3 to derive the
TOOLS effort multiplier. For the iMDE the TINT
rating is estimated as “VERY HIGH” (i.e. TINT
= 0.78) due to the high degree of software tools
integration, which is essentially provided by the
plug-in architecture of the Eclipse platform. Fi-
nally, the TMAT rating is defined as “VERY
HIGH” (i.e. TMAT = 0.78) due to the maturity
of the environment’s software tools (i.e. available
in the market for more than three years) and the
strong, large and experienced modelling com-
munity developing and/or using these modelling
tools. Consequently, applying these individual
sub-ratings in Eq. 3 the calibrated TOOLS rating
for the case of using the iMDE is calculated as
follows.

TOOLiMDE = 0.51 × 0.9 + 0.27 × 0.78 + 0.22 ×
0.78 ⇒ TOOLiMDE = 0.8412

TOOLBorland = 0.51 × 0.78 + 0.27 × 0.78 + 0.22 ×
0.78 ⇒ TOOLBorland = 0.78

TOOLCoding = 0.51 × 1.17 + 0.27 × 1 + 0.22 × 0.78
⇒ TOOLCoding = 1.0383

Using an analogous approach the individual
sub-ratings and the calibrated TOOLS rating are

calculated (as shown above) for the cases of us-
ing Borland Together 2008 and manual coding.
For the case of Borland the individual sub-ratings
are estimated as TCOV=0.78, TINT=0.78 and
TMAT=0.78. The only disparity has to do with
the TCOV rating, which is estimated as “VERY
HIGH”, mainly because of the enhanced front-
end of the software tools provided by Borland that
simplify the MDD tasks. Finally, in the case of
manual coding the individual sub-ratings are esti-
mated as TCOV=1.17, TINT=1 and TMAT=0.78.
The TCOV rating is estimated as “VERY LOW”,
because text-based coding editors are used with
basic 3GLs compilers, libraries and debuggers for
creating manually the modelling tool; see Table
2. Furthermore, the integration of these software
tools is relatively “HIGH” in development envi-
ronments such as Netbeans and Eclipse and the
maturity and competence of these software tools is
“VERY HIGH”, since they are widely-used in the
market for many years. Also a strong development
and support group exists that evolves the capabili-
ties of these software tools on a constant basis.

Apart from the TOOLS ratings, the ratings for
the Scale Factors and the remaining Effort Multi-
pliers included in COCOMO II are derived on the
basis of the rating scales provided in (Boehm et.
al., 2000). In this chapter, due to space limitations,
we only discuss how one example multiplier is
derived; i.e. SITE effort multiplier. This multiplier
refers to multisite development (as defined by
Boehm et. al., 2000) and determines if the members
of the development team are collocated and if their
communication is highly interactive or not. In the
case of BT’s development team the multiplier is
rated as “EXTRA HIGH” (i.e. SITE=0.80). This
is because the members of the team are collocated
and their communication is highly interactive,
since email, voice, video conferencing and other
communication capabilities are provided. By ap-
plying analogous reasoning all individual ratings
of the COCOMO II model are derived and applied
to equations 1 and 2 to calculate the nominal effort
and the time for developing the product design

351

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

tool. Therefore, using all the estimated ratings the
calculations illustrated next are performed for the
three individual cases described in this chapter.

(1) – MDD with Borland 2008

E = 0.91 + [0.01 × (3.72 + 2.03 + 4.24 + 1.1 +
1.56)] ⇒ E = 1.0365

PMBorland = 2.94 × (97.049)1.0365 × [1 × 0.9 × (1 ×
1 × 0.87 × 1.17 × 1.34) × 1 × 1.07 1 × 1 × 0.87 ×
0.85 × 0.88 × 0.9 × 1 × 0.91 × 0.91 × 0.78 × 0.8
× 1] ⇒ PMBorland = 2.94 × 114.69 × 0.4 ⇒

PMBorland = 134.88 Person-Months

F = 0.28 + 0.2 × (1.0365 – 0.91) ⇒ F = 0.28 +
0.2 × 0.1265 ⇒ F = 0.3053

TDEVBorland = 3.67 × (134.8)0.3053 ⇒ TDEVBorland
= 16.4 Months

(2) – MDD with the iMDE

E = 0.91 + [0.01 × (3.72 + 2.03 + 4.24 + 1.1 +
1.56)] ⇒ E = 1.0365

PMiMDE = 2.94 × (97.548)1.0365 × [1 × 0.9 × (1 × 1
× 0.87 × 1.17 × 1.34) × 1 × 1.07 1 × 1 × 0.87 ×
0.85 × 0.88 × 0.9 × 1 × 0.91 × 0.91 × 0.8412 ×
0.8 × 1] ⇒ PMiMDE = 2.94 × 115.29 × 0.427 ⇒

PMiMDE = 144.73 Person-Months

F = 0.28 + 0.2 × (1.0365 – 0.91) ⇒ F = 0.28 +
0.2 × 0.1265 ⇒ F = 0.3053

TDEViMDE = 3.67 × (144.73)0.3053 ⇒ TDEViMDE =
16.77 Months

(3) – Manual Coding with IDEs

E = 0.91 + [0.01 × (3.72 + 2.03 + 4.24 + 1.1 +
1.56)] ⇒ E = 1.0365

PMCoding = 2.94 × (97.548)1.0365 × [1 × 0.9 × (1 ×
1 × 0.87 × 1.17 × 1.34) × 1 × 1.07 1 × 1 × 0.87
× 0.85 × 0.88 × 0.9 × 1 × 0.91 × 0.91 × 1.0383
× 0.8 × 1] ⇒ PMCoding = 2.94 × 115.29 × 0.53 ⇒

PMCoding = 179.65 Person-Months

F = 0.28 + 0.2 × (1.0365 – 0.91) ⇒ F = 0.28 +
0.2 × 0.1265 ⇒ F = 0.3053

TDEVCoding = 3.67 × (179.65)0.3053 ⇒ TDEVCoding
= 17.9 Months

The above calculations illustrate that both
the effort and time for developing the prototype
design tool are decreased when highly competent
model-driven environments are used. In contrast,
implementing manually the product design tool
increases noticeably the development effort and
time. Consequently, this increase in effort and
time results in a corresponding increase of the
development costs. For instance, if we assume that
the Average Monthly Work Rate (AMWR) is $1k
then the development cost can be calculated for
the individual cases using the following equation:

Cost = PM * AMWR	 (4)

Therefore, the development of the product
design tool using the iMDE and Borland Together
2008 incurs costs of $144.73k and $134.88k.
On the contrary, higher costs are involved (i.e.
$179.65k) when the design tool is implemented
manually from scratch. The results depict clearly
that the use of a competent model-driven environ-
ment that conveys to a systematic model-driven
technique benefits the creation of design tools by
reducing the development effort, time and cost.

Although the Post-Architecture model is wide-
ly-used and calibrated through data obtained from
miscellaneous software projects, it still involves
a degree of uncertainty and risk mainly due to
its parametric inputs. In order to cope with these
issues the evaluation introduces a complementary

352

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

computational method that is based on the model.
This is known as the Monte Carlo Simulation
method that provides the capability to cope with
the uncertainty and lack of knowledge involved
when modelling phenomena such as the calcula-
tion of the effort, time and cost for the develop-
ment of software design tools. The simulation
is described as a method that computes samples
within an input range and generates output data.
These data define the probabilities that indicate if
a software tool can be developed within a specific
time frame and with a corresponding effort and
budget involved. In particular, the application
of the Monte Carlo Simulation method involves
initially the definition of an estimated input range
for each Scale Factor and Effort Multiplier using
the Microsoft Excel Software Cost Analysis Tool
(Lum & Monson 2003). These input ranges are
also derived objectively on the basis of the rating
scales presented in (Boehm et. al., 2000, Baik
et. al., 2002). Hence, with the defined parameter
ranges and the software size of the design tool as
inputs the Analysis Tool executes a deterministic
computation (i.e. using a mathematical formula).
This generates a set of output data, which are ag-
gregated into Cumulative Distribution Functions
(CDFs) that represent respectively the effort and
cost to develop the prototype design tool.

Figure 8 illustrates the CDF graphs gener-
ated by the Monte Carlo Simulation method that
represent the corresponding effort and cost for
developing the prototype design tool using the
distinct development environments. The effort
CDFs indicate clearly that for the set of computed
probabilities the effort devoted to the develop-
ment of the prototype is less when model-driven
environments (i.e. iMDE, Borland Together 2008)
are used. Furthermore, the costs CDFs illustrate
that the development costs are correspondingly
increased when the prototype design tool was man-
ually developed from scratch using code-driven
IDEs. In particular, for both CDFs the probable

mean values computed are higher when manually
developing the product design tool from scratch.

CONCLUSION

In this chapter we propose a model-driven tech-
nique and a supporting environment that demon-
strate the benefits of employing MDD for auto-
matically generating competent domain-specific
design tools. The actual benefits are determined
by a software cost estimation model that allows
deriving the positive impact of the model-driven
approach on software productivity. A prototype
design tool is developed that forms the basis for
assessing the impact of the approach with regards
to the development effort, time and cost. Apart
from the proposed model-driven environment (i.e.

Figure 8. Prototype design tool effort and cost
cumulative distribution graphs

353

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

iMDE), an analogous environment (i.e. Borland
Together 2008) is used to develop the prototype
design tool. This reveals the necessity of using
competent model-driven environments that ad-
here to a systematic model-driven technique for
automating the development of domain-specific
design tools. Furthermore, the environments con-
formance to the MDA specifications is established
as another fundamental requirement that enables
better understanding of the defined modelling
languages and facilitates rapid adoption of the
developed domain-specific design tools.

The development of the product design tool
using the iMDE and/or Borland Together show-
cased a reduction in development overheads; i.e.
effort, time and cost. In particular, the use of these
environments provided an increased automation in
software generation, reducing the overheads to a
greater extent than what the software cost analysis
results indicate; i.e. expected effort is reduced
by 19.88%. Nevertheless, the estimated analysis
results are suggestive of the positive impact of
advanced model-driven tools in rapidly and un-
ambiguously developing domain-specific design
tools. For instance, the Figure 8 illustrates that
the mean nominal effort is equal to PM=181.90
Person-Months and the mean cost is equal to
Cost=$181.90k when manually implementing the
product design tool. In contrast, the nominal effort
and cost are significantly reduced when develop-
ing the design tool using the iMDE or Borland
Together as illustrated also clearly in Figure 8.

As part of future work the extension and/or cali-
bration of the software cost estimation model, so as
to address parameters (i.e. Effort Multipliers) that
are closely correlated to model-driven software
development, will enable the optimisation of the
quantitative evaluation method introduced in this
chapter. For example, the TOOLS effort multiplier
can be extended to include Code Generation as
a sub-multiplier that affects significantly the
estimation on software productivity for model-
driven techniques.

REFERENCES

Achilleos, A., Georgalas, N., & Yang, K. (2007).
An open source domain-specific tools framework
to support model driven development of OSS. In
ECMDA-FA, (LNCS 4530), (pp. 1 – 16).

Achilleos, A., Yang, K., & Georgalas, N. (2008).
A model-driven approach to generate service
creation environments. In Proceedings of the
IEEE Globecom, Global Telecommunications
Conference, (pp. 1–6).

Achilleos, A., Yang, K., Georgalas, N., &
Azmoodeh, M. (2008). Pervasive dervice vreation
using a model driven Petri Net based approach. In
Proceedings of the IEEE International Wireless
Communications and Mobile Computing Confer-
ence (IWCMC), (pp. 309-314).

Afonso, M., Vogel, R., & Texeira, J. (2006). From
code centric to model centric software engineer-
ing: Practical case study of MDD infusion in a
systems integration company. In Proceedings
of the Workshop on Model-Based Development
of Computer-Based Systems and International
Workshop on Model-Based Methodologies for
Pervasive and Embedded Software, (pp.125-134).

Baik, J., Boehm, B., & Stecee, B. M. (2002). Disag-
gregating and calibrating the CASE tool variable
in COCOMO 2. IEEE Transactions on Software
Engineering, 28(11), 1009–1022. doi:10.1109/
TSE.2002.1049401

Balasubramanian, K., Gokhale, A., Karsai, G.,
Sztipanovits, J., & Neema, S. (2006). Developing
applications using model-driven design environ-
ments. IEEE Computer. Vanderbilt University.

Boehm, B., Abts, C., Clark, B., Devnani-Chulani,
S., Horowitz, E., & Madachy, R. (2000). CO-
COMO 2 model definition manual, version 2.1.
Center for Systems and Software Engineering,
University of Southern California.

354

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

Borland Together Integrated and Agile Design
Solutions. (2006). Getting started guide for Bor-
land Together 2006 for Eclipse. Retrieved from
http://techpubs.borland.com/together/tec2006/en/
GettingStarted.pdf

Chen, Z., Boehm, B., Menzies, T., & Port, D.
(2005). Finding the right data for software
cost modelling. IEEE Software, 22(6), 38–46.
doi:10.1109/MS.2005.151

Chonacky, N. (2009). A modern Tower of Babel.
Computing in Science & Engineering, 11(3), 80.
doi:10.1109/MCSE.2009.45

Clark, T., Evans, A., Sammut, P., & Willans, J.
(2004). An eXecutable metamodelling facility
for domain-specific language design. In Pro-
ceedings of the Object-Oriented Programming,
Systems, Languages, and Applications Workshop
on Domain-Specific Modelling.

Deursen, A. V., Klint, P., & Visser, J. (2000).
Domain-specific anguages: An annotated bibli-
ography. ACM SIGPLAN Notices, 35(6), 26–36.

Emerson, J. M., & Sztipanovits, J. (2004). Imple-
menting a MOF-based metamodelling environ-
ment using graph transformations. In Proceedings
of the 4th OOPSLA Workshop on Domain-Specific
Modeling. Retrieved from http://www.dsmforum.
org/events/DSM04/emerson.pdf

Evermann, J., & Wand, Y. (2005). Toward formal-
izing domain modelling semantics in language
syntax. IEEE Transactions on Software Engi-
neering, 31(1), 21–37. doi:10.1109/TSE.2005.15

Frankel, D. S. (2003). Model driven architecture:
Applying MDA to enterprise computing. India-
napolis: Wiley Publishing Inc.

Freudenthal, M. (2009). Domain-specific lan-
guages in a customs Information System. IEEE
Software, 99(1), 1–17.

Georgalas, N., Achilleos, A., Freskos, V., &
Economou, D. (2009). Agile product lifecycle
management for service delivery frameworks:
History, architecture and tools. BT Technology
Journal, 26(2).

Georgalas, N., Ou, S., Azmoodeh, M., & Yang,
K. (2007). Towards a model-driven approach
for ontology-based context-aware application
development: A case study. In Proceedings of
the IEEE 4th International Workshop on Model-
based Methodologies for Pervasive and Embedded
Software (MOMPES), (pp. 21-32).

Gerber, A., & Raymond, K. (2003). MOF to
EMF: There and back again. In Proceedings of
the OOPSLA Workshop on Eclipse Technology
eXchange, (pp. 60 – 64).

Graaf, B., & Deursen, A. V. (2007). Visualisation of
domain-specific modelling languages using UML.
In Proceedings of the Annual IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems, (pp. 586-595).

IBM. (2009). Eclipse platform technical overview.
Retrieved from http://www.eclipse.org/whitepa-
pers/eclipse-overview.pdf

Iscoe, N., Williams, G. B., & Arango, G. (1991).
Domain modelling for software engineering. In
Proceedings of the IEEE International Conference
on Software Engineering, (pp. 340-343).

Kelly, S., & Pohjonen, R. (2009). Worst practices
for domain-specific modelling. IEEE Software,
26(4), 22–29. doi:10.1109/MS.2009.109

Kleppe, A., Warmer, J., & Bast, W. (2005). MDA
explained: The model driven architecture, practice
and promise. Boston: Addison-Wesley.

Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P.,
Nordstrom, G., & Springle, J. (2001). Compos-
ing domain-specific design environments. IEEE
Computer, 34(11), 44–51.

355

A Software Cost Model to Assess Productivity Impact of a Model-Driven Technique

Lum, K., & Monson, E. (2003). Software cost
analysis tool user document. California: NASA-
Jet Propulsion Laboratory Pasadena.

Mohamed, M., Romdhani, M., & Ghedira, K.
(2007). EMF-MOF alignment. In Proceedings
of the 3rd International Conference on Autonomic
and Autonomous Systems, (pp. 1 – 6).

Molnár, Z., Balasubramanian, D., & Lédeczi, A.
(2007). An introduction to the generic modelling
environment. Model-driven development tool
implementers forum. Retrieved from http://www.
dsmforum.org/events/MDD-TIF07/GME.2.pdf

Nytun, J. P., Prinz, A., & Tveit, M. S. (2006).
Automatic generation of modelling tools. In Pro-
ceedings of the European Conference on Model-
Driven Architecture, Foundations and Applications
(ECMDA-FA) (LNCS 4066), (pp. 268-283).

OMG. (2003). Model Driven Architecture (MDA)
specification guide v1.0.1. Retrieved from http://
www.omg.org/docs/omg/03-06-01.pdf

OMG. (2005). Meta Object Facility (MOF) core
specification v2.0. Retrieved from http://www.
omg.org/docs/formal/06-01-01.pdf.

OMG. (2005). Object Constraint Language (OCL)
specification v2.0. Retrieved from http://www.
omg.org/docs/formal/06-05-01.pdf

Santos, L. A., Koskimies, K., & Lopes, A. (2008).
Automated domain-specific modeling languages
for generating framework-based applications. In
Proceedings of the 12th International Conference
on Software Product Lines, (pp. 149-158).

Sprinkle, J., Mernik, M., Tolvanen, J.-P., &
Spinellis, D. (2009). What kinds of nails need a
domain-specific hammer? IEEE Software, 26(4),
15–18. doi:10.1109/MS.2009.92

Staron, M. (2006). Adopting model driven soft-
ware development in industry-a case study at two
companies. In Proceedings of the International
Conference on Model Driven Engineering Lan-
guages and Systems, (LNCS 4199), (pp. 57-72).

Wirth, N. (2008). A brief history of software engi-
neering. IEEE Annals of the History of Computing,
30(3), 32–39. doi:10.1109/MAHC.2008.33

Zbib, R., Jain, A., Bassu, D., & Agrawal, H. (2006).
Generating domain-specific graphical modelling
editors from metamodels. In Proceedings of the
Annual IEEE Computer Software and Applications
Conference, (pp. 129-138).

KEY TERMS AND DEFINITIONS

Domain Specific Language(s): A modelling/
specification or programming language(s) that
describes a specific problem domain and can be
used to design domain specific models.

Domain Specific Modelling: Describes a
process that raises the level of abstraction by
introducing domain models as the prime entities
in software development.

Metamodelling: The process that guides the
definition of a metamodel, which describes the ele-
ments, properties and relationships of a particular
modelling domain; i.e. domain specific language.

Model-Driven Development: A software
development methodology that focuses on the
design and implementation of software applica-
tions at an abstract platform-independent level.

Software Cost Model: A mathematical model
that provides the capability to estimate/calculate
the required time, effort and cost to develop soft-
ware applications.

Software Productivity: Defines the measure
of efficiency, which can be described in terms of
time, effort and cost required for the development
of software applications.

Software Service Creation: Describes a
software development process that deals with the
analysis, design, validation and implementation
of software services.

