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Abstract 

Logic Programming has been recently extended to include abduction as an inference 
mechanism leading to the development of Abductive Logic Programming (ALP). In this 
work we study the introduction of parallelism in the operational behaviour of an abductive 
logic program. In particular, we examine the exploitation of various forms of parallelism 
(OR-parallelism, independent as well as dependent AND-parallelism) in an abductive logic 
program. The purpose of this work is twofold: i) to propose a model for parallel computation 
of abduction in ALP and to derive execution strategies that are more effective than sequential 
ones, ii) to find ways to use the existing technology developed over the years in parallelising 
deductive logic programming in the framework of abductive logic programming. The ideas 
described in the paper have been tested by means of an interpreter built over a concurrent 
logic language and the results are promising. 

1. Introduction 

Abduction was introduced by the philosopher Pierce as one of the three main forms of 
reasoning (the other two being deduction and induction). Recently, the importance of 
abductive reasoning has been demonstrated in many areas of Artificial Intelligence and 
elsewhere such as in the field of databases. As a result, it is useful to study ways for making 
the computation of abduction more effective. One such way which this paper addresses is the 
parallelisation of abduction. Furukawa ([5]) has argued that abductive inference and its 
parallel realisation should be one of the future research themes, following up the FGCS 
project. 
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In this paper we study the problems of parallelisation of abduction by concentrating in one 
framework, that of Abductive Logic Programming (ALP). Many of the ideas are applicable, 
more generally, to other frameworks of abduction or hypothetical reasoning. The framework 
of ALP that we will adopt is the one originally proposed by Eshghi and Kowalski ([3,4]) and 
developed further by Kakas and Mancarella ([8,9]). Thus we consider an abductive logic 
program to be a triple <P,A,I> where P is a general logic program, A is a set of abducible 
atoms and I a set of constraints. For simplicity we assume the usual restrictions: there are no 
rules for abducible atoms, integrity constraints have been compiled into denials with at least 
one abducible and the hypotheses generated are variable free. 

The operational semantics for sequential execution of abduction is well defined within this 
framework and has been used in building meta interpreters on top of Prolog systems. 
However, as in usual deductive logic programming, abductive inference mechanisms have 
several sources of parallelism of many forms (OR-parallelism, independent and dependent 
AND-parallelism). In this work we examine the introduction of these forms of parallelism 
into an abductive logic program, we study the operational behaviour of such a program 
enhanced with parallelism and we highlight its effect on the efficiency of execution 
compared with the corresponding sequential version. The various execution strategies that 
are presented have been tested on a meta interpreter written in a concurrent logic language 
that simulates a parallel environment; first results show that the introduction of parallelism in 
many cases enhances the efficiency of abductive logic programs. 

The main aim of our investigation is to derive a parallel execution model for abductive logic 
programming. Then we can map this onto some, possibly existing, parallel model for 
deductive logic programming (independent AND, Andorra, hybrid AND/OR or otherwise), 
importing as much of the existing technology as it is possible in the parallel abductive logic 
programming framework. 

2. The Abductive Proof Procedure for Logic Programming 

In the abductive proof procedure for logic programming [4,8] (see also [7] for a review of the 
main ideas), the computation interleaves between abductive phases that generate and collect 
abductive hypotheses with consistency phases that incrementally check these hypotheses for 
integrity. Consider the following example: 

P: p <- a, q, r. s <- s1, s2.  I: <- a,s. 
 p <- b.  s <- s3.    <- b,v. 
         <- b,t. 
 
 q <- true. v <- not w. 
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 r <- a.  w <- c. 
    t <- c. 

where a, b, c are abducibles and '<-' in I denotes negation (for example, '<- a,s' means 
'~(a∧s)' Assuming a Prolog-like evaluation order, the query <- p will reduce using the 
first clause to <- a, q, r. Consequently, a will be abduced and the computation will enter 
a consistency phase to satisfy the constraint <-a,s. During the consistency phase all rules 
for s will be tried with the aim to prove their failure and hence the satisfaction of the 
constraint. Assuming that this is the case, q will then get reduced followed by r. The latter 
needs the abducible a which is already part of the hypothesis Δ  that we are trying to 
construct. The computation will thus end with Δ={a}. 

On backtracking, the second clause for p will be tried which will cause the abduction of b 
and the commencing of a consistency phase for it. The constraint <- b,v requires the 
failure of v, and subsequently of not w, which causes the abduction of c and hence the 
extension of Δ={b,c}. However, the evaluation of the second constraint <- b,t requires 
the absence of c and thus the second rule for p yields no further solutions to the query. 

In the above scenario note the synchronisation performed implicitly by the processes 
involved in an abductive or consistency phase via the updating of the hypotheses set Δ . Two 
points are of interest here: first, that inconsistencies can potentially be detected earlier in a 
parallel realisation of the model especially in view of the fact that the model allows the 
recording of abducibles in Δ  at the beginning of their consistency phase; second, that the 
reuse of hypotheses in Δ can be done more effectively in a parallel computation. 

3. Sources of Parallelism in an Abductive Logic Program 

The above example demonstrates the high potential of parallelism that exists in an abductive 
logic program. In the sequel we will describe the various sources of parallelism which can 
exist in ALP. 

The process oriented behaviour of the model allows the exploitation of a synchronised form 
of AND-parallelism, a là "stream parallelism", during the parallel evaluation of a conjunction 
of literals that appear in an abductive phase. When a literal has been abduced, this 
information is made available to all other processes running in parallel. We recall from the 
previous section that in the computational model of abduction as defined in this paper, the 
hypotheses generated during an abductive phase can be recorded immediately in Δ  without 
waiting for the successful termination of the associated consistency phase. The sequential 
implementation uses this fact but in a limited way. A parallel realisation of the model can 
exploit it much more effectively. 
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We can also record in a structure Ε , similar to Δ , those abducibles that during a consistency 
phase are assumed to be absent. This suggests the support of a communication model similar 
to Linda's tuple space. The benefit here is twofold: i) if some other process in the conjunction 
requires the abduction of a literal already in Δ, this process can avoid entering a consistency 
phase since it knows that this is already being performed; ii) if some other process requires 
the absence of the abduced literal, this incosistency can be detected early and the 
computation can be abandoned saving unnecessary work. The first case is illustrated in the 
evaluation of the first clause for p where r requires the abduction of a, and the second case 
arises in the evaluation of the integrity constraints for b. Thus, it is possible to reuse and 
share hypotheses as well as detect incosistencies faster. The synchronisation of processes 
through Δ  and Ε, as described above is an important aspect of parallelism that appears in 
ALP on which any parallel implementation of abduction must concentrate. 

The consistency phase can give rise to both AND- and OR-parallelism; both sources of 
parallelism are illustrated in the integrity constraint for the abducible a. In particular, while 
trying to satisfy the constraint <-a,s the two different clauses for s can be tried in parallel. 
This is in fact AND- rather than OR-parallelism since the set of hypotheses Δ  formed is 
common to both rules for s and should therefore be consistent. Note that, in practice, we may 
not have to deal with this kind of parallelism very often; due to the restriction we have 
imposed that goals which can be abduced or are involved in a constraint evaluation are 
ground, it is unlikely that more than one rule will match. However, the OR-parallelism that 
can be exploited in the consistency phase arises more often. This is illustrated in the first rule 
for s where the failure of either s1 or s2 suffices to fail s. Hence, as far as the consistency 
phase is concerned, the evaluation of a conjunction of literals in parallel is OR-parallelism. 

Other forms of AND- and OR-parallelism can be exploited, similar to the ones found in 
deductive logic programming. There is the usual kind of OR-parallelism where different 
parts of the search space can be explored concurrently (as is the case of resolving p in an 
abductive phase with both its rules defining it). The groundness restriction we have imposed, 
coupled with a data flow analysis using Condition Graph Expressions ([6]), may also lead to 
the exploitation of independent AND-parallelism. In the fifth section we discuss further the 
interaction of AND- and OR-parallelism during the interleaving between the abductive and 
consistency phases. 

4. An Illustration of the Benefits of Parallelism in ALP 

The parallel framework of abductive logic programming can in fact be used to enhance the 
computational efficiency of ordinary logic programming by applying it to the computation of 
negation as failure. Eshghi and Kowalski ([4]) show how negation as failure can be 
understood through abduction, where a negative literal not p is considered as a primitive 
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abducible p* with the constraints <- p,p* and <- p∨p*. Consider, for instance, the 
following Prolog definition of a number being a multiple of 4: 

even(0). 
even(X) :- not even(X-1). 
 
mult4(X) :- even(X), even(X/2). 

This is a typical case where dependent AND-parallelism can be exploited. As the even 
processes execute in parallel, the literals that are abduced as well as the ones that must be 
absent are recorded in Δ  and Ε  which are accessible to all processes for reading and/or 
writing (a kind of blackboard). For instance, while evaluating mult4(24), the process 
even(24) will eventually need to abduce not even(11), which will have already been 
abduced by the other even(12) process running concurrently. 

Dependent AND-parallelism can also help in detecting incosistencies faster. Consider the 
following (rather artificial!) definition of occurs_only_in_the_first(E,X,Y) 
which succeeds if E is a member of the list X but not a member of the list Y: 

occurs_only_in_the_first(E,X,Y) <- not absent(E,X), 
                                   not member(E,Y). 
absent(E,X) <- not member(E,X). 

If occurs_only_in_the_first is called with both the parameters X and Y instantiated 
to the same list L, the parallel abduction on the negative goals will detect the inconsistency 
earlier than a sequential evaluation by noticing that we require the presence of not 
member(e,L) in both Δ  and Ε. 

5. A Parallel Model of Computation 

The ideas that have been described so far have led to the design of an initial parallel model of 
computation. The model is based on a "lazy" non deterministic execution strategy that tries 
first to reduce in parallel all deterministic goals before adhering to OR-parallelism. A goal 
involved in an abductive derivation is non deterministic if it is defined by more than one rule 
in the program P. A goal involved in a consistency derivation is non deterministic if it is the 
conjunction of more than one abductive literal not present in Δ . 

The computation interleaves between a deterministic reduction phase and a nondeterministic 
splitting phase. During the deterministic phase all abductive and consistency derivations that 
are deterministic are done in parallel; non-deterministic derivations are suspended. At the end 
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of the deterministic phase, any one process has either terminated (successfully) or suspended. 
If there are processes which are suspended this means that there are potentially many 
different explanation sets Δ  for the original query. We thus have a non deterministic stage 
where the computation splits into independent OR branches, for every different combination 
of choices in the suspended goals, which can be explored in parallel. Every such derivation 
inherits the Δ and Ε environments of the parent deterministic derivation. 

The following example illustrates the behaviour of our model. 

p <- p1, p2, p3. 
p <- p4, p5. 
 
p1 <- not p11.   p2 <- …  p3 <- not p31. 
p11 <- not p121.  p2 <- …  p31 <- p32, not p34. 
p11 <- not p122.     p32 <- not p11. 
p121 <- true.      p33 <- not p34. 
p122 <- true.      p34 <- true. 

Figure 1 below shows the state of the computation when the first deterministic phase has 
ended and the computation is about to split to the various OR branches that can be formed. 
We follow the usual convention that boxed computations refer to consistency phases and 
unboxed ones refer to abductive phases. In addition, thick lines show OR-parallelism while 
the thinner ones refer to AND-parallelism. The partial recordings in Δ  and Ε are also shown. 
Note that the two rules for p11 are executed as AND- rather than OR-parallelism since they 
are involved in a consistency phase. The reduction of p31 gives rise to two different possible 
ways of ensuring the consistency, namely by failing at not p11 or not p33. This results in 
a non deterministic split with the two OR branches, shown in the figure, one where we enter 
an abductive phase with p11 and another with p33. 

The suspension of a non deterministic consistency phase provides a solution to the problem 
of resolution of conflict when a process wants to record the abduction of some abducible 
while some other wants to record its absence. In the current example, had p32 been allowed 
to proceed it would have created an inconsistency since it would have attempted to record in 
Ε  the absence of not p11 while p1 would try to record it in Δ . In such a case, it is not 
possible (without extra information) to determine on whose favour the conflict must be 
resolved and so we treat this situation as non-deterministic allowing the computation to 
proceed in different OR branches, that cover both possibilities. 

As a more concrete illustration of the above problem, consider the following recursive 
version of mult4(X): 
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rec_mult4(0). 
rec_mult4(X) :- even(X), not rec_mult4(X-2). 

where even(X) is defined as above. For a ground query of rec_mult4 (eg. 
rec_mult4(4) as in figure 2), abductive derivations for even and not rec_mult4 
start in parallel. The abductive and consistency derivations associated with even are all 
deterministic and they are allowed to proceed to completion. However, the abduction of not 
rec_mult4(X-2) leads to a non deterministic consistency derivation where the failure of 
either one of not even(1) or not rec_mult4(0) alone is sufficient for the success of 
the derivation. Hence the consistency phase suspends and will resume when the whole 
computation has reached quiescence (i.e. the computation of even(4) has terminated) by 
splitting into two abductive OR branches of even(1) and rec_mult4(0). The first one 
will detect the inconsistency generated by its attempt to record not even(1) in Ε  (which 
has already been recorded in Δ) and fail, while the second branch will succeed updating Ε  
with rec_mult4(0). 

The model described above has been tested on a meta-interpreter written in the concurrent 
logic programming language Parlog simulating an AND/OR-parallel environment. Δ and Ε 
are represented as lists managed by corresponding monitor processes. Access to them by the 
processes running concurrently is done via stream channels (using mergers where required). 
These common stores are used to synchronise the execution of the processes, thus saving 
unnecessary recomputations. A limitation of the interpreter is that currently it handles only 
ground literals even for purely deductive goals. 

The results of running a number of example programs have been quite promising. For 
instance, the abductive version of mult4 runs nearly twice as fast than the usual negation as 
failure version. This suggests that the enhancement of the abductive logic programming 
framework with parallelism can lead to a more efficient execution for many classes of 
programs. 

6. Conclusions and Further Work 

In this paper we have proposed and studied a parallel computational model for abduction in 
logic programming. The exploitation of the different forms of AND/OR-parallelism available 
in an abductive logic program has many benefits. Among others, it reduces the search space, 
causes a faster detection of inconsistencies, and allows the sharing and reuse of hypotheses. 

Although it is not possible to exploit all forms of parallelism efficiently, the initial aim is to 
identify the best possible combination of AND/OR-parallelism on top of existing parallel 
models of logic programming, that take into consideration the special characteristics of 



Parallelism in Abductive Logic Programming 

8 

abductive logic programs. We have concentrated mainly on the usual types of parallelism 
that can be found in a deductive logic program, but other novel types of parallelism ([1]) can 
also be considered. 

Regarding implementation, we are currently rewriting the interpreter in AKL 0.8, trying in 
the process to take advantage of the facilities offered in that environment (Δ and Ε, for 
instance, are implemented using AKL's monitors and ports). We are also paying particular 
attention to the combination of dependent AND- and OR-parallelism offered by the Andorra 
model which can be used to model the two phases (deterministic and non deterministic) our 
model comprises. Another interesting issue of study is to replace the OR-parallelism in the 
model with a sequential execution of the different choices of suspension, exploiting work on 
intelligent backtracking ([2]). 
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