

1

Parallelism in Abductive Logic Programming

Antonis C. Kakas and George A. Papadopoulos

Department of Computer Science
University of Cyprus
75 Kallipoleos Str.,

Nicosia, T.T. 134, P.O. Box 537
CYPRUS

June 1993

e-mail: {antonis,george}@jupiter.cca.ucy.cy

Abstract

Logic Programming has been recently extended to include abduction as an inference
mechanism leading to the development of Abductive Logic Programming (ALP). In this
work we study the introduction of parallelism in the operational behaviour of an abductive
logic program. In particular, we examine the exploitation of various forms of parallelism
(OR-parallelism, independent as well as dependent AND-parallelism) in an abductive logic
program. The purpose of this work is twofold: i) to propose a model for parallel computation
of abduction in ALP and to derive execution strategies that are more effective than sequential
ones, ii) to find ways to use the existing technology developed over the years in parallelising
deductive logic programming in the framework of abductive logic programming. The ideas
described in the paper have been tested by means of an interpreter built over a concurrent
logic language and the results are promising.

1. Introduction

Abduction was introduced by the philosopher Pierce as one of the three main forms of
reasoning (the other two being deduction and induction). Recently, the importance of
abductive reasoning has been demonstrated in many areas of Artificial Intelligence and
elsewhere such as in the field of databases. As a result, it is useful to study ways for making
the computation of abduction more effective. One such way which this paper addresses is the
parallelisation of abduction. Furukawa ([5]) has argued that abductive inference and its
parallel realisation should be one of the future research themes, following up the FGCS
project.

Parallelism in Abductive Logic Programming

2

In this paper we study the problems of parallelisation of abduction by concentrating in one
framework, that of Abductive Logic Programming (ALP). Many of the ideas are applicable,
more generally, to other frameworks of abduction or hypothetical reasoning. The framework
of ALP that we will adopt is the one originally proposed by Eshghi and Kowalski ([3,4]) and
developed further by Kakas and Mancarella ([8,9]). Thus we consider an abductive logic
program to be a triple <P,A,I> where P is a general logic program, A is a set of abducible
atoms and I a set of constraints. For simplicity we assume the usual restrictions: there are no
rules for abducible atoms, integrity constraints have been compiled into denials with at least
one abducible and the hypotheses generated are variable free.

The operational semantics for sequential execution of abduction is well defined within this
framework and has been used in building meta interpreters on top of Prolog systems.
However, as in usual deductive logic programming, abductive inference mechanisms have
several sources of parallelism of many forms (OR-parallelism, independent and dependent
AND-parallelism). In this work we examine the introduction of these forms of parallelism
into an abductive logic program, we study the operational behaviour of such a program
enhanced with parallelism and we highlight its effect on the efficiency of execution
compared with the corresponding sequential version. The various execution strategies that
are presented have been tested on a meta interpreter written in a concurrent logic language
that simulates a parallel environment; first results show that the introduction of parallelism in
many cases enhances the efficiency of abductive logic programs.

The main aim of our investigation is to derive a parallel execution model for abductive logic
programming. Then we can map this onto some, possibly existing, parallel model for
deductive logic programming (independent AND, Andorra, hybrid AND/OR or otherwise),
importing as much of the existing technology as it is possible in the parallel abductive logic
programming framework.

2. The Abductive Proof Procedure for Logic Programming

In the abductive proof procedure for logic programming [4,8] (see also [7] for a review of the
main ideas), the computation interleaves between abductive phases that generate and collect
abductive hypotheses with consistency phases that incrementally check these hypotheses for
integrity. Consider the following example:

P: p <- a, q, r. s <- s1, s2. I: <- a,s.
 p <- b. s <- s3. <- b,v.
 <- b,t.

 q <- true. v <- not w.

Parallelism in Abductive Logic Programming

3

 r <- a. w <- c.
 t <- c.

where a, b, c are abducibles and '<-' in I denotes negation (for example, '<- a,s' means
'~(a∧s)' Assuming a Prolog-like evaluation order, the query <- p will reduce using the
first clause to <- a, q, r. Consequently, a will be abduced and the computation will enter
a consistency phase to satisfy the constraint <-a,s. During the consistency phase all rules
for s will be tried with the aim to prove their failure and hence the satisfaction of the
constraint. Assuming that this is the case, q will then get reduced followed by r. The latter
needs the abducible a which is already part of the hypothesis Δ that we are trying to
construct. The computation will thus end with Δ={a}.

On backtracking, the second clause for p will be tried which will cause the abduction of b
and the commencing of a consistency phase for it. The constraint <- b,v requires the
failure of v, and subsequently of not w, which causes the abduction of c and hence the
extension of Δ={b,c}. However, the evaluation of the second constraint <- b,t requires
the absence of c and thus the second rule for p yields no further solutions to the query.

In the above scenario note the synchronisation performed implicitly by the processes
involved in an abductive or consistency phase via the updating of the hypotheses set Δ . Two
points are of interest here: first, that inconsistencies can potentially be detected earlier in a
parallel realisation of the model especially in view of the fact that the model allows the
recording of abducibles in Δ at the beginning of their consistency phase; second, that the
reuse of hypotheses in Δ can be done more effectively in a parallel computation.

3. Sources of Parallelism in an Abductive Logic Program

The above example demonstrates the high potential of parallelism that exists in an abductive
logic program. In the sequel we will describe the various sources of parallelism which can
exist in ALP.

The process oriented behaviour of the model allows the exploitation of a synchronised form
of AND-parallelism, a là "stream parallelism", during the parallel evaluation of a conjunction
of literals that appear in an abductive phase. When a literal has been abduced, this
information is made available to all other processes running in parallel. We recall from the
previous section that in the computational model of abduction as defined in this paper, the
hypotheses generated during an abductive phase can be recorded immediately in Δ without
waiting for the successful termination of the associated consistency phase. The sequential
implementation uses this fact but in a limited way. A parallel realisation of the model can
exploit it much more effectively.

Parallelism in Abductive Logic Programming

4

We can also record in a structure Ε , similar to Δ , those abducibles that during a consistency
phase are assumed to be absent. This suggests the support of a communication model similar
to Linda's tuple space. The benefit here is twofold: i) if some other process in the conjunction
requires the abduction of a literal already in Δ, this process can avoid entering a consistency
phase since it knows that this is already being performed; ii) if some other process requires
the absence of the abduced literal, this incosistency can be detected early and the
computation can be abandoned saving unnecessary work. The first case is illustrated in the
evaluation of the first clause for p where r requires the abduction of a, and the second case
arises in the evaluation of the integrity constraints for b. Thus, it is possible to reuse and
share hypotheses as well as detect incosistencies faster. The synchronisation of processes
through Δ and Ε, as described above is an important aspect of parallelism that appears in
ALP on which any parallel implementation of abduction must concentrate.

The consistency phase can give rise to both AND- and OR-parallelism; both sources of
parallelism are illustrated in the integrity constraint for the abducible a. In particular, while
trying to satisfy the constraint <-a,s the two different clauses for s can be tried in parallel.
This is in fact AND- rather than OR-parallelism since the set of hypotheses Δ formed is
common to both rules for s and should therefore be consistent. Note that, in practice, we may
not have to deal with this kind of parallelism very often; due to the restriction we have
imposed that goals which can be abduced or are involved in a constraint evaluation are
ground, it is unlikely that more than one rule will match. However, the OR-parallelism that
can be exploited in the consistency phase arises more often. This is illustrated in the first rule
for s where the failure of either s1 or s2 suffices to fail s. Hence, as far as the consistency
phase is concerned, the evaluation of a conjunction of literals in parallel is OR-parallelism.

Other forms of AND- and OR-parallelism can be exploited, similar to the ones found in
deductive logic programming. There is the usual kind of OR-parallelism where different
parts of the search space can be explored concurrently (as is the case of resolving p in an
abductive phase with both its rules defining it). The groundness restriction we have imposed,
coupled with a data flow analysis using Condition Graph Expressions ([6]), may also lead to
the exploitation of independent AND-parallelism. In the fifth section we discuss further the
interaction of AND- and OR-parallelism during the interleaving between the abductive and
consistency phases.

4. An Illustration of the Benefits of Parallelism in ALP

The parallel framework of abductive logic programming can in fact be used to enhance the
computational efficiency of ordinary logic programming by applying it to the computation of
negation as failure. Eshghi and Kowalski ([4]) show how negation as failure can be
understood through abduction, where a negative literal not p is considered as a primitive

Parallelism in Abductive Logic Programming

5

abducible p* with the constraints <- p,p* and <- p∨p*. Consider, for instance, the
following Prolog definition of a number being a multiple of 4:

even(0).
even(X) :- not even(X-1).

mult4(X) :- even(X), even(X/2).

This is a typical case where dependent AND-parallelism can be exploited. As the even
processes execute in parallel, the literals that are abduced as well as the ones that must be
absent are recorded in Δ and Ε which are accessible to all processes for reading and/or
writing (a kind of blackboard). For instance, while evaluating mult4(24), the process
even(24) will eventually need to abduce not even(11), which will have already been
abduced by the other even(12) process running concurrently.

Dependent AND-parallelism can also help in detecting incosistencies faster. Consider the
following (rather artificial!) definition of occurs_only_in_the_first(E,X,Y)
which succeeds if E is a member of the list X but not a member of the list Y:

occurs_only_in_the_first(E,X,Y) <- not absent(E,X),
 not member(E,Y).
absent(E,X) <- not member(E,X).

If occurs_only_in_the_first is called with both the parameters X and Y instantiated
to the same list L, the parallel abduction on the negative goals will detect the inconsistency
earlier than a sequential evaluation by noticing that we require the presence of not
member(e,L) in both Δ and Ε.

5. A Parallel Model of Computation

The ideas that have been described so far have led to the design of an initial parallel model of
computation. The model is based on a "lazy" non deterministic execution strategy that tries
first to reduce in parallel all deterministic goals before adhering to OR-parallelism. A goal
involved in an abductive derivation is non deterministic if it is defined by more than one rule
in the program P. A goal involved in a consistency derivation is non deterministic if it is the
conjunction of more than one abductive literal not present in Δ .

The computation interleaves between a deterministic reduction phase and a nondeterministic
splitting phase. During the deterministic phase all abductive and consistency derivations that
are deterministic are done in parallel; non-deterministic derivations are suspended. At the end

Parallelism in Abductive Logic Programming

6

of the deterministic phase, any one process has either terminated (successfully) or suspended.
If there are processes which are suspended this means that there are potentially many
different explanation sets Δ for the original query. We thus have a non deterministic stage
where the computation splits into independent OR branches, for every different combination
of choices in the suspended goals, which can be explored in parallel. Every such derivation
inherits the Δ and Ε environments of the parent deterministic derivation.

The following example illustrates the behaviour of our model.

p <- p1, p2, p3.
p <- p4, p5.

p1 <- not p11. p2 <- … p3 <- not p31.
p11 <- not p121. p2 <- … p31 <- p32, not p34.
p11 <- not p122. p32 <- not p11.
p121 <- true. p33 <- not p34.
p122 <- true. p34 <- true.

Figure 1 below shows the state of the computation when the first deterministic phase has
ended and the computation is about to split to the various OR branches that can be formed.
We follow the usual convention that boxed computations refer to consistency phases and
unboxed ones refer to abductive phases. In addition, thick lines show OR-parallelism while
the thinner ones refer to AND-parallelism. The partial recordings in Δ and Ε are also shown.
Note that the two rules for p11 are executed as AND- rather than OR-parallelism since they
are involved in a consistency phase. The reduction of p31 gives rise to two different possible
ways of ensuring the consistency, namely by failing at not p11 or not p33. This results in
a non deterministic split with the two OR branches, shown in the figure, one where we enter
an abductive phase with p11 and another with p33.

The suspension of a non deterministic consistency phase provides a solution to the problem
of resolution of conflict when a process wants to record the abduction of some abducible
while some other wants to record its absence. In the current example, had p32 been allowed
to proceed it would have created an inconsistency since it would have attempted to record in
Ε the absence of not p11 while p1 would try to record it in Δ . In such a case, it is not
possible (without extra information) to determine on whose favour the conflict must be
resolved and so we treat this situation as non-deterministic allowing the computation to
proceed in different OR branches, that cover both possibilities.

As a more concrete illustration of the above problem, consider the following recursive
version of mult4(X):

Parallelism in Abductive Logic Programming

7

rec_mult4(0).
rec_mult4(X) :- even(X), not rec_mult4(X-2).

where even(X) is defined as above. For a ground query of rec_mult4 (eg.
rec_mult4(4) as in figure 2), abductive derivations for even and not rec_mult4
start in parallel. The abductive and consistency derivations associated with even are all
deterministic and they are allowed to proceed to completion. However, the abduction of not
rec_mult4(X-2) leads to a non deterministic consistency derivation where the failure of
either one of not even(1) or not rec_mult4(0) alone is sufficient for the success of
the derivation. Hence the consistency phase suspends and will resume when the whole
computation has reached quiescence (i.e. the computation of even(4) has terminated) by
splitting into two abductive OR branches of even(1) and rec_mult4(0). The first one
will detect the inconsistency generated by its attempt to record not even(1) in Ε (which
has already been recorded in Δ) and fail, while the second branch will succeed updating Ε
with rec_mult4(0).

The model described above has been tested on a meta-interpreter written in the concurrent
logic programming language Parlog simulating an AND/OR-parallel environment. Δ and Ε
are represented as lists managed by corresponding monitor processes. Access to them by the
processes running concurrently is done via stream channels (using mergers where required).
These common stores are used to synchronise the execution of the processes, thus saving
unnecessary recomputations. A limitation of the interpreter is that currently it handles only
ground literals even for purely deductive goals.

The results of running a number of example programs have been quite promising. For
instance, the abductive version of mult4 runs nearly twice as fast than the usual negation as
failure version. This suggests that the enhancement of the abductive logic programming
framework with parallelism can lead to a more efficient execution for many classes of
programs.

6. Conclusions and Further Work

In this paper we have proposed and studied a parallel computational model for abduction in
logic programming. The exploitation of the different forms of AND/OR-parallelism available
in an abductive logic program has many benefits. Among others, it reduces the search space,
causes a faster detection of inconsistencies, and allows the sharing and reuse of hypotheses.

Although it is not possible to exploit all forms of parallelism efficiently, the initial aim is to
identify the best possible combination of AND/OR-parallelism on top of existing parallel
models of logic programming, that take into consideration the special characteristics of

Parallelism in Abductive Logic Programming

8

abductive logic programs. We have concentrated mainly on the usual types of parallelism
that can be found in a deductive logic program, but other novel types of parallelism ([1]) can
also be considered.

Regarding implementation, we are currently rewriting the interpreter in AKL 0.8, trying in
the process to take advantage of the facilities offered in that environment (Δ and Ε, for
instance, are implemented using AKL's monitors and ports). We are also paying particular
attention to the combination of dependent AND- and OR-parallelism offered by the Andorra
model which can be used to model the two phases (deterministic and non deterministic) our
model comprises. Another interesting issue of study is to replace the OR-parallelism in the
model with a sequential execution of the different choices of suspension, exploiting work on
intelligent backtracking ([2]).

References

[1] Brogi A. and Ciancarini P., The Concurrent Language, Shared Prolog, ACM
Transactions on Programming Languages and Systems, 13(1), Jan. 1991, pp. 99.123.

[2] Codognet C. and Codognet P., Non deterministic Stream AND-Parallelism Based on
Intelligent Backtracking, 6th ICLP, Lisbon, 1989, pp. 63-79.

[3] Eshghi K. and Kowalski R. A., Abduction Through Deduction, Technical Report,
Department of Computer Science, Imperial College, 1988.

[4] Eshghi K. and Kowalski R. A., Abduction Compared With Negation By Failure, Proc.
6th International Conference on Logic Programming, Lisbon, 1989, pp. 234-255.

[5] Furukawa K., contribution to The Fifth Generation Project: Personal Perspectives, ed.
E. Shapiro and D. H. D. Warren, Communications of the ACM, March 1993, pp. 48-
101.

[6] Hermenegildo M. V., An Abstract Machine Based Execution Model for Computer
Architecture Design and Efficient Implementation of Logic Programs in Parallel, Ph.D.
Thesis, University of Texas at Austin, August 1986.

[7] Kakas A. C., Kowalski R. A. and Toni F., Abductive Logic Programming, Journal of
Logic and Computation, 1993, (to appear).

[8] Kakas A. C. and Mancarella P., Generalised Stable Models: a Semantics for Abduction,
Proc. 9th ECAI, Stockolm, 1990, pp. 385-391.

[9] Kakas A. C. and Mancarella P., On The Relationship Between Truth Maintance and
Abduction, Proc. 1st PRICAI, Nagoya, Japan, 1990.

Parallelism in Abductive Logic Programming

9

p1 p2 p3

not p11 not p31

p11

not p121 not p122

p31

p32

not p11

not p33

p121 p122

!

"

= {not p11,not p31,not p34,…}

= {not p121,not p122,…}

p

…

……

Figure 1

p11 p33

(p4,p5)

Parallelism in Abductive Logic Programming

10

rec_mult4(4)

even(4) not rec_mult4(2)

not even(3)

even(3)

not even(2)

even(2)

not even(1)

even(1)

not even(0)

even(0)

rec_mult4(2)

even(2)

not even(1)

not rec_mult4(0)

even(1) rec_mult4(0)

inconsistency

= {not even(3),not even(1)}!

" = {not even(2),not even(0),not rec_mult(0)}

Figure 2

