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Abstract. A rather recent approach in programming parallel and distributed
systems is that of coordination models and languages. Coordination
programming enjoys a number of advantages such as the ability to express
different software architectures and abstract interaction protocols, supporting
multilinguality, reusability and programming-in-the-large, etc. In this paper we
show the potential of control- or event-driven coordination languages to be used
as languages for expressing dynamically reconfigurable software architectures.
We argue that control-driven coordination has similar goals and aims with
reconfigurable environments and we illustrate how the former can achieve the
functionality required by the latter.
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1 Introduction

It has recently been recognized within the Software Engineering community, that
when systems are constructed of many components, the organization or architecture of
the overall system presents a new set of design problems. It is now widely accepted
that an architecture comprises, mainly, two entities: components (which act as the
primary units of computation in a system) and connectors (which specify interactions
and communication patterns between the components).

Exploiting the full potential of massively parallel systems requires programming
models that explicitly deal with the concurrency of cooperation among very large
numbers of active entities that comprise a single application. Furthermore, these
models should make a clear distinction between individual components and their
interaction in the overall software organization. In practice, the concurrent
applications of today essentially use a set of ad hoc templates to coordinate the
cooperation of active components. This shows the need for proper coordination
languages ([2,15]) or software architecture languages ([18]) that can be used to
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explicitly describe complex coordination protocols in terms of simple primitives and
structuring constructs.

Traditionally, coordination models and languages have evolved around the notion
of a Shared Dataspace; this is a common area accessible to a number of processes
cooperating together towards the achievement of a certain goal, for exchanging data.
The first language to introduce such a notion in the Coordination community was
Linda with its Tuple Space ([1]), and many related models evolved around similar
notions ([2]). We call these models data-driven, in the sense that the involved
processes can actually examine the nature of the exchanged data and act accordingly.

However, many applications are by nature event-driven (rather than data-driven)
where software components interact with each other by posting and receiving events,
the presence of which triggers some activity (e.g. the invocation of a procedure).
Events provide a natural mechanism for system integration and enjoy a number of
advantages such as: (i) waiving the need to explicitly name components, (ii) making
easier the dynamic addition of components (where the latter simply register their
interest in observing some event(s)), (iii) encouraging the complete separation of
computation from communication concerns by enforcing a distinction of event-based
interaction properties from the implementation of computation components. Event-
driven paradigms are natural candidates for designing coordination rather than
programming languages; a „programming language based“ approach does not scale up
to systems of event-driven components, where interaction between components is
complex and computation parts may be written in different programming languages.

Thus, there exists a second class of coordination models and languages, which is
control-driven and state transitions are triggered by raising events and observing their
presence. A prominent member of this family (and a pioneer model in the area of
control-driven coordination) is Manifold ([4]), which will be the primary focus of this
paper, Contrary to the case of the data-driven family where coordinators directly
handle and examine data values, here processes are treated as black boxes; data
handled within a process is of no concern to the environment of the process. Processes
communicate with their environment by means of clearly defined interfaces, usually
referred to as input or output ports. Producer-consumer relationships are formed by
means of setting up stream or channel connections between output ports of producers
and input ports of consumers. By nature, these connections are point-to-point,
although limited broadcasting functionality is usually allowed by forming 1-n
relationships between a producer and n consumers and vice versa. Certainly though,
this scheme contrasts with the Shared Dataspace approach usually advocated by the
coordination languages of the data-driven family. A more detailed description and
comparison of these two main families of coordination models and languages can be
found in [15].

It has become clear over the last few years that the above mentioned principles and
characteristics are directly related to the needs of other similar abstraction models,
notably software architectures and configuration languages such as Conic/Durra ([5]),
Darwin/Regis ([9]), PCL ([19]), POLYLITH ([17]), Rapide ([7,10]) and TOOLBUS
([6]). The configuration paradigm also leads naturally to the separation of the
component specifying initial and evolving configuration from the actual computational
component. Furthermore, there is the need to support reusable (re-) configuration
patterns, allow seamless integration of computational components but also substitution
of them with others with additional functionality, etc.
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In this paper we use the control- or event-driven coordination language Manifold
([4]) to show how it can be used for developing dynamically evolving configurations
of components. The important characteristics of Manifold include compositionality,
inherited from the data-flow model, anonymous communication, evolution of
coordination frameworks by observing and reacting to events and complete separation
of computation from communication/configuration and other concerns. These
characteristics lead to clear advantages in large distributed applications.

The rest of the paper is organised as follows: The next section is a brief
presentation of the language. The following one illustrates the usefulness of the
framework for developing dynamic reconfiguration abstractions. The paper ends with
some conclusions, comparison with related work and reference to future activities.

2 The Coordination Language Manifold

Manifold ([4]) is a coordination language which is control- (rather than data-) driven,
and is a realisation of a new type of coordination models, namely the Ideal Worker
Ideal Manager (IWIM) one ([3]). In Manifold there exist two different types of
processes: managers (or coordinators) and workers. A manager is responsible for
setting up and taking care of the communication needs of the group of worker
processes it controls (non-exclusively). A worker on the other hand is completely
unaware of who (if anyone) needs the results it computes or from where it itself
receives the data to process. More information on Manifold can be found in [11] and
in the paper „Modelling Control Systems in an Event-Driven Coordination Language“
in these proceedings. Note that Manifold has already been implemented on top of
PVM and has been successfully ported to a number of platforms including Sun,
Silicon Graphics, Linux, and IBM AIX, SP1 and SP2. The language has been used
successfully for coordinating parallel and distributed applications ([14,16]), modelling
activities in information systems ([13]) and expressing real-time behaviour ([12]).

3 A Case Study in Dynamic Reconfiguration: The Patient
Monitoring System

In this section we apply control- or event-driven coordination techniques to model a
classical case in dynamic reconfiguration, namely coordinating activities in a patient
monitoring system ([19]). In the process, we take the opportunity to introduce further
features of Manifold. Due to lack of space, we consider a somewhat simplified version
of a real patient monitoring system, but we will hopefully be able to persuade the
reader that any additional functionality can be handled equally well by our model.

The basic scenario involves a number of monitors - one for every patient -
recording readings of the patient’s health state, and managed by a number of nurses. A
nurse can concurrently manage a number of monitors; furthermore, nurses can come
and go and thus an original configuration between available nurses and monitors can
subsequently change dynamically. A monitor is periodically asked by its supervising
nurse to send available readings for the corresponding patient, and it does so.
However, a monitor can also on its own send data to the nurse if it notices an



George A. Papadopoulos and Farhad Arbab200

abnormal situation. A nurse is responsible for periodically checking the patient’s state
by asking the corresponding monitor for readings; furthermore, a nurse should also
respond to receiving abnormal data readings. Finally, if a nurse wants to leave, s/he
notifies a supervisor and waits to receive permission to go; the supervisor will send to
the nurse such a permission to leave once all monitors managed by this nurse have
been re-allocated to other available nurses. We start with the code for a monitor:

Manifold Monitor
{
 port output normal, abnormal.

 stream reconnect BK input    -> *.
 stream reconnect KB normal   -> *.
 stream reconnect KB abnormal -> *.

 event abnormal_readings, normal_readings.
 priority abnormal_readings > normal_readings.

 auto process check_readings is
               AtomicMonitor(abnormal_readings) atomic.

 begin: (guard(input,full, normal_readings),
         terminated(self)).

 abnormal_readings: &self -> abnormal;
                    check_readings -> abnormal;
                    post(begin).
   normal_readings: &self -> normal;
                    check_readings -> normal;
                    post(begin).
}

A Monitor Manifold comprises three ports: the default input port and two
output ports, one for sending normal readings and another one for sending abnormal
readings. The streams connected to these ports from the responsible nurses have been
declared to be BK (break-keep) for the input port and KB (keep-break) for the two
output ports, signifying the fact that in the case of a nurse substitution the data already
within the streams to be transmitted to or from the monitor will remain in the
corresponding sttream until some other nurse has re-established connection with the
monitor. Two local events have been declared, normal_readings for the case of
handling periodical data readings and abnormal_readings for handling the
exception of detecting abnormal readings. Note that, for obvious reasons, the priority
of the latter has been declared to be higher than that of the former. In the case that
both events have been raised (e.g. immediately after a periodic reading an abnormal
situation has been detected), the monitor will serve first abnormal_readings (if
priority had not been specified, the language would have made a non-deterministic
choice). Finally, note that Monitor collaborates closely with the process
check_readings, an instance of the predefined atomic Manifold
AtomicMonitor. Atomic Manifolds (and associated processes) are ones written in
some other language (typically C or Fortran for the case of the Manifold system). In
this case, AtomicMonitor can be seen as the device driver for the monitor device.
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Initially, Monitor sets a guard to its input port, which will post the event
normal_readings upon detecting a piece of data in the port. This piece of data is
interpreted by monitor as being a periodic request by the responsible for this
monitor nurse to get the data readings. It then suspends, by means of calling the
predefined primitive terminated(self), and waits for a notification (by means
of the corresponding event being posted) by either the guard to send periodic data
readings or the process check_readings that some abnormal situation has been
detected. Upon detecting the presence of either of the two involved events, Monitor
changes to the corresponding state, and sends to the respective output port first its own
id (&self) followed by the actual data readings as provided by
check_readings. It then loops back to the first (waiting) state, by posting the
event begin. It is important to note that Monitor works quite independently from
its environment. For instance, it has no knowledge or concern about which nurse (if
anyone at all!) is receiving the data it sends. Nor is it affected by any changes in the
configuration of the nurses set up. The code for a nurse is shown below:

Manifold Nurse
{
 port in normal, abnormal.

 stream reconnect KB normal   -> *.
 stream reconnect KB abnormal -> *.
 stream reconnect BK output   -> *.

 event got_abnormal, got_normal,
       read_data, leave, ok_go.
 priority got_abnormal > got_normal.

 auto process wakeup is WakeUp(read_data,leave).
 auto process process_data is ProcessData.

 begin: (guard(abnormal,full,got_abnormal),
         guard(normal,full,got_normal),
         guard(abnormal,a_disconnected,ok_go),
         ternimated(self)).

 read_data: („SEND_DATA“ -> output, post(begin)).

 got_abnormal: process monitor deref abnormal.
               (monitor.abnormal -> process_data,
                post(begin)).

 got_normal: process monitor deref normal.
             (monitor.normal -> process_data,
              post(begin)).

 leave: (raise(go), post(begin)).

 ok_go: .
}

A nurse has two input ports and one output port, a mirror image of how a monitor is
defined. It collaborates with two atomic processes: wakeup  is responsible for
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periodically asking the nurse to order a monitor to send data and process_data
does the actual processing of data. Furthermore, wakeup also monitors how long a
nurse can be on duty. After setting guards into the two input ports (the second guard
for abnormal is explained below), nurse suspends waiting for either wakeup to
ask her for periodic readings or some monitor to send her abnormal data readings. In
the former case, nurse sends a notification to all the monitors that it controls and
upon receiving back data it forwards them to process_data. In either of the two
cases, a monitor will first send its own id which is then being dereferenced (by means
of the deref primitive) to yield a process reference for the monitor in question. This
id is then used to connect the monitor’s appropriate output port to the input port of
process_data so that the readings can be transmitted. This process is being
repeated until wakeup lets the nurse know that it can now ask permission to leave.
The nurse raises the event go (note here that an event can either be „posted“ in which
case its presence is known only to the Manifold within which it was posted, or
„raised“ in which case its presence is known only outside the Manifold within which it
was raised), and waits for a notification that it is allowed to leave. Note also that until
such a notification has been provided, the nurse is still responsible for its monitors.
The requested notification will be provided implicitly by noting that one of the nurse’s
input ports has now no connections to a monitor. This will be detected because of the
presence of the second guard in the abnormal input port with the directive
a_disconnected. The nurse can then leave the system.

A number of abstractions have been introduced in the modelling of the nurse,
which are of importance to a dynamic configuration paradigm. A nurse is unaware of
the number of monitors it supervises. Thus, monitors can be added or deleted from its
list of responsibility without affecting the pattern of the nurse’s behaviour. Also, the
decision on whether a nurse should leave (which can be as simple as noting when a
specified time interval has passed or as complicated as taking into consideration
additional parameters such as specialization of work, priorities in types of duty,
redistribution of workload, etc.), is encapsulated into different components which, as
in the case of the number of monitors, they do not affect the basic pattern of behaviour
for the nurse. Furthermore, the actual processing of data, which can vary depending on
the type of monitor or the patient’s case, is also abstracted away. All in all, the
policies that define the nurses’ behaviour have been separated from the actual work to
be done, and they can therefore be changed easily, dynamically, and without affecting
the interaction patterns between the involved components. The code for the supervisor
is as follows:

Manifold Supervisor (process setup)
{
 event get_modify.

 begin: (guard(input,full,get_modify),
         terminated(self)).

 go.*nurse: (&nurse -> setup, post(begin)).

 get_modify:process new_nurse deref tuplepick(input,1).
             process mon1 deref tuplepick(input,2).
             process mon2 deref tuplepick(input,3).
             process mon3 deref tuplepick(input,4).
             new_nurse -> (-> mon1, -> mon2, -> mon3),
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             mon1.abnormal -> new_nurse.abnormal,
             mon1.normal -> new_nurse.normal
             mon2.abnormal -> new_nurse.abnormal,
             mon2.normal -> new_nurse.normal
             mon3.abnormal -> new_nurse.abnormal,
             mon3.normal -> new_nurse.normal,
             activate(new_nurse), post(begin).
}

The Supervisor Manifold is responsible for monitoring a number of nurses. It
collaborates closely with the atomic process setup, which maintains and enforces
the policy of the environment with respect to issues such as how many nurses should
be active concurrently, how many monitors each nurse should be responsible for, how
can the workload of monitor responsibility be distributed evenly to the available
nurses, the minimum and maximum amounts of time each nurse should be working
before asking to be relieved from duty, etc. Upon receiving a request by some nurse to
be allowed to leave, Supervisor passes the id of that nurse to setup which,
among other things, keeps record of which monitors each nurse is responsible for. A
new nurse to take over is found and its id along with the ids of the monitors to handle
is passed back to Supervisor; the latter then sets up the stream connections
between the new nurse and the monitors and activates the new nurse (for the sake of
brevity here we have assumed a simple scenario where the old nurse is responsible for
three monitors, all of which are passed to the new nurse; this of course does not have
to be the case). The transferring of the streams connecting the monitors to the new
nurse causes the disconnection of the input ports of the old nurse from the whole
apparatus. We recall that the nurse has set up a guard process at its input ports which
will get activated when it detects such a disconnection; upon the disconnection of its
input port abnormal from all monitors involved, the old nurse leaves the system and
its associated process terminates execution gracefully.

An initial setup with three monitors and two nurses is shown below within the
Main Manifold which is the first one to commence execution in a Manifold program:

Manifold Main()
{
 event go, ok_go.

 auto process n1 is Nurse.
 auto process n2 is Nurse.
 auto process m1 is Monitor.
 auto process m2 is Monitor.
 auto process m3 is Monitor.
 auto process setup is Setup (n1,n2,m1,m2,m3) atomic.
 auto process supervisor is Supervisor(setup).

 begin: (n1-> m1, n2 -> ( -> m2, -> m3),
         m1.normal->n1.normal,m1.abnormal->n1.abnormal,
         m2.normal->n2.normal,m2.abnormal->n2.abnormal,
        m3.normal->n2.normal,m3.abnormal->n2.abnormal).
}

In the above piece of code, the instances of the Manifolds forming the initial
configuration are first created and activated. In particular, the initial configuration
comprises two monitors and three nurses, where the first nurse is responsible for the
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first monitor and the second one for the rest. A setup process (an instance of
Setup) is also activated and given the previously mentioned five processes as
parameters. Finally, a supervisor process is also created and given setup as
parameter. The begin state of Main sets up the configuration by creating stream
connections between the appropriate input-output ports. After that, the apparatus is left
to its own devices, evolving dynamically as was described previously during the
presentation of the code for Monitor, Nurse and Supervisor.

n1

n2

m1

m2

m3

Fig. 1.

We should probably clarify at this point that the actual evolution of the
configuration (i.e. the creation of new instances of Nurse to substitute other
instances) is performed within the Setup Manifold, which effectively administers the
whole environment, keeps track of changes, etc. We would expect that Manifolds with
such a complicated behaviour are atomic processes written, say, in C for convenience
and ease of expressiveness. The initial configuration is shown diagramatically below:

4 Conclusions - Related and Further Work

In [8], while describing another configuration mechanism based on I/O abstractions, a
number of desirable properties that configuration models should possess are listed.
These properties are active and reactive communication, connection-oriented and
user-specifiable configuration and support for a variety of communication schemes
such as implicit, direct, multi-way, and use of continuous streams. It is worth
mentioning here that Manifold supports all these schemes as first class citizens. In
addition, Manifold supports complete separation of computation from coordination
concerns and a control-driven specification of system transformations, which unlike
I/O abstractions, is, in our opinion, more appropriate for configuration programming.

Note that in Manifold, unlike in many other coordination models and languages, a
component is oblivious not only to bindings produced by other components but also to
whether or not communication is taking place at all or what type of communication
this is. This frees the programmer from having to establish when it is the best moment
to send and/or receive messages. And of course, the language enjoys the ability for
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dynamic system reconfiguration without the need to disrupt services or the
FRPSRQHQWV� KDYLQJ� PXWXDO� NQRZOHGJH� RI� VWUXFWXUH� RU� ORFDWLRQ� � SRLQW�WR�SRLQW� RU
multicast communications can be configured independently of the computation
activity and mapped appropriately onto the underlying architecture.

Furthermore, the stream (or channel) connections that Manifold supports as the
basic mechanism for communication between computation components, provide a
natural abstraction for supporting continuous datatypes such as audio or video and
make this coordination model and its associated language ideal for configuring the
activities in, say, distributed multimedia environments. We are currently exploiting
this characteristic of Manifold in a recently commenced research project where the
language will be used to manage and coordinate, among other activities, the data
produced or consumed by media servers.

Finally, Manifold advocates a liberal view of dynamic reconfiguration and system
consistency. Consistency in Manifold involves the integrity of the topology of the
communication links among the processes in an application, and is independent of the
states of the processes themselves. Other languages, such as Conic, limit the dynamic
reconfiguration capability of the system by allowing evolution to take place only when
the processes involved have reached some sort of a safe state (e.g. quiescence).
Manifold does not impose such constraints; rather, by means of a plethora of suitable
primitives, it provides programmers the tools to establish their own safety criteria to
avoid reaching logically inconsistent states. Furthermore, primitives such as guards,
installed on the input and/or output ports of processes, inherently encourage
programmers to express their criteria in terms of the externally observable (i.e.,
input/output) behavior of (computation as well as coordination) processes.
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