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Abstract

We present a possible way to model abduction within the framework of concurrent logic
programming. In particular, we describe an extension to the concurrent logic programming
language PARLOG and an associated computational model which allows a user to specify an
abductive behaviour for a concurrent logic program. The proposed model therefore exploits
the inherent parallelism of concurrent logic programs. We discuss some of the problems we
faced and the solutions we adopted. A prototype implementation of the model has been built
and is also discussed.

Keywords. Abductive Logic Programming, Concurrent Logic Programming.

1 Abduction

Abduction was introduced by the philosopher Pierce as one of the three main forms of
reasoning (the other two being deduction and induction). Recently, the importance of
abductive reasoning has been demonstrated in many areas of Artificial Intelligence such as
diagnosis, temporal reasoning, planning and semantic networks but also elsewhere such as in
the field of databases and linguistics. In logic programming, in particular, abduction is
achieved by means of finding conditional answers to queries. As a result, it is useful to study
ways for making the computation of abduction more effective. It has been argued ([5]) that
abductive inference and its parallel realisation should be one of the future research themes in
parallel logic programming.

The development of an abductive framework in logic programming has been proposed in
[4] and further developed, among others, in [7,8]. An abductive logic program is a triple
<P,A,I> where P is a general logic program, A is a set of abducible atoms and I a set of
constraints. For simplicity a number of restrictions are usually imposed: there are no rules for
abducible atoms, integrity constraints are compiled into denials with at least one abducible
and the hypotheses generated are variable free. In the abductive proof procedure for logic
programming (see [7] for a review of the main ideas), the computation interleaves between
abductive phases that generate and collect abductive hypotheses with consistency phases that
incrementally check these hypotheses for consistency with respect to the integrity constraints.
The operational semantics for sequential execution of abduction is well defined within this
framework and has been used in building meta interpreters on top of Prolog systems.
However, as in usual deductive logic programming, abductive inference mechanisms have
several sources of parallelism of many forms (OR-parallelism, independent and dependent
AND-parallelism). In [9] we examine the introduction of these forms of parallelism into an
abductive logic program, we study the operational behaviour of such a program enhanced
with parallelism and we highlight its effect on the efficiency of execution compared with the
corresponding sequential version. An alternative idea however has been proposed in [2]
within the general context of concurrent constraint programming which encompasses
concurrent logic and constraint programming. The fundamental move is that in the case of a
concurrent constraint program deadlocking, this is interpreted as a need to generate some
hypothetical values for the benefit of the suspended agents, some of which should be able to
resume execution. This generation of hypothetical values can then correspond to an
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abductive phase whereas the execution of agents in the ordinary way can correspond to the
deductive phase.

In this paper we apply this idea to the class of the so called concurrent logic languages
([15]) and in particular the language PARLOG ([6]). More to the point, we extend PARLOG
with suitable annotations to indicate abductive behaviour and we show how a concurrent logic
program can exhibit such an abductive behaviour in a way that can be supported by the
underlying “ordinary” deductive implementation. The rest of the paper is organised as
follows: the next section introduces abductive PARLOG and shows how abductive PARLOG
programs can be coded up in this extended language whereas the third section discusses a
prototype implementation of the extended language on top of an ordinary PARLOG system;
the final section comprises the conclusions and suggestions for further work.

2 Abductive behaviour of a concurrent logic program

Concurrent logic languages ([15]) have enjoyed a widespread use and have undergone major
development over the past decade. A concurrent logic program is a set of guarded Horn
clauses of the form

H :- G1,…,Gm | B1,…,Bn        m,n ≥ 0

where ‘H ’ is the head, ‘| ’ is the commit operator, ‘G1,…,Gm ’ is the guard part and
‘B1,…,Bn’ is the body part. Declaratively, the meaning of the above clause is that H is true
if both G1,…,Gm  and B1,…,Bn  are true. Operationally, the guard calls G1  to Gm  are
evaluated first in parallel and upon successful termination the computation commits to the
body of the clause. The head H is of the form p(t1,…,tn) where p/n is a predicate name
of arity n and t1,…,tn are its arguments. There may be more than one rule with the same
name p and arity n, in which case they form a group definition of the process p.

Computation starts with a set of cooperating processes (goals) executing in parallel and
communicating by means of shared variables. The clauses of a program specify the
behaviour and the various transitions possible for each process. Provided that for a certain
goal to be reduced there are more than one candidate clauses to select from, the first one to
perform head unification and solve its guard successfully will be chosen; the computations in
the head or guard of the other candidate clauses will then be abandoned. Thus concurrent
logic languages incorporate the concept of committed choice “don’t care” non determinism
from CSP.

In this paper we show how the notion of abduction can be modelled in the framework of
concurrent logic programming by applying the ideas proposed in [2] to the case of the
concurrent logic programming language PARLOG ([6]). In PARLOG the clauses that form a
procedure are associated with a mode declaration that states which arguments are input (i.e.
the values specified in the head of one of the procedure’s clauses have to be present for that
clause to be candidate for selection) and which are output (i.e. the corresponding values will
be produced upon commitment to that clause). We now extend the language with a third
mode annotation, ‘@’, which states that the corresponding argument can be abduced. In
particular, a PARLOG clause for a procedure p/n now takes the form

p(i1?,…,ik?,ab1@,…,abm@,o1^,…,on^) :- Guard | Body

where the arguments i1 to ik are input arguments, o1 to on are output arguments and ab1
to abm are abducible arguments whose value can be assumed if the need arises (i.e. if they
are not present and the clause cannot be reduced). As an example the arguments of the
following procedure

equipment(ok@,Signals^) :- produce_signals(Signals).
equipment(not_ok@,Signals^) :- error_condition(Signals).



Abductive Behaviour of Concurrent Logic Programs

— 3 —

comprise an abducible parameter and an output one.
As for the case of the traditional abductive logic programming framework, computation

interleaves between an ordinary deductive phase and an abductive one. For the case of a
PARLOG program, the deductive phase corresponds to the performing of the input
unifications, guard evaluations and reductions to the bodies of the selected clauses. The need
for an abductive phase emerges when the whole computation has suspended with no
remaining process able to reduce. In this case an “abductive” phase can be initiated whose
purpose is to abduce one or more of the abducible arguments of some suspended process so
that the computation can resume. The abductive phase effectively assumes that the selected
abducibles have indeed been instantiated to their indicated values, thus activating all the
processes that are suspending on them. Considering again the above example, assume the
existence of the clause

monitor_equipment(ok?) :- …
monitor_equipment(not_ok?) :- …

and the following suspended AND-conjunction

…, monitor_equipment(Status), equipment(Status,Signals), …

After the suspension of the computation, the abductive phase should select the suspended
literal equipment and assume either of the two values ok or not_ok by instantiating the
variable S t a t u s  to either of them. This will now activate the process
monitor_equipment and ordinary deductive computation will resume. If it is discovered
in retrospect that the assumption was wrong, the second of the two values should be tried.
Computation will either succeed if an assumed value succeeds in causing the successful
termination of all processes involved in the computation or fail if all assumptions lead to
failed derivations.

The following example, taken from [2] and adapted to the syntax of abductive PARLOG,
illustrates a configuration comprising three light bulbs connected in sequence to a battery.
Note that the first argument of the procedures battery, wire and bulb that denote the
state of the corresponding component are abducible arguments whose value may be assumed
if necessary. The operational meaning of the procedure wire, for instance, is that the call
wire(ok,plus,Out) is reduced with the variable Out being instantiated to the value of
the second parameter (plus) whereas the call wire(broken,plus,Out) is reduced
with the variable O u t  being instantiated to 0 . On the other hand the call
wire(State,In,Out) will initially suspend; if however the computation eventually
enters an abductive phase, it is possible to abduce the first argument, i.e. instantiate State to
either ok or broken and continue from that point onwards. The procedure circuit is, in
fact, the one forming the actual circuit configuration where the last three arguments
correspond to the observations that were made regarding the state of the three bulbs and the
rest denote the explanations that must be generated.

mode battery(charging_level@,left_wire^,right_wire^).
battery(empty,0,0).
battery(ok,plus,plus).

mode wire(state@,left_connection?,right_connection^).
wire(ok,Connect,Connect).
wire(broken,_,0).

mode bulb(condition@,light^,left_wire?,right_wire?).
bulb(ok,on,plus,plus).
bulb(ok,off,0,_).
bulb(ok,off,_,0).
bulb(damaged,off,_,_).
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mode circuit(@,@,@,@,@,@,@,@,@,@,?,?,?).
circuit(S,B1,B2,B3,W1,W2,W3,W4,W5,W6,L1,L2,L3) <-

battery(S,Sl,Sr),
wire(W1,Sl,B1l), wire(W2,Sr,B1r), wire(W3,B1l,B2l),
wire(W4,B1r,B2r), wire(W5,B2l,B3l), wire(W6,B2r,B3r),
bulb(B1,L1,B1l,B1r), bulb(B2,L2,B2l,B2r),
bulb(B3,L3,B3l,B3r).

The way a query is formulated in abductive PARLOG is illustrated below.

<- abductive_parlog(Goal,Constraints),
Goal=[circuit(S,B1,B2,B3,W1,W2,W3,W4,W5,W6,on,on,on),

print([S,B1,B2,B3])],
Constraints=[…].

where the role of Constraints will be explained later on. Incidentally, note that the above
query produces the single explanation [ok,ok,ok,ok] whereas the following one

<- abductive_parlog(Goal,Constraints),
Goal=[circuit(S,B1,B2,B3,W1,W2,W3,W4,W5,W6,off,off,off),

print([S,B1,B2,B3])],
Constraints=[…].

has multiple explanations such as [empty,ok,ok,ok] , [empty,damaged,
broken,ok], [ok,damaged,broken,broken], etc.

Note that by extending PARLOG with the abductive mode annotation ‘@’, we have
allowed a programmer to specify in a procedure which arguments, if any, can be abduced,
thus controlling the extent to which abduction will be performed and consequently reducing
the search space. Later on we discuss the possibility of enhancing an abductive mode
annotation with extra information that will help in selecting during the abductive phase the
best candidate for abduction from the suspended processes. Note also that a procedure mode
declaration without any abductive annotations cannot possibly take part in the abductive
phase.

3 Implementation of abductive PARLOG

In implementing the abductive extensions to PARLOG, the following problems must be
solved:
— Detection of a globally suspended state of computation that indicates the end of the

current deductive phase. Note that in general the processes involved in a computation
are scattered around in a parallel system, or even a distributed one over a number of
machines. Note also that for an ordinary concurrent logic program a globally suspended
state is, in fact, an erroneous situation because it indicates deadlock.

— Upon detection of a suspended state, a decision must be taken as to which abducibles
will be abduced. The decision is critical in computing efficiently the solutions since
“bad guesses” will lead to unnecessary computations.

— If the abduction of some abducible(s) proves to be unsuccessful in deriving a solution
(or more solutions are sought) the computation should backtrack to the point before the
abduction and try a different path. Note here that an ordinary concurrent logic language
implementation supporting only committed choice “don’t care” parallelism has no
machinery to backtrack.

In the sequel we discuss the solutions we adopted for each one of the above points,
showing in the process how the original program is transformed into one having the
additional functionality required for supporting an abductive behaviour. We describe also the
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most important parts of the implementation itself resorting to the use of ‘…’ to hide details
which could obscure the presentation of the model.

3.1 DETECTION OF DEADLOCK

In solving the first problem we are interested in a solution which requires no extra machinery
in the underlying PARLOG implementation (namely a suitably modified WAM) and which
can work even in the case where an abductive PARLOG program may be running in a
distributed environment. The solution we have adopted is based on an all-declarative
approach using the power of short circuits, a programming technique first introduced by
Takeuchi and used, among other applications, for detecting deadlock and termination or
getting snapshots of systems of processes running concurrently ([14,15]).

In particular, all messages produced by a concurrently executing system of processes are
connected by means of a short circuit, the ends of which are held by a monitoring process.
Upon receiving and consuming a signal, a process unifies the left and right switches of the
circuit for the particular message. If a process produces more messages that what it consumes,
it extends the circuit accordingly. Deadlock is detected when the monitoring process observes
that the two ends of the circuit that it holds have been unified, i.e. no more messages are in
transit ([15]). We illustrate how an abductive PARLOG procedure can support this
functionality by showing the transformed version of wire.

mode wire(state@,left_connection?,right_connection^).
wire(m(L,R,ok),ConnectIn,ConnectOut) <-

L=R, ConnectOut=ConnectIn.
wire(m(L,R,broken),_,ConnectOut) <- ConnectOut=m(L,R,0).

Note that while in the first clause we close the switch because we absorb a message (ok), in
the second we simply propagate the switch from the consumed message (broken) to the
produced one (0). In general, for every abductive or input argument of a procedure there
exists a clause enhanced with the functionality just described. The monitoring process is of
the form

mode monitor(messSCL?,messSCR?,…).
monitor(MessSC,MessSC,…) <- resolve deadlock

where its exact functionality will be described later on.

3.2 ABDUCTIVE PHASE

The second phase comprises two parts: first, the deadlocked global state of the computation
must be examined and second, a decision must be taken as to which abducible argument(s)
must be abduced.

3.2.1 Examining the Deadlocked Global State of the Computation. The global state of a set
of concurrently executing processes can be examined by using again techniques based on
short circuits, in particular the one for collecting snapshots of the executing processes ([14]).
More to the point, all processes involved in a computation are connected by means of left
and right switches which, collectively, form a short circuit. When the monitoring process
detects deadlock it sends the message collect_states([])  to all the deadlocked
processes using one of the ends of the short circuit and then it waits for the message to
reappear at the other end. Each deadlocked process that receives the message via one of its
local switches propagates it to the rest of the processes using the other switch after enhancing
it with the current values of its arguments (i.e. its state). Note that because this mechanism is
initiated after the detection of deadlock it is not possible for a process to change its state after
it has reported it to the monitoring process by means of the collect_states message.
The exact way a process’s state is represented within a collect_states message is
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shown below for the case of the procedure wire which, when transformed, must now be
extended accordingly to handle this new functionality.

mode wire(leftS?,rightS?,state@,l_connect?,r_connect^).
wire(LSC,RSC,m(L,R,ok),ConnectIn,ConnectOut) <-

LSC=RSC, L=R, ConnectOut=ConnectIn.
wire(LSC,RSC,m(L,R,broken),_,ConnectOut) <-

LSC=RSC, ConnectOut=m(L,R,0).
wire([collect_states(S)|LSC1],RSC,State,ConIn,ConOut) <-

RSC=[collect_states(wire(LSC1,RSC1,abd(State),
  ConIn,ConOut)|S])|RSC1],

wire(LSC1,RSC1,State,ConIn,ConOut).

Each abducible argument is indicated by means of enclosing it into the structure abd
whereas the rest of the arguments (input and output) are included as they are. Note that upon
terminating, a process closes both circuits (the one for messages and the one for processes);
had it been reduced to a number of processes it would have splitted the corresponding circuit
accordingly. In general, a transformed procedure comprises two additional arguments (the
left and right local switches of the processes’ short circuit and an extra clause for reporting
its state to the monitoring process. We now describe the monitoring process in more detail
noting its enhancement with the second short circuit.

mode monitor(procSCL?,procSCR?,procmessSCL?,messSCR?,…).
monitor(PSC,PSC,_,_,…) <- end computation
monitor(PSCL,PSCR,MessSC,MessSC,…) <-

PSCL=[[collect_states([])|PSCL1],
monitor_wait(PSCL1,PSCR,…).

mode monitor_wait(procSCL?,procSCR?,…).
monitor_wait(PSCL,[collect_states(States)|PSCR],…) <-

resolve_deadlock(States,NStateAbd,NStateRest),
next_deductive_phase(PSCL,PSCR,NStateAbd,NStateRest,…).

The first clause detects the end of the computation by checking whether the left and right
ends of the short circuit for processes have been unified. Similarly, the second detects
deadlock, i.e. the end of the current deductive phase, and invokes the mechanism for
examining the current state of the computation by sending the triggering mechanism
collect_states([])  to all suspended processes and then invoking the process
monitor_wait which waits for the message collect_states to reappear with a
snapshot of the system of deadlocked processes. The snapshot is then passed to the process
resolve_deadlock which examines the state of the computation and decides which
abducibles to abduce. This will lead to the instantiation of some abducible variables and the
formation of a new state of computation which is passed to next_deductive_phase for
the third phase of the computation.

3.2.2 Deciding What to Abduce. The top level definition of resolve_deadlock is
shown below.

mode resolve_deadlock(state?,selected_abd^,n_state_rest^).
resolve_deadlock(State,SelectAbds,NStateRest) <-

filter_states(State,CandidateAbds,RestState),
abduce(CandidateAbds,RestState,Select_Abds,NStateRest).

mode filter_states(state?,selected_abds^,rest_of_state^).
filter_states(…) <- ….
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mode abduce(list_abds?,rest_goals?,sel_abd^,n_state_rest^).
abduce(CandAbds,RestState,Sel_Abds,NStateRest) <- ….

Finding the best combination of abducibles to abduce among the set of candidate ones is
a popular area of current research in the field of abductive reasoning and its solution usually
involves the use of heuristics. In our model we try to minimise the guesses taken and we
choose the following simple heuristic: the process chosen to have its abducible parameters
abduced is the one with the smallest number of abducible parameters that can still be
abduced. Furthermore, if a number of processes satisfy the above heuristics, those for which
reduction is deterministic (i.e. only one of a process’s defining clauses can be selected to
reduce that process) are given preference. The ability to use more sophisticated heuristics is
discussed later on.

More to the point, the process filter_states is responsible for filtering from the
AND-conjunction of suspended goals those that cannot be abduced. A goal that cannot be
abduced is one comprising non-abducible parameters or ground abducible parameters
(namely parameters that have already been abduced). Here the structure abd mentioned
earlier on assists in the filtering process. That part of the suspended AND-conjunction
comprising the literals that can be abduced is then passed to the process abduce which
forms the new state. This latter process is responsible for selecting those abducibles which will
actually be abduced using the heuristics discussed already. As an example, if the snapshot of
the deadlocked state is

States=[p(abd(X),3),q(abd(Y),Z),r(X,W),s(abd(2),Z,W)]

then filter_states will instantiate its two output arguments as follows.

CandidateAbs=[p(abd(X),3),q(abd(Y),Z)],
RestState=[r(X,W),s(abd(2),Z,W)]

Assuming that the reduction of p is deterministic, abduce will instantiate its two output
arguments as follows.

SelectedAbs=[p(abd(X),3)],
NewStateRest=[q(abd(Y),Z),r(X,W),s(abd(2),Z,W)]

3.3 GENERATING NEW DEDUCTIVE PHASES

The process next_deductive_phase is responsible for implementing the third phase,
i.e. the initiation of new deductive phases corresponding to the abduction of the selected
abducibles. There may be more than one such deductive phase attributed to the possibility of
producing multiple explanations. In order to be able to produce multiple explanations every
new deductive phase must be executed as a different OR-branch. The top level machinery to
do that is shown below and it is an adaptation of well known techniques for implementing
OR-parallel interpreters in concurrent logic languages ([15]) using operations such as copy,
freeze and melt. In particular, for each different set of selected abducibles a new deductive
phase commences with a copy of the generated new state of computation whereas the old
suspended state is saved. Upon failure (or need for further explanations), the system
backtracks to the saved state and another copy is constructed and executed, this time with a
different set of selected abducibles.

mode next_deductive_phase(prSCL?,prSCR?,abds?,rest?,…).
next_deductive_phase(SCL,SCR,NewStateAbd,NStateRest,…) <-

get_clauses(NewStateAbd,Clauses),
generate_explanations(SCL,SCR,NewStateAbd,

    Clauses,NStateRest,…).
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mode generate_explanations(pSCL?,pSCR?,sel_abs?,
 cls?,rest_state?,…).

generate_explanations(SCL,SCR,Abd,[Cl|Cls],RestState,…) <-
generate_explanation(SCL,SCR,Abd,Cl,RestState,…),
generate_explanations(SCL,SCR,Abd,Cls,RestState,…).

mode generate_explanation(pSCL?,pSCR?,sel_abs?,
clause?,rest_state?,…) <-

generate_explanation(SCL,SCR,Abds,Clause,RestState,…) <-
form_query(SCL,SCR,Abds,Clause,RestState,…,Query),
run_query(Query,…).

mode form_query(pSCL?,pSCR?,sel_abs?,cls?,
 rest_state?,query^…).

form_query(SCL,SCR,Abds,Clause,RestState,…,Query) <- ….

mode run_query(query?,…).
run_query([ProcSCL,ProcSCR,MessSCL,MessSCR,Query],…) <-

Query, monitor(ProcSCL,ProcSCR,MessSCL,MessSCR,…).

Note that form_query is responsible for setting up the mechanisms for detecting deadlock
and examining the global state of the computation (i.e. forming new short-circuits for
messages and processes).

3.4 TOP-LEVEL QUERY AND USE OF CONSTRAINTS

The top-level predicate abductive_parlog(Goal,Constraints) commences the
computation and it is defined as follows.

mode abductive_parlog(query?,constraints?).
abductive_parlog(Query,Constraints) <-

run_query([PSCL,PSCR,MessSCL,MessSCR,Query,Constraints]
 ,…).

The parameter Constraints which is effectively added to the first AND-conjunction is
used to restrict even more the extent to which the system resorts to abduction in breaking the
deadlock. This parameter states the conditions under which abductive hypotheses can be
generated. The simplest form of such integrity constraints is negation combined with the
restriction that hypotheses should be variable free ([7,8]). As an example, consider the
following query.

<- abductive_parlog(Goal,Constraints),
   Goal=[circuit(S,B1,B2,B3,W1,W2,W3,W4,W5,W6,off,on,off),
         print([S,B1,B2,B3])],
   Constraints=[not((S=empty,B1=on)),not((S=empty,B2=on)),
                not((S=empty,B3=on))].

The user has imposed the constraint that if at least one bulb is observed to be working
then it is not possible for the battery to be empty. The inclusion of these constraints into the
computation reduces considerably the search space since those abducible values that do not
satisfy the constraints will not be tried.
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3.5 OTHER HEURISTIC MECHANISMS

It is important to note that, if desired, the model can be enhanced with other heuristics. It is
possible, for instance, to associate with each head argument in an abducible position an
attribute indicating an assumption cost ([16]) or a probability value ([12]) as it is illustrated
by the following piece of code.

p(?,@,…).
p(1,a:0.3,…) <- ….
p(2,b:0.7,…) <- ….

The interpretation here is that in the goal p(1,X,…) , X  can be abduced with an
assumption cost (or hypothesis probability) of 0.3 whereas in the goal p(2,X,…), X’s
assumption cost is 0.7. The process resolve_deadlock can then use these attributes
during the examination of the suspended state of the computation to decide which
abducible(s) to abduce.

The extension of the model with heuristics such as the ones just described may help to
alleviate a problem that most abductive models, including the one described in this paper,
suffer from: the difficulty in computing minimal explanations and avoiding computing the
same explanation multiple times.

4 Discussion. Related and further work

The relationship between abduction and constraint programming is well known and has been
explored in a number of papers (eg. [2,10,11]). In constraint programming the computation
interleaves between a constraint generation phase where a variable is instantiated to one of a
set of possible values and a constraint satisfaction phase where it is checked whether the
chosen value satisfies the imposed constraints; if it does not then another one must be tried.
In abduction the computation interleaves between a hypotheses generation phase and a
consistency phase that checks whether a newly generated hypothesis is consistent with the rest
of the existing hypotheses or imposed constraints. In fact [10] claims that constraint solving
is a subcase of abduction. Hence, many of the techniques devised for constraint satisfaction
are applicable also to the case of abduction.

In particular, the extension of PARLOG with an abductive mechanism along the lines of
the model proposed in [2] leads to a framework similar in many respects to the Pandora
model ([1]) which combines stream AND-parallelism with OR-search (parallel or sequential)
and is particularly suited to constraint satisfaction problems. However, there are some
important differences between the two models especially with regard to the detection and
resolving of deadlock. Pandora relies heavily on the use of PARLOG’s (extended) metacall
whereas our technique using short circuits is effectively independent of any particular
underlying implementation mechanism; in fact our high-level transformation techniques
could well be applied easily to programs written in other similar concurrent logic languages
such as GHC or FCP ([15]). Nevertheless, Pandora could be used as a basis for developing an
efficient sequential implementation of abductive PARLOG with minimal effort.

As we have stated already we were particularly interested in developing an abductive
framework based on concurrent logic programming especially suited to distributed
environments. The kind of applications we have in  mind is multi agent systems, distributed
expert and medical diagnosis systems ([3]) and diagnosis systems requiring reactive
properties ([16]). We are currently extending the definition of resolve_deadlock to
include the functionality described in the paragraph 3.5.

Regarding the abductive policy our model is adopting there are two issues involved
([10]): i) which relations are allowed to have abducible instances, and ii) which instances of
an abducible relation can in fact be abducible. In abductive PARLOG a relation is abducible
if it contains at least one abducible mode declaration. Furthermore, all instances of that
relation (along its abducible arguments) are abducible. If desired however, the model could
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be extended to restrict abduction to particular instances of a clause by dispensing with the
abductive mode declaration and moving the abducible operator ‘@’ to the head of particular
clauses of the relation. In the following relation, for instance,

mode p(?,?,…).
p(@X,3,…) <- ….
p(X,4) <- ….

the first argument of p can be abduced only if the second one is instantiated to 3. The use of
constraints in the top-level call abductive_parlog however effectively provides this
functionality. Note here that the abductive mechanism we have described subsumes the
(extended) four arguments abductive operator ‘@’ proposed in [10].

5 Conclusions

We have presented a way to model abductive behaviour within the framework of concurrent
logic programming by advocating the idea, first proposed for the general framework of
concurrent constraint programming languages, of abducing arguments rather than
predicates. The model has been tested by means of a meta interpreter written on top of the
language PARLOG; however any other typical concurrent logic language could be used
instead. The model inherits the high degree of concurrency enjoyed by concurrent logic
languages and it is particularly suited to distributed environments.
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