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A diagnostic framework in which there is a clear separation between the expertise per se and rele- 

vant background knowledge is discussed. We argue for the need to have an explicit representation of 

background knowledge. Background knowledge is domain foundational knowledge or common-sense 

knowledge; it is brought into play in the diagnostic context activated by the foreground knowledge, the 

diagnostic expertise. In the diagnostic framework discussed, background knowledge is of two types: 

foundational knowledge related to diagnostic findings and common-sense knowledge about time. The 

explicit representation and integration of expert and background knowledge is essential for achieving 

competent behaviour, both from the perspectives of the conversational context and the diagnostic 

performance of the system. The framework presented is being applied successfully to the domain of 

skeletal dysplasias. 

[feywords. Background knowledge; diagnostic expert system: data-model; common-sense reasoning; 

SDD. 

1. Introduction 

The overriding motivation of any creator of a diagnostic expert system is to build a 

system that achieves accurate and timely diagnosis. For a medical diagnostic system to gain 

acceptance this must certainly be so. 

To achieve this goal, one is faced with the challenge of formulating/eliciting the relevant 

model and of constructing a system whose architecture supports it adequately. The diag- 

nostic model for the domain of skeletal dysplasias and syndromes amalgamates foreground 

domain knowledge (expertise per se) with relevant background knowledge. The architec- 

ture of t.he Skeletal Dysplasias Diagnostician (SDD) system supports the separation and 
co-operation between these two distinct bodies of knowledge [24]. The current clinical as- 
sessment, of the system shows that this diagnostic framework is promising, with the SDD 
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system consistently performing significantly better than radiologists who are not expert in 

the domain [lo]. Good performance is of course a major step towards achieving the ultimate 

objective of timely and accurate diagnosis. To maintain this achievement in the long term, 
the system knowledge will undoubtedly need to be continuously upgraded and extended. 

This is when the viability of the system architecture will be truly tested. We are confident 

that the SDD architecture will pass the test. 
The need for a diagnostic framework to support the explicit integration of background 

domain knowledge is certainly not specific to the domain of skeletal dysplasias. It is relevant 

to any diagnostic domain where temporal information is pertinent or to any diagnostic do- 

main where findings (manifestations) have internal structure of their own. In reality, most 

domains fall in this category. The following discussion revolves around the domain of skele- 

tal dysplasias but care is taken to bring out the generalities. 

2. Background knowledge 

Many studies have been undertaken by Cognitive Scientists, and continue to be so, which 

aim to reveal the differences between the memory organisations and reasoning strategies of 

experts and novices in some area, as a means of formulating and testing theories regarding 

the role of experience in acquiring expertise (e.g. [12, 13, 15, 251). Such theories, if valid, 

would be of paramount importance since they could point to changes in current training 

practices which would speed up the conversion process from novice to expert. 

Such studies have revealed that novices possess a large body of factual (or text-book) 

knowledge but that they do not necessarily know how to apply this knowledge in an ef- 

ficient and effective way. Experts on the other hand have a richly interconnected body 

of knowledge and they are capable of applying this knowledge effectively during problem- 

solving - they can immediately retrieve the pieces of knowledge relevant to a particular 

context. For example medical graduates have a detailed knowledge of human anatomy and 

physiology and detailed knowledge of the manifestations of rare and common ailments (the 

former usually being more interesting to remember) but they are not usually competent 

diagnosticians immediately on completion of their basic training. It is through experience 

that rich interconnections are incorporated in their originally ‘flat’ body of knowledge and 

problem-solving skills are developed. For example, it is through experience that disease 

classifications and differentiations are formulated and detailed causal chains are collapsed 

into associations in context.’ A novice may model a disease in terms of a detailed list of 
manifestations of equal importance. Through experience this ‘flat’ model will be refined and 

modified, i.e. some manifestations will be demoted to coincidental abnormalities. Novices 
have detailed knowledge but this knowledge is not properly interconnected or abstracted for 

the purposes of applying a particular task such as diagnosis effectively, whilst experts have 

both the detailed knowledge and the higher level structures which facilitate the usage of this 

knowledge for specific tasks. Using Chandrasekaran’s terminology, experts have compiled 

portions of their detailed knowledge for effective use in the context of a particular task [4]. 
The compiled knowledge, the reasoning skills, and the underlying detailed knowledge (from 

which the compiled knowledge was generated) constitute the expertise per se, i.e. the com- 

petence of the expert. The actual interaction between the compiled and underlying ‘deep’ 

knowledge, during problem-solving, could vary from problem-case to problem-case. Since 

1 Usually, eliciting an association, e.g. between cause and effect, from an expert is relatively easy - but 
maybe all that can be obtained! What may prove difficult is the elicitation of the context in which the 
association is valid; even the expert who has learned to think in a ‘knowledge-based’ way may have great 
trouble in formulating and articulating the context. 
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the compilation is performed incrementally, through the accumulation of problem-solving 

experiences, in the early stages the deep knowledge will play an active role but gradually 

its role will become one of providing secondary support, i.e. of providing detailed explana- 

tions/justifications of solutions without necessarily having participated in any way in the 

construction of these solutions. 

The knowledge organisation (structure of compiled knowledge) and reasoning strategies 
acquired through experience are rarely documented, they simply reside in the heads of the 

practising experts. However, not all of the original detailed knowledge will be compiled, in 

the sense of incorporating a higher level structure to it through new entities and relations 
_ only the knowledge which is directly applicable in the context of the relevant diagnostic 

practices is compiled, for example only the knowledge of the given set of diseases is compiled. 

Domain foundational knowledge, for example knowledge of the human anatomy, normality 

ranges for different parameters, medical concepts, etc., essentially remain invariant through 

experience. Experience will certainly assist in consolidating concepts which may seem vague 

or abstract, or even extend this knowledge, for example experience will teach someone how 

to abstract useful, qualitative, diagnostic information from clusters of quantitative data, but 

essentially this knowledge will be the same detailed text-book knowledge taught as part of 

one’s basic training. This detailed foundational knowledge, which has not been compiled he- 

cause it is not a direct component of the expertise but which provides indispensable support 

in applying the acquired expertise, is a core type of background knowledge but still specialist 

knowledge. Another type of background knowledge is common-sense knowledge. Everyone 

possesses world knowledge. However, t,he objective is not to capture all world knowledge 

but rather to capture those aspects of world knowledge which are directly relevant to the 

task at hand, i.e. diagnostic reasoning. In this respect the relevant aspects are temporal, 

spatial, taxonomic and meronomic common-sense knowledge. Humans are capable of rea- 

soning with incomplete or uncertain temporal information and of reasoning with different 

temporal granularities. Time is intrinsically related to diagnostic reasoning. Similarly any- 

one understands and can reason with spatial, taxonomic and meronomic relations. The 
aim is therefore to capture common-sense about time, space and taxonomic relations which 

would support a deep understanding of diagnostic knowledge and findings. This objective 

is considerably restrained in relation to the objective of the CYC project team [Xl. Their 

objective is to capture all world-knowledge necessary to enable a computer program to un- 

derstand, say, an entry in the Encyclopaedia Rritannica; this objective essentially boils down 

to fully fledged natural language understanding. In addition it is possible that none of the 

knowledge incorporated in the CYC knowledge-base will be deemed as specialist knowledge 

in the sense of detailed knowledge possessed by a graduate of that discipline but rather it 

will present a knowledgeable layman’s understanding of the incorporated concepts. Thus 

the background knowledge advocated in this paper consists of specialist foundational knowl- 

edge and common-sense knowledge directly relevant to the application of diagnostic tasks. 

Although the required common-sense is limited in comparison with the CYC objectives, the 

specialist type of the background diagnostic knowledge is at a level of sophistication beyond 

the objectives of the CYC project; the scope of the background diagnostic knowledge is 

narrower but much deeper than the scope of the CYC knowledge-base which is very broad 

(and much more ambitious) but relatively shallower. The two approaches share the belief 
that common-sense (of some sort) is necessary for a knowledge-based system to achieve 
intelligent behaviour. 

The foreground knowledge therefore consists of the diagnostic expertise and the back- 

ground knowledge consists of the domain foundational knowledge and relevant common-sense 

which collectively support deep understanding and hence intelligent handling of diagnostic 
information. The foreground and background knowledge are distinctly different bodies of 
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knowledge serving different roles during a diagnostic consultation - they address different 
aspects of the problem. Foreground and background knowledge co-exist in a collaborative 
fashion; this division of labour is in accordance with the generalised model of diagnostic 
behaviour discussed in [19]. 

A diagnostic system with an explicit division between the foreground and background 

knowledge does not necessarily incorporate different reasoning (i.e. diagnostic) modalities. 

It is now recognised that to achieve problem-solving flexibility the integration of different 

models, e.g. a heuristic model and a causal model, is the way forward [20] and many inte- 

grated diagnostic systems or frameworks have been proposed (e.g. [14, 16, 31, 34, 361). For 

example, if the detailed diagnostic knowledge is applied in conjunction with the compiled 

knowledge during problem-solving, or if more than one compilation of the same detailed 

knowledge is possible and each compiled model may be used during problem-solving, then 

the system exhibits multiple modalities. Although these different modalities can be applied 
in a collaborative fashion, they are essentially opposing modalities since they present differ- 

ent means for dealing with the same aspect of the problem. It is important to appreciate 

that the reasoning modalities associated with the foreground knowledge and the background 

knowledge are not opposing modalities; they are strictly collaborative modalities dealing 

with different aspects of the problem. 

Background knowledge is therefore derectly relevant to the specific diagnostic task. The 

elicitation of background knowledge is not onerous or an additional overhead. Once the 

model(s) for the background domain knowledge have been formulated, the acquisition of 

the relevant background knowledge falls naturally within the acquisition of the foreground 

knowledge. After the initial stages whereby the foreground knowledge drives the acquisition 

of the background knowledge, the acquisition of the two bodies of knowledge is done in 

parallel. Both bodies of knowledge have their corresponding models which may be modified 

independently. 

Skeletal dysplasias and malformation syndromes are generalised abnormalities which may 

affect the growth of bone and cartilage. These groups are of especial interest to geneticists 

and radiologists. The former are interested in the hereditary potentials and the latter in 

the bone features. Diagnostic skills in this field are scarce, and although individually these 

syndromes occur infrequently, collectively they constitute a frequent problem, e.g. about 

1% of the population in the UK is affected. Accurate and timely diagnosis is vital to allow 

proper treatment and genetic counselling. An expert system that achieves this would have 

significant social and economic benefits. The SDD system is constructed as a collaboration 

between computer scientists and radiologists. Two of the radiologists are experts in the field 
of skeletal dysplasias. Since the system captures diagnostic skills of radiologists (rather than 

geneticists) the relevant background knowledge is essentially foundational knowledge about 
the human skeleton and its temporal development. This is a constrained, but a useful view 

of the background knowledge which would be conceivably relevant to any diagnostic domain 

dealing with bony abnormalities. Unlike foreground knowledge, background knowledge has 

wider applicability. At this point one may argue that if the unconstrained view of background 

knowledge had been adopted then there would be a corpus of knowledge with even wider 

range of application. This might be so assuming that the elicitation task is manageable. 

In our diagnostic context it would mean eliciting all foundational radiological (and possibly 

genetic) knowledge. Even if this were achievable a high proportion of the knowledge would be 
utterly irrelevant to any of the specific relevant tasks. Acquiring knowledge for the sake of it 

and without any specific bias in mind is not the best way to spend resources. The acquisition 
of background knowledge should be focused, and this focus must be provided by a model 

which constitutes an integral part of the overall competence model [18] for the particular 
task. Constrained bodies of ba,ckground knowledge can, if necessary, be amalgamated to 
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obtain background knowledge with wider scopes. 
In our specific domain and task, the overall competence model was elicited from the two 

consultant radiologists who are expert in diagnosing skeletal dysplasias. This model in- 

cludes a model for the background knowledge. It is interesting to note that the initial body 

of background knowledge acquired from the domain experts is now extended and refined 

by a general radiologist, always in accordance with the elicited model. Thus even more 
parallelism, between the acquisition of the foreground and background knowledge, can be 

achieved. 

3. Illustrating background knowledge 

In this section concrete examples of ba.ckground knowledge from the domain of skeletal 

dysplasias are given. 

Suppose that in a diagnostic consultation it was given that the carpal-centres of the patient 

showed delayed-ossification, and suppose that the question ‘Are the femora abnormal?’ is 

raised. Any physician can immediately answer this with ‘yes’. For a computer system to be 

able to derive that ‘femora abnormal’ holds if ‘carpal-centres delayed-ossification’ holds, the 

following relationships and common-sense reasoning strategies must be made explicit in the 

system: 

1. carpal-centres delayed-ossification =P epiphyses small 

2. femoral-epiphyses are a kind of epiphyses 

3. femoral-epiphyses are part of femora 

4. If a component exhibits a property which denotes divergence from normality then the 

component is abnormal 

5. If a class of concepts exhibits a property then all types of that class exhibit the same 

property 

6. If a part of a component is abnormal then the whole component is abnormal. 

Derivation 

carpal-centres delayed-ossification * epiphyses small 

carpal-centres delayed-ossification holds 

. epiphyses small holds . . 

;. (using strategy 4) epiphyses abnormal holds 

femoral-epiphyses are a kind of epiphyses 

... (using strategy 5) f emoral-epiphyses abnormal holds 

femoral-epiphyses are part of femora 

... (using strategy 6) femora abnormal holds. 

Suppose that in the same consultation the system knows that the patient has generalised 

platyspondyly, and that it wants to find out whether the patient’s dorsal-vertebral-bodies 

,are flat and whether the patient’s trunk is normal. A radiologist would immediately answer 
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these questions with ‘yes’ and ‘no’ respectively. Once again the system requires the ex- 

plicit representation of the following foundational knowledge to enable it to reach the right 

conclusions. 

Platyspondyly is a condition of the vertebrae whereby they are flattened. The 

vertebrae are components of the spine, 29 in all. The regions of the spine are 

thoracic (or dorsal) spine, cervical spine and lumbar spine. Generalised platy- 

spondyly means that all vertebrae are affected from this condition. When there 

is generalized platyspondyly the trunk is short. 

The taxonomy of Fig. 1 depicts some of the relationships mentioned above. There are a 
number of routes for deriving that ‘flat dorsal-vertebral-bodies’ holds given that ‘generalised 

platyspondyly’ holds. Two are shown below: 

1. Generalised platyspondyly means that all vertebrae are flat. Since dorsal-vertebral- 

bodies (or dorsal-vertebrae) are a kind of vertebrae then they are flat. 

2. Generalised platyspondyly means that the entire spine exhibits the condition platyspon- 

dyly, i.e. the locality of condition platyspondyly is the whole spine. Thoracic-spine is 

a part of the spine and hence ‘platyspondyly thoracic-spine’ holds. The components of 

thoracic-spine are dorsal-vertebral-bodies and hence the conclusion ‘flat dorsal-vertebral- 

bodies’ may be reached. 

Often there exists a number of derivation paths for some query, ‘holds(F)?‘, where F is a 

finding, and shorter paths should be attempted first. 

To refute the query ‘holds(trunk normal) ?’ the system uses the implication 

generalised platyspondyly j trunk short (or short trunk dwarfism). 

Suppose further that the system is told that the patient’s joints are prominent and that 

the question ‘are the metaphyses flared?’ is subsequently raised by the system. Again a 

radiologist would immediately reply ‘yes’. The two expressions, ‘flared metaphyses’ and 

‘prominent joints’, may be treated as synonymous in the sense that they describe the same 

abnormality at different levels. ‘Prominent joints’ is a clinical observation which is explained 

by the radiological feature ‘flared metaphyses’. There is a number of such associations 

between clinical findings and their radiological counterparts or simply between radiological 

features, or between clinical features, e.g. sloping acetabula and hypoplastic iliac-bases or 

hitch hikers thumbs and thumbs which are proximally set and hypermobile. 

These examples use knowledge which is general radiological/clinical knowledge rather 

than knowledge specific to the domain of skeletal dysplasias. Strategies for manipulating 

this knowledge are generic common-sense strategies such as ‘if a component is absent then 

all its parts are absent’. 

Temporal reasoning is relevant to skeletal dysplasias, as it is to most diagnostic tasks. 
Skeletal dysplasias involve bone (and cartilage) malformations. Such malformations may 
be concerned with the ossification process of parts of the skeleton, and more precisely with 
divergencies from the normal ossification processes, e.g. whether a particular ossification 

process is delayed or advanced. Again this requires general knowledge about the normal 

progression of an ossification process (when does it normally start and when does it normally 

finish?). This knowledge enables one to determine the age at which a particular bone 

is normally expected to have ossified and hence to be visible in an X-ray image. Apart 
from normal ossification processes, skeletal abnormalities may have a generic temporal pro- 

gression, e.g. a given abnormality may only be visible from a given age and similarly specific 

levels of severity may only be reached after a certain age. In addition to general (i.e. 
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dysplasia-independent) temporal knowledge, the descriptions of features for some dysplasia 

involve time; it is not uncommon for features to appear and then disappear. For example, in 

the case of Dyggve Melchior Clausen (DMC) dysplasia a significant feature of the dysplasia 

is that the iliac-crests are described as lace-like from about the age of 3 years until about the 

age of 15 years. Thus if the system explores the possibility of DMC for a 2 year old it should 

not expect to establish that the iliac-crests are lace-like. Similarly the system exploring the 

same possibility for an 8 year old should expect the iliac-crests to be lace-like and should 
in fact exclude the possibility if this is not so. For a 20 year old the iliac-crests should be 

expected to be currently not-lace-like but to have been so before. 

The temporal screening of a dysplasia to tailor it to the specific diagnostic context is 
absolutely essential for the performance of the diagnostic system. This is based both on 

background domain knowledge and temporal information specific to the particular dyspla- 

sia [22]. 

4. Background knowledge models 

In this section the models for the background knowledge in the SDD system are discussed. 

These are: 

l Feature subject model 

l Description model 

l Temporal model. 

The above models are collectively referred to as the Data-Model of the system, where data 

are diagnostic findings. The discussion on the models which follows is at a conceptual level. 

A formal axiomatic discussion is given in [23]. 

4.1. Feature subject model 

Feature subjects are of two types: component subjects, i.e. anatomical components (spine, 

metaphyses, hands, face) or body functions (renal function, cardiac function, pulmonary 

function), and condition subjects describing abnormalities of component subjects (platy- 

spondyly, polydactyly, micrognathia). 
A finding asserts that various descriptions hold for a particular subject at a particular 

locality of the subject and for a particular temporal period.-Example findings would be ‘pla- 

tyspondyly mild generalised from-birth’, ‘polydactyly absent hands’, ‘femoral-metaphyses 

irregular medially’, ‘iliac-crests lace-like from about 3 to 15 years’, ‘epiphyses delayed- 

ossification’. The descriptions in the above findings are the words mild, absent, irregu- 

lar, lace-like and delayed-ossification. The localities are the words generalised, hands and 

medially. The localities of a condition subject like platyspondyly and polydactyly are the 

component subjects which constitute their scopes, e.g. spine (or vertebral-bodies) for platy- 

spondyly, and hands and feet for polydactyly. The localities of a component subject are its 

parts, e.g. lumbar-spine, thoracic-spine and cervical-spine for component subject spine, and 
its subtypes, e.g. dorsal-vertebrae, cervical-vertebrae and lumbar-vertebrae for subject ver- 

tebrae, or ulnar-metaphyses and radial-metaphyses for subject metaphyses. Since the parts 

and subtypes of a component subject are component subjects in their own right, it is more 

intuitive to use the specific component subjects as the subject of the finding, rather than 

as its locality, e.g. it is better to say ‘ulnar-metaphyses irregular’ rather than ‘metaphyses 



270 E.T. h-eraunou et al. 

irregular ulnar’. Strategies operating on the taxonomic relationships can relate more specific 

findings to their generalisations and vice versa. 

In addition, there are generic localities such as generalised, throughout, widespread, lo- 

calised, medially, laterally, posteriorly, anteriorly, left, right, etc. These are the localities 

more commonly used. In the case of component subjects, a generic locality specifies the 

generic region of the given component. In the case of condition subjects the generic lo- 
calities often used are generalised and localised, respectively indicating that the specific 

abnormality holds for all or some (exactly which not being specified) of the component 

subjects in the abnormality’s scope. 

Findings may have explicit temporal aspects, e.g. ‘from birth’ and ‘from about 3 to about 

15 years’, in the above findings. 

The Feature subject model consists of the relationships given in Table 1. 

Table 1. Feature subject model 

l Subject type 
_ negative-value 

status-value 

l Taxonomic relations 
_ isa (and its inverse types) 
_ part-of (and its inverse consists-of) 

l Temporal screening 
_ when-to-ask 

0 Linguistic relations 

- synonyms 
synonymous-subjects 

l User information directives 
_ clarifying questions 

prompting questions 

images 

0 Inferential relations 

implications 
- localitv 

4.1.1 Subject type 
The subject type relations reveal whether a subject is a component or a condition sub- 

ject. If the negative-value of a subject is normal then it is a component subject and if it is 

absent then it is a condition subject. Thus ‘hands normal’ and ‘polydactyly absent’ both 

describe normal situations or negative findings. If a negative finding holds then all the pos- 

itive findings for the given subject do not hold. Status-value is only relevant for component 

subjects. The status-value indicates the absence of the given subject, e.g. ‘hands absent’ or 

‘skull-vault absent-ossification’. Such status findings describe abnormalities and hence are 

positive findings. They are, however, special positive findings since they exclude all other 
findings for that subject, 

4.1.2 Taxonomic relations 
Taxonomic relations isa, part-of and their respective inverses enable the application of 

various common-sense strategies, e.g. if a part of a whole is abnormal the whole is also ab- 

normal, as illustrated above. Both isa and part-of are tangled taxonomies enabling a subject 

to be of more than one type and to be a part of more than one component (Fig. 1). 

4.1.3 Temporal screening 
The temporal screening relation when-to-ask is very important. This relates findings 

of the given subject with the earliest time that is intelligent to ask about them. If all 

the findings of a subject must be screened out prior to a given time, then the subject 

on its own is associated with the particular time as well. This is so for subject IQ. The 

relation when-to-ask makes explicit the temporal progressions of relevant processes since 
by registering the earliest times that is intelligible to ask whether a particular process is 
delayed or advanced the system can deduce the normal initiation and termination times of 

ossification processes. Similarly, significant temporal progressions of abnormalities may be 

recorded, e.g. progressive kyphoscoliosis is only detectable after the age of 1 year. 
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Fig. 1. Taxonomic relationships in SDD 

4.1.4 Linguistic relations 
The linguistic relations associate groups of findings or subjects which can be used inter- 

changeably because at any relevant context they may be treated as synonymous even if they 

are not synonymous in the strict sense of the word. For example, dumbbell-shaped long- 

bones and flared metaphyses are not strictly synonymous but for diagnostic purposes they 

can be used interchangeably. Other examples are short stature and dwarfism. Examples of 

synonymous subjects are dorsal-spine and thoracic-spine, bone-age and skeletal-maturation. 

The relations synonyms and synonymous-subjects are included because the aim is to support 

a user interface which is as flexible as possible. These relations can be used by a front end 

system which translates user volunteered input to a standard internal vocabulary or they 

can be used by a reasoner that dynamically correlates expressions which mean the same 

thing; the latter approach is computationally more expensive than the former. 

4.1.5 User information directives 
Other important relations for the user interface are prompting and clarifying questions, 

and in the future X-ray images. Prompting questions are used in order to elicit more 

complete information in response to a user volunteered finding. For example, if the user 

volunteers that there is platyspondyly, the system immediately prompts the question ‘Is 

the platyspondyly generalised?‘. Similarly, in response to the finding ‘polydactyly’ the sys- 
tem will prompt the questions ‘Polydactyly feet?’ and ‘Polydactyly hands?‘. Prompting 

questions are useful for findings whose subjects are condition subjects since they enable 
the system to get complete information about the locality of the given abnormality. If the 

locality is not given the system cannot assume that it refers to all relevant localities, e.g. 

if the user volunteers platyspondyly the system should not assume that the platyspondyly 

affects the entire spine. This is not the only context in which prompting questions are raised. 

Prompting questions are used when independent findings tend to occur together or in order 

to get more specific information about the reported abnormality, e.g. if the user says that 

the iliac-crests are irregular the system will prompt the question ‘Are they lace-like?‘, that 

being a more specific (and diagnostically very significant) type of irregularity. 

Clarifying questions are raised in response to a finding which is highly likely to be an in- 

accurate description of the actual situation. Such findings can easily be volunteered by users 
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who are not expert in the field ( as is usually the case with expert system users). In the case 

of skeletal dysplasias a non expert may misinterpret an X-ray image’ resulting in inaccurate 

or even erroneous information (see below). An example of a clarifying question is that if the 
user volunteers that the face is flat the system will ask ‘Do you mean that the mid-face is 

hypoplastic?‘. The difference between prompting and clarifying questions is that prompting 

questions aim to elicit information in addition to the volunteered information albeit more 

specific information whilst clarifying questions query the validity of volunteered informa- 

tion and aim to trap as quickly as possible common misconceptions of misinterpretations 

of an actual situation. Thus information elicited through a clarifying question will replace 

the information originally volunteered by the user. In the domain of skeletal dysplasias 

erroneous data are possible and even likely because the non-expert will not ‘see’ the subtle 

abnormalities which may constitute significant features. Clarifying questions are one way of 

detecting such errors; they are based on the experience that particular subtle abnormalities 

are commonly misinterpreted by novices in the field as such and such abnormalities. On-line 

display of X-ray images is a more effective way of combating this problem and at the same 

time provides a form of justification for the final diagnosis. X-ray images can be displayed 

in response to user information as a means of validating the user input and of course system 

questions can be illustrated through X-ray images. The database of X-ray images for the 

SDD system is currently under design. 

4.1.6 Inferential relations 
The system has a number of generic ‘taxonomic’ axioms which are instantiated on demand 

from taxonomic relations, to generate relevant implications (see [23]), e.g. 

dorsal-spine abnormal or 

lumbar-spine abnormal or 

cervical-spine abnormal 3 spine abnormal 

metaphyses irregular + femoral-metaphyses irregular 

The axioms encode context-free (generic) implications. In addition to the generic implica- 

tions there are specific implications representing dependencies between specific findings. A 

specific implication is associated with the subject of its consequent finding under the impli- 
cations relationship. For example, subject kyphoscoliosis has the following implications: 

scoliosis and kyphosis * kyphoscoliosis 
scoliosis absent or kyphosis absent + kyphoscoliosis absent 

Kyphoscoliosis is an abnormality whereby both scoliosis and kyphosis co-occur. Presently 

implications are used in a backwards chaining fashion. 

The Eocdity relation makes explicit the relevant localities for condition subjects such as 

platyspondyly and polydactyly. The locality gives the set of highest-level relevant component 
subjects, e.g. spine for platyspondyly and {hands, feet} for polydactyly. This information 

can be used to generate dynamically even more implications, e.g. 

hands normal and feet normal + polydactyly absent 

spine normal =$ platyspondyly absent 

‘The input to SDD is textual information, not images. 
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4.2. Description model 

Descriptions are attribute-values for feature subjects and they include generic localities. 

Examples of descriptions are small, flared, hypoplastic, generalised, medially, etc. The 

Description model includes the following relations: 

l Synonymous descriptions: descriptions which could be used interchangeably under specific 

contexts (i.e. feature subject), e.g. small and hypoplastic, or flared, broad and wide. 

l Opposing descriptions: mutually exclusive sets of descriptions, e.g. small, medium and 

large, or present and absent. 

l Generic Eocalities: all the descriptions which constitute generic localities. 

l Normal descriptions: descriptions which describe a normal situation under any context, 

e.g. regular, normal, normal-ossification, normal-size, well-modelled, etc. This relation 

is important in a diagnostic system because it makes explicit findings which describe 

normalities rather than abnormalities. Suppose that a finding for a given patient is that 

the stature is normal. This finding does not require any explanation and hence any 

diagnostic possibility which does not expect the stature to be abnormal accounts for it. 

However, the finding provides evidence against a diagnostic possibility which, say, expects 

the stature to be short. 

4.3. Temporal model 

As discussed above temporal reasoning is an integral aspect of skeletal dysplasias di- 

agnosis. The temporal reasoning is common-sense reasoning. For example, the temporal 

screening of a dysplasia is common-sense reasoning - do not expect to observe currently a 

future manifestation. Modelling common-sense reasoning is not necessarily straightforward. 

The temporal expressions in SDD include uncertainty, e.g. something occurs from about a 

certain time or something terminates at ubovt a given time. This uncertainty is modelled in 

terms of open time-intervals, a time-interval being the ontological primitive. A time-interval 

has an open base, or an open limit, or both. The openness means that the interval can 

get smaller in the relevant direction. Recently Console et al. [9] have reported on a causal 

temporal framework allowing ‘variable’ time-intervals. 

The temporal model includes absolute temporal relations, relative temporal relations, 

temporal trends, and context-free time (which embraces the relations discussed above under 

when-to-ask). The reader is referred to [22] for an extensive discussion of the temporal 

model and its implementation. 

The background knowledge models discussed above have gone through a number of re- 

finements and future extensions are probable. Such changes are possible because the models 

are explicit in the system. 

5. Explicit background knowledge: Advantages 

Background knowledge is foundational domain knowlege and common-sense knowledge 

directly reiated to the domain and task. Its role in an expert diagnostic system (or any 

expert system) is to support the execution of the particular expert task. Its absence seriously 

undermines the competence of the expert system [20]. In this section we do not argue for the 

presence of background knowledge in a diagnostic system, as we believe that this does not 
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need any justification, but for the explicit presence of background knowledge in a diagnostic 

system. Most diagnostic systems, even early ones like Mycin include background domain 

knowledge in their knowledge bases. However, this knowledge is implicit in the rules or other 

structures used to represent the system’s expert knowledge. If the background knowledge 

is implicit then it is not possible to have an explicit reasoner incorporating all the generic 

(common-sense and other) strategies operating on background knowledge. 

Explicit representation means that the background knowledge and its associated reason- 

ing is an identifiable entity (component) in the expert system. This is the case with the SDD 

system. At the top level there are two co-operating tasks, a hypotheses reasoner and a find- 
ings reasoner. The co-operation is of an investigator-assistant mode where the hypotheses 

reasoner is the investigator and the findings reasoner is the assitant. The assistance pro- 

vided by the findings reasoner is invaluable since without it the hypotheses reasoner would 

be grossly incompetent. The functions of these two reasoners are overviewed below. 

The hypotheses reasoner performs differential diagnosis on the domain of skeletal dys- 

plasias. It operates on the dysplasia model and incorporates strategies for triggering hy- 

potheses, for focussing on the current differential, for evaluating the current differential, for 

acquiring additional information and for deciding when to terminate a consultation. The 

hypotheses reasoner and its associated dysplasia knowledge base constitute the expert skills 

and knowledge in the diagnostic system. 

The findings reasoner, as its name implies, deals with patient findings. It performs the 

temporal screening of hypotheses profiles. It supports a flexible user interface, it acquires 

information (both user volunteered findings or findings requested by the hypotheses rea- 

soner). It detects, and eliminates, redundancy in the patient findings so that each finding 

represents ‘independent’ evidence. It can detect conflicts in the user information. It ensures 

that none of the questions raised by the system is redundant, either because its answer can 

be deduced from already given information, or because the user has already said that this is 

unknown, or because it could not be possibly known in the particular temporal context.3 It 

structures a set of questions requested by the hypotheses reasoner into a comprehensive and 

meaningful sequence by grouping questions for the same subject together and preceding each 

group with relevant general questions. Each answer from the user is immediately processed 

and hence follow-up questions may be screened out. The findings reasoner therefore con- 

tributes significantly to the naturalness of the system’s dialogue. The overall conversation 

sequence is the result of the activations of the hypotheses reasoner. During a consultation 

questions are asked for many different reasons, depending on which tasks are being executed; 

the findings reasoner ensures that individual question subsequences are comprehensible and 
that the user is appropriately prompted, either for additional, more specific, information or 

for validations, when information is being volunteered. Hence the findings reasoner’s con- 

tributions to the dialogue are local but nonetheless critical. Collectively the hypotheses and 

findings reasoners achieve a natural dialogue structure exhibiting a focused and methodical 

approach to information acquisition. Adequate dialogue structure is important for interac- 

tive systems. Lastly the findings reasoner provides assistance to the hypotheses reasoner in 

the evaluation of hypotheses. 

6. Background knowledge representation: Classification 

Some diagnostic systems and frameworks, both early and recent, do not include back- 
ground knowledge in any form. For example, Internist-I has no knowledge of the depen- 

3Such questions should never arise if the temporal screening of the hypotheses profiles is done properly. 
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dencies between its manifestations with adverse effects on its scoring function, nor does it 

model temporal knowledge in any way, again with adverse effects on its scoring function as 

well as resulting in non-intelligent questions [28]. The parsimonious covering theory of diag- 
nosis [30] does not accommodate any structural relationships between manifestations. This 

applies to other domain-independent diagnostic frameworks such as de Kleer and William’s 

[ll] and Reiter’s [33]. 
Other systems have an implicit representation of background knowledge. For example, 

Mycin does not represent ‘world-facts’ explicitly but implicitly in terms of screening clauses 

[6, 211. Some of the properties in Mycin’s clinical-parameter tables though, e.g. the condi- 

tion property, represent background knowledge. Amongst the first generation of diagnostic 

systems, Prospector, a contemporary of Internist-I and Mycin, is possibly the only system 

which has background domain knowledge in a relatively explicit form. The expertise in the 

system is in terms of a number of ore-deposit models, each model consisting of a number of 

inference rules. These models are supported by a classification hierarchy of rock types, min- 

erals, physical forms and geological a.ges, which represents general domain knowledge. The 

creators of the system say that this is a critical structure for the performance of the system 

[32]. It gives flexibility in expressing dat.a, enables the system to co-relate expressions and 
to detect inconsistencies in the user evidence. The Casnet diagnostic model [37] represents 

relationships between observations that are used to establish local control over the sequence 

of questions in a fashion consistent with medical practice; such relationships specify truth 

values of observations that, can be directly deduced from already conducted observations. 

Eliminating redundancy in evidence, though, is not necessary because for each pathophys- 

iological state, Casnet only uses the single piece of evidence with the highest associational 

value. Neomycin [8] and Centaur [I] which are respectively reconstructions of Mycin and Puff 

(where Puff has the same architecture as Mycin since it was constructed through Emycin). 

ha.ve a more explicit representation of background knowledge than their predecessor systems. 

Yet their representations do not present the background knowledge and its associated rea- 

soning as a separate entity within a co-operative framework. In Centaur there is a distinct 
knowledge structure, the component frame, which is used to represent knowledge about 
pulmonary tests. The component frame gives a range of possible values for the test, a11 

importance measure and a set of inference rules for deducing values from other test results. 

In Neomycin ‘world facts’ are represented explicitly in terms of screening rules which are 

applied by tasks such as Findout. 

Explicit representation of background knowledge in the sense discussed in Section 5, i.e. 

as a separate, distinct, identifiable component in the system which co-exists with an expert 
reasoner within a co-operative framework, is exhibited in few cases. A primary example 

is the co-operative system Mdx/Patrec [5] where Mdx represents the expert reasoner and 

Patrec [29] is the auxiliary reasoner that knows all about the relevant medical concepts and 

has a rudimentary temporal model, which collectively enable it to manage case findings 
intelligently. The generalisations of the functions of Mdx and Patrec figure as separate 

generic tasks, CSRL [2] and IDABLE [17], in Chandrasekaran’s Generic-Task Architecture 
[3]. This work has been a major source of inspiration for our work. Another influential 

framework is Clancey’s heuristic classification method [7] embodied in the skeletal system 

Heracles, and more precisely the co-operative structure between the data taxonomy and 
the solution taxonomy, the former capturing essentially general knowledge, enabling the 

abstraction of quantitative data into useful qualitative information as well as other forms 

of inference between data, and the latter together with the heuristic links representing 
the expert knowledge. Lastly ARBY [27] is another diagnostic framework which exhibits 
a co-operating structure, the co-operative modules being a hypotheses generator and an 

interaction frames manager. The former generates and t.ests hypotheses, and the latter 
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manages the action requests in the course of testing hypotheses, the objective being to ask 

for the most informative actions; in this respect the interaction frames manager may possess 

expert knowledge too. 
Figure 2 gives a classification of diagnostic 

ground knowledge representation. 

Background Knowledge 

Representation 

expert systems from the perspective of back- 

No Background 

Knowledge 

eg Internist-1 

Background 

Knowledge 

Implicit 

eg Myciu 

Background 

Knowledge 

Explicit 

(co-operative 

framework) 

eg Mdx/Patrec 

Sdd 

Heracles 

Fig. 2. 

7. Conclusion 

Classification of diagnostic expert systems from the perspective of background 

knowledge representation. 

The primary objective behind a diagnostic task, whether it is performed by a human or 

a computer system is to achieve timely and accurate diagnosis, enabling the application of 

effective treatment regimes. The primary objective of a knowledge engineer for a diagnostic 
expert system is to elicit the diagnostic skills of the particular experts and to formulate an 

accurate model of their diagnostic competence. In so doing a knowledge engineer should not 

overlook the fact that a human expert’s diagnostic skills are supported on a solid foundation 

of general domain knowledge and common-sense reasoning. Such background knowledge is 
second nature to experts, more often than not being subconsciously applied. The coupling 
between the foreground and background knowledge is strong and unless background knowl- 

edge is made explicit in the diagnostic system, the diagnostic competence of the system 
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will be vulnerable. Lack of relevant background knowledge in a diagnostic system quickly 

manifests itself in terms of redundant or erroneous questions or wrong decisions. Such 

manifestations may be ‘fixed’ somehow, e.g. pieces of background knowledge may be im- 
plicitly incorporated into the expert knowledge to prevent the specific manifestation from 

reoccurring. This is not a proper solution since it does not attack the cause but simply its 

effects. 
In summary the explicit representation of background knowledge and its associated rea- 

soning has the following significant advantages: 

l The overall functionality of the system is more perspicuous which is absolutely necessary 

for future extensions. There is a clear demarcation between the expertise of the system 

and its foundational support. The system’s knowledge-base and associated reasoning 

strategies are not hindered with obscure control constraints which are the side effects 

of not having explicit background support. The hypotheses and findings reasoners may 

be independently extended. In particular their underlying models may be independently 

extended and/or new strategies may be added to either reasoner. 

l The problem of knowledge redundancy is controlled. Each piece of knowledge is stored 

once and may be used in different contexts. 

l Reusability is achieved since the strategies incorporated in the findings reasoner are do- 

main independent and also the same findings base can be used in more than one applica- 

tion. 

l The system achieves a competent dialogue structure in a natural and extensible way. An 
implicit representation of the background knowledge would forever require the incorpora- 

tion of unnatural ‘fixes’ in order to alleviate specific dialogue or user interface problems. 

l The overall diagnostic performance of the system is enhanced, since the findings reasoner 

goes towards ensuring that all evidence is independent, and that hypotheses profiles are 

properly tailored for the specific temporal context. 

The identification of relevant background domain knowledge and its incorporation as an 

integral component of the particular competence model must be included in the primary 

design objectives for a diagnostic system. Past experiences have demonstrated that unless 

an expert system is designed from the start with the purpose of providing adequate explana- 
tions, simply incorporating an explanation facility subsequently on an existing architecture 

as an add-on does not work. Similarly the need to make the background knowledge ad- 

equately explicit must influence the diagnostic architecture from the start; it cannot be 

expected that adding background knowledge subsequently will be sufficiently effective. 
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