
Hunting Cross-Site Scripting Attacks in the Network

Elias Athanasopoulos, Antonis Krithinakis, and Evangelos P. Markatos
Institute of Computer Science

Foundation for Research and Technology - Hellas
N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

{elathan, krithin, markatos}@ics.forth.gr

ABSTRACT
Cross-site Scripting (XSS) attacks in web applications are
considered a major threat. In a yearly basis, large IT security
vendors export statistics that highlight the need for designing
and implementing more efficient countermeasures for secur-
ing modern web applications and web users. So far, all these
studies are carried out by IT security vendors. The academic
community lacks of the tools for performing similar studies
for quantifying various properties of XSS attacks.

In this paper, we present xHunter, a tool that takes as in-
put a web trace and scans it for identifying possible XSS ex-
ploits. xHunter does not provide any defenses against attacks
in web applications and browsers. The tool is designed for
processing thousands of URLs and isolating XSS exploits.
Using xHunter one can see how real XSS exploits look like,
what is the geographical distribution of web browsers that
trigger XSS exploits, and other valuable properties, which
if combined can draw a better picture of the XSS landscape
today.

xHunter is based on two assumptions. The first one is
that a significant fraction of XSS attacks is carried out us-
ing URLs and the second one is that these URLs contain
parts that produce a valid JavaScript syntax tree with high
depth. Thus, the basic operation of xHunter is to process
URLs and identify parts that can be parsed in JavaScript. In
this paper, we analyze all design choices and challenges for
implementing xHunter. We evaluate a preliminary prototype
of xHunter using about 11,000 URLs collected by a real-
world XSS repository, XSSed.com, and 1,000 URLs col-
lected from a monitoring point in an educational organiza-
tion with about 1,000 users. The results suggest that xHunter
has less than 3.2% of false negatives and about 2% of false
positives.

1. INTRODUCTION
Cross-site scripting (XSS) attacks are considered as

one of the major threats nowadays. Although XSS
targets only web applications, the popularity of the
exploitation method along with the prevalence of the
web has made XSS a dominant threat in computer sys-
tems [26, 23]. Unfortunately, these statements can be
officially supported and quantified only by large IT in-

dustry members involved in computer security. Un-
doubtedly, voluntary efforts from individuals exist, in
order to keep track of the attack landscape of XSS. For
example, XSSed.com [11] maintains a repository of XSS
exploits. The amount of stored cases in XSSed.com is
evidence that web sites are continuously threaten from
XSS attacks. Although this particular XSS repository
is invaluable to the research community, it can hardly
assist in quantifying the real problem.

In this paper, we argue that the academic and re-
search community lacks of the necessary tools for per-
forming measurement studies and quantifying the threat
constituted by XSS attacks. More precisely, we would
like to have the tools for answering questions like the
followings:

1. How often web sites are targeted with XSS at-
tacks? Are XSS attacks a frequent phenomenon
in every-day web traffic?

2. Which web sites are the targets?

3. Are there any orchestrated XSS campaigns in world-
wide scale?

4. How are the real XSS exploits look like? XSSed.com
maintains a large collection of vulnerable to XSS
web sites along with their exploitation. However,
many of the URLs listed contain proof-of-concept
exploit code, like the use of the JavaScript eval()
function to display a message, and not actual code
that can cause harm.

To this end, in this paper, we propose xHunter, a
tool that can passively monitor the network for identi-
fying suspicious URLs. xHunter does not aim on provid-
ing any defenses against XSS, but rather collect statis-
tics about them. The fundamental assumption behind
xHunter is that XSS attacks based on JavaScript code
injection (which is the most frequently encountered case
of XSS) are carried out through URLs that contain a
part that can produce a JavaScript-valid syntax tree.
Unfortunately, JavaScript has a very relaxed syntax and
is very context independent. Even simple text expres-
sions that are usually encountered in URLs can produce

1

a valid JavaScript syntax tree. In addition, web appli-
cations use their own encoding schemes. Attackers can
take advantage of this by obfuscating the JavaScript
exploit code.

In this paper, we present all challenges we encoun-
tered while designing xHunter along with a very pre-
liminary prototype of the tool.

Organization. This paper is organized as follows.
We present the architecture of xHunter in Section 2.
We analyze in detail all major challenges xHunter has
to deal with in Section 3. In Section 4 we present a pre-
liminary evaluation of xHunter using a sample of about
11,000 malicious URLs collected from XSSed.com and a
sample of 1,000 URLs collected from a monitoring point
in an educational organization with about 1,000 users.
We present related work in Section 5 and we, finally,
conclude in Section 6.

2. XHUNTER ARCHITECTURE
In this section we present the basic architecture of

xHunter. We first provide a short background of XSS
attacks and then we phrase the two basic assumptions
that are fundamental for the tool’s design. We finally
present the work flow of an xHunter run using a real
example as input taken from XSSed.com.

2.1 Overview
An XSS attack involves the injection of some client-

side code in the existing legitimate code of a web ap-
plication. The malicious code is executed while the
user is interacting with the web application. The user’s
web browser along with rendering the legitimate code
of the web application, renders also the injected code.
The user’s web browser can be essentially compromised,
since the injected code can steal cookies or force the web
browser to perform various actions on behalf of the user.

There are basically two large categories of XSS at-
tacks: (a) reflected and (b) stored. During a reflected
XSS attack the injected code is placed in a URL. Upon
the user clicks on the malicious URL the injected code
executes. On the other hand, during a stored XSS
attack, the adversary injects the malicious payload in
some form of storage utilized by a web application. For
example, consider a web application that handles a blog
engine and stores all data associated with the blog in a
database. An attacker can post an article which encap-
sulates the malicious code. This code is rendered in the
user’s browser upon the user’s browser renders the blog
article. Notice, that even in the case of stored XSS, the
attack has been injected using a URL, since this is the
only way the attacker can communicate with the web
application.1

1XCS attacks that are mounted through another non-web
channel are out the scope of this paper [9].

Assumption 1. The first fundamental assumption for
xHunter is that XSS attacks are carried out through the
transmission of URLs that contain the malicious code.

The malicious code during an XSS attack is usu-
ally expressed in JavaScript. There are plenty of other
methods for exploitation, like injections of an iframe,
redirection or leveraging of other client-side technologies
such as Flash, injections in file uploads [5] or Phish-
ing [10]. xHunter focuses only in cases where the web
attack is triggered via a URL that contains JavaScript.
These cases constitute a significant fraction of XSS at-
tacks.

Assumption 2. The second fundamental assumption
for xHunter is that an XSS attack is mounted using a
URL which contains a part that can produce a valid
JavaScript parse tree.

Based on the two assumptions above, xHunter works
roughly as follows. It takes as an input a URL. It scans
the input for parts that can produce a valid JavaScript
parse tree. The tool embeds the JavaScript engine of
Mozilla SpiderMonkey [1] for generating parse trees.
A URL is considered suspicious if a part produces a
JavaScript parse tree with a certain depth.

For example, consider the JavaScript snippet in Fig-
ure 1. xHunter can process the source and produce the
syntax tree depicted in Figure 1. Notice the indentation
of the parse tree. It is slightly different than the actual
parse tree a JavaScript parser can export. The rea-
son is that xHunter assigns to different parse nodes (i.e.
tokens the parser consumes) a different weight. This
weight is depicted in the figure as indentation level. We
further analyze this later in Section 3. Notice also that
xHunter does not evaluate the actual code. It is not
aware of neither the DOM [15] structure nor the code
of the web application the malicious code is trying to
exploit. xHunter only checks if part of an input can
produce a valid JavaScript syntax tree.

2.2 Operation
We now proceed and present a hypothetical xHunter

run. xHunter takes as input a URL. First, the URL
is HTML escaped (for occurrences of HTML encoded
entities like ') and is URL-decoded. Then, the
part of the URL which follows the “?” character, usu-
ally named as the query string, is isolated from the rest
of the URL. The query string contains all parameters
which take part in an HTTP GET request. 2 All pa-
rameters are separated using the “&” character. Each
parameter is in the form key = value. For each pair,
xHunter tries to parse both the key and the value (if
they both exist). Apparently, there are XSS attacks
that host the exploit code in the key and not in the
value, as it is more common [2].

2A similar approach is used for POST requests. In this case
the query parameters are part of the HTTP request.

2

1 if (user_logged()) {

2 alert(document.cookie);

3 }

4

5 LC:

6 IF:

7 LP:

8 NAME:

9 LC:

10 SEMI:

11 LP:

12 NAME:

13 DOT:

14 NAME:

Figure 1: Parse tree of a JavaScript snippet as
produced by xHunter.

There are two possible cases when xHunter tries to
parse a particular field. The field does not parse or the
field produces a syntax tree with a certain depth. If
the depth exceeds a certain value, the URL is consid-
ered suspicious. The depth of the syntax tree depends
on the tokens that compose the field’s text. If there
is actual JavaScript code in the field then the syntax
tree is expected to have a depth of a high value. No-
tice, for example, in Figure 1 that the code responsible
for the alert() code contains six different tokens (lines
9-14). However, even simple text can produce a valid
JavaScript syntax tree. Hopefully, real and possibly
functional JavaScript code has higher probability to in-
clude certain tokens. Thus, each token is assigned with
a weight and the overall depth is computed using each
node’s weight. We further discuss this in Section 3.

A theoretical xHunter run is depicted in Figure 2.
The running example is a URL from XSSed.com that
contains XSS attack code. Notice, how the query string
and then the parameters are isolated from the original
URL. Observe, also, that every field, in this particular
case, produces a valid JavaScript syntax tree. Never-
theless, the attack code produces the syntax tree with
the higher depth (6). Notice the final URL where the
attack code has been highlighted. The first character
(double quotes) is not highlighted, although it is part
of the field that contains the attack. This character
has been omitted, since it produces a syntax error if
included. We further discuss how we deal with partial
JavaScript expressions in Section 3.

There are plenty of cases xHunter, as presented here,
fails to handle. First, web applications support URLs
that do not fully conform to the specification [8]. Sec-
ond, JavaScript has a relaxed syntax and thus simple
text can produce a valid syntax tree. Three, the XSS
exploit code can be partial or mixed up with other ir-

http://www.economie.gouv.fr/recherche/lance_recherche.php?
mot=";alert(document.cookie)//&search_go=ok

mot=";alert(document.cookie)// search_go=ok

http://www.economie.gouv.fr/recherche/lance_recherche.php?
mot=";alert(document.cookie)//&search_go=ok

";alert(document.cookie)//mot search_go ok

LC:
 SEMI:
 SEMI:
 LP:
 NAME:
 DOT:
 NAME:

6
LC:

 SEMI:

 NAME: 2
LC:

 SEMI:

 NAME: 2
LC:

 SEMI:

 NAME: 2

http://xssed.com/mirror/65494

Figure 2: Example operation of a hypothetical
xHunter run.

relevant text. We proceed and present all these issues
in detail in the following section. For each problematic
case we present how xHunter is enhanced to solve each
issue.

3. CHALLENGES
We now proceed and present various challenges that

xHunter has to deal with. We focus in the three main
problems we mentioned in Section 2: (a) web applica-
tions quirks, (b) JavaScript relaxed syntax and (c) ex-
ploit isolation. We discuss each of these in detail. We
present URL examples taken from XSSed.com for each
particular case.

3.1 Web Application Quirks
Web applications use URLs for communicating with

web browsers. There is a well defined specification for
URLs [8]. However, web applications often use their
own encoding scheme or custom delimiters for separat-
ing the query string and the parameters from the rest of
the URL. There are cases where xHunter can try alter-
native methods for parsing a URL. For example, a sig-
nificant amount of URLs contained in the XSSed.com
repository use “"”, instead of “?” for separating the
query string from the URL. In other cases there is no
special delimiter used at all, thus xHunter, inevitably,
scans the whole URL for JavaScript injections.

However, there are cases where xHunter cannot han-
dle. These are cases where the URL is encoded using
a custom scheme by the web application. In Figure 3
we present two example URLs, which contain exploit
code. In the first case a similar, but not identical, to

3

1 [http://xssed.com/mirror /55309]

2

3 http://www.metacrawler.com/

4 metacrawler/ws/results/Web/

5 !3 Cscript!3Ealert (!2FXthe _

6 miller !2F)!3C!2 Fscript!3E/1/41

7

8 [http://xssed.com/mirror /64043]

9

10 http://www.turktelekom.com.tr/tt/

11 portal /!ut/p/c0/ XYzBCoJAFEX_RQhq

12 9Z5aOoEI.. RshwIQj/

Figure 3: Custom encoding used by web appli-
cations. In the second example some parts are
omitted for better presentation.

URL encoding is used (the character ! is used instead
of %). This case can be handled if the scheme is used
frequently (we found just a few cases in the sample col-
lected from XSSed.com). The second case is impossible
to handle, since the web application encodes all URLs
in a scheme known only by itself. Hopefully, in more
than 10,000 of URLs collected from XSSed.com there
are only a few cases that follow this paradigm.

3.2 JavaScript Relaxed Syntax
JavaScript has a very relaxed syntax. It is quite pos-

sible for a text fragment to have a valid JavaScript syn-
tax tree. For example, consider the two expressions
in Figure 4. They are parts taken from a sample of be-
nign URLs and both of them produce valid syntax trees
with high depth. However, these expressions are not
JavaScript exploits. xHunter employs two techniques
in order to deal with such cases: (a) the reverse code
heuristic and (b) weighted parse nodes. We proceed
and analyze both techniques.

3.2.1 Reverse Code Heuristic

Expressions like the first one listed in Figure 4 have
the following property. First, they can be parsed from
left to right and from right to left. Second, they produce
a syntax tree with the same depth, no matter the pars-
ing direction. On the other hand, JavaScript exploit
code is highly unlikely to produce even a valid syntax
tree if parsed from right to left. Thus, xHunter when-
ever finds an expression that produces a valid syntax
tree, attempts to parse the expression reversed. The
expression is not considered suspicious if the reversed
expression produces a syntax tree with the same depth.
This heuristic solves many cases in the sample of URLs
collected from XSSed.com, which otherwise would be
considered as false positives.

1 foo;1,2,3,4,5

2

3 LC:

4 SEMI:

5 NAME:

6 SEMI:

7 COMMA:

8 NUMBER:

9 NUMBER:

10 NUMBER:

11 NUMBER:

12 NUMBER:

13

14 id =331653;t=49;l=1

15

16 LC:

17 SEMI:

18 NUMBER:

19 SEMI:

20 ASSIGN:

21 NAME:

22 NUMBER:

23 SEMI:

24 ASSIGN:

25 NAME:

26 NUMBER:

Figure 4: JavaScript has a relaxed syntax. Even
simple text fragments can produce a syntax tree
with high depth.

3.2.2 Weighted Parse Nodes

Parse nodes which refer to tokens such as “.” (DOT)
and “+” (PLUS), for example, can be repeated several
times in an expression and thus result to parse nodes
that contribute to the final syntax tree’s depth. These
tokens occur frequently in URLs, without being part of
a JavaScript code snippet. On the other hand, there are
tokens that are more likely to be part of valid JavaScript
code, such as the LP token, which denotes a left paren-
theses occurrence. These tokens occur less frequently
in URLs and much more frequently in JavaScript code.

xHunter assigns a weight to each parse node. The
overall depth of the parse tree is a weighted contribu-
tion of all parse nodes. There are nodes that have no
contribution at all (such as the DOT token), nodes that
have negative contribution (such as the NAME token) and
nodes that have high contribution (an LP token has dou-
ble contribution).

3.3 Exploit Isolation
It is highly likely that a JavaScript exploit is not iso-

lated in a URL parameter. For example, consider the
example in Figure 5. The value of the first query string

4

1 [http://xssed.com/mirror /65494]

2

3 http://www.economie.gouv.fr/

4 recherche/ lance_recherche.php?

5 mot=";alert(document.cookie)//

6 &search_go=ok

Figure 5: XSS code can be found partial in
URLs. In this example the “"” character (dou-
ble quotes) must be omitted in order for the rest
of the code to produce a valid syntax tree.

parameter is ";alert(document.cookie)//. This frag-
ment does not parse as is. However, when the tar-
get web page is rendered the fragment is attached to
an existing JavaScript expression and the exploit code
runs. Multiple parsing attempts must be carried out,
removing characters from left and right until a valid
JavaScript expression is isolated, in order to detect this
code. xHunter starts parsing from left to right. If the
result does not produce a valid syntax tree, xHunter re-
duces the parsing window by removing a character from
the left. If all characters are consumed, then xHunter
reduces the whole expression by removing a character
from the right, the window is set to the initial size
(minus the removed character) and the whole process
restarts. This strategy results in a high computational
overhead. However, as we have already stated, xHunter
is not meant to be a defense mechanism against XSS
attacks that needs to run in real-time. xHunter is de-
signed to process large web traces for exporting statis-
tics related to XSS attacks.

4. CASE STUDY
In order to perform a preliminary evaluation of xHunter

we test the tool with two samples of URLs. The first
one is collected from XSSed.com, the largest XSS repos-
itory with public access. It contains about 11,000 URLs
which contain XSS attacks and target real web sites.
The second sample contains 1,000 URLs collected from
a monitoring point in an educational organization with
about 1,000 users.

4.1 XSSed.com
XSSed.com is a public XSS repository. It contains

about 11,000 XSS attacks as of March 2010. The repos-
itory classifies all attacks in two categories. One named
“XSS” and the other “Redirection” (or “Frame Redi-
rection”). The latter involves URLs that, when clicked,
perform a redirection from the target web site to a web
site of the attacker’s choice. However, we found many
cases that were misclassified. Many URLs that per-
form a redirection are listed under the “XSS” category.
xHunter has not been designed to detect redirection or

iframe injection. Unfortunately, there is no way to fil-
ter out all these redirection URLs from the original set.

In Table 1 we list properties of the URLs marked as
suspicious. Observe, that xHunter succeeds in identify-
ing 8,204 (out of 10,535) URLs, which are known to be
XSS exploits. Moreover, the most popular exploitation
technique is by using the alert() function. However, as
we have already stated, XSSed.com is a repository hold-
ing proof-of-concept attacks and not real ones. Nev-
ertheless, there are also other popular JavaScript con-
structs used, like document.cookie, document.write()
and String.fromCharCode(). 3 Finally, xHunter records
274 cases where none of the above constructs is used.
For example, there are cases where the exploit code con-
tains: .

In Table 2 we list properties of the URLs marked
as clean. Overall, xHunter marks 2,331 as not suspi-
cious. Since, all URLs are collected from XSSed.com
these are false negatives. However, this is not actually
the case. The sample contains redirections, iframes

and <script> elements that include JavaScript source
code from a third party web site. xHunter has not been
designed to deal with these cases. We also include in the
trace 779 URLs that use HTTP POST instead of HTTP
GET for attacking the web application. XSSed.com
provides this information so we can distinguish all URLs
that use POST from URLs that use GET. The opera-
tion of xHunter does not change in the case that has to
process a POST request. The task of the tool is eas-
ier since the parameters (included in the POST part)
are easily isolated from the rest of the URL. However,
we leave on purpose all these URLs inside the trace to
verify that none of them will be marked as suspicious.
Indeed, xHunter successfully marks all 779 POST URLs
as clean.

By subtracting all the above cases, 268 XSS exploits
remain marked as clean. With manual examination we
find out that these exploits are mixed. Some of them
are redirection attacks (but classified as “XSS” and not
“Redirection”), some other take advantage of web ap-
plication quirks we discussed in Section 3. Thus, we
believe that xHunter has less than 3.2% false negatives.

4.2 Benign URLs
We run xHunter with a second trace, which contains

1,000 URLs collected from a monitoring point in an
educational organization with about 1,000 users. All
URLs are considered benign. xHunter marks 20 URLs
as suspicious. That is, xHunter has about 2% of false
positives. We manually examine the 20 false positives.
All 20 cases are from URLs that use the ‘‘;’’ charac-
ter, which is significant in JavaScript, as a delimiter for

3These categories overlap. For example it is possible for
a URL to contain the code: alert(document.cookie) or
document.write(document.cookie).

5

Occurrences 8,204
alert() 7,895

document.cookie 1013
String.fromCharCode() 550

document.write() 50
Other 274

Table 1: XSSed.com sample. URLs marked as
suspicious.

Occurrences 2,331
Redirection 611
iframe 292

Redirection and iframe 7
<script src=""> 389
 39

POST 779
Other 268

Table 2: XSSed.com sample. URLs marked as
clean.

query parameters instead of ‘‘&’’.
xHunter can be easily enhanced to treat both ‘‘;’’

and ‘‘&’’ characters as delimiters that separate pa-
rameters in a query string. We modify the tool and
we rerun all experiments. The 20 URLs in the benign
trace are not marked as suspicious. The results for the
trace collected from XSSed.com are not altered by this
modification.

5. RELATED WORK
The field of XSS attacks has attracted the interest of

the research community over the last few years. There
are plenty of efforts towards the design of schemes that
aim on protecting web browsers from injections [14, 12,
17, 27, 25, 21, 4]. xHunter differentiates from all these
schemes, since it is not designed for providing any de-
fenses, but statistics about XSS attacks. xHunter can
be considered as a defense mechanism that resembles
the behavior of an IDS, like Snort [22]. Snort has sig-
natures for XSS attacks but these signatures can hardly
cope with obfuscation techniques [13].

xHunter can monitor web attacks that are carried out
in URLs using JavaScript. However, there are plenty
of attacks that xHunter is not designed to deal with.
First, xHunter cannot capture XSS attacks carried out
through file uploads [5], since it can monitor only URLs.
Second, xHunter cannot capture XCS attacks [9]; an
XSS flavor which is carried out through a non-web chan-
nel. Third, exploitation through web client vulnerabil-
ities [24] can be in principle captured, if the exploit is
carried out through JavaScript embedded in a URL.
The same holds also for CSRF [6] attacks. Finally,
xHunter cannot capture web attacks carried out through

SQL injection [3] or the well known drive-by download
attacks [19].

Network monitors have been also developed for injec-
tions in native code. For example nemu [18] attempts
to execute, using emulation, all network traffic in order
to identify a shellcode. In a similar fashion, xHunter at-
tempts to parse all parts of URLs, in order to identify
XSS exploits.

Finally, Noscript [16] and noXSS [20] aim on identi-
fying script injection in the web browser environment.
These tools utilize similar techniques with xHunter. Es-
pecially, noXSS, like xHunter, implements a complete
JavaScript parser for that purpose. It has been shown
that these techniques are not efficient [7] due to high
false positive and false negative rates. However, xHunter
is not meant to be treated as a defense mechanism, but
rather as an XSS network monitor. Thus, xHunter can
be tolerant in false positives and false negatives (al-
though as we show in Section 4, a preliminary prototype
of xHunter does not exceed high false positive/negative
rates).

6. CONCLUSION
In this paper we present xHunter. A tool that is de-

signed for processing large web traces and isolating sus-
picious URLs that contain XSS attack exploits. xHunter
tries to identify parts contained in a URL that produce
a valid JavaScript parse tree. If a fragment produces a
syntax tree of a certain depth, then the URL is consid-
ered suspicious.

xHunter is not meant for providing defenses against
XSS attacks. It rather assists in collecting properties for
performing studies related to XSS attacks. For exam-
ple, xHunter can process network traces collected from
various sensors distributed all over the world and give
answers to questions like How often web sites are tar-
geted with XSS attacks? or Which web sites are the
targets?.

Throughout this paper, we analyze all technical chal-
lenges concerning the implementation of xHunter. Last
but not least, we perform a short evaluation using a
preliminary prototype of the tool. We process about
11,000 URLs that contain XSS exploits, collected from
XSSed.com, and 1,000 benign URLs collected from a
monitoring point in an educational organization with
about 1,000 users. The results suggest that xHunter
has less than 3.2% of false negatives and about 2% of
false positives.

7. ACKNOWLEDGEMENTS
Elias Athanasopoulos, Antonis Krithinakis and Evan-

gelos P. Markatos are also with the University of Crete.
Elias Athanasopoulos is funded by the Microsoft Re-
search PhD Scholarship project, which is provided by
Microsoft Research Cambridge.

6

8. REFERENCES

[1] SpiderMonkey (JavaScript-C) Engine.
http://www.mozilla.org/js/spidermonkey/.

[2] XSS exploit in key example.
http://xssed.com/mirror/33541/.

[3] C. Anley. Advanced SQL injection in SQL server
applications. White paper, Next Generation
Security Software Ltd, 2002.

[4] E. Athanasopoulos, V. Pappas, A. Krithinakis,
S. Ligouras, and E. P. Markatos. xJS: Practical
XSS Prevention for Web Application
Development. In Proceedings of the 1st USENIX
WebApps Conference, Boston, US, June 2010.

[5] A. Barth, J. Caballero, and D. Song. Secure
Content Sniffing for Web Browsers or How to
Stop Papers from Reviewing Themselves. In
Proceedings of the 30th IEEE Symposium on
Security & Privacy, Oakland, CA, May 2009.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust
Defenses for Cross-Site Request Forgery. In
Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS),
2008.

[7] D. Bates, A. Barth, and C. Jackson. Regular
Expressions Considered Harmful in Client-Side
XSS Filters. In Proceedings of the 19th
international conference on World Wide Web
(WWW). ACM New York, NY, USA, 2010.

[8] T. Berners-Lee, L. Masinter, and M. McCahill.
RFC 1738: Uniform Resource Locators (URL),
1994. http://www.ietf.org/rfc/rfc1738.txt.

[9] H. Bojinov, E. Bursztein, and D. Boneh. XCS:
Cross Channel Scripting and Its Impact on Web
Applications. In CCS ’09: Proceedings of the 16th
ACM conference on Computer and
communications security, pages 420–431, New
York, NY, USA, 2009. ACM.

[10] R. Dhamija, J. Tygar, and M. Hearst. Why
Phishing Works. In Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems, pages 581–590. ACM New York, NY,
USA, 2006.

[11] K. Fernandez and D. Pagkalos. XSSed.com. XSS
(Cross-Site Scripting) information and vulnerable
websites archive. http://www.xssed.com.

[12] M. V. Gundy and H. Chen. Noncespaces: Using
Randomization to Enforce Information Flow
Tracking and Thwart Cross-Site Scripting
Attacks. In Proceedings of the 16th Annual
Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 8-11,
2009.

[13] R. Hansen. XSS (Cross-Site Scripting) Cheat
Sheet. Esp: for filter evasion.
http://ha.ckers.org/xss.html.

[14] T. Jim, N. Swamy, and M. Hicks. Defeating Script
Injection Attacks with Browser-Enforced
Embedded Policies. In WWW ’07: Proceedings of
the 16th international conference on World Wide
Web, pages 601–610, New York, NY, USA, 2007.
ACM.

[15] A. Le Hors, P. Le Hegaret, L. Wood, G. Nicol,
J. Robie, M. Champion, and S. Byrne. Document
Object Model (DOM) Level 3 Core Specification.
World Wide Web Consortium, Recommendation
REC-DOM-Level-3-Core-20040407, 2004.

[16] G. Maone. Firefox add-ons: Noscript, 2006.
https://addons.mozilla.org/en-US/firefox/

addon/722.
[17] Y. Nadji, P. Saxena, and D. Song. Document

Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In Proceedings of the 16th
Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 8-11,
2009.

[18] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Emulation-based detection of
non-self-contained polymorphic shellcode. In
C. Krügel, R. Lippmann, and A. Clark, editors,
RAID, volume 4637 of Lecture Notes in Computer
Science, pages 87–106. Springer, 2007.

[19] N. Provos, P. Mavrommatis, M. Rajab, and
F. Monrose. All your iFRAMES point to us. In
Proceedings of the 17th conference on Security
symposium, pages 1–15. USENIX Association,
2008.

[20] J. Reith. Firefox add-ons: noXSS, 2008.
https://addons.mozilla.org/en-US/firefox/

addon/9136.
[21] W. Robertson and G. Vigna. Static Enforcement

of Web Application Integrity Through Strong
Typing. In Proceedings of the 18th USENIX
Security Symposium, Montreal, Quebec, August
2009.

[22] M. Roesch et al. Snort. The Open Source Network
Intrusion System. Web page at
http:// www.snort.org , 1998.

[23] SANS Insitute. The Top Cyber Security Risks.
September 2009. http:
//www.sans.org/top-cyber-security-risks/.

[24] P. Saxena, S. Hanna, P. Poosankam, and D. Song.
FLAX: Systematic Discovery of Client-side
Validation Vulnerabilities in Rich Web
Applications. In Proceedings of the 17th Annual
Network and Distributed System Security
Symposium (NDSS).

[25] R. Sekar. An Efficient Black-box Technique for
Defeating Web Application Attacks. In
Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS),

7

San Diego, CA, Feb. 8-11, 2009.
[26] Symantec Corp. April 2008. 1-3. Retrieved on

2008-05-11. Symantec Internet Security Threat
Report: Trends for July-December 2007
(Executive Summary).

[27] M. Ter Louw and V. Venkatakrishnan. Blueprint:
Precise Browser-neutral Prevention of Cross-site
Scripting Attacks. In Proceedings of the 30th
IEEE Symposium on Security & Privacy,
Oakland, CA, May 2009.

8

