
FSort: External Sorting on Flash-based Sensor Devices

Panayiotis Andreou, Orestis Spanos, Demetrios Zeinalipour-Yazti,
George Samaras, Panos K. Chrysanthis‡

Department of Computer Science, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
‡ Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

{panic,cs05os1,dzeina,cssamara}@cs.ucy.ac.cy, panos@cs.pitt.edu

ABSTRACT
In long-term deployments of Wireless Sensor Networks, it is
often more efficient to store sensor readings locally at each
device and transmit those readings to the user only when
requested (i.e., in response to a user query). Many of the
techniques that collect information from a sensor network
require that the data is sorted on some attribute (e.g., range
queries, top-k queries, join queries, etc.) Yet, the underlying
storage medium of these devices (i.e., Flash media) presents
some unique characteristics which renders traditional disk-
based sorting algorithms inefficient in this context.

In this paper we devise the FSort algorithm, an effi-
cient external sorting algorithm for flash-based sensor de-
vices with a small memory footprint. FSort minimizes the
expensive write/delete operations of flash memory minimiz-
ing in that way the consumption of energy. In particular,
FSort uses a top-down replacement selection algorithm in
order to produce sorted runs on flash media in a log-based
manner. Sorted runs are then recursively merged in order to
yield the sorted result. Our experimentation with real traces
from Intel Research Berkeley show that FSort greatly out-
performs the traditional External Mergesort Algorithm both
in regards to time and energy consumption. We found sim-
ilar advantages in regards to the wearability constraints of
flash media.

1. INTRODUCTION
The improvements in hardware design along with the wide

availability of economically viable embedded sensor devices
make it feasible today to interact and understand the phys-
ical world at an extremely high fidelity [23, 21, 13]. Appli-
cations of Wireless Sensor Networks (WSNs) devices range
from environmental monitoring (such as atmosphere and
habitant monitoring [23, 20, 3]) to seismic and structural [16]
monitoring as well as industry manufacturing [6, 13].

In many WSNs, recorded measurements are continuously
transmitted to a base station for storage and analysis. How-
ever, in long-term deployments it is often preferred to store

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMSN ’09, August 24, 2009, Lyon, France
Copyright c© 2009 ACM 978-1-60558-777-6/09/08 ...$10.00.

measurements locally at each sensor and transmit them to
the user only when requested. Such a scheme is particularly
favored because communication over the radio in a WSN is
far more energy demanding than all other functions, such as
storage [26, 2, 1] and processing [13, 22, 24, 25].

Although storing the data locally at each sensor is more ef-
ficient than transmitting it continuously to a sink point, the
storing process by itself raises some important challenges.
For instance when users perform range queries by a given
attribute, (e.g., “Find GPS locations where humidity is in
the range A to B”), then that requires that the data is se-
quentially organized (i.e., sorted) by the humidity attribute
or that some access method that organizes the given at-
tribute sequentially (e.g., B+Tree) is available. Otherwise,
the query will end up traversing a very large number of data
pages incurring a large read cost. Notice that reading data
off the flash media in large quantities has a significant cost
in its own right. Another example where data needs to be
sorted on flash is when a query aims to JOIN data under a
specific attribute. Such JOIN operations are executed more
swiftly when sorted data exist [15].

Sorting in WSDs can be performed in two modes, i) on-
line: the data is continuously sorted upon the acquisition
of new measurements from the sensors, and ii) offline: the
data is stored on flash using some database scheme and is
periodically sorted upon request. A question that arises is
which of the two approaches delivers the best performance
on flash-based WSDs. Our experimental study presented in
Section 5 suggests that online sorting is two to three orders
of magnitudes worse than offline sorting both for NAND and
NOR flash memory [14].

The majority of WSDs utilize NAND-based flash memory
for storing local measurements; we will further describe this
specific type of flash memory in Section 2.1. NAND-based
flash memory has some unique characteristics which need to
be considered when designing data processing algorithms for
it such as sorting. In Section 4 will address these constraints
when presenting the FSort algorithm.

• Write-Constraint A: The minimum unit of write
operation in flash is a page. Page sizes vary between
256B to 4KB.

• Write-Constraint B: Pages on flash can only be
written in sequential order, i.e., after page pi has been
written, any page pj , 1 ≤ j < i can not be written even
if it is empty.

• Erase-Constraint: A page pi cannot be deleted un-
less the block that contains page pi has been erased.

Block 1 Block 2 Block B...

New record

Step 1. Find position k

...

Step 2. Read block records and erase

...

Step 3. Write records in sorted order

...

Step 4. Repeat Steps 1-3 with the excess record

...

k

Figure 1: Example of Online Sorting

• Wear-Constraint: The number of times a block can
be written or erased is limited (typically between 10,000
to 100,000 times).

• Fast Read/Slow Write-Constraint: Whereas typ-
ically read and write access on a hard disk are almost
identical, in flash it is much faster to read (≈60µs)
rather than to write (≈800µs).

With the above characteristics/constraints of NAND-based
flash memory in mind, we will examine which of the two sort-
ing approaches (online vs. offline) is superior by performing
some preliminary analysis. Let us consider the example de-
picted in Figure 1, which illustrates a flash memory consist-
ing of B blocks each block containing P=4 pages. Also let
the flash memory contain N elements distributed through-
out the blocks in sorted order (at some time τ). Let us
assume that on time τ + 1 a new element arrives and needs
to be stored in sorted order. The first step is to discover
the position k that the new element must be inserted (this
requires log(N) reads assuming a binary search). When k is
found, the block containing k is first read into memory (P
reads) and then erased (due to the Erase-Constraint) such
that it can be updated. If the block contains ≥1 empty
pages then the procedure finishes, otherwise the procedure
continues to the next block with the excess page at hand.
This technique is extremely inefficient to flash memory as it
consists of many write/erase operations that decrease both
the performance and lifetime of flash memory [5]. In fact,
we will demonstrate this level of detriment using a series of
microbenchmarks in Section 5.

On the other hand, offline sorting requires the input to
be sorted and written back to flash in a sequential manner
only when requested. This is generally preferable in the
case of flash memory as it has been shown that continuously
executing random writes (as is the case of online sorting)
greatly degrades the performance (wearability, throughput)
of flash media [5].

Our FSort algorithm extends the basic principles of offline
sorting to further enhance its performance by minimizing the
write/erase operations. This provides efficient access to the
data stored on flash memory while increasing the longevity
of the flash memory by spreading page writes out uniformly
so that the available storage capacity does not diminish at
particular regions of the flash media.

NAND-based flash memory installed on a WSD
Page Read Page Write Block Erase

1.17mA 37mA 57mA
Time 6.25ms 6.25ms 2.26ms

Energy 24µJ 763µJ 425µJ
Page Erase-Write Flash Idle Flash Sleep

43mA 0.068mA 0.031mA
Time 6.75ms N/A N/A

Energy 957µJ 220µJ/sec 100µJ/sec

Table 1: Performance Parameters for NAND-based
flash memory using a 3.3V voltage, 512B Page size
and 16KB Block size

Our Contributions
In this paper we make the following contributions:

• We devise a sorting algorithm, coined FSort, which in-
telligently exploits the characteristics of flash memory
to deliver good performance both in terms of time and
energy;

• We provide an extensive experimental evaluation us-
ing traces from a real sensor network deployment at
Intel Research Berkeley [7] that shows the advantages
of offline over the online sorting and the superiority of
FSort over existing algorithms.

The remainder of the paper is organized as follows: Sec-
tion 2 overviews the related research work and Section 3
formalizes our system model and assumptions. Section 4
introduces the FSort algorithm and its two phases. In Sec-
tion 5 we present our experimental study and finally Sec-
tion 6 concludes our paper.

2. BACKGROUND AND RELATED WORK

2.1 Flash Memory
Flash is a new generation of non-volatile memory that in-

troduces many advantages compared to traditional storage
media, including: shock-resistance, fast read access, low pro-
duction cost and power efficiency. Flash memory is nowa-
days the de-facto storage medium for WSDs and a variety
of other mobile devices.

There are two types of flash memory, namely NOR and
NAND [14] (both names are according to the internal struc-
ture used in the respective media). NOR flash provides
fast read access, slow write/erase time, low density and a
random-access interface. The latter property makes NOR
flash ideal for application or boot code execution as it al-
lows direct access any address location. On the other hand,
NAND-flash has faster write/erase times and requires a smaller
chip area per cell; thus increasing the overall storage ca-
pacity; this also lowers the cost of NAND flash. However,
NAND flash does not allow random access to any memory
location like NOR flash as it operates with a page-size in-
terface.

2.2 Flash-based Databases
In this section we briefly describe some of the most pop-

ular approaches to flash-based databases that try to cope
with the constraints mentioned in the Introduction.

3,4 6,2 9,4 8,7 Input file

3,4 2,6 4,9 7,8

Pass 0

2,3

4,6

4,7

8,9

2,3

4,4

6,7

8,9

Pass 1

Pass 2

Pass 3

1-page runs

2-page runs

4-page runs

Figure 2: External Sorting example with M=3 (2
input and 1 output page buffers).

• Flash Translation Layer (FTL): One way to de-
ploy traditional hard disk-based database software on
flash memory is by utilizing a Flash Translation Layer
(FTL) [12]. FTL maintains an internal mapping ta-
ble between logical and physical pages that translates
write request to flash memory. This approach simpli-
fies the deployment of traditional database software
but it also introduces a significant overhead on flash
memory as most popular database systems require fre-
quent small log writes to store the old and updated
values of data.

• Log Structured: The Log Structured approach (LSA)
[19] differs from FTL as it enables databases to access
flash memory directly. LSA considers the database as
one large log and any update to the database (i.e., log)
is appended at the end of flash memory. This approach
uniformly distributes write requests on flash thus im-
proving both performance and wearability. However,
like FTL, LSA suffers from the existence of frequent
small log writes. Additionally, since only log pages
are written on flash, when a database object (e.g., a
record) is requested it has to be recreated by reading
all associated log pages.

• In-page Logging: A more recent approach, coined
In-page Logging (IPL) [11] tries to overcome the prob-
lems of LSA by storing the log records associated with
a specific database page on the same block thus allow-
ing faster recreation of the database page. However,
frequent small writes also affect the IPL approach.

• AceDB flashlight: AceDB [10] attempts to overcome
the small log frequent writes problem by maintaining
a logical to physical page map in RAM. Additionally,
physical pages are allocated to logical pages on a trans-
action basis which allows for more sequential writes
within a block.

In this work, we assume that the data is structured on
flash media using a pack and append approach. In partic-
ular, new records arising from continuous queries are main-
tained in a buffer and when this buffer reaches the size of a

Symbol Definition
N Flash capacity
M Available main memory (pages)
B Number of Blocks in flash
bi Block with identifier i : 1 ≤ i ≤ B

P Number of Pages in a Block

p
j

i Page with identifier i in block j

Table 2: Definition of Symbols

page the records contained are packed and appended sequen-
tially at the end of the flash, i.e., the next available empty
page. This scheme is highly beneficial as it eliminates fre-
quent small writes to flash media. Additionally this scheme
does not fragment flash memory as it operates in a top-down,
left-to-right manner (assuming a tabular representation of
the flash media), which satisfies the Write-Constraint B.

2.3 External Sorting
Sorting is one of the most fundamental problems in com-

puter science and has been extensively studied by the re-
search community. External sorting arises when the num-
ber of records to be sorted is larger than the available main
memory of the system. The fundamentals of external sort-
ing, including replacement selection and polyphase merging
strategies have been thoroughly analyzed in [8] using tapes
as the storage medium. Since then, many works devised so-
lutions to integrate and improve the performance of external
sorting algorithms (I/O operations, memory requirements)
on hard drives disks [18, 17, 9].

Traditional external sorting algorithms usually consist of
two phases: i) internal sorting, and ii) external merging.
In the internal sorting phase, the input file (size S pages)
is streamed into main memory, sorted on a page-to-page
basis and then written back to flash (Pass 0). The resulting
sorted pages are called runs [8]. As soon as all runs are
generated, the external merging phase starts. Assuming an
available memory of size M (pages), the external merging
phase utilizes 1 page for output and M -1 pages for input
buffers. On each subsequent pass, M -1 runs are fed into
the input buffers and are merged using the output buffer
to produce longer runs. The output buffer is written out to
flush and emptied so as to be used in the next pass. Figure 2
illustrates an example of external sorting with M=3 (2 input
and 1 output page buffers).

3. SYSTEM MODEL
In this section we will formalize our basic terminology and

assumptions. The main symbols and their respective defi-
nitions are summarized in Table 2. For brevity in our de-
scriptions let us denote NAND-based flash memory as flash.
Flash contains B blocks (b1, b2, ..., bB) each containing P

pages. We define p
j
i as page with identifier i : 1 ≤ i ≤ B

that belongs to block bj . We also assume that the WSD has a
main memory module of capacity M (M pages). According
to our data model, each time a WSD acquires measurements
from the sensor-board it stores them sequentially on flash in
a top-down, left-to-right manner. In our experiments, we
assume that a measurement is acquired every 1ms.

At periodic time intervals τ1, τ2, ...(e.g., every 1024ms), a
user posts a query Q to the sensor network that requires

sorted data. Upon reception of Q, a sensor sorts the locally
stored data and transmits it over to its parent in the formed
query routing tree. Note that the amount of data, X, sorted
each time is linearly correlated with τi, i.e., τ1 = X, τ2 =
2X, τ3 = 3X, ... and so on.

4. THE FSORT ALGORITHM
In this section we describe our FSort algorithm. Similar to

the traditional external mergesort algorithm, FSort consists
of two phases, namely the internal sorting phase and the
external merging phase which are described below:

1. Internal Sorting phase: During the internal sorting
phase, M -1 buffers are created in available main mem-
ory that access blocks stored on flash in a sequential
manner. Specifically, this phase produces sorted runs
by streaming data pages into memory, sorting them
using a top-down replacement selection algorithm and
outputting/appending them to the end of the flash me-
dia.

2. External Merging phase: As soon as the sorted
runs of the internal sorting phase are completed the
external merging phase produces the sorted output
by merging the sorted runs recursively until a single
sorted output is produced.

Our initial sorting phase algorithm accesses flash memory
in a top-down manner by initiating a page buffer array in
available memory. Since in WSDs the amount of available
memory is very limited we have chosen to set the size of the
buffer array equal to the number of pages in a block (usually
8-16) [6, 4]. Data pages are continuously traversed until all
input is examined.

The intuition behind our approach is that the measure-
ments generated by continuous queries in WSNs are not al-
tered erratically in small time windows. As a result, our ap-
proach generates longer runs on each pass thus minimizing
the overall number of passes; decreasing in this way both
read, write and erase operations. Furthermore, accessing
pages in a top-down manner frees up empty space at the
top (as soon as all pages in a block have been fed to the
buffer array the block can be erased). This is particularly
useful as the erase of individual pages is not permitted in
flash memory due to the Erase-Constraint mentioned in Sec-
tion 1. Algorithm 1 outlines the operation of the internal
sorting phase of FSort.

Assuming that we have D unsorted data pages and an
available main memory M , our algorithm starts out by ini-
tiating a P -page buffer array, coined Buf , that will be used
to traverse the flash memory in a top-down manner (line
2). We also set the counter CountEmpty to zero (line
3); this counter will be used to halt the procedure when
all buffers are accessing empty or new pages (i.e., we have
read all data pages). The algorithm continues by stream-
ing the pages of the first block into the Buf array (lines
5-7). Next, the algorithm proceeds continuously by select-
ing in each step the smallest key (or highest depending on
the request) including the buffer index, BIndex, that the
key was discovered (line 10) and forwards it to the output
buffer (line 11). This is done efficiently by utilizing a se-
lection tree. As soon as the key is outputted onto flash we
need to retrieve the next page for BufBindex. To do this, we
store in the header of the buffer the current page position

Algorithm 1 : FSort

Input: D unsorted data pages, Available Flash Memory M ,
Buf :P = (M − 1) input buffers, min:1 output buffer
Output: D sorted data pages

1: procedure Sort

2: Allocate(Buf(P)); //Allocate P buffers for input
3: CountEmpty=0; //Terminating counter
4: //Initiate the Buf buffer array
5: for i = 1 to P do

6: set Bufi = p0
i ;

7: end for
8: while true do

9: //find the smallest key (min) and its index in Buf
10: set (min, BIndex) = SelectionTree(Buf);
11: Output(min); //write sorted output to flash
12: //find the next page that the BufBInx must retrieve
13: set BufBIndex− > lastPageRead+ = P ;
14: set PIndex = BufBIndex− > lastPageRead;
15: //check if empty or new page
16: if (!IsEmptyOrNew(pBIndex

PIndex
) then

17: set BufBIndex = pBIndex
PIndex

;
18: else

19: set CountEmpty + +;
20: end if

21: if (CountEmpty == P) then
22: //all buffers read empty pages
23: Break;
24: end if
25: end while

26: Merge();
27: end procedure

(annotated as “Bufi− > lastPageRead”) and assign it to a
temporary variable PIndex while increasing it by 1 at the
same time (to access the next page) (line 13-14). If the page
pointed by PIndex is empty or if a sorted page has been
outputted to this position (line 16) then we simply increase
counter CountEmpty (line 19); this also removes the Buffer
from the selection tree, otherwise we load the new page to
the current buffer (line 17). Finally, we test if there exists
more than one buffer accessing data pages and if not we exit
the loop (line 21-24). The procedure ends by recursively
merging the runs (line 26).

As soon as the internal sorting phase begins, the sorted
runs are merged into longer runs by the external merging
phase. This procedure continuous recursively and termi-
nates when a single sorted run is generated.

5. EXPERIMENTS
In this section we present an experimental evaluation of

the FSort algorithm.

5.1 Experimental Methodology
In order to evaluate the efficiency of our approach we de-

veloped a flash-based simulator in C++. Our simulator sup-
ports both NOR and NAND-based flash media settings and
the functions read and write. All experiments were per-
formed on a PC running Ubuntu Linux with 2GB of mem-
ory and an Intel Core 2 Duo CPU running at 2.4GHz.

Power Model: We adopt the power model of the RISE
platform [26] which consists of the following parameters:
We use a 14.8 MHz 8051 core operating at 3.3V with the
following current consumption 14.8mA (On), 8.2mA (Idle),
0.2ţA (Off). We utilize a 128MB flash media with a page

size of 512B and a block size of 16KB. The current to read,
write and block delete was 1.17mA, 37mA and 57µA and the
time to read in the three pre-mentioned states was 6.25ms,
6.25ms, 2.27ms.

Datasets: We utilize a real trace of sensor readings that
is collected from 58 sensors deployed at the premises of
the Intel Research in Berkeley [7] between February 28th
and April 5th, 2004. The sensors utilized in the deploy-
ment were equipped with weather boards and collected time-
stamped topology information along with humidity, temper-
ature, light and voltage values once every 31 seconds (i.e.,
the epoch). The dataset includes 2.3 million readings col-
lected from these sensors.

Algorithms: We first implement the External Insertion-
Sort and External MergeSort algorithms for comparing the
online vs. the offline sorting approaches on flash-based me-
dia. We then implement the FSort algorithm and compare it
against a version of the External MergeSort algorithm that
utilizes M -1 buffer pages for input and one for output.

5.2 Experimental Results
In this Section we present the results of our experimental

study.

A. Online vs. Offline Sorting on Flash
In our first experimental series we have conducted a micro
benchmark that shows the deficiencies of online sorting on
flash memories used in WSDs. We have implemented: i)
the InsertionSort algorithm, and ii) the External MergeSort
algorithm for benchmarking the online and offline sorting
approaches respectively. We feed 1000 records (1 record per
page) to our simulator and record the number of read, write
and erase operations which we then translate into time and
power consumption. Note, that we do not consider the en-
ergy required for executing the query as both approaches
require the same energy for the given operation.

The results for both NOR and NAND-based flash mem-
ories are depicted on Table 3. We observe that the offline
sorting approach greatly outperforms the online approach
on NAND and NOR-based flash memory both with regards
to power and time. Specifically, we observe a decrease of
power consumption and time by 3 orders of magnitudes on
NAND-based flash memory and 2 orders of magnitudes on
NOR-based flash memory.

B. Power Consumption
In our second experimental series we measure the energy and
time performance of FSort and compare it with the exter-
nal Mergesort algorithm which the latter utilizes M -1 input
buffers. We run experiments using three different attributes
included in our dataset, namely temperature, humidity and
light. The sensor records one attribute every 1ms and a
query requests sorted results every 1024ms. Our simulator
executes both the external MergeSort and FSort algorithms
every 1024ms and collects energy and time statistics every
1024=1K records. Each experiment is executed 10 times
and the average is collected.

Figure 3 illustrates the results of our evaluation with re-
gards to energy consumption1 for the light attribute; similar
results apply to the humidity and temperature attributes.

1We omit the results of time performance as they are highly

Power (mJ) Read Write Erase

NAND-flash
Online 47815 1519376 105789
Offline 96 3052 213

NOR-flash
Online 5998 189921 48279
Offline 96 3052 776

Time (s) Read Write Erase

NAND-flash
Online 12452 12446 563
Offline 25 25 1

NOR-flash
Online 1562 1546 122
Offline 25 25 2

Table 3: Performance comparison of the Online
(InsertionSort) and Offline (MergeSort) Sorting ap-
proaches

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

32K16K8K4K2K1K

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Data Pages

Energy Consumption Performance NAND-Flash

MergeSort
FSort

Figure 3: Energy Consumption performance com-
parison of External MergeSort and FSort for the
light attribute. Sorting occurs every 1K records.

We observe that FSort always maintains a competitive ad-
vantage over MergeSort for all data sizes (1-32K). The initial
energy savings for 1K are ≈25% but as the number of records
increases the energy savings also increase reaching as high as
≈41%. This is augmented to the fact that FSort minimizes
write and erase operations by releasing continuous blocks of
pages every time which are the most expensive operations;
this also increases the longevity of flash memory.

6. CONCLUSIONS
In this paper we proposed a novel flash-aware and power-

efficient algorithm coined FSort. FSort takes into account
the limitations of WSNs as well as the characteristics / con-
straints of flash memory used in WSDs and improves both
overall execution and response time performance.

Our experiments with real traces show that FSort, greatly
outperforms the traditional external mergesort approach both
with regards to time and energy performance (25-41% de-
crease in overall energy consumption), by minimizing write
and erase operations which are the most expensive oper-
ations on flash. This also increases the longevity of flash

correlated with energy consumption and do not present any
new findings.

memory as it only allows a limited number of write opera-
tions on each cell.

In the future we plan to extend our work by including
index structures in order to access the data more efficiently
(i.e., minimize read operations). Additionally, we plan to
assess the efficiency of our approach on other popular types
of flash memory like SSDs.

Acknowledgments
This work was supported in part by the Open University of
Cyprus under the project SenseView, the US National Sci-
ence Foundation under the project AQSIOS (#IIS-0534531),
the European Union under the project mPower (#034707)
and IPAC (#224395), and the Cyprus national project GEI-
TONIA (#ΠΛYΠH/0506/31).

7. REFERENCES
[1] Aly M., Chrysanthis P.k., Pruhs K., “Decomposing

Data-Centric Storage Query Hot-spots in Sensor
Networks”, In MOBIQUITOUS, 2006.

[2] Aly M., Pruhs K., Chrysanthis P.k., “KDDCS: a
load-balanced in-network data-centric storage scheme
for sensor networks”, In CIKM pp.317-326, 2006.

[3] Andreou P., Zeinalipour-Yazti D., Vassiliadou M.,
Chrysanthis P.K., Samaras G., ”KSpot: Effectively
Monitoring the K Most Important Events in a Wireless
Sensor Network”, In ICDE, 2009.

[4] Atmel AT45DB041B, http://www.atmel.com/

[5] Bouganim L., Jonsson B.T., Bonnet P.,
“uFLIP:Understanding Flash IO Patterns”, In CIDR,
2009.

[6] Crossbow Technology Inc., http://www.xbow.com/

[7] Intel Lab Data
http://db.csail.mit.edu/labdata/labdata.html

[8] Knuth D.E., “The Art of Computer Programming:
Sorting and Searching” Addison Wesley, Vol. 3, April
1997, ISBN:0-201-89685-0.

[9] Larson P., Graefe G., “Memory management during run
generation in external sorting”, In ACM SIGMOD,
pp.472-483, 1998.

[10] Lee K.Y., Kim H., Woo K., Chung Y.D., Kim M.H.,
“Design and implementation of MLC NAND
flash-based DBMS for mobile devices”, In Journal of
Systems and Software, 2009.

[11] Lee S., Moon B., “Design of Flash-Based DBMS: An
In-Page Logging Approach”, In ACM SIGMOD,
pp.1-10, 2007.

[12] Lee S., Park D., Chung T., Lee D., Park S., Song, H.,
“A log buffer-based flash translation layer using
fully-associative sector translation”, In ACM (TECS),
Vol.6, No.3, pp.18, 2007.

[13] Madden S.R., Franklin M.J., Hellerstein J.M., Hong
W., “TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks”, In USENIX OSDI, Vol.36,
pp.131-146, 2002.

[14] Masuoka F., Iizuka H., “Semiconductor memory device
and method for manufacturing the same ”, US
patent:4531203, July,1985.

[15] Elmasri R., Navathe S.B., “Fundamentals of Database
Systems (5th Edition):Chapter:15.3.2” Addison Wesley,

2007, ISBN:0-321-41506-X.

[16] Ning X., Sumit R., Krishna K.C., Deepak G., Alan B.,
Ramesh G., Deborah E., “A wireless sensor network For
structural monitoring”, In ACM SenSys, pp.13-24, 2004.

[17] Nyberg C., Barclay T., Cvetanovic Z., Gray J., Lomet
D., “AlphaSort: a cache-sensitive parallel external sort”,
In VLDB, Vol.4, No.4, pp.603-628, 1995.

[18] Pang H., Carey M.J., Livny M., “Memory-Adaptive
External Sorting”, In VLDB, pp.618-629, 1993.

[19] Rosenblum M., Ousterhout J.K., “The design and
implementation of a log-structured file system”, In
ACM TOCS, Vol.10, No.1, pp.26-52, 1992.

[20] Sadler C., Zhang P., Martonosi M., Lyon S.,
“Hardware Design Experiences in ZebraNet”, In ACM
SenSys, pp.227-238, 2004.

[21] Selavo L., Wood A., Cao Q., Sookoor T., Liu H.,
Srinivasan A., Wu Y., Kang W., Stankovic J., Yound
D., Porter J., “LUSTER: wireless sensor network for
environmental research”, In ACM SenSys, pp.103-116,
2007.

[22] Sharaf M.A. , Beaver J., Labrinidis A. and
Chrysanthis P.K., “TiNA: a scheme for temporal
coherency-aware in-network aggregation”, In MobiDe,
pp.69-76, 2003.

[23] Szewczyk R., Mainwaring A., Polastre J., Anderson J.,
Culler D., “An Analysis of a Large Scale Habitat
Monitoring Application”, In ACM SenSys, pp.214-226,
2004.

[24] Yao Y., Gehrke J.E., ”The cougar approach to
in-network query processing in sensor networks”, In
SIGMOD Record, Vol.32, No.3, pp.9-18, 2002.

[25] Zeinalipour-Yazti D., Andreou P., Chrysanthis P. and
Samaras G., “MINT Views: Materialized In-Network
Top-k Views in Sensor Networks”, In IEEE MDM, 2007.

[26] Zeinalipour-Yazti D., Lin S., Kalogeraki V.,
Gunopulos D., Najjar W., “MicroHash: An Efficient
Index Structure for Flash-Based Sensor Devices”, In
Usenix FAST, pp.31-44, 2005.

