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Abstract—In this paper we present MicroPulse, a novel frame-
work for adapting the waking window of a sensing device S based
on the data workload incurred by a query Q. Assuming a typical
tree-based aggregation scenario, the waking window is defined as
the time interval τ during which S enables its transceiver in order
to collect the results from its children. Minimizing the length of
τ enables S to conserve energy that can be used to prolong
the longevity of the network and hence the quality of results.
Our method is established on profiling recent data acquisition
activity and on identifying the bottlenecks using an in-network
execution of the Critical Path Method. We show through trace-
driven experimentation with a real dataset that MicroPulse can
reduce the energy cost of the waking window by three orders of
magnitude.

Index Terms—Critical Path Method, Waking Window,
Scheduling, Sensor Networks.

I. INTRODUCTION

Recent advances in embedded computing have made it fea-
sible to produce small scale sensors, actuators and processors
that can be used for ad-hoc deployments of environmental
monitoring infrastructures [13], [5], [9]. The longevity of
a Wireless Sensor Network (WSN) heavily relies on the
existence of power-efficient algorithms for the acquisition,
aggregation and storage of the sensor readings.

Communicating over the radio in a WSN is the most
energy demanding factor among all other functions, such as
storage [17] and processing [9]. The energy consumption for
transmitting 1 bit of data using the MICA mote is approx-
imately equivalent to processing 1000 CPU instructions [9].
One way to cope with the energy challenge is to power down
the radio transceiver during periods of inactivity. In particular,
it has been shown that sensors operating at a 2% duty cycle
can achieve lifetimes of 6-months using two AA batteries [8].

The continuous interval during which a sensor node S
enables its transceiver, collects and aggregates the results from
its children, and then forwards them all together to its own
parent is defined as the waking window τ . Note that τ is
continuous because it would be very energy-demanding to
suspend the transceiver more than once during the interval
of an epoch, which specifies the amount of time that sensors
have to wait before re-computing a continuous query.

It is important to mention that the exact value of τ is query-
specific and can not be determined accurately using current
techniques. For instance a sensor does not know in advance
how many tuples it will receive from its children. Choosing the
correct value for τ is a challenging task as any wrong estimate
might disrupt the synchrony of the query routing tree.

The objective of this work is to automatically tune τ ,
locally at each sensor without any a priori knowledge or user
intervention. Note that in defining τ we are challenged with
the following trade-off:

• Early-Off Transceiver: Shall S power-off the transceiver
too early reduces energy consumption but also increases
the number of tuples that are not delivered to the sink, the
root of the routing tree. As a result the sink will generate
an erroneous answer to the query Q; and

• Late-Off Transceiver: Shall S keep the transceiver ac-
tive for too long decreases the number of tuples that are
lost due to powering down the transceiver too early but
also increases energy consumption. Thus, the network
will consume more energy than necessary which is not
desirable given the scarce energy budget of each sensor.

In this paper we present MicroPulse, a novel framework
for adapting the waking window of a sensing device S based
on the data workload incurred by a query Q. Our ideas are
established on profiling recent data acquisition activity and on
identifying the bottlenecks using an in-network execution of
the Critical Path Method.

The Critical Path Method (CPM) [10] is a graph-theoretic
algorithm for scheduling project activities. It is widely used
in project planning (construction, product development, plant
maintenance, software development and research projects).
The core idea of CPM is to associate each project milestone
with a vertex v and then define the dependencies between
the given vertices using activities. For instance, the activity
vi ⇐ vj denotes that the completion of vi depends on the
completion of vj . Each activity is associated with a weight

(denoted as
weight⇐ ) which quantifies the amount of time that

is required to complete vi assuming that vj is completed. The
critical path allows us to define the minimum time or otherwise
the maximum path that is required to complete a project (i.e.,
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Fig. 1. The figure illustrates nine sensing devices (shown as vertices) and the
respective time cost (shown as edges) to transfer the results from an arbitrary
and continuous query Q to the sink (s0). MicroPulse utilizes this information
in order to locally adapt the waking window of each sensor using the Critical
Path Method.

milestone v0). Any delay in the activities of the critical path
will cause a delay for the whole project.

In order to adapt the discussion to a sensor network context
assume that each sensor si is represented by a CPM vertex.
More formally, we map each si to the elements of the vertex
set V = {v1, v2, . . . , vn} using a 1:1 mapping function f :
si → vi, i ≤ n. Also, let the descendent-ancestor relations of
the sensor network be denoted as edges in this graph.

An example with 9 sensing devices {s1, . . . , s9} is illus-
trated in Figure 1. The weights on the edges define the required
time to propagate the query results between the respective
pairs. It is easy to see that the total time to answer the query
at the sink in the given network is at least ψ = 99, since the
critical path is s0

40⇐ s1
30⇐ s3

29⇐ s8.
Having this information at hand enables the scheduling of

transmission between sensors. In particular, sensor si can be
scheduled to wake-up and transmit at the following deadlines
(wi): w1 = ψ−40 = 59, w2 = w1−13 = 46, w3 = w1−30 =
29, w4 = w1 − 22 = 37 while s0 and s1 will be listening
for these transmissions during the intervals τ0=[59..99) and
τ1=[29..59) respectively. The same intuition also applies for
the leaf nodes, e.g., s5 starts transmission at w5 = w2 − 11 =
35 and s2 listens for this transmission in the range τ2=[35..46).
Additionally, the critical path enables a sensor x to estimate
the interval during which its parent y will have its transceiver
enabled. This is very useful because in the subsequent epochs
and under a different workload, x can find out if it can deliver
the new workload without first asking y to adjust its waking
window.

It should be noted that the edges in Figure 1 have different
weights. This is very typical for a sensor network as the link
quality can vary across the network [13]. Another reason is
that some sensors might return more tuples than other sensors.

Note that our scheduling scheme is distributed which
makes it fundamentally different from centralized scheduling
approaches like DTA [16] and TD-DES [1] that generate
collision-free query plans at a centralized node. Additionally,
our approach is also different from techniques such as [12]
which segment the sensor network into sectors in order to
minimize collisions during data acquisition.

Our Contributions

In this paper we make the following contributions:

• We formulate the problem of adapting the waking win-
dow τ of a sensing device in order to conserve energy
that can be used to prolong the longevity of the network
and hence the quality of results.

• We solve the waking window problem by combining a
custom profiling structure and the critical path method.

• We experimentally validate the efficiency of our solution
using real sensor dataset from Intel Research [6].

The remainder of the paper is organized as follows: Section
II studies the waking window mechanism of popular data
acquisition systems and discusses the advantages and shortages
for each of these systems. Section III presents the underlying
algorithms of the MicroPulse Framework. Section IV presents
the experimental study using a trace-driven simulator and
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section we study the waking window mechanism
of the two most popular declarative acquisition frameworks:
TAG [9], [8] and Cougar [15]. We start out our description by
assuming that the query Q has been disseminated to n sensors.

Tiny Aggregation (TAG): In this approach, the epoch e
is divided into a number of fixed-length time intervals
{e1, e2, . . . , ed}, where d is the depth of the routing tree,
rooted at the sink, that conceptually interconnects the n
sensors. The core idea of this framework is summarized as
follows: “when nodes at level i+1 transmit then nodes at level
i listen”. More formally, a sensor si enables its transceiver at
chronon wi = �e/d�∗(d−depth(si)) and keeps the transceiver
active for τi = �e/d� chronons. Note that

∑0
i=d(ei) provides

a lower-bound on e, thus the answer will always arrive at
the sink before the end of the epoch. Setting e as a prime
number ensures the following inequality

∑0
i=d(ei) < e, which

is desirable given that the answer has to reach the sink at
chronon e.

For instance, if the epoch is 31 seconds and we have a
three-tiered network (i.e., d=3) like Figure 2 (top, left), then
the epoch is sliced into three segments {10,10,10}. During
interval [0..10), nodes at level 3 will transmit while nodes
at level 2 will listen; during interval [10..20) level 2 nodes
transmit while level 1 nodes listen; and finally during [20..30),
level 1 nodes transmit and the sink (level 0) listens. Thus, the
answer will be ready prior the completion of chronon 31 which
is the end of the epoch.

The parent wake-up window τ is an over-estimation (in
the above example 10 seconds!) of the actual time that is
required to transmit between the children and a parent . The
rationale behind this over-estimation is to offset the limitations
in the quality of the clock synchronization algorithms [9] but
in reality it is too coarse. In the experimental Section IV, we
found that this over-estimation is three orders of magnitude
larger than necessary.
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Fig. 2. The Waking (Listening) Window (τ ) in TAG, Cougar and MicroPulse.

Additionally, it is not clear how τ is set under a variable
workload which occurs under the following circumstances: i)
from a non-balanced topology, where some nodes have many
children and thus require more time to collect the results from
their dependents; and ii) from multi-tuple answers, which are
generated because some nodes return more tuples than other
nodes (e.g. because of the query predicate).

The MicroPulse framework presented in this paper grace-
fully handles both cases of variable workload by utilizing the
Critical Path Method. Our framework, like TAG, utilizes the
TinyOS MAC layer [14] to handle the collisions that will occur
if nodes in the same vicinity transmit during the same interval.

Cougar: In this approach, each sensor maintains a waiting list
that specifies the children for each node. Such a list can be
constructed by having each child explicitly acknowledging its
parent during the query dissemination phase. Having the list of
children enables a sensor to shut down its transceiver as soon
as all children have answered. This yields a set of non-uniform
waking windows {τ1, τ2, . . .} as opposed to TAG where we
have a single τ which is uniform for all sensors (i.e., �e/d�).

The main drawback of Cougar is that a parent node has to
keep its transceiver active from the beginning of the epoch
until all children have answered. In particular, it holds that
τi > τj if depth(vi) < depth(vj). In order to cope with
children sensor that may not respond, Cougar deploys a
timeout h. To understand the drawback of Cougar consider
Figure 2 (top, right), where level 2 and level 1 nodes have
activated their transceivers at chronon zero and wait for the
leaf nodes to respond. If we have a failure at any given node
x, then each node on the path x → . . . → s0 (sink), has to
keep its radio active for h additional seconds.

III. THE MICROPULSE FRAMEWORK

In this section we describe the underlying algorithms of
the MicroPulse Framework. We divide our description in the
following three conceptual phases:

1) Construction Phase, executed once prior the execution
of Q, during which the sink constructs the routing tree
and becomes aware of the critical path cost ψ.

2) Pulse Phase, executed once prior the execution of Q,
during which each sensor si tunes its wake-up chronon
wi and waking window τi according to the value ψ.

3) Adaptation Phase, executed when a topology or work-
load change occurs which results in a new critical path.

A. The Critical Path Construction Phase

This phase starts out by having each node sj select one
node si as its parent. This results in a waiting list similarly to
Cougar [15]. To accomplish this task, the parent si is notified
through an explicit acknowledgement or becomes aware of
sj’s decision by snooping the radio. Note that in both TAG [9]
and Cougar [15] nodes select as their parent whichever sensor
forwarded the query first. Alternatively, nodes could have
chosen as their parent the neighbor with the smallest hop count
from the sink or the one with the highest signal strength. In
more recent frameworks, like GANC [11] and Multi-Criteria
Routing [7], sensors select their parents based on query seman-
tics, power consumption, remaining energy and others. In more
unstable topologies a node can maintain several parents [4] in
order to achieve fault tolerance but this might impose some
limitations on the type of supported queries. Nevertheless, all
these alternatives are supplementary to this step.

In the next step, we profile the activity of the incoming and
outgoing links, and then propagate this information towards
the sink. In particular, we execute one round of data acquisition
where each sensor si maintains one counter for its parent con-
nection (denoted as sout

i ) and one counter per child connection
(denoted as sin

i,j), where j denotes the identifier of the child.
These counters measure the time that is required to transmit the
tuples between the respective sensors and will be utilized as
indicators of the link workload in the subsequent epochs. Note
that these counters account for more time than what is required
had we assumed a collision-free MAC channel. Additionally,
it is important to mention that we could have deployed a more
complex structure rather than the counters sout

i and sin
i,j . That

would allow a sensor to obtain a better statistical indicator of
the link activity. By projecting the time costs obtained for each
edge to a virtual spanning tree creates a distributed structure,
similar to the one depicted in Figure 1.

The final step is to percolate these local edge costs to
the sink by recursively executing the following in-network
function at each sensor si:

ψi =

{
0 if si is a leaf node,

max∀j∈children(si)(ψj + sin
i,j) otherwise.

The critical path cost is then ψ0 (denoted for brevity as ψ).
Using our working example of Figure 1, we will end up with
the following values : ψ5≤i≤9 = 0, ψ4 = 4, ψ3 = 29, ψ2 = 11,
ψ1 = 59 and ψ0 = 99.

B. The Pulse Phase

In this phase we shape the waking window τi and the wake-
up chronon wi of each sensor by disseminating ψ, constructed
during phase 1, in the network. Algorithm 1 presents the main
steps of this procedure which has a message complexity of



Algorithm 1 : MicroPulse: The Pulse Phase
Input: n sensing devices {s1, s2, . . . , sn} and the sink s0, the
Critical Path cost ψ, the epoch e.
Output: A set of n waking windows {τ1, τ2, . . . , τn} and n
wake-up times {w1, w2, . . . , wn}.
Execute these steps beginning from s0 (top-down):

1) If ψ > e then abort “The Critical Path is larger than
the Epoch”.

2) Find the maximum sin
i,j in si’s children and denote the

identifier of this sensor as maxchild. Now calculate the
waking time wi as follows:

wi = ψ − sin
i,maxchild − a− b− c, (1)

where a, b and c are three variables which offset the
costs of processing, the inaccurate clock and collisions
at the MAC layer. The waking window is the interval:

τi = [wi..(wi + sin
i,maxchild)) (2)

3) Now disseminate ψ to si’s children. Upon receiving ψ,
each child node sj decreases ψ locally, as follows:

ψ = ψ − sout
j (3)

4) At the same time with step 3, disseminate sin
i,maxchild to

si’s children. This information, will be useful to define
the latency tolerance (λi) of si in the next adaptation
phase.

5) Repeat steps 2-4, recursively until all sensors in the
network have set wi and τi respectively (i ≤ n).

O(n). At the end of the algorithm execution each sensor knows
exactly when it should wake up (i.e., wi) and for how long
(i.e., τi).

To facilitate our presentation assume that the processing,
the inaccurate clock and collisions at the MAC layer
costs, denoted as a, b and c respectively, are all equal to
zero. Executing Algorithm 1 on the example of Figure 1
which has a ψ equal to 99 along with an epoch e of 100
yields the following triples (si, wi, τi): { (s0, 59, [59..99)),
(s1, 29, [29..59)), (s2, 46, [46..59)), (s3, 29, [29..59)),
(s4, 37, [37..59)), (s5, 35, [35..46)), (s6, 39, [39..46)),
(s7, 27, [27..29)), (s8, 0, [0..29)), (s9, 33, [33..37)) }

C. Adaptation Phase

In this section we summarize the main ideas behind the
adaptation phase which adjusts the critical path in cases of
workload or topology changes.

To motivate our discussion, consider the scenario where a
child in round (r+1) requires more time to deliver the results
to its parent than in round r (i.e., an increased workload). In
the worst case this might require a complete reconstruction of
the critical path cost. Fortunately, the structures deployed by
MicroPulse enable a child to know the interval during which
its parent will have an active transceiver. Therefore, the given

child may be able to start delivering the workload earlier, if
so, succeeding in completing the transmission on-time.

In particular, each sensor si knows the maximum incoming
edge of its parent X from step 4 of Algorithm 1, denoted as
sin

X,maxchild. The child si then calculates the latency tolerance1

λi of its parent X as follows:

λi = sin
X,maxchild − sout

i (4)

Note that λi provides a sensor si with the maximum leeway
from the workload indicator sout

i . For instance in Figure 1,
s7 calculates λ7 = 29 − 2 = 27. Thus, s7’s workload can
increase by 27 chronons without affecting the synchrony of
the query routing tree. The same also applies to the opposite
case, where we have a decrease in the workload sout

i . If si is
not on the critical path then there is absolutely no consequence
on efficiency. If on the other hand, si is on the critical path
then a decrease in sout

i might result in some waste of energy
as si’s parent will have a larger τ than necessary.

In order to cope with such cases and the fact that
sin

X,maxchild might change or λi might become negative, we
reconstruct and re-pulse the critical path in the network period-
ically after a certain number of changes, failures or collisions.
However, these updates represent the minority of the cases
as our framework is tailored for stationary wireless sensor
networks where the critical path will not change frequently.
In the future we plan to devise more elaborate algorithms to
cope with the adaptation under more dynamic environments.

IV. EXPERIMENTAL EVALUATION

In this section we describe our experimental methodology
and the results of our evaluation.

A. Experimental Methodology

We adopt a trace-driven experimental methodology in which
a real dataset from n sensors is fed into our custom-built
simulator. Our methodology is as following:

Algorithms: We have implemented the TAG, Cougar and
MicroPulse waking window algorithms. We utilize a failure
rate of 20% where a sensor has a probability of 0.2 to not
participate in a given epoch. We set the child waiting timer h
to 200ms.

Sensing Device: We use the energy model of Crossbow’s
new generation TelosB [2] sensor device to validate our ideas.
TelosB is a ultra-low power wireless sensor equipped with a
8 MHz MSP430 core, 1MB of external flash storage, and a
250Kbps RF Transceiver that consumes 23mA when the radio
is on, 1.8mA in active mode with the radio off and 5.1µA in
sleep mode. Our performance measure is Energy, in Joules,
that is required at each discrete chronon to resolve the query.
The energy formula is as following: Energy(Joules) =
V olts × Amperes × Seconds. For instance the energy to
transmit 30 bytes at 1.8V is : 1.8V × 23 ∗ 10−3A × 30 ∗
8bits/250kbps = 39µJ .

1The latency tolerance is often also referred to as slack.
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Dataset: We utilize a real dataset from Intel Berkeley
Research [6]. This dataset contains data that is collected from
58 sensors deployed at the premises of the Intel Research in
Berkeley between February 28th and April 5th, 2004. The
motes utilized in the deployment were equipped with weather
boards and collected time-stamped topology information along
with humidity, temperature, light and voltage values once
every 31 seconds (i.e., the epoch). The dataset includes 2.3
million readings collected from these sensors. We use readings
from the 52 sensors that had the largest amount of local
readings since some of them had many missing values. Our
query is “SELECT moteid, temp FROM sensors”. The depth
of the query spanning tree is 14.

B. Energy Consumption

In order to assess the efficiency of the MicroPulse algorithm
we measure the energy that is spent on the waking window
for the n sensors in isolation from the rest components (flash,
weather board, etc.). In particular, we measure the time that
is spent in each MicroPulse phase and then multiply this by
the respective current and voltage. Figure 3 shows that the
aggregate energy consumption for the 52 sensors under TAG,
requires 7,984mJ. This is three orders of magnitude more
than what the MicroPulse algorithm requires (13.75±0.58mJ).
The big difference in performance is clearly attributed to the
uniform size of τ in TAG which is ≈ 2.21 seconds (i.e., 31
(seconds) / 14 (depth)), while in MicroPulse τ is only 146ms
on average.

The same figure also shows that the Cougar algorithm
requires on average 288.97±24.42mJ which is one order of
magnitude more than the energy required by MicroPulse. The
disadvantage of the Cougar algorithm originates from the
fact that the parents keep their transceivers enabled until all
the children have answered or until the local timer h has
expired (in cases of failures). Thus, any failure is automatically
translated into a chain of delayed waking windows all of which

consume more energy than necessary. This is shown by the
third line in which Cougar under no failures requires only
42mJ which is only the 14% of what Cougar requires under
failures. It is interesting to highlight that MicroPulse maintains
a competitive advantage even over Cougar (no failures).

V. CONCLUSIONS AND FUTURE WORK

This paper studies the problem of optimizing the length of
the waking window in sensor networks in order to conserve
energy. Our ideas are established on profiling recent data
acquisition activity and on identifying the bottlenecks using
the Critical Path Method. We have described the core ideas
of our framework and some preliminary experimental results
using our trace-driven simulator with real datasets from Intel
Research. We found that MicroPulse offers tremendous energy
reductions under realistic conditions. In the future we plan to
devise efficient adaptation algorithms which will be triggered
in cases of variable workload between consecutive chronons.
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