
Are you sure you
want to use MMAP

in your database
management system

Presenter: Antonis Louca

Arguments
❏ Because of MMAP benefits

❏ DBMS developers are seduced to use it as a buffer pool alternative
❏ Severe correctness and performance issues are unapparent
❏ MMAP is not suitable to replace traditional buffer pool

Potential benefits to use MMAP
❏ Easy to use
❏ Low engineering cost
❏ Use pointers to access data

❏ OS handles space management transparently
❏ Returns pointers to OS’s page cache

❏ Lower performance overhead
❏ No cost from read/write system calls

❏ Lower total memory consumption

Buffer Pool vs MMAP
❏ Use of a buffer pool

❏ Component which interacts with secondary storage
❏ Moves pages between secondary storage and main memory
❏ Provides illusion that whole database exists in main memory
❏ Provides complete control of page fetching and eviction to DBMS

Buffer Pool vs MMAP
❏ Use of MMAP

❏ MMAP is a feature provided by the OS
❏ DBMS gives responsibility of data movement to OS
❏ OS keeps its own file mapping and page cache
❏ MMAP maps a file from secondary storage to DBMS’s virtual address space
❏ OS loads pages lazily when DBMS accesses them

❏ Pages loaded only when referenced
❏ Page loading and eviction is done transparently by the OS

MMAP overview

Posix API system calls
❏ mmap

❏ Causes the OS to map file into DBMS’s virtual address space
❏ madvice

❏ Gives the ability to give hints to the OS about data access patterns.
❏ File granularity or page range granularity

❏ mlock
❏ Allows DBMS to pin pages in memory, so that OS never evicts them

❏ msync
❏ Flushes memory range to secondary storage

Some Databases that used MMAP
❏ MongoDB
❏ InfluxDB
❏ SingleStore
❏ TitleDB
❏ Scylla

Problems with MMAP

Problem 1: Transactional Safety
❏ DBMS must ensure that transparent paging does not violate transactional safety guarantees

❏ OS due to transparent paging can flush a dirty page in secondary storage at any time,
without knowing if transaction has committed or not.

❏ Update handling methods:
❏ OS copy-on-write
❏ User space copy-on-write
❏ Shadow paging

Problem 1: Transactional Safety
❏ OS copy-on-write

❏ Create two copies of the DB file with mmap, initially in the same physical pages
❏ 1 copy is a primary copy and the other is a private workspace
❏ Update → modify affected pages in private work space

❏ Transparently copy to new physical pages
❏ Remap virtual memory addresses to the copies and apply changes
❏ Primary copy does not see these changes and won’t be written

❏ Need to use Write-ahead-log (WAL) to record changes
❏ When transaction commits the DBMS flushes the WAL records on secondary storage
❏ Secondary thread applies changes to primary copy

Problem 1: Transactional Safety
❏ OS copy-on-write

❏ Problems:
❏ Must ensure updates for committed transactions propagated to primary copy

before running conflicting transactions
❏ Private workspace grows as number of updates grow and result in two full copies in

memory

Problem 1: Transactional Safety
❏ User space copy-on-write

❏ Manually copy affected pages from mmap-backed memory to a buffer in user space
❏ Update → only the copies and create WAL records
❏ When WAL records are written in secondary storage →updates can propagate to

mmap-backed pages.
❏ Shadow paging

❏ Maintains two copies shadow and primary
❏ Both are backed by mmap
❏ On update

❏ DBMS copies affected pages to shadow copy, and applies changes
❏ Flush modified pages to secondary storage
❏ Shadow copy is the new primary and primary the new shadow copy

Problem 2: I/O stalls
❏ MMAP does not support asynchronous reads

❏ Traditional buffer pool can use asynchronous read requests for non-contiguous pages
❏ Avoids thread blocking
❏ Masks latency

❏ Read-only queries can trigger blocking pages faults
❏ OS transparently evicts pages
❏ When read-only queries access evicted pages can cause I/O stalls

❏ Any page access can cause I/O stalls

Problem 2: I/O stalls - Mitigation
❏ mlock to pin pages accessed in the future

❏ OS restricts the memory amount a process can lock
❏ Can cause problems to other running processes or the OS

❏ madvice to hint the OS about expected access patterns
❏ Less involved than mlock with less control
❏ Providing the wrong hint can lead to serious performance overheads

❏ Spawn other threads to handle page prefetching
❏ These threads will block in case of page fault event
❏ Main thread does not block
❏ Additional complexity

Problem 3: Error Handling
❏ Data integrity mandates error handling
❏ Page level checksums help in data corruption detection

❏ Read page from disk → validate contents using the stored checksum
❏ With mmap DBMS needs to validates page on every access

❏ OS may have evicted the page at some point
❏ DBMS are written in memory unsafe languages →pointer errors cause corruption
❏ Error handling becomes more difficult

Problem 4: Performance Issues
❏ mmap has serious performance bottlenecks

❏ can only be overcomed with OS redesign

Problem 4: Performance Issues
❏ Three main performance issues

❏ Page table contention
❏ Single threaded page eviction
❏ TLB shootdowns

❏ The first two problems are mitigated with relative ease
❏ TLB shootdowns are tricker

❏ Local TLB flushing is inexpensive
❏ Synchronization of remote TLBs requires thousands of cycles

❏ Microarchitectural changes
❏ Extensive OS modifications

Experimental Analysis
❏ Evaluate performance of traditional techniques against MMAP
❏ Used the fio storage benchmarking tool
❏ MMAP with random, normal, sequential hints
❏ Evaluated two access patterns

❏ Random reads
❏ Sequential scan

Experimental Analysis - Random Reads

Experimental Analysis - Sequential Scan

Conclusions
❏ Should use mmap only if entire DB fits in memory
❏ Should not use mmap if

❏ Updates on transactionally safe fashion is required
❏ Page fault handling without blocking
❏ Error handling
❏ Need high throughput on fast persistent storage devices

References
● Announcing InfluxDB IOx - The Future Core of InfluxDB Built with Rust and Arrow.

https://www.influxdata.com/blog/announcing-influxdb-iox/.
● fio: Flexible I/O Tester. https://github.com/axboe/fio.
● MongoDB MMAPv1 Storage Engine. https://docs.mongodb.com/v4.0/core/ mmapv1/.
● The InfluxDB storage engine and the Time-Structured Merge Tree. https://docs.

influxdata.com/influxdb/v1.8/concepts/storage_engine/.
● C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramírez, A. Mendelson, N. Navarro, A. Cristal, and

O. S. Unsal. DiDi: Mitigating the Performance Impact of TLB Shootdowns Using a Shared TLB Directory.
In PACT, pages 340–349, 2011

● https://en.wikipedia.org/wiki/Write-ahead_logging
● https://man7.org/linux/man-pages/man2/mmap.2.html
● https://en.wikipedia.org/wiki/Translation_lookaside_buffer

https://www.influxdata.com/blog/announcing-influxdb-iox/
https://github.com/axboe/fio
https://en.wikipedia.org/wiki/Write-ahead_logging
https://man7.org/linux/man-pages/man2/mmap.2.html
https://en.wikipedia.org/wiki/Translation_lookaside_buffer

Thank you for
your attention

Any Questions?

