I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

EPI'AXTHPIO 9

AVVOPIKY] aVEAVOT] KOOIKO

H dvvapikn avaiven Tov KOJSK VOGS TPOYPAPRATOG Eival 0vAAVGT] AOYIGUIKOD TTOL YiveTan Le
TNV EKTEAECT] TOV TPOYPUUUATOV TOL TPOKVTTOVV Otd LTO TO GVGTNUO AOYIGUIKOD GE VOV
TPOYUATIKO 1) EIKOVIKO emelepyaotr). [va elval amodoTikn, TPETEL TO TPOYPOUUUO TPOS AVAALGN
VoL EKTEAECTEL PUE OPKETEG E10O00VG EAEYYOV Y10 VO ELPAVICTEL EVOLPEPOVTA GLUTEPLPOPA.

Y hipyovv TOAAEG EPUPUOYES TTOV LLOG ETLTPETOVY VO, KAVOVUE SVVOUIKT] 0VOAVGT) TOV KM@K Mia
amd owtég eivar to Valgrind, po cuAAoyn epyoleiov Tov KAVoLV TOALA TpdyaTa, aAAG GE aVTO
10 gpyactnplo Ba emkevipmBolpe ota epyaieia TOV KAvoLV:

e Profiling: H dwdikacio tov profiling eivou puo onuavtikny wwoyn kotd tv vAoroinon evog
TPOYPAULOTOS KOl £YKELTAL GTOV TPOGOIOPIGUO TMV UEPOV TOV KMOIKO 7OV &ivat
xpovoPopa (BEAovv moAD ¥pdvo Yo va TpEEovv) kot Bo Tpénel va TPOGIOPIGTOVY Kot Vo
YPaPoOV Eava apov 1 TayOTEPT EKTEAEST] VOGS TPOYPAULATOS Elvar TAvTOoTE EMBLUNTY. X€
oMY peydho. projects, to profiling pmopei vo dmdoel onuavtikég TAnpo@opiec oyt Hovo
kaBopilovTag To TUNHATO TOV TPOYPAULOTOS TTOL Eival o apyd o€ EKTELEST), OAAL LmopEt
emiong va cag Pondnoet tov TPoypoppatioT vo Bpel TOAAL GALO GTOTIGTIKA GTOUXEL
LEG® TOV OTOIMV UTOPOVV VO EVTOTIGTOVV KOl VoL 010AV00VY TOAAAL TBavd cedApata.

e Memory checking: H dwdwoocio tg aviyvevong koakodwoyeipiong pviung eivot
OTUOVTIKN Y10l VO, ATOKOADWEL TIG SLOPPOES VUG, TO GOAALATO OTOOECUEVONC LVIUNG,
KATL. Kot VoL KAVEL Eva TPOYPOLLLLOL TTLO OTOO0TIKO GTN PNON TNG LVIUNG.

Y10 gpyaoctipro awtd Ba ypnoipomorcovpe to epyaieio gprof mov emrpémer to profiling kot to
gpyareio Valgrind mov pog emtpémer va kavovue kar profiling (uéow g mapapétpoug
cachegrind) oAld kou memory checking (péow g mapapétpov memcheck). And to gpyadeio
Valgrind Oa ypnoonomoovue o memcheck.

Acknon 1 - Xpnoewpomoinon memcheck.
Metaylottiote o o KAT® Tpoypappo test.c pe v mo Katw eviolr).

gcc test.c -0 test

#include <stdio.h>
#include <stdlib.h>

int main ()
{

char *p;

// Allocation #1 of 19 bytes
p = (char *) malloc(1l9);

// Allocation #2 of 12 bytes

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 1

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

p = (char *) malloc(1l2);
free(p);

// Allocation #3 of 16 bytes
p = (char *) malloc(1l6);

return

}

0;

o va edéy&ete yioo memory leaks kotd thv S1apKeLa TG EKTEAEGTG TOV TPOYPAUUATOC, OMOTE

TNV EVIOAN:
valgrind --tool=memcheck --leak-check=full --show-reachable=yes
--num-callers=20 --track-fds=yes --track-origins=yes ./test

Avt 1 evioln Ba gppavicel oty 006vn:

==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==
==8567==

Memcheck, a memory error detector

Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.12.0 and LibVEX; rerun with -h for copyright info
Command: ./test

FILE DESCRIPTORS: 3 open at exit.
Open file descriptor 2: /dev/pts/O0
<inherited from parent>

Open file descriptor 1: /dev/pts/O0
<inherited from parent>

Open file descriptor 0: /dev/pts/O0
<inherited from parent>

HEAP SUMMARY:
in use at exit: 35 bytes in 2 blocks
total heap usage: 3 allocs, 1 frees, 47 bytes allocated

16 bytes in 1 blocks are definitely lost in loss record 1 of 2
at O0x4C29BE3: malloc (vg replace malloc.c:299)
by 0x4005B6: main (test.c:16)

19 bytes in 1 blocks are definitely lost in loss record 2 of 2
at 0x4C29BE3: malloc (vg replace malloc.c:299)
by 0x40058E: main (test.c:9)

LEAK SUMMARY :
definitely lost: 35 bytes in 2 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

BAénovtog tov kddiko uropodpe va cvpmepavoovpue 6t H avagopd ota 19 byte mov deopednkay
apykd (pe to tpwto malloc) yaverar 6tav o deiktng p yiverar malloc yuo debtepn popd kot £Tot
avtéc ot Béoeig pvnung (19 bytes) uévovv ampoonéhactec (19 bytes in 1 block definitely lost).
‘Eto1 €8 épovpe drappon pvipung (memory leak). To Valgrind pog deiyvel mov deopedtnke owtdg
0 ywpoc, eivan oto test.c, otnv ypouun 9. H devtepn déouevon (12 byte) dev gaivetar ota
amoteAéopoto enedn omodecpeveton (free) kavovikd (dev vapyet dwoppon uvnqung). H tpitn
déopevon gaivetar oto amoteAéopato yio dwappon puviung (memory leak) oav kot vrapyst o
delktng p mov cuveyilel va deiyvel 6To YDPO SECUEVONE TPV TOV TEPUOTIGUO TOV TPOYPELULATOC.
Ed® 10 mpdPAnpa givar 0Tt dev amodesHeLTNKOV AVTES Ol OEGEIS TPV TEAEIDCEL TO TPOYPOLLLLLAL.
Omnote kot avto givar Eva memory leak ko to Valgrind deiyver tnv ypauun oto mpdypoupa (test.c

ypoppun 16).
Mertaylottiote 0 o KAT® TPoOypoppe test2.c pe tnv mo kdT® EVIOAN.

gcc test2.c -o test?2

#include <stdio.h>
#include <stdlib.h>

#define SIZE 10

int main ()

{
// free in not called
char *waste = (char *)malloc (SIZE *sizeof (char));

// uninitialized pointer
int *a;
printf ("$d\n", *a);

// write past end of array
waste[SIZE] = 0;

return 0;

}
AV eKTEAEGETE TNV EVTOAN

valgrind --tool=memcheck --leak-check=full --show-reachable=yes -
-num-callers=20 --track-fds=yes --track-origins=yes ./test?2

0o deite 6T vapyer éva memory leak (10 bytes definitely lost). Av 0éiete va deite ki GAheg
TANPOPOPIES GYETIKA HE TO TPOPANUO TOV TPOKVATEL OO TNV EKTOIMCT| UN-OPYIKOTOMUEVOL
delktn N v mpoonéiacn BEong mov PpiokeTat EKTOC TNG SECUEVUEVNG TTEPLOYNG TOV TTivaKa Waste
ekTELEOTE TNV M0 TAve evtoAn valgrid tpocBétovtac akopa Evo Opiopa. -V T0 0Toi0 TOPOLGLACEL
o AemTOUEPT] OVAALGT TV TTpoPAnudtov (verbose).

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 3

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: IIPOTPAMMATIZTIKEYX TEXNIKEX KAI EPTAAEIA
Aocknon 2 - Xpnowonoinen memcheck.

1. Amod v otocelida tov padnpotog katefdote ta apyeio list.h ka list.c. To list.c mepiéyet
éva driver avtikeipevon, apa Yo TV HETAYADTTIGN TOL YPNOUOTOGTE GTNV EVIOAN, -
DDEBUG.

2. EMéy&re pe to Valgrind yia Stopposc pviunge.

3. Awopbnote To AaOM oL VILAPYOLV.

Aocknon 3 - Xpnowonoinen gprof.

H ypnon tov epyareiov gprof dev eivar kaBdAov mepimhokn. ATAL TPEMEL Vo EKTEAEGETE T €ENG
pnpoto
e Evepyomomote 1o profiling xatd t petayAdtrion tov K®SKo. Avtod yivetar pe v
TOPALETPO -gpP KATA TNV KAo™ Tov gce
e Exteléote TOV KOIIKA TPOypaupatog yio va dnuovpynoete to profiling data (apyeio pe
6vopa gmon.out)
o Tpé&te 10 epyaleio gprof mave ot profiling data (mov dnuiovpyndnkav oo Tponyoduevo
Prina).

To tehevtaio Ppa mopdyet éva apyeio avaivong mov givol oe avOpOTIV avayvOGIN LOPON.
Avtd 1o apyeio mepiéyel pepkovg mivakeg (flat profile ko call graph) extog and kdmoleg dAheg
nanpogopiec. To flat profile divel po emckdémTNoN TOV TANPOPOPIOV YPOVIGHOD TOV AEITOVPYIDOV
OT®MG 1N KOTAVAA®OT XPOVOL Yo TNV EKTEAECT UG GUYKEKPLUEVNG AELTOVPYIOG, TOCEG POPEG
KMOnke k. Amd v GAAn mhevpd, to call graph mopéxst 1o dévipo tov KAoEwv TOV
CLVOPTNCEDV TOV EUTAEKOVTAL 6TO TTPdypappa. Etot, €161 pmopel kaveic va mapetl po 10€o Tov
YPOVOL EKTEAEGTC TTOV SUTAVATAL KO GTLG GUVOPTHCELS KO GTIG GLUVOPTHOELS TOL KOAOLVTOL HECH,
0€ GLVOPTNCELS KTA.

Metayhottiote ta o Katw mpoypdhupoto test_gprof.c kou test_gprof new.c pe v mo kot
EVTOAN.

//test_gprof.c
#include<stdio.h>

void new_ funcl (void) ;

void funcl (void)

{
printf ("\n Inside funcl \n");
int i = 0;

for (; i<OxXffffffff;i++);
new funcl();

return;

}

static void func2 (void)

{

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 4

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

printf ("\n Inside func2 \n");
int 1 = 0;

for (;i<Oxffffffaa;i++);
return;
int main (void)

printf ("\n Inside main () \n");
int 1 = 0;

for (; i<Oxffffff;i++);
funcl () ;

func2 () ;

return 0;

}

//test_gprof new.c
#include<stdio.h>

void new funcl (void)

{
printf ("\n Inside new funcl ()\n");
int i = 0;

for (; i<Oxffffffee;it++);

return;

}

Bipa 1: Metayrlottion

gcc -pg test gprof.c test gprof new.c -o test gprof

A6 o man page tov gcc:

-pg : Generate extra code to write profile information suitable for the analysis program gprof. You
must use this option when compiling the source files you want data about, and you must also use
it when linking.

Bipa 2: Extéleon wpoypappatog

./test _gprof

Metd TV OAOKANP®OT) TG EKTEAEGNC TOV TPOYPALLOTOG TOPAYETOL TO apyeio gmon.out

Bnpa 3: Extéheon gprof tool

gprof test gprof gmon.out > analysis.txt

Agite ta TepeyO eV TOL apyeiov analysis.txt

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 5

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

Flat profile:

Each sample counts as 0.0l seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name
33.86 15.52 15.52 1 15.52 15.52 func?2
33.82 31.02 15.50 1 15.50 15.50 new funcl
33.29 46.27 15.26 1 15.26 30.75 funcl
0.07 46.30 0.03 main

Q

% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
listing.

calls the number of times this function was invoked, if
this function is profiled, else blank.

self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
else blank.

total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
function is profiled, else blank.

name the name of the function. This is the minor sort
for this listing. The index shows the location of

the function in the gprof listing. If the index is

in parenthesis it shows where it would appear in

the gprof listing if it were to be printed.

Call graph (explanation follows)
granularity: each sample hit covers 2 byte(s) for 0.02% of 46.30 seconds

o)

index % time self children called name

[1] 100.0 0.03 46.27 main [1]
15.26 15.50 1/1 funcl [2]
15.52 0.00 1/1 func?2 [3]
15.26 15.50 1/1 main [1]

(2] 66.4 15.26 15.50 1 funcl [2]
15.50 0.00 1/1 new funcl [4]
15.52 0.00 1/1 main [1]

[3] 33.5 15.52 0.00 1 func2 [3]
15.50 0.00 1/1 funcl [2]

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA
15.50 0.00 1 new_ funcl [4]

This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.

FEach entry in this table consists of several lines. The line with the
index number at the left hand margin lists the current function.

The lines above it list the functions that called this function,

and the lines below it list the functions this one called.

This line lists:

index A unique number given to each element of the table.

Index numbers are sorted numerically.

The index number is printed next to every function name so

it is easier to look up where the function in the table.

% time This is the percentage of the “total' time that was spent
in this function and its children. Note that due to

different viewpoints, functions excluded by options, etc,

these numbers will NOT add up to 100%.

self This is the total amount of time spent in this function.

children This is the total amount of time propagated into this
function by its children.

called This is the number of times the function was called.
If the function called itself recursively, the number

only includes non-recursive calls, and is followed by

a '+' and the number of recursive calls.

name The name of the current function. The index number is
printed after it. If the function is a member of a

cycle, the cycle number is printed between the

function's name and the index number.

For the function's parents, the fields have the following meanings:

self This is the amount of time that was propagated directly
from the function into this parent.

children This is the amount of time that was propagated from
the function's children into this parent.

called This is the number of times this parent called the
function /' the total number of times the function

was called. Recursive calls to the function are not
included in the number after the “/'.

name This is the name of the parent. The parent's index
number is printed after it. If the parent is a

member of a cycle, the cycle number is printed between
the name and the index number.

If the parents of the function cannot be determined, the word
"' is printed in the “name' field, and all the other

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 7

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

i

fields are blank.

For the function's children, the fields have the following meanings:

self This is the amount of time that was propagated directly
from the child into the function.

children This is the amount of time that was propagated from the
child's children to the function.

called This is the number of times the function called
this child /' the total number of times the child

was called. Recursive calls by the child are not
listed in the number after the “/'.

name This is the name of the child. The child's index
number is printed after it. If the child is a

member of a cycle, the cycle number is printed
between the name and the index number.

If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the

cycle (as parents) and the members of the cycle (as children.)

The "+' recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.

Index by function name

[2] funcl [1] main
[3] func2 [4] new_ funcl

Aoknon 4.
Xpnowonomote to Valgrind ywa va eAéyEete yio S10ppoéc uviung yio Ty tpitn cog epyacio AS3.

I profiling ypnoyomomote to gprof.

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 8

A

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

{

EIIA 232: IPOTPAMMATIZTIKEEZ TEXNIKEX KAI EPTAAEIA

Valgrind with eClipse

To gpyaieio Valgrind pmopei vo to ypnoponomoete ko amd to eClipse. [Ipmdta mpénet va
eykataotioete to plug-in Linux Tools.

EmléEte to project mov 0éhete va KAveTe SLVALIKT OVOALGT SLpPOdV PVIUNG Kot puetd de&l
KAk, Profiling Tools - Profile with Valgrind:

Fle g Dew
Go |Into
l A
Open in New Window
v Show in Local Termina
: & copy
i Proje
Paste
3 Delete
Rermove from Cont:
4 i‘:’»‘ Source
P Move...
»
% Fename...
LE:
Pag
» 'Lbcf\"' =l lmport
w4 Expart...
Build Project

Clean Project
| Refresh

Close Project

ext

Close Unrelated Projects

Build Targets
Index

Build Configurations

Ctrl+cC

F2

F5

Show in Remote Systems view

Profiling Tools »

wvalidate
RUN As
Debug As
Profile As

Restore from Local History...

#7 Run C/C++ Code Analysis

S Labg Te=m

-

eclipse-workspace - Lab4/samplel.c - Eclipse

ect Run ‘Window Help

ErE v EvE v HvOvE Q-

lc i

Lude =stdio.h=
lude =stdlib.h=>

main ()
ar *p;

Allocation #1 of 19 bytes
= (char *) malloc(19);

Allocation #2 of 12 bytes
= (char *) malloc(12);
ee(p);

Allocation #3 of 15 bytes
= (char *) malloc(18);

turn ©;

% 1 Profile Code Coverage
@ 2 profile Memory

@ 3 Profile Timing

li: 4 Function callgraph

@ S Profile with OProfile
fo 6 Profile with Perf

Y 7 Profile with valgrind

Profiling Tools Configurations...

=N

Quick A

es i call Graph V4 Valgrind

i X % kR B | & &
tion] fhomeffaculty/cspSpaljeclipse-workspace/Labd/Debug/Lab4d (1

Ko Ba ogite ta o kdto anoteAéopota

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 9

https://wiki.eclipse.org/Linux_Tools_Project/Valgrind/User_Guide

ﬁ;; I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

E EIIA 232: IPOTPAMMATIZTIKEEZ TEXNIKEX KAI EPTAAEIA

lc] samplel.c &2

1 #include =stdio.h=
2 #include =stdlib.h=
-1 int main()

s

& char *p;

g J/ Allocation #1 of 19 bytes
¥ o p = (char *) malloc(19);

11 // Allocation #2 of 12 bytes

12 p = (char *) malloc(12]};

2 free(p);

14

15 S/ Allocation #3 of 16 bytes
Y16 p = (char *) malloc(18);

17

18 return ©;

19 H

[#! Problems 5 Tasks & Conscle [Properties i Call Graph | Y4 valgrind &2

Lab4 (1) [memcheck] valgrind (10/31/17, 1:06 PM)
¥ ¥ 16 bytes in 1 blocks are definitely lost in loss record 1 of 2 [PID: 25061]
» %19 bytes in 1 blocks are definitely lost in loss record 2 of 2 [PID: 25061]

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou

10

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

i EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

Hai)(iprn na

From Valgrind website (http://valgrind.org/docs/manual/mc-manual.html)

Pointer chain AAA Leak Case BBB Leak Case
(1) RRR —-====——————-— > BBB DR
(2) RRR ---> AAA ---> BBB DR IR
(3) RRR BBB DL
(4) RRR AAA ---> BBB DL IL
(5) RRR -————- P > BBB (y)DR, (n)DL
(6) RRR ---> AAA -?-> BBB DR (y) IR, (n)DL
(7) RRR -?-> AAA ---> BBB (y)DR, (n)DL (v) IR, (n)IL
(8) RRR -?-> AAA -?-> BBB (y)DR, (n)DL (y,y)IR, (n,y)IL, (_,n)DL
(9) RRR AAA -?-> BBEB DL (y)IL, (n)DL

Pointer chain legend:

RRR: a root set node or DR block

AAA, BBB: heap blocks
- --=->: a start-pointer

- =-?->: an interior-pointer

Leak Case legend:

- DR: Directly reachable

- IR: Indirectly reachable

- DL: Directly lost

- IL: Indirectly lost

- (y)XY: it's XY if the interior-pointer is a real pointer

- (n)XY: it's XY if the interior-pointer is not a real pointer

- (()XY: it's XY in either case

Every possible case can be reduced to one of the above nine. Memcheck merges some of these
cases in its output, resulting in the following four leak kinds.

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 11

http://valgrind.org/docs/manual/mc-manual.html

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

EIIA 232: TIPOTPAMMATIETIKEY TEXNIKEY KAI EPTAAEIA

o "Still reachable". This covers cases 1 and 2 (for the BBB blocks) above. A start-pointer
or chain of start-pointers to the block is found. Since the block is still pointed at, the
programmer could, at least in principle, have freed it before program exit. "Still
reachable™ blocks are very common and arguably not a problem. So, by default,
Memcheck won't report such blocks individually.

o "Definitely lost". This covers case 3 (for the BBB blocks) above. This means that no
pointer to the block can be found. The block is classified as "lost", because the
programmer could not possibly have freed it at program exit, since no pointer to it exists.
This is likely a symptom of having lost the pointer at some earlier point in the program.
Such cases should be fixed by the programmer.

o "Indirectly lost". This covers cases 4 and 9 (for the BBB blocks) above. This means that
the block is lost, not because there are no pointers to it, but rather because all the blocks
that point to it are themselves lost. For example, if you have a binary tree and the root
node is lost, all its children nodes will be indirectly lost. Because the problem will
disappear if the definitely lost block that caused the indirect leak is fixed, Memcheck
won't report such blocks individually by default.

o "Possibly lost". This covers cases 5--8 (for the BBB blocks) above. This means that a
chain of one or more pointers to the block has been found, but at least one of the pointers
is an interior-pointer. This could just be a random value in memory that happens to point
into a block, and so you shouldn't consider this ok unless you know you have interior-
pointers.

(Note: This mapping of the nine possible cases onto four leak kinds is not necessarily the best
way that leaks could be reported; in particular, interior-pointers are treated inconsistently. It is
possible the categorisation may be improved in the future.)

Furthermore, if suppressions exists for a block, it will be reported as "suppressed™ no matter
what which of the above four kinds it belongs to.

From Valgrind FAQ:

With Memcheck's memory leak detector, what's the difference between "definitely lost",
"indirectly lost", "possibly lost", "still reachable", and "suppressed™?

The details are in the Memcheck section of the user manual.
In short:

o definitely lost means your program is leaking memory -- fix those leaks!

« indirectly lost means your program is leaking memory in a pointer-based structure. (E.qg.
if the root node of a binary tree is "definitely lost", all the children will be "indirectly
lost™.) If you fix the definitely lost leaks, the indirectly lost leaks should go away.

e possibly lost means your program is leaking memory, unless you're doing funny things
with pointers. This is sometimes reasonable.

Use --show-possibly-lost=no if you don't want to see these reports.

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 12

http://valgrind.org/docs/manual/faq.html#faq.deflost

I[TANEIIIZTHMIO KYIIPOY - TMHMA ITAHPO®OPIKHX

L EIIA 232: IIPOTPAMMATIZTIKEYX TEXNIKEX KAI EPTAAEIA

« still reachable means your program is probably ok -- it didn't free some memory it could
have. This is quite common and often reasonable.
Don't use --show-reachable=yes if you don't want to see these reports.

o suppressed means that a leak error has been suppressed. There are some suppressions in
the default suppression files. You can ignore suppressed errors.

ENMA232 — EpyaoTrpio 9. YTreuBuvog EpyaoTtnpiwv: MNMavAog Aviwviou 13

