
PAO: Power-Efficient Attribution of Outliers
in Wireless Sensor Networks

Nikos Giatrakos
Dept. of Informatics
University of Piraeus

Piraeus,Greece
ngiatrak@unipi.gr

Yannis Kotidis
Dept. of Informatics
Athens University of

Economics and Business
Athens,Greece

kotidis@aueb.gr

Antonios Deligiannakis
Dept. of Electronic and
Computer Engineering

Technical University of Crete
Crete,Greece

adeli@softnet.tuc.gr

ABSTRACT
Sensor nodes constitute inexpensive, disposable devices that are
often scattered in harsh environments of interest so as to collect
and communicate desired measurements of monitored quantities.
Due to the commodity hardware used in the construction of sen-
sor nodes, the readings of sensors are frequently tainted with out-
liers. Given the presence of outliers, decision making in sensor
networks becomes much harder. In this work, we introduce PAO, a
framework that can reliably and efficiently detect outliers in wire-
less sensor networks. PAO significantly reduces the bandwidth con-
sumption during the outlier detection procedure, while being able
to operate over multiple window types. Moreover, our framework
possesses the ability to operate in either an exact mode, or an ap-
proximate one that further reduces the communication cost, thus
covering a wide variety of application requirements.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Management, Measurement

1. INTRODUCTION
Many monitoring applications rely on wireless sensory infras-

tructures in order to obtain measurements of the surrounding en-
vironment. Examples include habitat monitoring applications that
collect meteorological data (like temperature, pressure, humidity
etc), military surveillance applications that track movement of per-
sonnel or detect potentially hazardous chemicals, as well as vehicle
tracking and traffic surveillance applications. Despite their diver-
sity and differences, all such applications share the need to collect
measurements that accurately reflect the conditions of the physical
world being monitored. However, sensory infrastructures, in or-
der to provide an economically viable solution, typically rely on
inexpensive hardware used for the construction of the nodes. As
a result, sensor nodes often generate imprecise individual readings
due to interference or failures [10]. In several application scenar-
ios, sensor nodes are often thrown in hazardous environments and
need to operate in an unattended manner for long periods of time.
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Such nodes, may be exposed to severe conditions that adversely
affect their sensing elements, thus yielding readings of low qual-
ity. As an example, the humidity sensors on the popular MICA
mote is very sensitive to rain drops [5]. A question that naturally
arises is whether (and how) one can build applications that take
mission-critical decisions, given the lack of trust on the baseline
measurements provided as input by the sensory infrastructure.

In order to address this question, a flurry of recent work has
targeted the problem of outlier detection in sensor networks [3,
5, 11, 16, 17]. Although the detection of outliers is an old re-
search problem, the particular challenges introduced when consid-
ering ad-hoc sensor networks render conventional outlier detection
algorithms [2] unsuitable for this new setting. In particular, sensor
nodes often have limited processing and storage capabilities. As a
result, sensory data that is continuously collected by the nodes may
be maintained in memory for only a limited amount of time. More-
over, since data is collected continuously (typically in predefined
intervals, called epochs), outlier detection needs on-line mecha-
nisms that will work in this restrictive, streaming setting. How-
ever, the main constraint in sensor network applications is often
the limited energy capacity of each sensor node. In many applica-
tions, sensor nodes are powered by batteries that cannot be easily
replaced if depleted, given that nodes are often thrown in remote
sites. Therefore, in order to ensure the longevity of the sensor
network, we need to devise techniques that can detect outliers in
an energy-efficient manner, thus reducing the energy drain of the
nodes. It is well understood that radio communication is by far the
the biggest culprit in energy drain [12]. This means that a central
collection of all sensory data (and subsequently, computation of
outliers using existing centralized techniques) is not feasible since
it results in high energy drain, due to the large amounts of trans-
mitted data. Hence, what is required are continuous, distributed
and in-network approaches that reduce the communication cost and
manage to prolong the network lifetime.

In this paper we introduce PAO (PAO stands for Power-efficient
Attribution of Outliers), an outlier detection framework tailored for
the particular constraints faced in typical sensor networks appli-
cations. Our framework follows the in-network paradigm, meaning
that computation of outliers is performed inside the network, avoid-
ing in this way the communication of raw sensor measurements to
the base station. Furthermore, PAO possesses the ability to perform
over multiple types of windows of observations collected by motes.
Similar to previous techniques [5, 8], our framework takes into ac-
count both temporal and spatial correlations in order to characterize
the readings of a sensor node. Temporal correlations are captured
by considering the latest measurements of a sensor node and by
computing localized regression models out of them. These com-
pact models are of fixed size and are used to replace the original
data values, reducing in this way the size of data that is transmitted
in the network. In PAO, we adopt a clustered network organiza-



tion [13, 18], where nodes communicate their regression models
to a clusterhead, which computes the similarity amongst the latest
values of any pair of sensors within its cluster. Based on the per-
formed similarity tests and a desired minimum support specified
by the posed query, each clusterhead generates a list of potential
outliers within its cluster. This list is then communicated, in a sec-
ond (inter-cluster) communication phase of PAO, among the clus-
terheads, in order to allow potential outliers to gain support from
measurements of nodes that lie in other clusters. The whole pro-
cess is sketched in Figure 2.

In order to alleviate clusterheads from comparing models from
all nodes within their cluster, we introduce PAO+, an extended ver-
sion of the original framework where additional nodes within each
cluster are utilized for that purpose. This extended scheme is made
possible by introducing a simple, yet effective hashing scheme over
the regression parameters computed by the sensor nodes. The bene-
fits of this extended scheme are twofold. Not only do we spread the
load into multiple nodes, but also (as will be explained) manage to
avoid many comparisons between regression models of motes that
are provably not similar and, thus, cannot support each other. The
PAO+ scheme also offers a load balancing mechanism that peri-
odically adopts the hashing functions to the characteristics of the
collected data, resulting in more effective comparison pruning.
The contributions of this paper can be summarized as follows:

1. We introduce PAO, an in-network outlier detection framework
that permits computation of outliers in a clustered sensor network.
PAO is capable of performing over different window types, it takes
into account both temporal and spatial correlations among the mea-
surements of the nodes and utilizes simple regression models in or-
der to reduce communication overhead. We provide techniques for
suppressing update messages by the motes, in continuous queries,
resulting in fewer transmitted bits.
2. We describe PAO+, which extends PAO with a novel load bal-
ancing and comparison pruning mechanism. The proposed exten-
sions alleviate clusterheads from excessive processing and commu-
nication load and result in a more uniform, intra-cluster power con-
sumption and prolonged network unhindered operation.
3. We present a detailed experimental analysis of our techniques
using real data sets. Our analysis demonstrates that our techniques
manage to detect outliers using only a fraction of the bandwidth
that a centralized approach would require.

This paper proceeds as follows. In Section 2 we comment on
related work. Section 3 presents preliminary concepts. Our PAO
framework is introduced in Section 4, while its extensions are dis-
cussed in Section 5. Section 6 presents our experimental evalua-
tion, while Section 7 includes concluding remarks.

2. RELATED WORK
Recently, substantial effort has been devoted to the development

of efficient outlier detection techniques that manage to pinpoint
motes producing low quality readings or observe interesting un-
dergoing phenomena so that proper actions can be taken [20]. [6,
10] introduce data cleaning mechanisms over sensor data streams
after their central collection at the query source. Nevertheless, the
central collection of data is not feasible nor desired as it has a cu-
mulative effect on the amount of communicated data, which in turn
depletes the residual energy of the motes.

Localized voting protocols [3, 17] have been proposed to deter-
mine faulty motes in completely ad-hoc network formations. How-
ever, such voting schemes are prone to errors when motes generat-
ing imprecise measurements are not able to communicate with each
other due to physical obstacles or other unpredictable disturbances
in their surrounding [5]. A fused weighted average scheme is pro-
posed in [9] where a fuzzy mechanism is utilized to infer the cor-
relation among sensor readings. In other related work, [21] makes

Figure 1: Main Stages of PAO. Step 1: Intra-cluster communi-
cation between regular motes and clusterheads (solid black ar-
rows). Step 2: Similarity tests are performed by clusterheads.
Step 3: An approximate TSP problem is solved, potential out-
liers are exchanged (dashed red arrows). The final outlier list
is transmitted to the base station (not shown).
use of a weighted moving average to clean imprecise samples while
a histogram-based outlier attribution method is presented in [15].

The authors of [16] foster kernel functions to estimate the data
distribution of motes and subsequently detect distance-based out-
liers leveraging this information. The work of [5] manages to pro-
vide outlier reports on par with the execution of aggregate and
group-by queries posed to an aggregation tree [1, 12, 19]. It thus
excludes extraordinary measurements avoiding the distortion of the
final aggregate result and simultaneously allows users to acquire
important information of motes exhibiting abnormal behavior. The
recent work of TACO [8], manages to efficiently determine outliers
by providing a mechanism based on Locality Sensitive Hashing [7],
which trades bandwidth consumption for accuracy during the out-
lier detection procedure in a straightforward way. However, PAO is
applicable to multiple types of window queries. Message suppres-
sion schemes in sensor networks for continuous aggregate queries
have been studied in [4, 14]. Our work differs in that we do not sup-
press raw measurements but updates to model parameters instead.

3. PRELIMINARIES

3.1 Network Model
We adopt an underlying network structure where motes are or-

ganized into clusters (shown as dotted circles in Figure 2) using
any existing network clustering algorithm [13, 18]. Queries are
propagated by the base station to the clusterheads, which, in turn,
disseminate these queries to sensors within their cluster.

3.2 Analyzing Trends in Mote Time Series
A time series constitutes a sequence of observations Yt0 , Yt1 , . . . ,

Ytw−1 , where t0 < t1 < · · · < tw−1, regarding a studied attribute
of interest Yt, in w different time instances. In our sensor network
setting, a posed outlier detection query dictates the epoch parame-
ter e, which is the time interval between consecutive samples. As
a result, after obtaining w quantities every mote Su has formed a
series Y Sut with t = (0, e, . . . , (w − 1) · e) as the vector of the
corresponding timestamps.

Time series analysis techniques aim at capturing the implied be-
havioral pattern in the observed data. A fundamental component
describing the existing patterns is the trend of the series, which is
able to describe the rate of change on the values of an attribute.
This in turn provides a compact picture of the presence of inter-
esting phenomena imprinted on previously acquired samples. A
simple yet popular way to depict the trend of time series data is
through linear models in which:

Ŷt = â · t+ b̂ (1)

According to Equation 1, the value of a studied attribute given
the time vector is expected to be encompassed by a line with pa-



Figure 2: Trends and intercept points in mote time series de-
pending on the spatial proximity to the source of the fire burst.
rameters â and b̂ taking values:

â =
12(

∑w−1
i=0 ti·Yti−

e·w·(w−2)
2(w−1)

∑w−1
i=0 Yti )

e2·w·(w2+2)

b̂ = Y t − â · e·w2

(2)

Y t refers to the mean of Ytis. Parameter â expresses the slope of
the linear model, while b̂ represents the intercept point between the
line and Yt axis. Hence, arctan(â) computes the actual angle ]Yt
that the linear model’s slope forms in respect with the time axis and
−π

2
< ]Yt < π

2
.

As an example, consider a sensor network in a forest designed
to sample attributes such as temperature, humidity etc. Should a
fire burst arise (Figure 2) nearby motes will collect increasing tem-
perature values. The absolute sampled values actually depend on
the radius around the source of the event that a mote is placed but
its rate and, thus, the trend of the corresponding time series will be
similar. In other words, upon utilizing a linear representation so as
to model the trend on motes data, parameter b̂ regards the proxim-
ity of a mote to the source of an event, contrary to â which shows
the actual rate in change of values. The same observation holds for
other physical attributes such as humidity (i.e., flood occurrence
where motes obtain increased humidity values sensed in the air),
sound vibrations, radiance measurements etc.

Nevertheless, in practice samples within a specific time window
may exhibit extraordinary deviation where no clear trend seems
to appear. Situations like these should be handled differently due
to the lack of a certain behavioral pattern. The question is how
could someone check whether such a pattern does exist. To achieve
that we reside to the correlation of determination, which shows the
amount of variance in Yt explained by the model:

R2 =

∑w−1
i=0 (Ŷti − Y t)2∑w−1
i=0 (Yti − Y t)2

, 0 ≤ R2 ≤ 1 (3)

High values of R2 validate that a trend exists and is well modeled
by Equation 1. On the contrary, low values indicate the absence of
this kind of motive.

3.3 Outlier Definition
Based on our previous discussion we formalize our definition

of outlying values. We assume that the posed outlier detection
query has specified a couple of parameters p, ]thres, whose mean-
ing will be introduced shortly. Given the time series Y Sut , Y Svt
of motes Su, Sv we initially utilize Equation 3 to check whether
behavioral patterns that can be described by linear models occur
based on threshold p. That is, we simply check whether R2 ≥ p
for Y Sut and Y Svt , respectively. Please note that each test can be
performed independently by the corresponding mote. If this is true,
then, as already mentioned, we only need to compare the trends
based on the value of âs and more precisely on the equivalent an-
gles ]Y Sut ,]Y Svt .

Given a similarity threshold ]thres specified by the posed query
we consider Y Sut , Y Svt as similar if:

|]Y Sut − ]Y Svt | ≤ ]thres (4)

Acquired samples that do not pass theR2 linearity test do not ex-
hibit any profound motif and should be compared separately. Such
cases can be handled using the cosine coefficient so as to compute
the angle similarity [8] between vectors VecSu ,VecSv . Value vec-
tor VecSu ∈ Rw contains the measurements of Su during the lat-
est w samples and the angle similarity in this case is calculated by
](VecSu ,VecSv ) = arccos

VecSu ·VecSv
||VecSu ||·||VecSv ||

.
As in [5, 8], we require our techniques to be resilient to environ-

ments where spurious readings originate from multiple node time
series, due to a multitude of different and unpredictable factors.
Thus, for a mote not to be classified as an outlier it should be found
similar with at least minSup other motes. The value of minSup
can be expressed either as an absolute value or as a percentage of
motes.

4. OUR PAO ALGORITHM
We now present our PAO algorithm in detail. We assume that an

outlier attribution query of the form:

SELECT c.Su
FROM Clusterheads c
WHERE c.SupportSu < minSup
USING [
SAMPLING PARAMETERS (Interval = e,Size = w),
TESTS(Linearity p, Similarity ]thres),
CHECKS ON <set of speci�cations on similarity tests>),
WINDOW TYPE={ Disjoint | Sliding } with ε]

has been posed to the sensor network. The parameters of the query
have been presented in the previous sections. Regarding the set of
specifications noted in CHECKS ON line of the USING compart-
ment, we note that it refers to motes that may find support outside
their cluster based on a set of static specifications. For instance,
users may allow motes within a certain radius to be able to witness
each other, irrespectively of whether they have been assigned to the
same cluster, as they are expected to be able to sense similar con-
ditions (i.e, the fire burst in the example of Figure 2). The last line
of the query refers to the window type (disjoint or sliding). In a
nutshell, using disjoint windows the query evaluation utilizes a set
of w new samples (not used in previous query evaluations - this is
often referred to as a tumble), while sliding windows always utilize
the latestw observations (thus at each step taking into accountw−1
observations that were also used in the previous evaluation, but then
also adding the latest observation by the mote). Parameter ε that ac-
companies the window type involves a message suppression choice
provided by PAO so as to support the potential for approximate de-
tection of outliers with further reduced communication costs, as it
will be explained at the end of the current section.
PAO at Individual Motes. After it receives a corresponding query,
every mote Su in the network assembles a time series Y Sut . Ini-
tially, Su computes â, b̂ using Equation 2, the correlation of deter-
mination R2 using Equation 3 and performs the linear trend exis-
tence test by checking whether R2 ≥ p. Recall that p expresses a
tolerance on the deviation of the collected measurements. In prac-
tice, an amount of this deviation is due to systematic calibration
errors of the inexpensive hardware used in the construction of sen-
sor nodes. As a result, knowing the specifications of the available
mote hardware infrastructure, users can appropriately set the de-
sired value for p. Subsequently, depending on the result of the latter
test, Su calculates ]Y Sut = arccos(â) which is then transmitted
to the clusterhead. R2 < p results in communicating the analytical
form VecSu of samples to the clusterhead.



Intra-cluster Processing. Clusterheads receive data from motes
in their cluster and organize this information in a tabular format
with columns Su, ]Y Sut or VecSu for motes that did not pass the
linearity test, and SupportSu .

Data collection is horizontally fragmented between the cluster-
heads and further separated in motes with captured behavioral pat-
terns and those which do not adapt to the model. The SupportSu
column is set to 0 at the beginning of this phase. Subsequently,
each clusterhead performs similarity tests as in Equation 4 on the
first category of motes, while applying ](VecSu ,VecSv )-based
tests for the second. Each successful test increases the support of
the participating motes by 1. At the end of the procedure, each
clusterhead forms a list of tuples 〈Su,]Y Sut , SupportSu〉 and
〈Su,VecSu , SupportSu〉 for sensors that did not manage to ob-
tain enough witnesses to reach minSup.
Inter-cluster Processing. As already noted, lists of motes with
SupportSu < minSup are not final outliers since the query may
have allowed motes in different clusters to be tested for similarity.
Motes in the lists extracted by cluster Ci that are not subjected to
such kind of specifications can be directly reported to the query
source. Otherwise, triplets are placed in a list PotOutCi of poten-
tial (i.e., not yet determined) outliers. Given the current cluster as
the starting node, query-specified clusterheads as intermediate sites
and the base station for the destination, the intercluster communica-
tion problem is modeled as a TSP according to which PotOutCis
are exchanged between clusterheads participating in the path. The
TSP problem can be solved by the base station after clusterhead
election. Every Su ∈ PotOutCi that manages to reach minSup is
excluded from the list that will be forwarded to the next site.
Approximate Processing over Multiple Window Types. So far,
the procedure presented in PAO reduces the communication bur-
den only for disjoint time windows. In other words, motes collect
w quantities, form corresponding time series, and intra- as well as
inter-clustering processes are then triggered. Provided that Su suc-
ceeds in its linearity test, only ]Y Sut s (instead of the entire series)
are transmitted. Subsequently, these steps are repeated every w
new measurements. On sliding window queries, new results are to
be provided based on thew−1 previous observations and the latest
w-th measurement, obtained every e time units. In this case, letting
motes transmit ]Y Sut does not provide any savings in communica-
tion costs as it would be sufficient to merely send the newest w-th
measurement instead.

To efficiently handle sliding windows PAO fosters a message
suppression strategy to maintain low communication burden, while
providing approximate answers of satisfactory quality. In particu-
lar, consider a clusterhead which has received ]Y Sut from Su and
assume a parameter ε encapsulated in the basestation’s inquiry. In
the upcoming window, we allow motes to suppress their own mes-
sages when ]Y Sutnew ∈ []Y Sutprevious − ε,]Y

Su
tprevious

+ ε], where
]Y Sutprevious refers to the last value that the mote has transmitted to
its clusterhead and ]Y Sutnew refers to the latest computed (but not
necessarily transmitted) ]Y Sut value.

At clusterheads, similarity tests are performed in the same way
as before. Nevertheless, the suppression of messages introduces
approximate characteristics to PAO. It can easily be observed that
for pairs of motes which did not suppress their messages the cor-
responding test between them will provide exact result. We now
outline the cases of accurate similarity estimation despite message
suppression:

• For pairs of motes that both suppress their messages cluster-
heads rely on ]Y Sutprevious ,]Y

Sv
tprevious

to obtain an answer re-
garding their similarity. Without loss of generality, we assume that
]Y Sutprevious < ]Y Svtprevious . When ]Y Sutprevious + ε + ]thres <

]Y Svtprevious − ε the test is always accurate.

• Provided that Sv does not suppress its message while Su does,
clusterheads take into account ]Y Sutprevious ,]Y

Sv
tnew

. Assuming
]Y Sutprevious < ]Y Svtnew (the other case is symmetric), a correct
answer is ensured when ]Y Sutprevious + ε+ ]thres < ]Y Svtnew .

Otherwise, the result of the test might be either faulty or correct,
depending on the actual changes in ]Y Sutnew ,]Y

Sv
tnew

. Obviously,
setting ε = 0 is equivalent to requiring exact results. Moreover,
notice that the above strategy manages to save communication costs
irrespectively of the window type. Eventually, we note that ε can be
dynamically adjusted by motes. Due to space limitations, we omit
the corresponding discussion, but we refer interested readers to [4]
for further details.

5. FROM PAO TO PAO+
During the intra- and inter-cluster communication phases of our

PAO algorithm clusterheads are assigned the load of angle/vector
reception as well as the processing burden of similarity test de-
termination. This means that they consume extra power resources
during these procedures compared to regular nodes in the clusters.
Remaining energy is a primary criterion in any clustering proto-
col for a mote to be maintained as clusterhead. Thus, the network
will need to frequently pause its operation and be led to a reorga-
nization process so as to elect new clusterheads (which also yields
an amount of communication cost for sensors). Bearing these, in
PAO+ we introduce a hashing mechanism that spreads the intra-
cluster communication and comparison load. Moreover, recall our
similarity test |]Y Sut − ]Y Svt | ≤ ]thres. A different reading of
the inequality says that sensors with angle differences above ]thres
should not be compared for similarity since we know in hand that
the test cannot be successful. Nonetheless, having arrived at a clus-
terhead comparisons will inevitably be performed even for motes
with high angle differences. PAO+ hashing mechanism also man-
ages to prune unnecessary comparisons of motes exhibiting highly
dissimilar behavioral patterns.
Load Distribution and Comparison Pruning in PAO+. Apart
from electing the clusterhead we choose additional B nodes in the
formed cluster as the hashing Buckets. To define the hashing proce-
dure we need to clarify: i) the hash key, ii) the hash key space, iii)
the hash function application. We proceed by presenting the afore-
mentioned parameters. The hash key is set to be the angle ]Y Sut
of mote Su which means that the hash key space is determined by
the fact that −π

2
< ]Yt < π

2
. The previous range is equally dis-

tributed between the available buckets such that a bucket Bi holds
a range between [−π

2
+i· π

B
,−π

2
+(i+1) π

B
). Next, the hash func-

tion that is applied by motes in order to decide the receiver bucket

is: H(]Y Sut ) = b]Y
Su
t
π
B

+ dB
2
ec = Bi. Thus, in the intracluster

processing, instead of letting all regular nodes transmit their data
towards the clusterhead we impose that they should be sent to the

b]Y
Su
t
π
B

+ dB
2
ec-th bucket.

Obviously, the process groups motes with similar trends in buck-
ets while highly dissimilar motes hash in distant buckets in terms
of the hash key space assignment. However, at the edges of the
buckets similarity may still exist. More precisely, to guarantee
that a node can be witnessed by any similar within the cluster,
]Y Sut needs to be sent to the bucket nodes that cover the range

bmax{]Y Sut −]thres,0}
π
B

+ dB
2
ec to bmin{]Y Sut −]thres,π}

π
B

+ dB
2
ec.

Utilizing more buckets reduces the range of each, but results in
more ]Y Sut s being transmitted to multiple buckets. PAO+ selects
the value B (whenever at least B nodes exist in the cluster) by set-
tingB < π

]thres
which limits the number of bucket nodes to which

motes transmit their data to the range bmax{]Y Sut −]thres,0}
π
B

+



dB
2
ec to b]Y

Su
t
π
B

+ dB
2
ec. The latter range is guaranteed to con-

tain at most 2 buckets.
In order to make sure that the similarity test is not performed

more than once we impose the following rules: (a) For ]Y Sut s
mapping to the same bucket, the similarity test between them is
performed only in that bucket node; and (b) For ]Y Sut s mapping
to different bucket nodes, their similarity test is performed only in
the bucket node with the lowest Bi.

Each bucket reports the set of outliers that it detected, along with
their support, to the clusterhead. Any mote reported by at least one,
but not all buckets to which it was transmitted, is guaranteed not to
be an outlier, as it has reachedminSup at some bucket. Even when
a mote is reported by all the buckets it was hashed, the support that
its measurements have gained is distributed between buckets need-
ing to be summed up. Hence, the received support is added, and
only those ]Y Sut s that did not receive the required overall support,
from the buckets they were hashed to, are considered outliers.

We note that the whole process does not change the organization
of the data as presented in Section 4, as it simply introduces an extra
fragmentation step on the data. Eventually, sensor nodes that do not
manage to pass the linearity test are assigned to a separate bucket
to be compared with each other, omitting the hashing mechanism.
Load Balance in PAO+. The hashing mechanism we discussed
distributes the processing and communication load during the in-
tracluster phase of our algorithm. However, it does not guarantee
that load apportionment will be equal between buckets. A naive
way to confront occasions of high unbalanced load is to let buck-
ets locally redetermine the hash key space for themselves and sim-
ply route any hashed information outside the new range to other
left/right neighboring buckets. However, in this case our primary
concern regarding bandwidth preservation is violated which at last
deteriorates the power consumption for those buckets.

To balance the load amongst buckets and simultaneously achieve
an efficient way to do so, PAO+ takes into consideration the mon-
itored trends’ distribution. More precisely, PAO+’s load balancing
mechanism acts after the initial hash key space assignment and in-
volves the construction of simple equi-width histograms. As buck-
ets receive data from other motes in the cluster they maintain fre-
quency counts of ]Y Sut s. Subsequently, each bucket communi-
cates to its clusterhead the estimated frequency counts along with
the width parameter used in their construction. Every clusterhead is
aware of the current hash key space assignment since it took part in
the previous partitioning and can easily reconstruct the histograms.

Finally, based on these compact representation of the monitored
patterns distribution, a new key space allocation is determined and
broadcasted to all nodes in the cluster. The whole procedure can be
periodically repeated i.e every a number of w · e time intervals to
allow adaptations to changing data distributions.

6. EVALUATION RESULTS
Experimental Setup. In order to perform a comprehensive study
of our algorithms varying different parameters, we developed a cus-
tom simulator. We randomly located sensors in a rectangular area
and set the packet size to 16 bytes. We tested our PAO and PAO+
algorithms using a real world data set termed Intel Lab Data. The
data set consists of temperature and humidity measurements col-
lected by 48 motes for a period of 633 and 487 epochs, respectively,
in the Intel Research, Berkeley lab [5]. To test our methods in harsh
conditions, apart from using the original data sets, we produced ex-
tra versions (termed as "Noisy" in our experiments) where we in-
creased the complexity of the measurements by specifying for each
mote a 6% probability that it will fail dirty at some epoch. Failures
were simulated using a known deficiency [5] of the MICA2 tem-
perature sensor according to which a mote that fails-dirty increases
its samples until it reaches a maximum value. We set that incre-

(a) Avg Bits Transmitted vs w (b) Avg Bits Transmitted vs p

Figure 3: Avg Bits Transmitted per Window varying w and p
ment to 1 degree per epoch with a maximum value of 100 degrees.
To prevent the measurements from lying on a straight line, we also
impose a noise up to 15% at the values of a node that fails dirty. Ad-
ditionally, each node with probability 0.4% at each epoch obtains
a random, spurious reading between 0 and 100 degrees. We orga-
nized our network in four clusters and utilized a minSup value of
4 (i.e 1/3 of the total motes in a cluster). Eventually, in each exper-
iment we used ]thres of 10 and 20 degrees which account for rigid
and more relaxed cases of outlier definitions.
Bandwidth Consumption in PAO. We first present a set of ex-
periments regarding the regular operation of our framework using
disjoint time windows. We compare the bandwidth consumption
of PAO against a centralized method termed "SelectStar" that col-
lects all data in the query source and performs the outlier detection
process there, instead of using PAOs in-network paradigm.

Figure 3(a) shows the reduction in bandwidth consumption pro-
vided by PAO for the temperature data, when varying the window
sizew, for a p = 0.7 threshold. PAO manages to reduce the average
amount of transmitted data per window up to a factor of 1/3.8 for
the original and 1/2.6 for the noisy data compared to the SelectStar
approach. Additionally, Figure 3(b) depicts the average commu-
nication preservation depending on p’s strictness for the humidity
data using w = 16. Please note that setting the window size to the
maximum of the previously (Fig. 3(a)) cited windows constitutes
a worst case scenario for PAO, as the larger the window the fewer
the motes that manage to adapt to the linear model. We can ob-
serve that the gains in the average amount of transmitted bits range
between 1/1.65 and 1/15 for p = 1 and p = 0, respectively (Se-
lectStar is the straight line at the very top of the figure). Notice
that setting p = 1 for the noisy data version results in the trans-
mission of all V ecSus since no mote satisfies that threshold in the
examined data sets. As a result, the aforementioned lower bound
of 1/1.65 expresses the worst case gains solely provided by PAOs
in-network outlier detection approach.
Sliding the Window. We now investigate the characteristics at-
tributed to PAO when operating over sliding windows, thus ap-
proximately pinpointing outlying values and reducing the commu-
nication burden by suppressing messages as described in Section 4.
Figures 4(a), 4(b) present the accuracy of our framework and the
amount of communicated bits for different ε values expressed as
a percentage of the specified ]thres. We compute the accuracy
of PAO using the F−measure = 2/(1/Precision + 1/Recall)
metric where precision specifies the percentage of reported outliers
that are true outliers, while recall specifies the percentage of out-
liers that are reported by our framework. Notably, PAO exhibits
high accuracy with F-measure values ≥ 80% in most of the cases
while managing to reduce the total amount of communicated data
to 1/3.6 on average compared to the mere transmission of the latest
value in the window (for ε = 0).

Eventually, Figure 5 shows the corrected answers that would be
obtained upon utilizing PAO on par with a simple aggregate (max)



(a) Accuracy varying ε (b) Total Bits Transmitted vs ε

Figure 4: Approximate Processing over Sliding Window, w=16
query. The parameters used during the outlier detection are in-
cluded in the figure. In each epoch, we initially computed the max-
imum humidity reported by the network using the original data sets
(AGGREGATION). Then we posed the same aggregate query and
let it be executed after the outlier detection and removal performed
by PAO using ε = 5 degrees. We can observe that PAO manages to
prevent the distortion on the final results caused by the outliers for
the vast majority of the epochs.
PAO+ Leverages. To validate the ability of the hashing mecha-
nism introduced by PAO+ to distribute the intracluster load, as well
as to prune unnecessary comparisons, in Table 1 we present the
effect of bucket node introduction utilizing disjoint time windows
of w = 16 size. We used different cluster sizes between 24 and
48 motes while varying the number of buckets from 1 to 4. More-
over, the notation "+1" used in the number of buckets expresses
the utility of an additional bucket for motes that do not succeed
in the linearity test. The table provides average results per win-
dow. In particular, we include the average number of comparisons
(Cmps) that take place in a window along with the average number
of motes that sent their data to 2 buckets (Multihashes). Further-
more, we present the average hashes received by a bucket (Hashes
Per Bucket). It can easily be deduced that increasing the number
of buckets dramatically reduces the number of performed compar-
isons which validates the usefulness of PAO+ in this particular as-
pect. On the other hand, the number of multihashes and the number
of hashes per bucket regard a transmission cost mainly charged to
cluster’s regular motes and the load distribution between buckets,
correspondingly. The adoption of more buckets, causes an increase
in multihashes and a simultaneous decrease in the number of hashes
per bucket. This is interpreted as a shift in the energy consumption
from clusterhead and bucket nodes to regular cluster motes caused
by the increment of bucket nodes’ number. Achieving appropriate
balance aids in keeping intracluster, uniform energy consumption,
which subsequently leads to infrequent network reorganization.

7. CONCLUSIONS
In this paper we presented PAO, an outlier detection framework

that manages to perform over multiple window types and allows
users to choose between exact or approximate operation. We also
devised PAO+’s mechanisms that manage to prune unnecessary
comparisons and balance the intracluster load during the outlier
detection process. Our experimental evaluation using real world
datasets validated that our framework can pinpoint outlier readings
ensuring significantly decreased amount of communicated infor-
mation. It also showed the ability of approximate PAO to provide
results of high quality with further reduced bandwidth consump-
tion.
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