
Facilitating Fine Grained Data Provenance using Temporal
Data Model

Mohammad R. Huq
University of Twente

Enschede, The Netherlands.
m.r.huq@utwente.nl

Andreas Wombacher
University of Twente

Enschede, The Netherlands.
a.wombacher@utwente.nl

Peter M. G. Apers
University of Twente

Enschede, The Netherlands.
p.m.g.apers@utwente.nl

ABSTRACT
E-science applications use fine grained data provenance to
maintain the reproducibility of scientific results, i.e., for each
processed data tuple, the source data used to process the tu-
ple as well as the used approach is documented. Since most
of the e-science applications perform on-line processing of
sensor data using overlapping time windows, the overhead
of maintaining fine grained data provenance is huge espe-
cially in longer data processing chains. This is because data
items are used by many time windows. In this paper, we
propose an approach to reduce storage costs for achieving
fine grained data provenance by maintaining data prove-
nance on the relation level instead on the tuple level and
make the content of the used database reproducible. The
approach has prototypically been implemented for stream-
ing and manually sampled data.

Categories and Subject Descriptors
E [Data]: Miscellaneous—Sensor Data

General Terms
Theory

Keywords
E-science applications, Sensor data, Fine grained data prove-
nance, Temporal data model

1. INTRODUCTION
Sensors have become very common in our day-to-day lives

and are used in many applications. Sensor data are acquired
and processed to higher level events used in applications
for decision making and process control. Events are often
processed continuously in a streaming fashion to facilitate
ongoing processes. In many applications it is important that
the origin of processed data can be explained to understand
the semantics of the event and to reproduce events. Data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMSN ’10, September 13, 2010, Singapore
Copyright 2010 ACM 978-1-4503-0416-0 ...$10.00.

provenance documents the origin of data by explicating the
relation of input data, algorithm, and processed data. Thus,
data provenance can be used to derive event semantics. Data
provenance can be defined on data relation level called coarse
grained data provenance or on data tuple level called fine
grained data provenance [4].

Provenance is applied on different kinds of sensor data:
Streaming data is continuously produced data, while manu-
ally sampled data is a small set of data produced at a par-
ticular point in time [1, 6]. While streaming data is never
updated, sampled data might be updated.

In case of fine grained data provenance, storage cost is lin-
ear with the number of sensors and processed data. Stream
processing is often based on sliding windows resulting in a
single data tuple contributing to many processed data. As
a consequence, fine grained or tuple-based data provenance
has to refer to a single tuple multiple times depending on the
overlap of two subsequent sliding windows. Thus, the stor-
age costs for tuple-based data provenance with many over-
lapping data in a sliding window can result in a multitude
of provenance data related to the actual sensor data. The
aim of this research is to provide tuple-based data prove-
nance functionality with reduced storage costs to keep data
provenance in streaming scenarios manageable.

Though the volume of manually sampled data is much
less than streaming data, manually sampled data can be
updated. If a piece of data is updated or deleted from the
database, relation-based data provenance cannot extract the
original data again. Tuple-based data provenance can solve
this problem. But once there will be an update, new prove-
nance data should be also preserved. Moreover, manually
sampled data are often combined with streaming data and
processed together to achieve more meaningful results. Thus
this combination will end up with high volume of prove-
nance data to be maintained compared to the actual sensor
data. Therefore, low-cost tuple-based data provenance func-
tionality should be realized in an environment where both
streaming and manually sampled data are handled together.

Our proposed approach provides tuple-based data prove-
nance with reduced storage costs by maintaining relation-
based data provenance and using a temporal data model.
We add timestamps to each tuple which allows us to re-
trieve a particular database state based on a given times-
tamp. Then using coarse grained provenance data, we can
figure out the original tuples participated in a query to pro-
duce output tuples. The additional storage costs of these
temporal attributes along with the cost of relation-based
data provenance together will not exceed the storage costs

for tuple-based data provenance. Furthermore, we develop a
prototype combining streaming and manually sampled data
to realize our approach.

This paper is structured as follows. In Section 2, we dis-
cuss related work. Next, we provide a detailed description
of our motivating scenario followed by the problem descrip-
tion in Section 4. In Section 5, we provide the structure
of our temporal data model followed by the implementation
that demonstrates the viability of our approach in Section
6. Finally, we conclude with the hints of some future work.

2. RELATED WORK
Recently issues pertaining to data provenance are getting

more attention from researchers. In [3], authors have de-
scribed a data model to compute provenance on both re-
lations and tuples level. In this data model, the location
of any piece of data can be uniquely described by a path.
This paper shows case studies for traditional data but it
does not address how to handle streaming data and associ-
ated overlapping windows. In [10], authors have provided a
data model for provenance repository which is based on re-
lational database. Their approach maintains relation-based
data provenance whereas our approach provides fine grained
data provenance.

Relation-based data provenance cannot reproduce results.
The work described in [12] proposed a data and collection
model using timestamp based approach to collect prove-
nance information when there is any change in sampling rate
and accuracy of the stream. Though it saves a lot of disk
space, it cannot address update of sampled data. We use
multiple timestamps to identify the validity of a particular
(updated) tuple. In [5] authors have presented an algorithm
for lineage tracing in a data warehouse environment. They
have provided data provenance on tuple level. Their algo-
rithm only works for traditional data. It cannot address the
issue of database state change due to update.

For databases that change over time, compact versioning
is essential to recover data referenced by the provenance
of data derived from an earlier version of the database [2].
Since one version is an extension of the previous version, this
versioning technique incurs space overhead. Our proposed
approach does not store any versions physically in the disk
instead we attach timestamps to each tuple to retrieve any
database state based on a given timestamp.

In e-science applications, supporting reproducibility of re-
search results are necessary. In [8], authors outline the struc-
ture of a provenance-aware storage where provenance data
will be treated as the first class data. For recording and
querying provenance data Tupelo2 project [7] has been ini-
tiated. This project is aimed at creating a metadata man-
agement system which stores annotation triples (subject-
predicate-object) in several kinds of databases, including
normal relational databases. Tupelo2 cannot address issue
with update operation.

Recently, a complete DBMS, LIVE [9] can store base and
derived relations with simple versioning capabilities where
each tuple includes a start and end version number. LIVE
also preserves the lineage of derived data items. Since LIVE
uses different version number associated with each relation,
we cannot retrieve the overall database state given a sin-
gle version number. Our approach of using timestamp in-
stead of version number overcomes this drawback. Most
significantly, in our approach, we need not maintain any

tuple-based provenance data instead we store relation-based
provenance data along with temporal data model which is
more cost effective than LIVE.

3. SCENARIO
Figure 1 depicts a Bluetooth localization scenario that has

been set up in our SensorDataLab 1. The location of a user is
determined by acquiring the signal strength of a Bluetooth
device carried by the user and the known location of the
system acquiring the signal strength measurement. Linksys
NSLU2 devices are used for acquiring signal strength mea-
surements of all Bluetooth devices. On these systems, a
Bluetooth discovery application is installed which continu-
ously checks for handheld devices and reports detected de-
vices via a UDP packet to the data processing system. A
packet contains the person’s device MAC address, identi-
fication number of the discovery systems, signal strength,
and the timestamp (see figure 6). The NSLU2 systems are
represented as EWI 1148, EWI 1149, EWI 1150.

In addition, the deployment location of NSLU2 device as
well as the mapping of MAC address of a handheld device to
an actual person at a specific point in time is documented
and made available as manually sampled data. The data
processing allows to correlate streaming and sampled data
and provides a query interface to access the data on-line and
off-line.

Figure 1: Bluetooth localization scenario in Sensor-
DataLab

In our scenario Alice, Bob, and Carlos are three users,
joining the experiment on 2010-03-03 at 9:00. Each of them
using a mobile device. It turns out that the mobile device of
Alice has not been charged over night and is running out of
power. Therefore, at 10:00 she has to exchange the mobile
device with another one. Bob has to attend a lecture in the
afternoon and therefore is leaving the experiment at 13:00.
At around 11:00 Carlos finds out that he picked up a new,
unused mobile device instead which had been assigned to
him. Since Carlos likes this mobile device better, the device
had been permanently assigned to Carlos.

The supervisor of Alice, Bob and Carlos uses the data for
publishing a paper about a new localization approach tested
in this experiment. From the available data, she evaluates
her approach and creates graphs to document the results.
If the outcome is unexpected, she may want to debug the
results. Thus, this scenario exhibits the properties of an
e-science scenario, since she must be able to reproduce the
evaluation results and graphs later. The requirement of re-
producible results corresponds to tuple-based provenance in

1http://www.sensordatalab.org/wiki/index.php5/Loc:Home

the scenario as described above because it documents how
each tuple has been created. For the rest of this paper, we
will explain our approach to achieve fine grained data prove-
nance based on this scenario.

4. PROBLEM DESCRIPTION

4.1 Fine grained Data Provenance
In our scenario (see Section 3), each second a lot of stream-

ing data is arriving from different sensor nodes. Moreover
manually sampled data including metadata are also stored
to help the overall data processing job. We have 8 NSLU2
devices installed in our lab. Whenever users are roaming
around the lab, each second a UDP packet is sent containing
the user’s device MAC address, detection timestamp along
with other parameters.

Now, consider a time-triggered query to compute a per-
son’s location based on the readings of the last 30 seconds.
This translates in a continuous query having window size
of 30 seconds. At each second, 8 different tuples/packets
will be sent by those NSLU2 devices. After each second,
the window shifts forward by a second. Therefore, at a par-
ticular moment we have 240 data tuples which should be
processed to compute that time-triggered query. For each
data tuple, we associate provenance data using a pointer
to the tuple represented as bigint field. Moreover, we need
two more pointers to point to the activity and the resulting
output tuple assuming there is only one output tuple. In
total, we need to preserve 242 pointers in order to have the
tuple-based data provenance. In MySQL2, the bigint field
consumes 8 bytes. The output will be current location of
a particular person which is nothing but a co-ordinate in
form of (x,y) and consumes 8 bytes in total. Therefore, the
ratio of the provenance data to processed data is 242:1 per
processed data tuple in this scenario. In other words, only
4 gigabytes of a 1 terabyte disk will be used to store the
sensor data and the rest of the space will be consumed by
provenance data. Moreover, provenance data is a type of
indirection used to identify the original data which has no
significant meaning to users. Therefore, buying additional
storage space seems to be an expensive solution to this prob-
lem.

Based on the example described above in this section,
relation-based data provenance needs to preserve only three
provenance data. One for the set of input data, another
for the query and the rest is maintained for the output. For
relation-based data provenance, the ratio of provenance data
to actual desired sensor data is always constant and inde-
pendent of overlapping window size between two subsequent
windows and number of tuples per second. Therefore, from
the storage point of view relation-based data provenance is
more efficient than tuple-based data provenance.

4.2 Reproducible Results
Reproducibility of results can be achieved by having differ-

ent versions of a database - a new version after every change
of the database. Traditionally, versioning is implemented
by replicating the complete database before applying the
change. An alternative way is to document changes in the
database according to time. Timestamps can be used as a
global version number. Using timestamp, we can provide

2http://www.mysql.com/

a particular state of the database without storing versions
physically. In this paper, we achieve reproducibility by using
timestamps as version numbers and requiring a consistency
property on the database which ensures for a query on a
particular database state in the past to have the same result
set regardless of the query execution time. The definition of
consistency is given below.

Definition 1. If a particular query is executed on the same
database state by same/different users at different points in
time, users are expecting to have the same result sets each
time under the assumption that the query processing is not
hindered by any means of network volatility.

Figure 2: Query Time and Query Execution Time

In the definition, the term same result set refers to the
same set of tuples extracted from the same set of relations
from participating nodes for the same query executed at
different points in time. Figure 2 pictorially represents def-
inition 1. Assume that a user wants to know the location
of Alice on a particular point in time which can be termed
as query time, QT is represented as query Q at QT. In
the upper pair of timelines, a user submits the query Q at
QT=10:00. Regardless of their query execution time which
is represented as NOW, the outcome should be the same
since they queried on the same database state that is avail-
able on 10:00. On the other hand, QT is different for the
lower two timelines. The middle timeline shows that the user
submits query Q at QT=10:00 and the last timeline depicts
that the user submits Q at QT=10:30. Though these two
queries are executed at the same point in time, the result set
may be potentially different if there is a change on Alice’s
handheld device. In other words, if there is a database state
change we may get potentially different results for a partic-
ular query. The consistency property is also applicable for
continuous queries. Reconstructing the window having same
set of tuples and trigger condition will ideally produce the
same result set each time irrespective of the query execution
time. This is how definition 1 differentiates between query
time and query execution time which allows users to have
the same set of data retrieved as a result of the query de-
pending on the point in time for which they want the query
result, but irrespective of the time when the query has been
executed. It fulfills the requirement of retrieving historic
data as well as provides a consistent view of the database.

4.3 Data Classes
In our scenario, we have both streaming and manually

sampled data. Streaming data is automatically acquired

from sensors which is not the case for manually sampled
data. The volume of streaming data is much larger than
the volume of sampling data. Manually sampled data or
metadata are associated with streaming data which make
them important to preserve into the database. Sometimes,
there is a large time delay between a fact becomes valid in
the real world and that fact is inserted into the database.
This delay is known as propagation delay. Since human in-
tervention is needed to enter sampled data in database, it
may have longer propagation delay than streaming data.
Moreover, data processing is also challenged by update of
sampling data. Streaming data, on the other hand, never
updates but due to its high volume, it is a challenging task
to provide tuple-based data provenance in streaming sce-
narios. Next sections will discuss these problems associated
with streaming and sampling data in detail.

Figure 3: Propagation delay of streaming data

4.4 Propagation Delay in Streaming Data
In Figure 3, we have one continuous timeline and two dif-

ferent worlds: real world and database world. The upper
block of timeline shows that the data tuples generated from
EWI 1148 has delay between the time they got valid and en-
tered into the database due to the propagation delay. This
delay can affect the data processing steps and eventually the
outcome. In the lower block of the processing timeline, we
see a user initiates a query Q with same query time on tu-
ples generated by EWI 1148 in two different points of query
execution time. When the query Q is executed for the first
time, as tuples are yet to enter in the database the out-
come contains no result which is unexpected. The set of
data arrives later after the first query execution and influ-
ence the outcome of the next execution of the same query
Q. Maintaining relation-based provenance in the aforemen-
tioned scenario, cannot extract original data to reproduce
results.

4.5 Updates in Sampled Data
Sampling data may be updated or modified over time.

Figure 4 shows an example where user Alice changes her
handheld device at 10:00 (see section3). After changing the
device, the related data on Alice’s new handheld device (e.g.
device MAC) is entered into the database and overwrites the
previous data. This operation indicates a state change for
the overall database. Now, if a query Q on Alice’s handheld
device is executed on two different points in time (different
query execution times), we will get two different results be-
cause of the state change of the database. Therefore, this
update operation in the database causes to have inconsistent
results and thus creates inconsistency in the database.

Figure 4: Update of sampled data

5. TEMPORAL DATA MODEL
One of the major challenges to preserve our consistency

property 1 is to allow query execution on the same database
state. That’s why, we use a temporal data model to avoid
storing of all the previous versions physically. Using a tem-
poral model, we can retrieve any particular state of the
database based on a given timestamp since each data tu-
ple will be associated with temporal attributes. Our pro-
posed data model is actually inspired by the bi-temporal
data model [11] using the following temporal attributes:

• valid time representing the point in time a sample
has been taken or a measurement has been sensed.

• transaction time from is the point in time the tuple
has been inserted in the database.

• transaction time to representing the point in time
the tuple is marked as deleted without physically delet-
ing it.

These temporal attributes allow users to initiate queries
on a database mentioning a specific timestamp. Next, we
discuss the way of executing some most common database
operations based on our data model. Since streaming data
never changes, only insert operation is applicable for stream-
ing data.

• Insert: A tuple is added in the database for the very
first time with specified valid time and transaction
time from being the current point in time (e.g. Al-
ice, Bob and Carlos join the experiment). The value
of transaction time to is set to ’0:00:00’.

• Update: It addresses the situation whenever a user
would like to rectify wrong data given earlier (e.g. Car-
los uses one device but another device was registered
for him). Transaction time to of the existing tuple
is set to NOW − 1 and a new tuple is added to the
database with same valid time as the existing tuple.
Transaction time from is set to NOW and transaction
time to is set to ’0:00:00’. The difference from change
of data operation is that here the valid time of existing
and new tuples are same.

• Delete: It refers to the incident that causes damage
or complete removal of a particular entity from the
scenario (e.g. at 13:00 Bob is not participating in the
experiment anymore). In the tuple describing the par-
ticipation of Bob in the experiment is updated by set-
ting the value of transaction time to to NOW -1.

One of the principle requirements of our data model is to
preserve all the past data in order to execute queries on a
given database state so that we can maintain consistency
according to the given definition 1. We are not going to
delete or modify any existing tuples in the database rather
we will insert new tuples with different valid and transaction
times. Therefore, all these database operations need to be
handled in a different manner than a traditional database
does.

6. IMPLEMENTATION

6.1 Prototype

Figure 5: Architecture of prototype

We build a prototype to validate our approach of achiev-
ing fine grained data provenance for both streaming and
sampled data which ensures to reproduce query results. We
make use of Sensor Data Web 3 for gathering, processing
and publishing sensor data. We perform some modifications
on the existing java code so that we can realize and execute
our proposed approach.

Figure 5 shows the basic building block of the platform. In
sensor data web platform, Query Manager (QM) is responsi-
ble for collecting streaming data from sources like GSN 4 and
sampling data from the wiki via a Sparql end point. Within
the query manager a query network is generated, consist-
ing of several processing elements (PEs). Some of them are
source PEs which can communicate and receive streaming
data directly from nodes in the sensor network or pull infor-
mation from external sources. Every PE presents output as
a view. A view is not considered as the final outcome since
it can be input for another PE. We modify the structure of
original views to ensure that the transaction time for each
data tuple is now included into the views. Users can request
results in a preferred format like as a HTML page or a CSV
document. This request is handled by sinks which return
results to users in requested format via specific sink (e.g.
HTML sink, CSV sink). We add one extra parameter query
time in each sink structure so that each of these sinks now
can return results based on the given timestamp.

Sensor data web can also interact with external sources
to pull sampled data according to a given query. In order

3https://sourceforge.net/projects/sensordataweb/
4http://www.swiss-experiment.ch/index.php/GSN:Home

Figure 6: A set of streaming data

to manage sampled data, we use MediaWiki 5 as our basic
platform. One of the main reasons for choosing MediaWiki
is to collaborate with different metadata and sampled data
owners. As wiki is well known for it’s community based use,
using wiki as the repository of sampling data would be an
easy way to collect those data. On the top of MediaWiki,
we use semantic mediawiki extension 6 on top of which we
build our own semantic wiki extension known as Temporal
Semantic History 7.

Our developed extension tracks and monitors the content
of each page in wiki. Data are changed manually in a wiki
page. Revision manager (RM) preserves the previous con-
tent after each revision done on a particular page according
to timestamp in a new revision page. Each revision page
keeps the value of (e.g. valid time, transaction time from
and transaction time to) along with other data. The value
for transaction time from and transaction time to are added
into the wiki page by the system itself. These revision pages
together form the pool of revision pages. When a query Q
requests data from wiki, it is redirected via query network to
this extension. Semantic query manager (SQM) chooses ap-
propriate revision pages from the pool according to the user
given timestamp in Q. Then the content of selected revision
page is transferred and displayed in the result page. This
data is provided as input to one of the source PEs which can
handle sparql data. Then the data is further processed and
result is sent to users.

6.2 Use Case
In the proposed data model, each data tuple is associated

with temporal attributes irrespective of their sources and
types. Figure 6 shows a set of streaming data produced by
one of the NSLU2 systems, EWI 1148 in our scenario. The
temporal attributes valid time and transaction time (as an
abbreviation of transaction time from) are added for each
tuple. Transaction time to is not needed for streaming data,
since we consider append-only streaming data.

On the other hand, sampled data (e.g. manually sampled
data, metadata) is stored in a semantic wiki. In a wiki, data
is stored in form of SPO (Subject-Predicate-Object) triples.
Figure 7 depicts that for each entity, a unique wiki page
is created based on the candidate key. As for example, we
have three different persons in our scenario: Alice, Bob and
Carlos and a unique wiki page is created according to the
person name. In triple store, for all triples, subject contains
name of the page. Moreover, once a wiki page is modified,
the page content before the revision is preserved in order
to provide original data upon user requests. The name of
these revision pages depends on the original page name and
transaction time from. Moreover, ’0:00:00’ in transaction

5http://www.mediawiki.org/wiki/MediaWiki
6http://www.mediawiki.org/wiki/Extension:Semantic MediaWiki
7http://www.sensordatalab.org/wiki/index.php5/Extensions:
Temporal Semantic History

time to attribute is used as a pattern to indicate that the
tuple is currently valid.

Figure 7: Organization of Sampled data in Wiki

Sampling data may be updated and deleted over time.
As discussed earlier, sampling data is organized in a se-
mantic wiki which has different data organization technique.
Among the different database operations, update is a more
interesting operation for sampling data. In figure 7, Alice
changed her device after a while which is indicated by tuple
no. 4. As overwrite existing data causes problems to re-
trieve original data, we insert another tuple having different
valid and transaction time from. Before inserting the new
tuple, we update transaction time to of the previous tuple
to NOW -1.

6.3 Discussion
Our approach achieves fine grained data provenance with

reduced storage costs. Consider the set of streaming data
in figure 6. If we perform any select, project or join op-
erations on that dataset, we will get output tuples. Now,
based on a user given timestamp, we can retrieve original
database state at that point in time. Then, we will use
coarse grained provenance data to figure out the tuples from
input dataset which participated in the query to produce
output data tuples. This is how, we can achieve fine grained
data provenance with reduced storage costs by maintaining
coarse grained data provenance and applying temporal data
model.

In section 4.1, a comparison of consumption of storage
space between fine grained and coarse grained provenance
data has been given. In our prototype, for each tuple, we
need at most three timestamp attributes which take at most
12 bytes storage space per tuple and it is independent of win-
dow size, size of the overlap of the windows, and number of
tuples per second. In tuple-based provenance, each data tu-
ple is associated with provenance data which is a pointer to
the tuple itself and since a particular data tuple is partic-
ipating in the query execution for several times depending
on the overlap of subsequent sliding windows, the space con-
sumed for provenance data is much larger than our proposed
approach. If there is no overlap between subsequent sliding
windows, our approach incurs extra disk space (8 bytes per
tuple) as much as fine grained provenance does. Though
our prototype requires more space than relation-based data
provenance, it enables users to have reproducible results and
overcomes drawbacks of relation-based data provenance.

We assume the append-only data stream processing engine
in our scenario. There are some stream processing engines
which act as non append-only. In those cases, our solution
will handle stream data in a similar way of handling manu-
ally sampled data.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an approach to achieve

fine grained data provenance with low storage costs. To
achieve our goal, we maintained relation-based data prove-
nance along with timestamp-based logical versioning of the
database. The proposed approach is mainly beneficial for
streaming data, thus data processed on-line. Currently, the
prototype can retrieve any database state based on a given
timestamp. Further implementation is going on to make
the prototype complete. In future, we would like to com-
pare performance (i.e. storage cost) of our approach to any
existing techniques.

8. REFERENCES
[1] D. Brus and M. Knotters. Sampling design for

compliance monitoring of surface water quality: A
case study in a polder area. Water Resources
Research, 44(11):95 – 102, 2008.

[2] P. Buneman, S. Khanna, and T. Wang-Chiew. Data
provenance: Some basic issues. Foundations of
Software Technology and Theoretical Computer
Science, pages 87–93, 2000.

[3] P. Buneman, S. Khanna, and T. Wang-Chiew. Why
and where: A characterization of data provenance.
Database Theory - ICDT 2001, pages 316–330.

[4] P. Buneman and T. Wang-Chiew. Provenance in
databases. In Proc. Intl. Conf. on Management of
data, pages 1171–1173, New York, NY, USA, 2007.
ACM.

[5] Y. Cui and J. Widom. Lineage tracing for general
data warehouse transformations. The VLDB Journal,
vol. 12, pages 41–58.

[6] J. de Gruijter, D. Brus, M. Bierkens, and M. Knotters.
Sampling for natural resource monitoring. Springer
Verlag, 2006.

[7] J. Futrelle. Tupelo Server. Website.
http://tupeloproject.ncsa.uiuc.edu/.

[8] J. Ledlie, C. Ng, D. A. Holland, K. kumar
Muniswamy-reddy, U. Braun, and M. Seltzer.
Provenance-aware sensor data storage. In Workshop
on Networking Meets Databases (NetDB), 2005.

[9] A. Sarma, M. Theobald, and J. Widom. LIVE: A
Lineage-Supported Versioned DBMS. In Proc. Intl.
Conf. on Scientific and Statistical Database
Management, 2010.

[10] M. Szomszor and L. Moreau. Recording and reasoning
over data provenance in web and grid services. In On
The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE, pages 603–620.

[11] C. K. University and C. Koncilia. A bi-temporal data
warehouse model. In Proc. Intl. Conf. on Advanced
Information Systems Engineering, pages 77–80, 2003.

[12] N. N. Vijayakumar and B. Plale. Towards low
overhead provenance tracking in near real-time stream
filtering. In Provenance and Annotation of Data,
pages 46–54, 2006.

