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From Bird Flocks to Wireless Sensor Networks: A
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Abstract

This study shows that the flocking behavior of birds can, in fact, support a robust and self-adaptive congestion control protocol
in the context of wireless sensor networks (WSNs). The proposed approach adopts a swarm intelligence paradigm inspired by the
collective behavior of bird flocks having global self-* properties and emergent behavior achieved collectively without explicitly
programming these properties into individual nodes. The proposed approach aims at being simple to implement at the individual
node, involving minimal information exchange.

The main idea is to ‘guide’ packets (birds) to form flocks and flow towards the sink (global attractor), whilst trying to avoid
congestion regions (obstacles). The direction of motion of a packet flock is influenced by repulsion and attraction forces between
packets, as well as the field of view (FoV) and the artificial magnetic field in the direction of the artificial magnetic pole (sink).

Two different models of the flock-based congestion control (Flock-CC) approach were proposed. Both models are presented
in this report. The two models have some important differences. The first model, presented in [1], [2], and [3], is more complex
and involves three tunable parameters. The second model, mimics more faithfully the bird flocking paradigm, as presented by
Couzin at al. [4] and it is simple since it involves only one tunable parameter. Hence easier to tune and thereafter deploy. Even
though is simpler, the second model maintains comparably good performance characteristics to the first model. The development
of the second model passed through several stages over which different options for (a) repulsion and attraction forces, (b) FoV
aperture, and (c) magnetic field imposition were progressively added to the model.

Performance evaluations focused on performing parameter setting and on presenting the effectiveness and efficiency of each
Flock-CC model. Both models were found to achieve graceful performance degradation in terms of packet delivery ratio, packet
loss, delay and energy tax under low, medium and high traffic loads. In addition, these models were shown to be robust against
failing nodes and to outperform typical conventional approaches.

Index Terms

Wireless Sensor Networks (WSNs), Congestion Control (CC), Bird Flocking Behavior.

I. INTRODUCTION

OVER the last few years, there has been an unprecedented research interest in the area of autonomous networked systems
with emphasis on WSNs [5]. WSNs have been deployed for several mission-critical tasks (e.g. as platforms for health

monitoring, process control, environmental observation, battlefield surveillance), and are expected to operate unattended for
extended periods of time. Typically, WSNs comprise of small (and often cheap), cooperative devices (nodes) which may be
(severely) constrained in terms of computation capability, memory space, communication bandwidth and energy supply. In the
context of WSNs, autonomous nodes may interact (a) with the environment so as to sense or control physical parameters, and
(b) with each other in order to exchange information or forward data towards one or more sink nodes. This mass of interactions,
in conjunction with variable wireless network conditions, may result in unpredictable behavior in terms of traffic load variations
and link capacity fluctuations. The network condition is worsened due to topology changes driven by node failures, mobility, or
intentional misbehavior. These stressful situations are likely to occur in WSN environments, thus increasing their susceptibility
to congestion.

The problem of congestion in WSNs is getting increasingly complex. This is not due to the problem’s definition. That mostly
stays the same as in other network types (wired or wireless). On the other hand, two new considerations are emerging: the
size of the problem changes, the resources to solve the problem are limited. The former consideration is mostly encountered in
large scale WSNs consisting of several thousands of sensor nodes, while the latter issue is an intrinsic characteristic of WSNs.
In addition, the convergent (many-to-one) nature of traffic, especially in single-sink WSNs, necessitates completely different
ways of tackling congestion than in traditional end-to-end strategies.

A centralized approach cannot be applied since it provokes several serious drawbacks. Firstly, it leads to excessive commu-
nication load in the network which rapidly depletes the batteries. Secondly, centralized decision making for congestion control
results in slow reaction to changes in network and traffic conditions. Thirdly, it does not take advantage of the in-network
processing capability of sensor networks which permits simple processing and decision-making by individual nodes. Finally,
in the event of communication failure, the entire system becomes inoperational.
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Fig. 1. The obstacle avoidance behavior of bird flocks: (a) A flock of (migrating) birds moves through an obstacle-free environment (towards a magnetic
pole); (b) an obstacle ‘forces’ the flock to split into 2 subflocks; (c) the obstacle extends further on one side and the flock is reformed along the path bypassing
the obstacle on the other side.

The limited and unpredictable nature of WSNs necessitates decentralized, robust, self-adaptive, and scalable mechanisms
which are vital to the mission of dependable WSNs. Novel approaches should be simple to implement at individual node level
with minimal exchange of information.

Natural designs are much more sophisticated than man-made designs with inherent powerful characteristics. Natural systems
usually exhibit remarkable survivability and robustness to external stimuli and internal perturbations or loss of units, as well as
excellent scaling properties. Adaptation is one of the major strengths bio-systems as they must respond to addition or removal
of members, as well as to sudden changes in the environment.

WSNs, in many ways, can be likened to social groups found in natural (e.g. bird flocks, ant colonies) attempting to accomplish
their tasks collectively (by simple neighbor-to-neighbor interactions), in a decentralized manner, and in the absence of (external)
central supervision. This study intends to explore what can be learned from the behavioral tendencies of natural systems for
designing robust network control techniques. Drawing inspiration from the collective behavior of social groups, local behavior
can be dictated easier and an emergent global behavior of minimum congestion and direction of information flow to the sink
can be determined. In this way, self-* properties, e.g. self-organization and self-adaptation, are not implemented explicitly into
individual devices or nodes, but emerge as a result of the design of the nature-inspired CC model.

This study aims to provide congestion avoidance by mimicking the obstacle avoidance behavior of bird flocks shown in
Fig. 1. In the proposed Flock-based Congestion Control (Flock-CC) approach, packets are modeled as birds flying over a
topological space, e.g. a sensor network. The main idea is to ‘guide’ packets to form flocks and flow towards a global attractor
(artificial magnetic pole - sink), whilst trying to avoid obstacles (failing nodes and congested regions). Inspiration is drawn by:
(a) the repulsive and attractive interactions among closely located individuals proposed by Couzin et al. [4], (b) the orientational
movement of migrating birds towards a global attractor (poles or equator), and (c) the limited visual perception (field of view)
of individuals within the flock.

Initial attempts towards developing the Flock-CC approach are described in [1], [2], and [3], while are summarized in this
report. The new model passed through several design stages which are also presented in the report. The two models have some
important differences. Specifically, the new version mimics more faithfully the bird flocking paradigm, as presented by Couzin
at al. [4]. Also the new version is simpler, involving only one tunable parameter instead of three (hence easier to tune and
thereafter deploy), while it maintains comparably good performance characteristics.

Both Flock-CC models primarily target real-time event-based sensor networks used, for example, in process control and
disaster recovery missions. In event-based sensor networks, packet bursts can be dynamically and randomly initiated at any
sensor node within the network which is expected to report to the sink once the occurrence of a given event has been detected.

The rest of this paper is organized as follows. Section II introduces the novel paradigm of Swarm Intelligence with emphasis
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Fig. 2. The obstacle avoidance behavior of packet flocks. Color intensity indicates the intensity of packets visiting within the given 1-second time slot. (a)
A flock of packets moves through an obstacle-free environment towards the sink; (b) an obstacle (failing node) ‘forces’ the flock to split into 2 subflocks;
(c) after the activation of the second sender, the obstacle is supplemented by an overloaded node which causes the packet flock coming from the back of the
network to follow a less congested path to the sink.
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on the flocking behavior of birds. Section III deals with the concept of the flock-based approach, focusing on the two models.
In Section IV performance evaluation results for both models are presented and analyzed. Section V draws conclusions and
proposes areas of future work.

II. SWARM INTELLIGENCE AND THE FLOCKING BEHAVIOR OF BIRDS

This study draws inspiration from nature, which has been very successful in effectively solving similar types of complex
problems. Social groups found in nature (e.g. ant colonies, bird flocks, etc.) carry out their tasks collectively in order to contribute
to a common goal. Even though individuals coordinate to accomplish a given global mission in a complex world (e.g. foraging,
migration, nest building, defence against predators, etc.), an individual has only local perception of the surrounding environment
and exhibits specific behavioral tendencies which are governed by a few simple rules.

Recently, nature-inspired computing has been fueled by the emergence of a novel computational paradigm, the so-called
Swarm Intelligence (SI) paradigm [6], [7]. SI techniques, motivated by the collective behavior of social insect societies living
in decentralized, self-organizing, and adapting environments, reportedly provide a promising basis for computing environments
that need to exhibit these characteristics. Research in SI has provided computer scientists with powerful methods for designing
distributed control and optimization algorithms. These methods are applied successfully to a variety of scientific and engineering
problems [8]. In addition to achieving good performance on a wide spectrum of ‘static’ problems, swarm-based algorithms
tend to exhibit a high degree of flexibility and robustness in dynamic environments [8].

Currently, two of the most successful SI classes of algorithms are Ant Colony Optimization (ACO) and Particle Swarm
Optimization (PSO). The research framework behind the majority of network-oriented studies involving self-propelled particles
was fueled by the ACO theory proposed by Dorigo et. al [9]. Driven by the collective behavior of ants in finding paths from
the colony to food, many researchers [10], [11] tried to solve the problem of routing. In ACO, artificial ants build solutions
by moving on the problem graph and, by mimicking real ants, deposit artificial pheromone on the graph in such a way that
future artificial ants can build better solutions. The optimal solution can be derived from previously (over suboptimal paths)
transmitted messages. The work of Di Caro [10] incorporates congestion awareness in an end-to-end manner (AntHocNet),
whereas [11] tries to optimize energy, congestion and load balancing parameters along with providing efficient routing in ad-
hoc networks. PSO can be used to tackle specific network-oriented problems like deployment and energy efficiency. Shih [12]
implemented a PSO-based clustering algorithm to reduce the traffic load using data aggregation or compression and improve
the system’s lifetime. Results show that nature-inspired techniques outperform conventional routing algorithms. According to
[13], AntHocNet outperforms AODV in terms of delivery ratio, end-to-end delay and jitter. An important observation is that
the advantage of AntHocNet over AODV grew for larger networks, especially in terms of overhead, suggesting that AntHocNet
is more scalable than AODV. The problem of congestion in decentralized networks is partly addressed using SI techniques, but
mostly in the context of ad-hoc networks. However, it has to be noted that ad-hoc and sensor networks have some fundamental
differences (see [5] for a detailed explanation) something which drives the necessity for novel CC strategies in the context of
sensor networks, on which this study focuses.

The two Flock-CC models involves reference to artificial bird flocks consisting of individuals with the same behavioral model
(homogeneity) but with finite range of view (perception) which interact with each other as well as with the environment. The
design of the interactions in packet groups is influenced by the study of artificial flocks such as the ‘boid’ animations of
Reynolds [14] and the bio-swarm model of Couzin et al. [4]. The behavior of each individual is influenced by other individuals
within its neighborhood.

Both Flock-CC models appear two differences compared to the Couzin’s model. The bio-swarm model of Couzin was
formulated on the metrical (continuous three-dimensional) space, whereas the Flock-CC model is applied on a two dimensional
topological (discrete) space defined by the graph of nodes. In addition, in the Couzin’s model (as well as in the Reynolds’
model) individuals form flocks and move constantly in a given finite space without any final destination. On the other hand,
in Flock-CC, packets are expected to form flocks and move towards a global target which is the sink. The latter Flock-CC
characteristic necessitates the existence of an attraction filed towards the sink.

Below, the basic elements of the bird flocking behavior are presented.

A. Repulsion and attraction zones and forces in bird flocks

The Couzin’s study [4] investigates how physical and/or motivational differences among individuals may influence the spatial
positions of individuals within animal aggregations. The authors abstract animal behavior by placing three concentric behavioral
zones around individuals: the rule of cohesion applies in the outer zone (Zone of Attraction, ZoA), alignment applies in a
middle zone (Zone of Orientation, ZoO) and at short distances the rule of separation dominates (Zone of Repulsion, ZoR).
These zones are spherical, except for a volume behind the individual within which neighbors are undetectable. The notion of
the field of view is explained in the next section.

ZoR has the highest priority in the model. If at any time, t, more than one bird resides in the ZoR, the individual bird in
the center responds by moving away from the neighbors within this zone. If there is no neighbor within the ZoR, the bird
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Fig. 3. Representation of the area around a bird placed in the center: ZoR =zone of repulsion, ZoO =zone of orientation, ZoA =zone of attraction. The
possible ‘blind area’ behind an individual is also shown. The aperture of the field of view is α degrees.

responds to others within the ZoO and ZoA. Within the ZoO, the birds align with their neighbors and within the ZoA, the
birds move towards each other. Birds cannot see too far, thus there is no interaction with neighbors located outside the ZoA.

The collective flocking behavior of birds, is considered an emergent behavior arising from a few simple behavioral rules
that are followed by individuals, such as:

1) repel from neighbors (if too close, i.e. within the ZoR) to avoid collisions,
2) attract to neighbors (if apart, i.e. within the ZoA) to maintain coherence among the members of a flock,
3) match velocity (speed and direction) with neighbors (within the ZoO), and
4) introduce a randomness that allows for exploration.

These behavioral rules govern individual-level interactions which collectively result in the emergence of group-level transitions.

B. Birds vision and the field of view

As discussed in the previous paragraph, the motion of each bird is only influenced by its nearest flock mates. Therefore,
vision is the most important sense for birds. The field of view (FoV) determines the extent of the observable world that is seen
by each bird at any given moment. Depending on the placement of the eyes, different animals have different fields of view.
Some birds have a 360o degree overall FoV.

As shown in Fig. 4, the range of visual abilities is not uniform across a field of view, and varies from animal to animal 1.

Fig. 4. Fields of view for an owl and a pigeon.

The FoV is modeled in Couzin’s study. Fig. 3 shows the ‘blind volume’ behind the individual. This ‘blind volume’ is defined
as a cone with interior angle (360− α)o, where α is defined as the FoV of the individual placed in the center. An individual
with α = 360o can respond to others in any direction within the behavioral zones.

1The type of vision in which each eye is used separately is called monocular vision. The vision that occurs when the field of vision from each eye overlaps
is called binocular vision, and it is quite important for depth perception. Monocular vision refers to the area seen with one eye.
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C. Magnetic fields and birds orientation

The aforementioned behavioral rules and the presence of the field of view do not imply that a bird flock will establish a
flight path towards a specific attractor. The notion orientation and attractiveness to a global attractor can be extracted from the
orientational movement of migratory birds. In accordance to [15], migrating birds use the magnetic field for direction finding,
either towards magnetic poles (polewards, northern or southern) or the magnetic equator (equatorwards).

It is a biological fact that migrating birds can take advantage of the environment for their movements. Migrating birds can
sense the Earth’s magnetic field and orientate themselves with the ease of a compass needle. This ability is a massive boon
for these birds, keeping frequent flyers on the straight and narrow. The use of magnetic information in bird orientation was
discussed in the past, when von Middendorff [16] (1859) proposed what someone, in modern terms, would call a ‘magnetic
compass’, and Viguier [17] (1882) suggested that displaced pigeons use total magnetic intensity and inclination to determine
their home direction. In accordance to [15], migrating birds use the magnetic field (Fig. 5) for direction finding, either towards
magnetic poles (polewards, northern or southern) or the magnetic equator (equatorwards).

Fig. 5. Schematic drawing of the Earths magnetic field (redrawn from Wiltschko and Wiltschko [18]). The arrows show the course of the magnetic field
lines and their length is drawn relative to the magnetic field intensity at different latitudes. The magnetic field intensity is strongest at the magnetic poles
(about 68 µT ) and weakest at the magnetic equator (about 23µT ). The steepness of the magnetic field lines relative to the surface of the Earth shows the
angle of inclination, which is maximal at the magnetic poles (±90o) and minimal (0o) at the magnetic equator.

In addition, the findings summarized in another paper [18], clearly show that the geomagnetic field provides important
orientational information2.

III. FLOCK-BASED CONGESTION CONTROL (FLOCK-CC)

A. The concept

A WSN is viewed as a virtual ecosystem, where multiple packets are generated at source nodes and must be directed towards
a dedicated sink node. The main idea behind both Flock-CC models is to ‘guide’ packets to form groups or flocks, and flow
towards a global attractor (sink), whilst trying to avoid obstacles (congestion regions) as illustrated in Fig. 6.

Each packet is modeled as a bird with dynamic position and direction updates, which ‘flies’ over the network undergoing
successive hop-by-hop transitions over discrete points in the 2D space, defined by the positions of hosting nodes. The set of
sensor nodes comprises the environment where packets move. The sequence of transitions determines the packet’s trajectory
from its source to the sink.

Conceptually, in order to make moving packets behave like a flock, the basic characteristics of natural flocks discussed in the
previous section are incorporated in the Flock-CC models. At each hop, a packet interacts with packets located on neighboring
nodes in the FoV on the basis of attraction and repulsion forces, and experiences a ‘gravitational’ force in the direction of

2A recent study by Heyers et al. [19], strongly supports the hypothesis that migratory birds use their visual system to navigate using the magnetic field.
In accordance with Heyers, the magnetic field or magnetic direction may be perceived as a dark or light spot which lies upon the normal visual field of the
bird, and which, of course, changes when the bird turns its head.



DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CYPRUS 6

obstacle = region of congestion
         or failing nodes

simple node

����sink node

packets' directions

global attractor
(sink)

Fig. 6. Packet flock moving towards sink whilst avoiding ‘obstacles’.

the sink (global attractor). More specifically, in the two Flock-CC models packets are (a) repelled from neighboring packets
located on nodes at close distance in the FoV (one hop away), (b) attracted to neighboring packets located on nodes at medium
distance in the FoV (two hops away), (c) oriented and attracted to the global attractor under the influence of the environmental
magnetic field, and (d) experience some perturbation that may help the packets to pick a random route (i.e. trading exploration
versus exploitation).

In this section, the basic elements of the both Flock-CC models are defined: (a) the repulsion and attraction zones and forces,
(b) the artificial magnetic field, and (c) the field of view (FoV).

Before getting into details, consider a network of N autonomous nodes, N > 0, that are able to generate packets. Each
node is associated with a finite queue, while node’s throughput is constrained by the wireless channel capacity. A packet i and
its hosting node n ∈ {1, .., N} (i.e. packet i is residing in the queue of node n) are taken as points of reference in order to
define and discuss repulsion and attraction zones, the notion of the field of view, and the direction of motion. The position of
node n determines the position of the hosted packet i.

All quantities defined herein are regularly sampled at discrete time intervals of T seconds at each sensor node. Then, the
values of these quantities are broadcasted periodically (every T seconds) to all neighboring nodes (within transmission range),
using a dedicated control packet.

B. The first Flock-CC model: The basic elements

In the initial steps of developing the Flock-CC approach, a complex model [20], [1], [3], [2] was devised taking into account
the repulsion and attraction forces, the artificial magnetic field, the FoV and randomness. The first model (Flock-CC v.1)
involves 3 internal parameters (α, c, e). The complexity of the first model lies in selecting the optimal or compromise value
for each parameter over a number of scenarios with different topologies and traffic conditions.

In this model, the zone of repulsion (ZoR) is related to the queue of each node l, and the zone of attraction (ZoA) to
the wireless channel in the vicinity of each node l. This concept is illustrated in Fig. 7. The repulsion and attraction forces

packet i
1 2

3 4 5

packet i
1 2

3 4 5

(a) (b) nn

Fig. 7. The first Flock-based model: Forces exercised on packet i by neighboring packets located on each node l according to Flock-CC approach: (a)
Repulsive forces, (b) Attractive forces. The dark grey shaded packets are in the ZoR (queues), while the black shaded packets are in the ZoA (wireless
channel).
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are defined on the basis of two new congestion indicators: the normalized queue node loading indicator and the normalized
wireless channel loading respectively.

1) Repulsion force: The normalized node loading indicator combines the queue size, the incoming load and the outgoing
load of a single node in order to capture the current congestion levels as well as to predict congestion. The normalized node
loading indicator pl(k) at node l in the FoV is devised, given by the ratio:

pl(k) =





0, if P in
l (k) = 0,

and P out
l (k) = 0,

and ql(k−) = 0;
P in

l (k)+ql(k
−)−P out

l (k)

P in
l

(k)+ql(k−)
otherwise.

(1)

where P in
l (k) is the number of incoming packets, P out

l (k) is the number of successful outgoing packets, and ql(k−) is the
queue size at each node l. All parameters involved in this equation are measured at the end of every sampling period k, except
for ql(k−) which is obtained at the beginning of every sampling period k, in order to be able to determine the total number
of packets traversing each node l within the sampling period.

The parameter pl(k), 0 ≤ pl(k) ≤ 1, reflects the ratio of the difference between the total number of packets to be served
(packet arriving over period k, plus whatever was in the queue at the start of this period) minus the successfully transmitted
packets, divided by the total number of packets to be served. From the perspective of the flocking behavior of birds, the
parameter pl(k) represents the repulsion force exercised on packet i by packets traversing the queue (ZoR) of each node l at
the kth sampling period. When pl(k) → 0, both the number of packet drops due to buffer overflows at node n is close to 0
and the queue is empty or nearly empty. On the other hand, as pl(k) → 1, node l is considered congested due to either a high
number of packet drops, or high queue occupancy.

2) Attraction force: As a measure of the wireless channel loading, each node estimates the quality of the shared wireless
channel using information taken from a CSMA-based MAC protocol. The total number of all packet transmission attempts
at each node l (during sampling period k) is denoted by P out∗

l (k), where P out∗
l (k) = P out

l (k)+retransmits. The normalized
wireless channel loading rl(k), at node l is denoted by:

rl(k) =

{
1 if retransmits= 0 and P out

l (k) = 0;
P out

l (k)
P out∗

l
(k)

otherwise. (2)

The parameter rl(k) ranges from 0 to 1 and represents the attraction force exercised on packet i by packets successfully
transmitted through the wireless channel (ZoA), from each node l. When rl(k) → 1, the channel is not congested and a large
percentage of packets are successfully transmitted (few packet retransmissions are observed). As rl(k) → 0, the channel is
congested and a small number of packets are successfully transmitted, often after a large number of retransmissions.

Besides the repulsion and attraction forces, the fourth approach involves (a) the direction factor, dil(k) (Eq. 9), proposed
for the equation-based artificial magnetic field of the second approach, as well as (b) the wide FoV shown in Fig. 11(b).

The desirability Dl(k) for every node l in FoV is evaluated once in each sampling period k and is used for each packet
sent within this period. It is given by

Dl(k) = g · dil(k) · [α · rl(k) + (1− α) · (1− pl(k))] , (3)

where the parameter g is a random variable that follows the Gaussian distribution with mean 1 and variance v, g ∼ N (1, v)
and the parameter α, 0 ≤ α ≤ 1, regulates the influence of parameters rl(k) and pl(k). Dl(k) measures the tendency of
packets to move towards node l, which is proportional to low values of pl(k), and to high values of rl(k).

It can be deduced that nodes placed at equal hop distance from the sink can be selected if the noise perturbation g is
sufficiently large to cover the bias against these nodes, that is introduced by the direction factor, dil(t). The probability with
which this bias 1− e is covered depends on the standard deviation

√
v of the Gaussian distribution. It makes sense to define v

(and thus
√

v) not entirely independently of 1− e, but as a linear function of 1− e. Thus, let v = c · (1− e)2 (and thus
√

v is
linear in 1− e). The value of c is varied in the experiments (and then v is computed), instead of varying v directly, since we
believe that the parameters e and c are conceptually orthogonal and can be optimized independently. The experimental results
support this choice.

After the evaluation of the desirability vector, the node m∗ with the maximum desirability, is chosen as the new hosting
node of packet i.

C. The second Flock-CC model: The basic elements

The second Flock-CC model (Flock-CC v.2) passed through three development stages. The various stages are presented
below, starting from a simplistic model, Flock-CC v.2.1 (involving a small subset of the bird flocking characteristics), to more
sophisticated (exhibiting better performance) models, Flock-CC v.2.2 and v.2.3, without deviating from the natural bird flocking
behavior. The results presented in Section IV reveal the significance of each added element.



DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CYPRUS 8

1) Repulsion and attraction zones and forces: The design of the second Flock-CC model was primarily motivated by
the neighborhood-based model of Couzin et al. [4]. As discussed earlier, the second Flock-CC model is applied on a two
dimensional topological (discrete) space defined by the graph of nodes. Each packet is allowed to move in a hop-by-hop
manner, over a set of nodes along the path to the sink.

As shown in Fig. 8, the zone of repulsion is defined as a circle of radius Rt around packet i that includes all packets at
close distance, i.e. within the transmission range of node n. Practically speaking, these packets reside in the queues of the
grey-shaded nodes. On the other hand, the zone of attraction is the outer zone of 8 and includes all packets at medium distance
from packet i. In practise, these packets reside in the queues of black-shaded nodes (two hops away from node n).�R0

Sink

ZoA
ZoR

n

R1

Fig. 8. Representation of a sensor network. R0 is the transmission range of node n and defines an area (zone of repulsion) that includes all packets located
on grey-shaded nodes. The outer area (zone of attraction) includes all packets located on black-shaded nodes.

The repulsive and attractive forces exhibited by packets on nodes one and two hops away respectively is proportional to
the number of packets located on these nodes. The number of packets on nodes one hop away is directly obtained through
control packets. Therefore, control packets are seen as means of transferring knowledge (propagate information) within the
environment (sensor network) that is observable by birds’ eyes.

On the other hand, in practise, the number of packets on nodes two hops away cannot be obtained timely through control
packets since black-shaded nodes are outside the transmission range of the current hosting node. Thus, this number can be
indirectly evaluated by measuring the number of packets3 sent from nodes one hop away to nodes two hops away. Hence,
packet i is repelled from packets residing in the queues of grey-shaded nodes and attracted to packets moving to black-shaded
nodes. This idea is illustrated in Fig. 9.

2) Artificial magnetic field: In order avoid unnecessary routing loops and minimize packet loss, packets should be ‘guided’ to
establish flight paths towards the sink. The role of the artificial magnetic field is twofold: provide orientation and attractiveness
to the sink. Orientation to the sink is deduced from the direction of the magnetic field, while the attractiveness to the sink
depends on the strength of the magnetic field (different on each direction, stronger in the direction of the sink). This behavior
is apparent in migratory birds which fly polewards or equatorwards under the influence of the earth’s magnetic field as shown
in Fig. 10(a). In the Flock-CC model, the sink node can be seen as an artificial magnetic pole within the sensor network and
packets are expected to ‘fly sinkwards’ under the influence of an artificial magnetic field as shown in Fig. 10(b).

The artificial magnetic field within the sensor network must point to the sink node. The direction of the sink can be determined
on the basis of the hop distance parameter, hn(k), indicating the number of hops between each node n and the sink at the kth
sampling period. Information about the hop distance to the sink is gradually propagated from the sink (pole) to each node into
the network (environment where packets live) on the basis of control packets, having each node broadcasting its hop distance.

Each node perceives the direction of the magnetic field, and thus the sink node, through neighbors’ proximity to the
sink. Nodes located closer to the sink have smaller hop distances and are expected to be more attractive. Packets retrieve
environmental information such as the artificial magnetic field from their hosting node. The arrows of Fig. 10(b) show the
direction of the artificial magnetic field pointing to the sink node. The arrows mark the paths leading to the sink through nodes
with descending hop distance.

The hop distance of a node may change due to network topology modifications caused by node failures or displacement.
If node n does not hear control messages from a given neighboring node for a maximum of Tlost seconds, then the node n
assumes that the neighbor has failed or gone out-of-range. In this case, the hop distance parameter of node n is re-evaluated
if the loss of a neighboring node influences the parameter’s value. Every change in hop distance values will be propagated

3These packets are easily perceived due to the broadcasting nature of the wireless channel.
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Fig. 9. Repulsion and attraction forces exhibited on packet i (on node n) from neighboring packets.

backwards within the network and all affected nodes are expected to update their hop related parameters. A detailed study of
the hop distance protocol is beyond the scope of the current paper.

3) Field of view (FoV): Motivated by the limited visual perception of birds, packet i cannot ‘see’ and interact with all
packets on nodes in its neighborhood (on nodes one and two hops away around its current hosting node) as in the simple
model of Fig. 9. Packet i can perceive only a fraction of packets, these located in the FoV, i.e. in the observable world of the
packet.

In general, the orientation of a bird’s FoV can be set towards any direction, driving the movement of the bird accordingly.
However, the orientation of a bird’s FoV can be affected by the presence of magnetic fields. Migratory birds that need to travel
polewards (or equatorwards) turn the orientation of their head, and thus their FoV, towards the pole (or the equator). In the
same way, the FoV of packets can extend forward in the direction of the sink node as shown in Fig. 10(b).

The FoV may span from a few degrees up to 360o. In the proposed approach, three different FoV apertures are considered
as shown in Fig. 11. The narrow FoV includes only nodes with shorter hop distance to the sink, while the wide FoV consists
of nodes with shorter or equal hop distance to the sink. In the extreme case, the 360-degree FoV of a packet includes all nodes
in the neighborhood of the packet.

In this context, both the ZoR and the ZoA are redefined to involve the FoV. For example, in Fig. 10(b), packet i has a
wide FoV. In this case, the ZoR is redefined as a circular zone of radius Rt, except for an area behind the packet i (‘blind’
area) that includes packets on nodes with longer hop distance than the current hosting node. The ZoR involves packets located
on the heavy-gray shaded nodes of Fig. 10(b). Therefore, packet i is repelled from these packets as illustrated in Fig. 10(c).
Similarly, the ZoA is the outer circular zone of Fig. 10(b) that includes packets on nodes at shorter or equal hop distance
compared with the current hosting node (black-shaded nodes). Since the number of packets on black-shaded nodes is difficult
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Fig. 10. (a) A bird flock moving polewards under the influence of the magnetic field of the Earth (black arrows). The FoV of the bird placed in the center
extends forward in the direction of the magnetic pole. (b) Packets generated in a sensor network will move sinkwards under the influence of the artificial
magnetic field (black arrows). The number on each node indicates the hop distance from the sink. The field of view (FoV) of packet i (on node n) extends
forward in the direction of the sink. The ZoR and ZoA around packet i are redefined as circular zones, except for an area behind the packet i that is outside
the FoV. (c) Repulsion forces exercised on packet i from packets in the ZoR (on heavy-gray-shaded nodes). (d) Attraction forces exercised on packet i from
packets in the ZoA (moving to black-shaded nodes).



DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CYPRUS 10

Sink

Rt

22

1
1 1

3

44
4

1

2
2

5
4

5
4

5

F
oV


Sink

Rt
3

2
2

3

1
1 1

3

44
4

1

2
3 2

3

3
3 3

5
4

5
4

5

F
oV



Sink

Rt
3

2
2

3

1
1 1

3

44
4

1

2
3 2

3

3
3 3

5
4

5
4

5

F
oV



33
3

3
33

3

(a) (b) (c)

Fig. 11. (a) Narrow FoV including nodes with shorter hop distance to the sink. (b) Wide FoV including nodes with shorter or equal hop distance to the
sink. (c) Complete 360-degree FoV.

to be timely obtained, packet i is attracted to packets moving towards these nodes.
4) Desirability function: The repulsive and attractive forces (exercised by packets one and two hops away respectively) are

synthesized by the decision making process which is invoked by the hosting node of each packet. The synthesis of repulsive
and attractive forces is captured through a desirability function. The decision making process results in selecting the most
desired next hop node on the basis of avoiding or minimizing congestion phenomena on next hop nodes. The desirability
function is evaluated once every sampling period and is used for each packet sent within this period.

D. Flock-CC v.2 development stages

This section presents the three development stages of increasing sophistication to mimic the flocking behavior of birds.
1) Flock-CC v.2.1: A simple idea is to have each packet i on node n of Fig. 8 repelled from packets on all grey-shaded

nodes (one hop away) and attracted to packets on all black-shaded nodes (two hops away). The first development stage of
the second model omits the notions of the field of view (actually this is identical to having a 360-degree FoV) the artificial
magnetic field (‘gravitational’ force) towards the global attractor and randomness.

In each hop, packet i moves to a new hosting node from the set of grey-shaded nodes placed in the transmission range
of its current hosting node n. Whenever packet i is about to be sent, the decision making process is invoked to determine
the next hop node. Each hosting node evaluates the next hop node for each one of its packets based on an M -dimensional
desirability vector,

−→
D(k), where M ≤ N , is the number of nodes located within the hosting node’s transmission range at the

kth sampling period (it is evaluated once every sampling period). Each element, Dm(k), of the vector
−→
D(k) represents the

desirability for each node m,m ∈ {1, ..,M} in the transmission range of node n. The desirability Dm(k) for every node m
is evaluated once every sampling period k and is used for each packet sent from node n within this period. In the simplest
form, Dm(k) is given by:

Dm(k) = sm(k)− qm(k), (4)

where sm(k) is the number of packets successfully transmitted from node m to nodes two hops away from node n (packets
in ZoA) and qm(k) is the number of packets in the queue of node m (packets in ZoR). In the simplest case, the node m∗ with
the maximum desirability is chosen as the new hosting node of packet i.

Initial experimental results, on a network of 300 sensor nodes and a single sink node showed that less than 1% of packets
were able to reach the sink. The problem is mainly attributed to two reasons.

The first reason is that packets are allowed to move in any direction without orientation to a global attractor. This causes
high packet concentration in the network, especially in the vicinity of source nodes, because packets get trapped in loops.
Eventually, the overwhelming majority of packets are lost due to collisions in the wireless channel. The second stage (Flock-CC
v.2.2) incorporates the notion of orientation to the global attractor.

The second reason is that the decision making process does not employ perturbation when deciding a new hosting node.
Thus, packets sent over the same sampling period move to the same new hosting node causing high queue occupancy on new
hosting nodes. The third stage (Flock-CC v.2.3) investigates if and how perturbation influences the performance of the second
Flock-CC model.

There was an attempt to face the problem of packets getting trapped in loops by introducing the notion of short-term memory
in each packet. In this way, each packet was allowed to remember its last hosting node. The idea was to prevent packets from
moving back to their previous location, so as to pick another route. Nevertheless, there was no remarkable improvement in
experimental results.
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2) Flock-CC v.2.2: Apparently, the simplistic model proposed in the first stage, Flock-CC v.2.1, simulated a 360-degree
FoV, where packets were allowed to move in any direction. Unfortunately, the results were very negative but served as valuable
feedback for further investigations. The second stage incorporates orientation to the global attractor by introducing the notions
of the FoV and the artificial magnetic field.

The development of Flock-CC v.2.2 passed through several steps over which different options for (a) repulsion and attraction
forces (with, or without normalization), (b) FoV aperture (narrow, or wide), and (c) magnetic field imposition (in determining
FoV orientation, and in providing differentiated attractiveness to nodes in the FoV) were added to the model.

The model proposed in the second stage is progressively supplemented by a set of different features as follows:
1) Step 1: The influence of the artificial magnetic field is initially incorporated in the orientation of the FoV. Under the

influence of the magnetic field, the FoV is seen to extend forward in the direction of the magnetic pole (sink) in order
to guide packets ‘fly’ towards the sink.

2) Step 2: The attraction and repulsion forces involved in the desirability function are normalized to become comparable
to each other.

3) Step 3: The attractiveness to nodes in the FoV is differentiated on the basis of the direction of the sink. In particular,
stronger attractiveness to nodes closer to the sink is imposed. In this way, packets are expected to ‘fly’ over short paths
to the sink, thus minimizing looping effects. The attractiveness to shortest paths is inherent in migratory birds which are
seen to fly along the magnetic field lines. These lines travel the shortest distance from pole to pole.

In all scenarios, both the narrow and wide FoV (described in III-C3) are considered. In this way, the new desirability vector
takes into account only packets located in the FoV of a packet that is ready to be sent. Again, the node with the maximum
desirability is chosen as the new hosting node.

Step 1: The FoV extends forward in the direction of the magnetic pole as shown in Fig. 10(b). In the simplest case, moving
packets are assumed to experience a homogeneous attraction to all nodes in the FoV overlooking the fact that the magnetic
field (and thus attraction) is stronger in the direction of the pole (sink).

The expected number of nodes in the FoV (within both ZoR and ZoA) of packet i is denoted by L, L ≤ M ≤ N . Therefore,
the desirability of each node l, l ∈ {1, .., L} in the FoV, Dl(k), is given by:

Dl(k) = sl(k)− ql(k). (5)

Detailed experimental results on the 300-node topology are presented in the performance evaluation section, concerning
2 different FoV apertures: narrow and wide FoV. A first interpretation of the results for narrow and wide FoV showed a
remarkable increase in the number of packets arriving at the sink compared to the scenarios of the first stage that do not
consider the artificial magnetic field and the field of view.

Step 2: The values of parameters sl(k) and ql(k) may variate significantly for each node l. Therefore, normalization can be
used to remove these undesirable variations and make parameter values more directly comparable. The normalized desirability
of each node l, l ∈ {1, .., L} in the FoV, Dnorm

l (k), is given by:

Dnorm
l (k) = snorm

l (k)− qnorm
l (k), (6)

where

snorm
nm (k) =

{
snm(k)
s′nm(k) if s′nm(k) > 0;
ξ otherwise,

(7)

and
qnorm
l (k) =

ql(k)
Q

. (8)

The parameter snorm
l (k) is the ratio of the successfully transmitted packets from node l, sl(k), divided by the total number

of all packet transmission attempts4 (including retransmissions) at each node l, s′l(k). The parameter snorm
l (k) can be seen as

a measure of quality of the wireless channel loading around node l. The parameter snorm
l (k) ranges from 0 to 1 and represents

the normalized attraction force exercised on packet i by packets moved (successfully transmitted) from each node l to nodes
two hops away from node n (i.e packets within the ZoA). When sl(k) → 1, the channel around node l is not congested and a
large percentage of packets are successfully transmitted (few packet retransmissions are observed). As sl(k) → 0, the channel
is congested and a small number of packets are successfully transmitted, often after a large number of retransmissions.

An idle node l, i.e. with zero total transmission attempts, s′l(k) = 0, does not provide any evidence of the wireless channel
quality in its vicinity. Therefore, it cannot be said whether this node is either highly attractive, i.e. snorm

l (k) = 1, or highly
repulsive, i.e. snorm

l (k) = 0. Parameter ξl is introduced as the normalized attraction force exercised by each node l that was
previously idle (s′l(k) = 0). High values of ξ are expected to result in packet spreading since packets will get attracted to idle

4We consider CSMA-like MAC protocols (e.g. IEEE 802.11) which employ a retransmission scheme to increase the reliability of the lossy wireless channel.
A lost or erroneous packet is not retransmitted forever, but is dropped after a limited number of unsuccessful retransmission attempts.
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nodes (most probably at the borders of the flock), whereas small ξ values may lead to coherent flock motion. The value of ξl

in Eq. 7 is explored in performance evaluations.
The parameter qnorm

l (k) reflects the ratio of the number of packets in the queue of node l divided by the queue capacity Q
(assuming equal queue capacity for all nodes). The parameter snorm

l (k) is the percentage of queue occupancy at node l. The
parameter ql(k), 0 ≤ pm(k) ≤ 1, represents the normalized repulsion force exercised on packet i by packets residing in the
queue of each node l (i.e. packets within the ZoR). When ql(k) → 0, the queue is empty or nearly empty. On the other hand,
as ql(k) → 1, node l is considered congested due to high queue occupancy. Based on the discussion above, the normalized
desirability, Dnorm

l (k), ranges from −1 to 1.
Further experimental results on the same topology showed that normalization (step 3) gave significantly better results than

new hosting node selection without normalization (step 2). Nevertheless, in scenarios with wide FoV, a large number of packets
were trapped in loops between nodes of equal hop distance to the sink.

Step 3: A natural way to address the problem of packet loops is to insist on using the narrow FoV where packets are
allowed to move only forward as shown Fig. 11(a). This natural solution is too rigid, as it artificially excludes consideration
of other nodes which are not necessarily on the direct path, but may have higher desirability, and makes paths towards the
sink ‘too narrow’, thus aiding contention and node loading as well as suppressing the ability of a packet to explore new paths.
Furthermore, if the same nodes are always considered, then a higher power drain will be observed on these nodes and this
may result in a shorter network lifetime. Furthermore, a problem may arise when front nodes either become unreachable (due
to failures) or seen momentarily as unreachable (due to loss of control packets). In this case, packets reaching a dead end will
be dropped.

The aforementioned considerations fueled the need for enhancing the second stage. In the third step of the second stage,
besides keeping the wide FoV and the normalized desirability function for new hosting node selection, moving packets
experience stronger attraction to nodes in the FoV located closer to the sink.

The wide FoV allows packets to be forwarded even to nodes that are placed at equal hop distance from the sink. However,
some bias is applied against such a choice by discounting the desirability of equal hop distance nodes over the nodes that
are closer to the sink (packet loops avoidance). Differentiated attractiveness to nodes in the FoV is done on the basis of the
direction of the sink. The strongest attractiveness is experienced in the direction of the magnetic pole (sink), while attractiveness
attenuates gradually as we deviating from the direction of the pole. Two different strategies were proposed for differentiating
the attractiveness to nodes in the FoV: (a) equation-based, and (b) ruled-based evaluation.

In the equation-based strategy, the direction factor, dil(k), is introduced to regulate the attractiveness to nodes within the
FoV:

dil(k) =
{

1 if hn (k) > hl (k) ,
e if hn (k) = hl (k) .

(9)

where hn(k) is the hop distance of node n, and hl(k) is the hop distance of each node l at the kth sampling period. More
specifically, dil(k) is set equal to 1 for all nodes l in the FoV that are closer to the sink than the hosting node n, and equal to
some constant e, 0 ≤ e ≤ 1, for all nodes l in the FoV at equal distance from the sink. The parameter e relates to the span of
the FoV, that is, if e = 0 packets can move only to nodes closer to the sink. Therefore, the wide FoV degenerates into narrow
FoV.

An adjusted normalized desirability of packet i for node l, D′
l(k), can be evaluated by multiplying the direction factor,

dil(k), with the normalized desirability Dnorm
l (k). However, this procedure is valid if Dnorm

l (k) is positive. For example,
if Dnorm

l (k) < 0 and dil(k) = e < 1, then node l will become more desirable because its adjusted normalized desirability
increases. Therefore, the adjusted normalized desirability of packet i for node l is defined as:

D′
l(k) = dil(k) · [Dnorm

l (k) + 1] = dil(k) · [snorm
l (k)− qnorm

l (k) + 1] . (10)

Additional experimental results using the adjusted normalized desirability showed an even greater increase of the number of
successfully delivered packets, thus confirming the importance of using the direction factor. A high increase in packet delivery
ratio was observed for e = 0.25 − 0.5 and ξ = 0.75 − 1. On the other hand, a slight decrease in PDR was shown for e = 0
due to problems related to the narrow FoV, and are explained in detail in the evaluations section.

A simplified, rule-based strategy for differentiated attractiveness can be followed when choosing the new hosting node. The
rule-based strategy is simpler than the equation-based strategy since only one parameter (ξ) is used. After the evaluation of
the normalized desirability, Dnorm

l (k), for each node l in the FoV:
1) Choose the node with the maximum desirability and available buffer space from nodes closer to the sink as the new

hosting node → packet goes forward.
2) When all nodes closer to the sink either have no available buffer space or are seen to be unreachable, choose the node

with the maximum desirability and available buffer space from nodes at equal hop distance to the sink as the new hosting
node → packet goes side-ways.

3) Otherwise, choose the node with the maximum desirability and available buffer space from nodes at longer hop distance
to the sink as the new hosting node → packet goes backwards.
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TABLE I
THE FIRST FLOCK-CC MODEL AND THE THREE DEVELOPMENT STAGES OF THE SECOND FLOCK-CC MODEL.

Model Repulsion and Attraction Field of view Magnetic field Randomness
Flock-CC v.1 yes (with normalization) wide yes (equation-based) yes (gaussian distribution)

Flock-CC v.2.1 yes (without normalization) 360o no no
Flock-CC v.2.2 yes (with/without normalization) narrow/wide no/yes (equation-based/rule-based) no
Flock-CC v.2.3 yes (with normalization) wide yes (rule-based) yes (roulette wheel/rank-based)

The rule-based approach exhibited significantly better results compared to the equation-based approach. More detailed results
are given in the performance evaluation section.

3) Flock-CC v.2.3: As initially discussed, randomness is that part of nature which allows for exploration, and perhaps
identification of better solutions. Randomness is included in the rule-based strategy by introducing some noise when choosing
a new hosting node. This process is expected to tackle the problem of packet transitions to the same (highly desirable) new
hosting nodes within the same sampling period which emerges when focusing on maximum desirability.

Perturbation can be employed by randomly selecting a new hosting node. However, in order to provide a fair way of selection,
the probability of selecting a node should be proportional to the desirability of that node. This process is captured by selection
methods used in genetic algorithms as for example, roulette wheel selection, rank selection and tournament selection. Selection
methods are used for randomly selecting members from the population of chromosomes with probability proportional to their
fitness. In the proposed approach, desirability is seen as the fitness of each potential new hosting node.

In roulette wheel selection, if fi is the fitness of individual i in the population, then its probability of being selected is:

pi =
fi∑J

j=1 fj

, (11)

where J is the number of individuals in the population. The proposed approach uses the population of all nodes in the FoV,
i.e. J = L. Roulette wheel selection cannot be directly used with negative fitness. Recall that Dnorm

l (k) ranges from −1 to 1.
Thus, the normalized desirability is shifted by adding 1 to range from 0− 2 to as to be used in Eq. 11. The main disadvantage
of this method is when the fitnesses differ very much. For example, if the best individual fitness is 90% of the entire roulette
wheel then the other individuals will have very few chances to be selected.

These problems can be mitigated by using rank selection to modify the value of each fitness. Rank selection ranks each
individual and a fitness value is assigned according to the rank it receives. The weakest individual receives the value of 1, the
second worst receives the value of 2, etc. and the fittest individual receives the value of J . The probability of an individual to
be selected is equal to the fitness of the individual divided by the total fitness of all the individuals, as in Eq. 11.

These selection methods were used in performance evaluations and the results are presented in the next section.

E. Design parameters

The parameters T, ξ, α, e and c are control parameters of the two Flock-based congestion control models discussed in this
section. The parameter T is involved in both models and represents the sampling period for parameters s(k), q(k), p(k)
and r(k) and the control packet broadcasting period. T is expected to have a significant impact on the performance of all
approaches. The parameter α is involved in the first model and regulates the influential roles of the node loading indicator
pm(k), and the wireless channel loading indicator rm(k) on the desirability function of Eq. 3. The parameter ξ is involved in
the second model and measures the attractiveness of previously inactive nodes in the evaluation of the normalized desirability.
The parameter e is involved in the second model and is used to regulate the attractiveness to nodes within the FoV placed
at equal hop distance form the sink. The parameter c trades off exploration versus exploitation in the first model. All these
parameters need to be carefully selected. Their selection is further discussed in the evaluation section.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the two Flock-CC models through simulation studies conducted using the ns-2
network simulator [21], and discusses the effectiveness of each model in combating congestion by mimicking the collective
behavior of bird flocks.

Performance evaluations focused on 3 directions. The first direction was to experiment with the two proposed Flock-based
congestion control models on the basis of parameter selection and comparative evaluation among them, which drive the
selection of the most efficient and effective approach. Table I summarizes the four proposed approaches from a comparative
perspective.

The second direction refers to the demonstration of emerging behavior, self-adaptation, and robustness against failing
nodes of the two Flock-CC models. Finally, the both Flock-based models were compared with related (nature-inspired and
conventional) congestion control approaches.
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A. Evaluation parameters

The two models were evaluated using similar topologies and scenarios of operation as well as the same measures of
performance. All these issues are discussed below.

1) Topologies: The 2D lattice topology was used in the overwhelming majority of scenarios for both models so as to better
understand and evaluate the behavior of the proposed models. In this kind of topology, neighboring nodes were placed at the
same distance (25 · √2m) from each other, in such a way that each node has at most 8 neighboring nodes one hop away. In
order to experiment with more realistic topologies, both models were evaluated in a random topology as well.

All nodes were homogeneous and identical in hardware and software setup. The radio propagation range of each node was
50m. A two-ray reflection propagation model was used which accounts for the effect of multipathing and fading. The radio
model assumes that the radio can lock onto a sufficiently strong signal in the presence of interfering signals. The control
packet size and the data packet size were set to 10 and 50 bytes respectively. The CSMA-based IEEE 802.11 MAC protocol,
provided in the ns-2 simulator, with an exponential backoff policy was adopted, having RTS/CTS packet exchanges disabled
for energy saving and low signalling overhead purposes. Two transmission rates of 2 Mbps and 250 Kbps were used. In the
former case, the queue size of each node was set to 50 packets, while in the latter case was set to 15 packets.

Flock-CC v.1: The two lattice topologies used for evaluating Flock-CC v.1 consisting of 200 and 400 homogeneous sensor
nodes are shown in Fig. 12. The random topology for the Flock-CC v.1 consists of 400 homogeneous nodes deployed in a
uniform random manner.
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Fig. 12. Evaluation topologies: (a) 200 nodes, (b) 400 nodes.

Flock-CC v.2: The two lattice topologies for Flock-CC v.2 consist of 300 nodes as shown in Figs. 13(a) and (b). In the
random topology for the Flock-CC v.2, the set of 300 nodes was deployed in a uniform random manner.

2) Scenarios: Flock-CC v.1: A number of representative network operation scenarios were defined for evaluating Flock-CC
v.1. In each scenario, different sets of nodes were activated.

In the first scenario (scenario 1), (used for parameter evaluation) the heavy grey shaded nodes of Fig. 12(a) located in the
middle bottom part of the network were activated.

The second and third scenarios (scenarios 2 and 3) demonstrate the self-adaptiveness and the robustness of the proposed
mechanism against failing nodes. In the second scenario, the heavy grey shaded nodes located in the bottom part of the network
of Fig. 12(b) were activated. In the third scenario, the same nodes as in the second scenario were initially activated, while 11
nodes located within the heavy grey shaded zone (in the middle of the network) failed at t = 60 secs. The duration of all
scenarios was 100 secs.

The fourth scenario (scenario 4) involved the activation of 10 nodes placed in the same neighborhood, 7 hops away from
the sink. In practise, it is quite common to have nodes closely located to each other being activated almost at the same time
when an external stimulus (event) is detected.

Flock-CC v.2: In order to investigate all the different aspects (parameter selection, self-adaptation, emerging behavior,
robustness) of the second model, a series of representative network operation scenarios were defined. Each scenario corresponds
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Fig. 13. Evaluation topology and scenarios.

to events occurring in different locations, having different sets of nodes being activated for sending packets. The first three
scenarios are related to the 2D lattice topology, while the fourth scenario concerns random topologies. In all scenarios, sets
of closely located nodes were sending packets. In practise, it is quite common to have sending nodes closely located to each
other being activated almost at the same time when an external stimulus (event) is detected.

In the first scenario (scenario 1), 10 black shaded nodes located in the middle bottom part of Fig. 13(a) were sending
packets. This scenario was used for parameter setting evaluations and comparisons among the proposed approaches.

The emerging behavior and the self-adaptiveness of all proposed approaches were evaluated on the basis of the second
scenario (scenario 2). In this scenario, the front set of 5 grey shaded nodes of Fig. 13(a) (close to the sink) were initially
sending packets. In this way, a congestion region (of heavily loaded queues and wireless channel) was created around and
in front of the sending nodes towards the sink. In order to demonstrate the ability of the flock-based approach to manoeuvre
around the congestion region, the back set of 5 grey shaded nodes started sending packets at t = 50s. Eventually, the front set
of nodes stopped sending packets at t = 70s.

The third scenario (scenario 3) was used to demonstrate the robustness of the proposed approaches against failing nodes,
even under extremely undesirable situations. In this scenario, the black shaded nodes located in the bottom part of the network
of Fig. 13 (b) were initially sending packets (as in the first scenario), while bold circled nodes in the middle of the network
failed at t = 40s.

Finally, the fourth scenario (scenario 4) was used to demonstrate the ability of the proposed approaches to perform well
when the underlying sensor network infrastructure is random. The evaluation scenario involved the activation of 10 sender
nodes placed in the same neighborhood, around 7 hops away from the sink.

3) Variables: The design parameters ξ, α, e and c were chosen to range from 0 to 1. The time between successive control
packets, T (sampling period), was assigned the values 0.5, 1.0, 1.5 and 2.0s in all approaches. The selection of T to be less
than or equal to 2s is guided by the desire to maintain responsiveness to changes in the network state. It is also desirable to
avoid overwhelming the network with control packets, thus T should not be very low. The parameter Tlost concerning the loss
of communication with a certain neighbor was set to 3T .

Each sender node was allowed to generate constant bit rate (CBR) traffic at the rates of either 25 (low load), or 35 (medium
load), or 45 (high load) pkts/s (all nodes at the same rate, different for each scenario) when triggered by an event. These three
cases can be considered as slightly congested, congested, and heavily congested, respectively.

4) Measures of performance: Three performance measures for congestion control approaches were taken into account: the
packet delivery ratio (PDR), the end-to-end delay (EED), and the energy tax. Packet delivery ratio is defined as the ratio of
the total number of packets received by the sink to the total number of packets transmitted by source nodes. End to end delay
is defined as the time taken for a packet to be transferred from a source node to the sink. The energy tax metric calculates
the average energy consumption per node per delivered packet, measured in mJoules/delivered packet at the sink.

B. Parameter selection

This section evaluates the performance of the two proposed flock-based congestion control models, providing parameter
selection and performing comparative evaluation among them.
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Each scenario, concerning different combinations of parameter values, was executed 10 times and the mean values of the
metrics over all scenarios are presented below. In some figures, the mean values are supplemented with 95% confidence
intervals were needed.

1) Flock-CC v.1: Fig. 14 illustrates the impact of α, e and c on PDR for the transmission rates of 35pkts/sec (i.e. the
network can be considered congested) for scenario 1. Parameter T was set to 1 sec. As can be seen, the combinations of values
0.4 ≤ α ≤ 0.8, 0.5 ≤ e ≤ 0.7 and 0.5 ≤ c ≤ 0.75 resulted in high PDR (around 85%). The highest PDR (dashed line) was
achieved for α = 0.4, e = 0.6 and c = 0.5.

Fig. 14. Flock-CC v.1: Packet delivery ratio (PDR) in scenario 1 when the transmission rate is 35 pkts/sec.

For low values of α (i.e. less than 0.4), the useful link service rate, rn, was not taken into consideration. Thus, PDR
was decreased as a result of collision effects that were omitted. On the other hand, the increase of α amplified the tendency
(attraction) of packets to move towards nodes experiencing low channel utilization within the perception field (i.e. to move at
the borders of the flock) in order to avoid collision hot spots occurring inside the network. For high values of α beyond 0.8,
the influential role of parameter rn in the desirability function was enhanced. Thus, packets were caught in loops between
nodes experiencing low channel utilization, resulting in low PDR values. Based on the results of Fig. 14, the parameter α
could be set between 0.4 and 0.8.

Fig. 15. Flock-CC v.1: End-to-end delay (EED) in scenario 1 when the transmission rate is 35 pkts/sec.

As stated before, parameter e determines the bias against nodes at equal hop-count from the sink. When e was between 0
and 0.4, the field of perception of each packet was narrow because packets preferred moving towards nodes located closer to
sink. On the other hand, for e > 0.7, nodes were allowed to move towards nodes with equal hop-count with high probability.
As shown in Fig. 14, PDR deteriorated for e > 0.7 because packets were caught in loops between uncongested nodes, causing
excessive packet loss attributed to wireless channel collisions. Based on Fig. 14, the parameter e could be set between 0.5 and
0.7.
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As far as parameter c is concerned, Fig. 14 shows that higher PDR values were obtained when c 6= 0, due to the randomized
selection of nodes within the perception field, resulting in traffic spreading. Based on these results, parameter c could range
from 0.5 to 0.75.

Fig. 15 illustrates the impact of α, e and c on the end-to-end delay (EED) for scenario 1. As can be observed, the fastest
transitions of packets to the sink were exhibited for α = 0.8, e = 0.6 and c = 1. However, low EED values were also achieved
for parameters’ values within the shaded area of Fig. 15 (including the optimal values for PDR).

Fig. 16(a) highlights that a = 0.4, e = 0.6 and c = 0.5 offer consistently the best behavior for scenario 1, while similar
results were obtained for a = 0.5, e = 0.6 and c = 0.75. Based on all the experimental results presented thus far, the optimal
combination of the design parameters values achieving high PDR and low EED, regarding the scenario under study, was
a = 0.4, e = 0.6 and c = 0.5.
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Fig. 16. Flock-CC v.1: Packet Delivery Ratio (PDR) in scenario 1 when the transmission rate is 35 pkts/sec (detailed results for α = 0.4, 0.5) .

Fig. 17 illustrates the impact of α, e and c on energy tax at 35pkts/sec for scenario 1. As can be seen, the lowest energy
tax (0.026mJ/delivered packet) was obtained for α = 0.5, e = 0.6 and c = 0 (dashed line of Fig. 17).

Fig. 17. Flock-CC v.1: Energy tax (in mJ per delivered packet) in scenario 1 when the transmission rate is 35 pkts/sec.

Similarly, low energy tax levels were achieved for 0.2 ≤ α ≤ 0.6, 0 ≤ e ≤ 0.7 and 0 ≤ c ≤ 0.25. As stated before,
parameter e determines the bias against nodes at equal hop-count from the sink. When e = 0 packets can only move towards
nodes located closer to sink (high flock coherence). On the other hand, as e approaches to 1, packets are allowed to move
towards nodes with equal hop-count with high probability (high traffic spreading). Perturbation is regulated by the parameter
c. When e and c were close to 0 (i.e. high packet flock coherence and low perturbation), packets were moving on narrow paths
to the sink resulting in low energy consumption per node. On the other hand, high packet spreading was observed for e → 1
or c → 1 causing transition loops of packets between uncongested nodes and, as a result, high energy consumption. Also, Fig.
17 shows that high energy consumption was observed for α > 0.6. The increase of α, amplified the tendency of packets to
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move towards nodes experiencing low channel utilization (i.e. at the borders of the flock) in order to avoid collision hot spots
occurring inside the network. However, packets were caught in loops between nodes experiencing low channel utilization,
resulting in high energy consumption.
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Fig. 18. Flock-CC v.1: Packet Delivery Ratio (PDR) in scenario 4 (random topology) when the transmission rate is 35 pkts/sec.

Fig. 18 illustrates the impact of α, e and c on packet delivery ratio (PDR) for scenario 4. As shown in Fig. 18, PDR
deteriorated for e ≥ 0.75, because packets were caught in loops between neighboring nodes, causing excessive packet loss
attributed to both wireless channel collisions and buffer overflows (see Fig. 19). As can be seen, a higher PDR was achieved
when alpha = 0.5, e = 0.5 and c = 0.25 or c = 0.5. When c = 0, the non-randomizing selection of new hosting nodes did
not allow packets to exploit all the available paths to the sink causing a high number of buffer overflows (see Fig. 19). On the
other hand, large values of c (high randomization) resulted in low PDR values, because packets were trapped in loops.
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Fig. 19. Flock-CC v.1: Number of packet lost due to collisions and buffer overflows in scenario 4 (random topology) when the transmission rate is 35
pkts/sec.

The good compromise choice of α = 0.5 allows for a balanced influence of parameters rm and pm on the desirability
function of Eq. 3. When α < 0.5, the selection of a new hosting node is governed by the queue node loading indicator pm

without taking into account the wireless channel conditions in the vicinity of each potential hosting node. On the other hand,
an increase of α beyond 0.5 minimizes the influence of pm on the desirability function. Thus, the repulsion forces from nodes
with high loading decay, and packets are not prevented from moving towards ‘crowded’ nodes (causing high buffer overflows).
Further evaluation results showed that the same behavior was exhibited for both lower and higher traffic load at the rates of
25 and 45 pkts/s respectively.

Fig. 19 displays the number of packets lost due to collisions and buffer overflows when active nodes send at 35 pkts/s for
different combinations of parameters α, e and c in scenario 4. It can be observed that for the majority of combinations of e and
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c values, the number of buffer overflows was greater than the number of collisions. In networks with random node deployment,
there might not exist a large number of available paths to the sink, thus packets are traversing the network through a small
number of alternative paths. Therefore, the buffers of nodes involved in these paths are frequently overwhelmed by packets
leading to buffer overflows. It can be observed that the smallest number of packets lost (cumulatively due to collisions and
buffer overflows) was achieved for α = 0.5, e = 0.5 and c = 0.25. This combination of e and c parameters was compared
against extreme values of e and c, keeping one of these parameters to its best case value. Remarkably high packet losses
occurred for e = 0.75 (collisions + buffer overflows) due to the looping behavior of packets inside the network as shown in
Fig. 19(a). On the other hand, low packet losses were observed for e = 0 in Fig. 19(b) because the narrow field of view disabled
high packet spreading, and thus packet looping. Also, a high number of buffer overflows was observed with an increase of α
(beyond a certain value, different for each scenario, but mostly greater than 0.5) for the reason described above.

0 0.2 0.4 0.6 0.8 1
0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

α

E
ne

rg
y 

ta
x 

(m
J/

de
liv

er
ed

 p
kt

)

e=0.5, c=0.25
e=0.5, c=1.0
e=0.75, c=0.25

0 0.2 0.4 0.6 0.8 1
0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

α

e=0.5, c=0.25
e=0.5, c=0.0
e=0.0, c=0.25

(a) (b)

Fig. 20. Flock-CC v.1: Energy tax (in mJ) per delivered packet in scenario 4 (random topology) when the transmission rate is 35 pkts/sec.

Fig. 20 presents the energy tax paid in mJ per delivered packet for certain combinations of parameters α, e and c in scenario
4. It can be observed that the lowest energy tax was paid for the combination α = 0.2, e = 0.5 and c = 0 but this was at the
expense of lower PDR. As shown in Fig. 19(b), the low energy tax was attributed to the low number of collisions, and thus
to the low number of retransmissions at the MAC layer. Also, low energy tax was paid for the combination α = 0.5, e = 0.5
and c = 0.25 which achieved good compromise in terms of PDR and EED. It is also apparent that a large amount of energy
was consumed when e = 0.75, c = 0.25, α > 0.2 and e = 0.5, α > 0.6 due to the vast number of retransmissions of packets
that were lost due to buffer overflows (mostly) and collisions.

Based on the experimental results for scenario 4 (random topology), a good compromise combination of the design parameters
values achieving a good behavior in terms of high PDR and low EED was a = 0.5, e = 0.5 and c = 0.25.

2) Flock-CC v.2.1: The performance of the first approach, which does not involve any parameters, was evaluated on the
basis of the first scenario for T = 0.5, 1, 1.5, 2.0s and traffic rates of 25, 35 and 45 pkts/s. All the results showed that less than
1% of packets were able to reach the sink. The problem is mainly attributed to two reasons. The first reason is that packets
are allowed to move in any direction without any orientation to a global attractor. This causes high packet concentration in
the network, especially in the vicinity of source nodes, because packets get trapped in loops. Eventually, the overwhelming
majority of packets are lost due to collisions in the wireless channel. The second problem is that the decision making process
does not employ perturbation when deciding a new hosting node. Thus, packets sent over the same sampling period move to
the same new hosting node causing high queue occupancy on new hosting nodes.

There was an attempt to face the problem of packets getting trapped in loops by introducing the notion of short-term memory
in each packet. In this way, each packet was allowed to remember its last hosting node. The idea was to prevent packets from
moving back to their previous location, so as to pick another route. Nevertheless, there was no remarkable improvement in
experimental results.

3) Flock-CC v.2.2: The results of the second stage of the second model are divided into three categories depending on the
different features added to the model on each step of Section III-D2. The first two steps were evaluated on the basis of the
first scenario, while in the third scenario (rule-based) all three scenarios of Fig. 13 were used. All simulations were performed
for T = 0.5, 1, 1.5, 2.0s and traffic rates of 25, 35 and 45 pkts/s.

Step 1: Fig. 21 depicts the PDR for both narrow and wide FoV, for different traffic rates (25, 35 and 45 pkts/sec) and as
T changes from 0.5 to 2s. A first observation of the results reveals a remarkable increase in PDR (from 15% to 70%) in all
scenarios compared to the first stage. This outcome underlines the importance of the magnetic field which imposes orientation
to the sink as well as the need for limited FoV that prevents packets from deviating from the paths leading to the sink.
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Fig. 21. Flock-CC v.2.2, step 1 (orientation of FoV): Packet Delivery Ratio (PDR) for narrow and wide FoV.

A closer view of Fig. 21 shows that scenarios with narrow FoV achieved higher PDR compared to scenarios with wide
FoV. In scenarios with narrow FoV, packets were ‘guided’ to traverse nodes with shorter hop distance to the sink. Due to the
narrowness of the perception field, the flock of packets was moving on a coherent formation (figure) over the shortest paths
to the sink. The coherent movement of packets over the shortest paths resulted in the decrease of packet loss. However, the
drawback of this approach was that alternative paths through nodes along longer paths to the sink were left unexploited. On
the other hand, scenarios involving wide FoV achieved lower PDR as a result of high traffic spreading among multiple paths to
the sink. The poor performance was also attributed to the homogeneous attractiveness to nodes in the FoV. The homogeneity of
attractiveness did not impose any preference to nodes along the shortest paths to the sink in order to ‘force’ packet flocks flow
towards the destination. Thus, a large number of packets trapped in loops. The considerations of this paragraph are reflected
in Fig. 22.
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Fig. 22. Flock-CC v.2.2, step 1 (orientation of FoV): Packet loss for narrow and wide FoV.

Fig. 22 displays the number of packets lost due to channel collisions and buffer overflows for different combinations of
traffic rates and T and for both narrow and wide FoV. The majority of packet loss was attributed to buffer overflows (up to
3 times more than collisions). It is apparent that narrow FoV displayed lower packet loss than wide FoV due to both buffer
overflows and collisions for all traffic rates and T values as explained in the previous paragraph. In addition, the number
of buffer overflows rose with the increase of T , whereas the number of collisions rose with the decrease of T . Recall that
the desirability function was evaluated once every sampling period, and packets to be sent within this period chose the most
desirable node. At high T values, where the desirability function was evaluated more infrequently, packets tended to choose the
same new hosting node over a longer time period (no randomness was applied) leading to overloading (high queue occupancy)
of the chosen node. On the other hand, at low T values, packets spread more frequently to different new hosting nodes
eliminating buffer overloading but causing increase of channel collisions around the chosen nodes.

As shown in Fig. 22, the lowest cumulative packet loss (due to collisions and buffer overflows) for every traffic rate was
achieved for T = 0.5s. Therefore, it can be deduced that at low T values the proposed approach maintains responsiveness to
changes in traffic load, but at the cost of added control packets.

Fig. 23 illustrates the impact of parameter T on EED for both narrow and wide FoV, for the different traffic rates. It is
worth pointing out that only packets delivered at the sink were taken into account in EED evaluations. As can be observed,
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Fig. 23. Flock-CC v.2.2, step 1 (orientation of FoV): End to end delay (EED) for narrow and wide FoV.

the fastest transitions of packets to the sink were exhibited for scenarios with narrow FoV since packets traversed the shortest
paths to the sink. In narrow FoV scenarios with medium and high traffic loads, the highest delay was observed for T = 0.5s.
since network resources (buffer and channel capacity) were highly overloaded. In wide FoV scenarios, conclusions cannot be
safely extracted since the majority of packets were lost.
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Fig. 24. Flock-CC v.2.2, step 1 (orientation of FoV): Energy tax for narrow and wide FoV.

Fig. 24 presents the energy tax paid per delivered packet for both narrow and wide FoV, for the different traffic rates. The
results are quite similar to those obtained for EED (Fig. 23). More specifically, low energy tax (< 0.03mJ/delivered packet)
was paid for narrow FoV scenarios. In contrast, larger amount of energy (0.05 − 0.11mJ/delivered packet) was consumed in
wide FoV scenarios due to the vast number of retransmissions of packets attributed to high packet loss (collisions + buffer
overflows).

Step 2: Further improvement of Flock-CC v.2.2 was carried out by normalizing the attraction and repulsion forces involved
in the desirability function, as expressed by Eq. 6. The parameter ξ involved in the evaluation of the normalized attraction
force, snorm(k), was selected to range from 0 to 1. Fig. 25 shows the impact of parameter ξ on PDR for both narrow and
wide FoV when T = 1.5s. A careful inspection of both Fig. 25 and Fig. 21 (for T = 1.5s) reveal that normalization achieved
a significant increase in performance in terms of PDR for narrow FoV scenarios. More specifically, there were increases in
PDR of up to 12%, 6% and 7% for 25, 35 and 45 pkts/sec respectively, when ξ = 0.5 or 0.75. The poor performance of wide
FoV scenarios does not allow for accurate conclusions.

As shown in Fig. 25, especially for narrow FoV scenarios, low PDR was achieved as ξ → 0 and ξ → 1. At low ξl values,
weak attraction was exercised by each idle node l, even if these nodes were able to accommodate incoming traffic load. Since
idle nodes are usually found at the borders of the packet flock, low ξ values ‘force’ packet flocks move in a coherent formation.
In this case, a number of available paths were left unexploited while other (popular paths) faced overloading, thus resulting
in low PDR. On the other hand, at high ξl values, each idle node l was exercising strong attraction (causing high packet
spreading towards the border of the flock). In this case, 2 problems may occur: (a) There is no evidence of the channel quality
in the vicinity of each idle node, thus high number of losses are expected to arise if the channel is busy. (b) Large number
of packets are attracted to the borders of the flock (left and right), where the majority of idle nodes are. At the same time,
packets are also attracted to the sink due to the inherent attraction of the magnetic field. Thus, packets ‘flying’ at the borders
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Fig. 25. Flock-CC v.2.2, step 2 (normalization of repulsion and attraction forces): Packet delivery ratio (PDR) for narrow and wide FoV, when T = 1.5s.

of the flock collide with ongoing packets ‘flying’ through the center of the flock, resulting in low PDR. Fig. 25 suggests that
a good compromise value for ξ can be either 0.5 or 0.75. These values also resulted in low EED as shown in Fig. 26.
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Fig. 26. Flock-CC v.2.2, step 2 (normalization of repulsion and attraction forces): End to end delay (EED) for narrow and wide FoV, when T = 1.5s.

Despite the improvement of performance, normalization did not tackle the problem of packet loops (mentioned in step 1).
Step 3: In this step, the attractiveness to packets (and hosting nodes) in the FoV was differentiated on the basis of different

hop distances. The existence of nodes with different hop distances in the FoV was feasible when wide FoV was used.
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Fig. 27. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): Packet delivery ratio (PDR) for narrow (e = 0) and wide FoV, for 35 pkts/s
and T = 1.5s.

In the equation-based attractiveness variation strategy, the parameters e and ξ were chosen to range from 0 to 1. When
e > 0, packets were allowed to move to nodes with either shorter or equal hop distance. This is interpreted as nodes were
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perceiving wide FoV. On the other hand, when e = 0 packets could move only forward, thus the wide FoV degenerated into
narrow FoV.

Fig. 27 illustrates the impact of e and ξ on PDR for 35 pkts/sec and T = 1.5s. It can be seen that for e = 0 (narrow FoV),
results were similar to Fig. 25 (for 35 pkts/s), having PDR reaching its highest value of 57% at ξ = 1, i.e. when exploiting
inactive nodes placed closer to the sink. The most remarkable observation, though, was the steep increase in PDR for the
wide FoV, from 12% (without differentiated attractiveness, ξ = 0.5, see Fig. 25) to 62% (with differentiated attractiveness,
e = (0.25, 0.5) and ξ = (0.75, 1), see Fig. 27). The reason is that nodes at equal hop distance were assigned an adequate
attractiveness (parameter e), while idle nodes were highly attractive. Thus, packets could choose alternative paths to the sink
involving non overloaded nodes without being trapped in loops (this happens when nodes at equal hop distance are highly
attractive, e = (0.75, 1)). The same observations applied for traffic rates of 25 and 45 pkts/s.

The combination of the wide FoV and the differentiated attractiveness exploits the availability of many alternative paths to
the sink (wide FoV characteristic) as well as involves stronger attraction to nodes closer to the sink (narrow FoV characteristic).
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Fig. 28. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): Packet loss for narrow (e = 0) and wide FoV, for 35 pkts/s and T = 1.5s.

As shown in Fig. 28, the existence of many alternative paths to the sink, including nodes placed at equal hop distance
(e > 0), led to the decrease in the number of wireless channel collisions compared to narrow FoV scenarios (e = 0). The
smallest number of collisions was achieved when e = (0.25, 0.5) and ξ = (0.75, 1). The highest number of collisions occurred
for e = 0, regardless of ξ value. In this case, packets were ‘forced’ to move only forward, something that led to routing
problems when front nodes were considered unreachable5. In the case of unreachable front nodes, packets were trapped in
the network. After a given number of retransmission attempts causing high number of collisions, packets were dropped. High
number of collisions was also observed for e = 0.75 and ξ ≥ 0.5 since packets were trapped in loops.
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Fig. 29. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): Narrow (e = 0) and wide FoV, for 35 pkts/s and T = 1.5s.

Fig. 28 shows that high number of buffer overflows was observed for e = 0.75 and ξ = (0, 0.25). Even though a wide
FoV was assumed (with high attraction to nodes at equal hop distance), packets could not exploit idle nodes (low ξ value) but

5A neighboring node is considered unreachable when the time elapsed from its last control message exceeds Tlost
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they were ‘forced’ to move forward. On the other hand, low number of buffer overflows was perceived for e = 0 because low
number of packets was arriving at the queues due to high collision rate.

Figs. 27 and 28 reveal that the highest PDR was achieved for e = (0.25, 0.5) and ξ = (0.75, 1) due to the low cumulative
packet loss (collisions and buffer overflows). The same combination of values achieved the lowest EED as shown in Fig. 29(a)
as well as the lowest energy tax spent per delivered packet as shown in Fig. 29(b).

The differentiated attractiveness proposed in Step 3 achieved better performance in terms of PDR, packet loss, EED and
energy tax compared to previous approaches. The most remarkable observation was that the use of the wide FoV exploits the
capabilities of the Flock-CC model and improves the offered quality. Thus, only the wide FoV was considered in the rule-based
attractiveness variation strategy.

The rule-based attractiveness variation strategy simplifies the Flock-CC model by excluding parameter e. The only model
parameter involved in the rule-based strategy was 0 ≤ ξ ≤ 1. The Flock-CC approach was evaluated for all scenarios of Fig.
13, having T = (0.5, 1, 1.5, 2.0)s and transmission rates of 25, 35 and 45 pkts/s.

0 0.5 1
74

76

78

80

82

84

86

88

90

P
D

R
 (

%
)

0 0.5 1
56

58

60

62

64

66

68

70

72

74

ξ

Scenario 1: Wide FoV − Rule−based magnetic field

0 0.5 1
46

48

50

52

54

56

58

60

62

T=0.5 sec
T=1.0 sec
T=1.5 sec
T=2.0 sec

(1) 25 pkts/s (2) 35 pkts/s (3) 45 pkts/s

(a) Scenario 1

0 0.5 1
93

94

95

96

97

98

99
P

D
R

 (
%

)

0 0.5 1
86

87

88

89

90

91

92

93

94

95

ξ

Scenario 2: Wide FoV − Rule−based magnetic field

0 0.5 1
74

76

78

80

82

84

86

88

T=0.5 sec
T=1.0 sec
T=1.5 sec
T=2.0 sec

(1) 25 pkts/s (2) 35 pkts/s (3) 45 pkts/s

(b) Scenario 2

0 0.5 1
55

60

65

70

75

80

85

90

95

P
D

R
 (

%
)

0 0.5 1
50

55

60

65

70

75

80

ξ

Scenario 3: Wide FoV − Rule−based magnetic field

0 0.5 1
42

44

46

48

50

52

54

56

58

60

62

T=0.5 sec
T=1.0 sec
T=1.5 sec
T=2.0 sec

(3) 45 pkts/s(2) 35 pkts/s(1) 25 pkts/s

(c) Scenario 3

Fig. 30. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): Packet delivery ratio (PDR) for wide FoV.

Fig. 30 illustrates the PDR for all three scenarios. The first important observation is that the rule-based strategy experienced
improved performance compared to the equation-based strategy. More specifically, as shown in Fig. 30(a)(2) involving scenario
1, the mean PDR for the rule-based approach reached 66% (for 35 pkts/s, T = 1.5s and ξ = 0.25), while the highest PDR
value for the equation-based strategy was 60% as shown in Fig. 27.

A quick inspection of the results reveal that the setting T = 0.5s achieved consistent, outstanding behavior across almost all
scenarios of different T values. This observation was rather expected since frequent updates keep the flock always informed
about network state. This of course happens at the cost of high energy expenditure as shown later, in Fig. 35. In addition,
results showed that in scenario 1, high PDR was achieved when the parameter ξ was set between 0.25 and 0.75 (bell-shaped
behavior). In scenario 2, PDR followed rising trends with the increase of ξ (a small decrease at ξ = 1 for medium and high
data rates). In scenario 3, PDR exhibited bell-shaped behavior for T = 0.5s and 1s, whereas rising trends for T = 1.5s and
2s. Therefore, a good compromise value for all scenarios and traffic rates is ξ = 0.5. This setting allows some packets move
through idle nodes (possibly placed at the borders of a flock) without provoking drainage of their resources.
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Fig. 31. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): Packet loss for wide FoV, for the first scenario of operation, 35 pkts/s.

Packet loss is the other side of the coin of PDR. Fig. 31 discriminates the causes of packet loss in the first scenario (when
35 pkts/s). Results show that buffer overflows played a dominant role in the changes of PDR values since collisions did not
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face large changes. More specifically, the number of buffer overflows depends heavily on the values of both ξ and T . Buffer
overflows exhibited a reverse bell-shaped behavior with minimum at ξ = (0.25, 0.5) and T = 0.5s for the reasons explained
in the previous paragraph and below Fig. 22. On the other hand, collisions followed slightly rising trends with the increase in
ξ and T .

Both the first and the third scenario involve the same set of active nodes, whereas only in the third scenario a high number
of failing nodes provoked an undesirable situation. However, under certain conditions the third scenario outperformed (in terms
of PDR) the first scenario. A closer look on Figs. 30(a) and 30(c) reveals that for T ≤ 1s the third scenario achieved higher
PDR than the (failure-free) first scenario (in all traffic rates). In low T values (T ≤ 1s) where control packets were broadcasted
quite frequent, the Flock-CC mechanism was kept updated regarding the network state. Thus, in the third scenario packet
flocks recovered quickly from problems caused by node failures and managed to bypass the obstacle of dead nodes choosing
alternative, but less congested paths to the sink. As shown in Fig. 32(b), these paths were not adjacent, thus minimizing the
number of packets lost due to collisions.

a b

x xx xx
xxxx

xx xx
x x

Scenario 1 Scenario 3

Fig. 32. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness) - Network snapshot: (a) scenario 1, (b) scenario 3). Color intensity indicates
the intensity of packets visiting each node within a 1-second time slot.

On the other hand, in the first scenario, packet flocks followed a number of shortest, but adjacent, paths to the sink (see
Fig. 32(a)). This movement of packets caused high number of collisions compared to the third approach. Fig. 33 shows that
the number of packets lost due to collisions in the third scenario were remarkably less (especially for T = 0.5s and T = 1s)
than the corresponding experiments of Fig. 31. As a result, the cumulative number of packets lost was smaller in the third
scenario. When T > 1s the cumulative number of packets lost in the third scenario exceeded the corresponding cumulative
losses of the first scenario. The problem was attributed to the unresponsiveness of the Flock-CC approach to network changes
(failing nodes) resulting in the increase of buffer overflows close to the dead zone.
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Fig. 33. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): Packet loss for wide FoV for the third scenario of operation, 35 pkts/s.

As far as the end-to-end delay is concerned, Fig. 34 shows that in the first scenario low end-to-end delays (i.e. fast transitions
of packets to the sink) were observed for ξ = (0.25, 0.5, 0.75). The same observation applied for the 2 other scenarios.

Fig. 35 shows that energy expenditure exhibited similar increasing trends to the number of collisions as ξ was approaching
1. This is attributed to the intensity of packet spreading (towards idle nodes at the borders of the flock) which was getting
stronger with the increase of ξ.
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Fig. 34. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): End to end delay (EED) for wide FoV for the first scenario of operation, 35
pkts/s and T = 1.5s.
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Fig. 35. Flock-CC v.2.2, step 3 (equation-based differentiated attractiveness): Energy tax for wide FoV for the first scenario of operation, 35 pkts/s and
T = 1.5s.

4) Flock-CC v.2.3: In the third stage, Flock-CC v.2.3, perturbation was involved in the model. Two random selection
techniques were used: roulette wheel selection and rank selection. Fig. 36 illustrates the PDR for the rank-based selection
strategy for all three scenarios of Fig. 13 with respect to parameters T and ξ, when nodes were sending at 35 pkts/s. The
results were compared to the corresponding scenarios without randomness, choosing the value of ξ that exhibited the best
behavior (scenario 1: ξ = 0.25, scenario 2 : ξ = 0.75, scenario 3: ξ = 0.5).
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Fig. 36. Flock-CC v.2.3, rank-based selection: Packet delivery ratio (PDR) for 35 pkts/s.

In the first scenario, PDR reached 82% for T = 1s and ξ = (0.5, 0.75) demonstrating an increase of 10% compared to
the second approach (rule-based strategy without randomization) for T = 0.5s and ξ = 0.25. Poor performance was observed
for ξ = (0, 0.25). An interesting observation is that PDR did not deteriorate heavily with the increase of T from 0.5s to 2s
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as happened in all the previous approaches. The feature of exploration that emerges from the randomized selection of new
hosting nodes allows for traffic distribution through alternative paths to the sink even when information about network state
and desirability evaluations are infrequently updated. In the second scenario, randomization did not improve PDR any further
than what achieved in the second approach. Also the value of T did not seem to influence the offered quality, but this was also
perceived in all approaches. The reason for these two observations is because the problem of congestion was less intensive in
the second scenario. In the third scenario, random selection was found to be effective exhibiting an increase of 4% against the
second scenario for T = 0.5s (up to 10% increase for T = 2s). The highest PDR was observed for T = 0.5s (regardless of ξ
value) since the existence of node failures necessitated frequent updates (as happened in all previous approaches for scenario
3). The same observations applied for higher traffic rates (e.g. 45 pkts/s) as shown in Fig. 37.

Based on the results of Figs. 36 and 37, a good compromise parameter setting for all scenarios is ξ = 0.5 or ξ = 0.75 and
T = 0.5s. However, to avoid high energy expenditure parameter T can be set to 1s. Alternatively, an adaptive mechanism can
be used to variate the value of T according to the changes in network state. Of course, this can be done at the cost of adding
extra complexity on each node.
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Fig. 37. Flock-CC v.2.3, rank-based selection: Packet delivery ratio (PDR) for 45 pkts/s.

Fig. 38 depicts the PDR for the roulette wheel-based selection strategy for all three scenarios, when 35 pkts/s. It can be
seen that the results followed the same trends as in rank selection. However, the values of PDR were 1− 3% lower in roulette
wheel selection.
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Fig. 38. Flock-CC v.2.3, roulette-based selection: Packet delivery ratio (PDR) for 35 pkts/s.

Fig. 39 discriminates the causes of packet loss in the first scenario (35 pkts/s) for both selection strategies. Rank selection
was shown to outperform roulette wheel selection exhibiting lower number of buffer overflows than roulette wheel selection
for almost every value of T and ξ. It is worth noting that the number of buffer overflows was remarkably increased for
ξ = (0, 0.25) for both selection strategies, whereas the number of collisions was very low for the same values. The lowest
number of packets lost was achieved under the rank selection strategy, for T = 0.5s and ξ = 0.75.

As shown in Fig. 40, the rank selection strategy achieved remarkably lower EED (≈ 335ms in the best case, for ξ = 0.75)
compared to the roulette wheel strategy (≈ 435ms in the best case). This observation is in line with the number of packet
losses in each strategy. The low number of losses observed in the rank selection strategy is interpreted as having less number
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Fig. 39. Flock-CC v.2.3: Packet loss, first scenario, for 35 pkts/s: (a)-(c) rank selection, (d)-(f) roulette wheel selection.

of retransmissions, and thus faster transitions of packets to the sink. EED is evaluated on the basis of packets successfully
delivered at the sink. Thus, results for ξ = (0, 0.25) were omitted due to the high number of losses.

0.5 1 1.5 2
0.3

0.35

0.4

0.45

0.5

0.55

E
E

D
 (

se
c)

Rank selection

0.5 1 1.5 2
0.3

0.35

0.4

0.45

0.5

0.55
Roulette wheel selection

T (seconds)

ξ=0.5

ξ=0.75

ξ=1
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Fig. 41 reveals that both approaches paid almost the same energy tax for the first scenario. Results confirmed the intuitive
reasoning that low T values lead to high energy tax.

0.5 1 1.5 2
0.021

0.0215

0.022

0.0225

0.023

0.0235

0.024

0.0245

E
ne

rg
y 

ta
x 

(m
J/

de
liv

er
ed

 p
kt

)

Rank selection

0.5 1 1.5 2
0.021

0.0215

0.022

0.0225

0.023

0.0235

0.024

0.0245
Roulette wheel selection

T (seconds)

ξ=0

ξ=0.25

ξ=0.5

ξ=0.75

ξ=1

Fig. 41. Flock-CC v.2.3: Energy tax, first scenario, for 35 pkts/s: (a) rank selection, (b) roulette wheel selection.

Taking all the results of this section into consideration it is apparent that each characteristic of natural bird flocks is a quite
necessary building block for developing an effective and efficient flock-based congestion control approach. The third stage,
Flock-CC v.2.3, with rank selection strategy (incorporating all flocking characteristics) was shown to outperform the previous
approaches in all scenarios and consists the final stage of the Flock-CC model development. A good compromise value for
the single parameter used in this approach, ξ, was 0.75.
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C. Emergent behavior of group-level transitions

This section evaluates the emergent behavior of the collective motion of packet flocks through the network under changing
conditions. Flock-CC v.1 and Flock-CC v.2.3 were considered using the lattice topologies of Figs. 12 and 13, where the sink
node is depicted in the upper side of each figure. Flock-CC v.1 was also tested in the random topology. In all figures, active
nodes are highlighted by bold circles.

Flock-CC v.1 The self-adaptive nature of the first model was tested using scenarios 2 and 4.
The emergent flocking behavior of the collective packets movement through the lattice network is indirectly illustrated in

Fig. 42 on the basis of the total number of packets arrived at each node. The darker the color of a node, the lower the number
of packets visited that node, while unvisited nodes remain white. The values of α, e, c and T were set to 0.4, 0.6, 0.5 and 1.0s
respectively.

Fig. 42. Flock-CC v.1 Emergent flocking behavior: Total number of packets arrived at each node (throughout the simulation scenario 3) for the transmission
rate of 35pkts/sec for α = 0.4, e = 0.6, c = 0.5.

Fig. 42 shows that the behavior of moving packets successfully mimicked the obstacle avoidance behavior of bird flocks.
These results highlight the self-adaptiveness of the Flock-CC mechanism to changing network and traffic conditions. In addition,
it was shown that packets were moving apart to avoid congestion phenomena, thus causing traffic spreading among available
paths to the sink. Therefore, the network energy expenditure is expected to be ‘fairly’ shared among these nodes, resulting
in increased network lifetime. Increased packet concentration was observed on nodes located close to the sink due to the
converging nature of the traffic.

The emergent behavior of the collective motion of packet flocks in a random topology is investigated below. The sink node
is depicted in the middle of Fig. 43 (pointed out by a black arrow), while active nodes are highlighted by bold circles in the
upper right corner of the network. The values of α, e, c and T were set to 0.5, 0.5, 0.25 and 1 s respectively.

As can be seen, due to the flocking behavior, packets were spread in the network exploiting all available paths whilst moving
towards the sink. There were two shortest paths to the sink (indicated by the two arrows in Fig. 43) which were traversed
by the majority of the packets. Furthermore, the rest of the packets, which were repelled by packets located on the highly
crowded nodes (as dictated by the bird flocking behavior), followed alternative paths (dark shaded nodes).

Flock-CC v.2.3 The emergent flocking behavior of the collective packets movement in Flock-CC v.2.3 is indirectly illustrated
in Fig. 44 on the basis of the total number of packets arrived at each node. Scenarios 2 and 3 were taken into account. The
values of τ and T were set to 0.75 and 0.5 respectively in both scenarios.

The emergent behavior can be perceived: (a) directly by the visual representation of flock movements and (b) indirectly on
the basis of the performance evaluation metrics.

Evaluation results based on scenario 2 (and transmission rate of 35 pkts/s) demonstrated the obstacle avoidance behavior of
packet flocks. Fig. 44(a) depicts the bird-like motion of packets generated by the front set of the 5 dark grey shaded nodes.
As can be seen, due to the flocking behavior, packets were spread in the network choosing numerous of paths to the sink. Fig.
44(b) shows that after the initiation of the back set of nodes, the new flock of packets split apart into two separate groups
in order to avoid colliding with packets generated by the front set of nodes. The direction of motion of the two sub-flocks
is highlighted by transparent arrows. When the front set of node stopped transmitting, the two sub-flocks rejoined to a single
flock moving over the area that used to be a congestion region.
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Fig. 43. Flock-CC v.1 Emergent flocking behavior: Total number of packets arrived at each node (throughout the simulation scenario 4) for the transmission
rate of 35pkts/sec for α = 0.5, e = 0.5, c = 0.25.

Front set of nodes sending Both sets of nodes sending Back set of nodes sending

a b c

Fig. 44. Flock-CC v.2.3 Emergent behavior: Visual representation of moving packets in scenario 2 (35 pkts/s). The number of packets visiting each node
within a 1-second time slot is indicated inside every node.

Fig. 45 shows the emergent behavior of moving packets before and after node failures in scenario 3. The emerging
reorganization of moving packets after node failures is shown in Fig. 45(b), where the single flock of packets split into
two smaller compact groups, both of which ‘flew’ around the ‘dead’ zone.

This section focused on the ability of moving packets to mimic the obstacle avoidance behavior of bird flocks. Visual
representations demonstrated the self-adaptiveness of the proposed approach to changing traffic (Fig. 44) and network conditions
(Fig. 45). In particular, it was shown that packets were moving apart to avoid queue and channel loading phenomena or node
failures, thus causing traffic spreading among available paths to the sink. Therefore, the network energy expenditure was ‘fairly’
shared among nodes along these paths, resulting in increased network lifetime. If packets were routed via a single path, or
were spread among multiple paths in an unbalanced manner, some of these paths could progressively become over-utilized,
causing unbalanced network energy expenditure.

The emergent behavior was also perceived through performance evaluation metrics. The previous section presented a bottom-
up approach of developing a flock-based congestion control protocol of increasing sophistication and similarity to natural bird
flocks. Fig. 46 compares the PDR obtained by running scenario 1 at 35 pkts/s with 3 congestion control models of increasing
sophistication. These 3 models were extracted from the 3 approaches of the previous section. The first model refers to the
third approach (with the rank selection strategy) involving all flocking characteristics. The second model refers to the second
approach (with the rule-based strategy) that excluded randomization. Finally, the third model is loosely related to the second
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Fig. 45. Flock-CC v.2.3 Emergent behavior: Visual representation of moving packets in the presence of failing nodes in scenario 3 (35 pkts/s).

approach involving the FoV and the magnetic field but without taking into account local interactions and randomization. The
first approach (without FoV and magnetic field) was not considered due to its poor performance.
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Fig. 46. Flock-CC v.2.3 Emergent behavior: The effect on packet delivery ratio (PDR).

As can be seen, the highest PDR (with the smallest deviation from mean value) was achieved when all flocking characteristics
were incorporated in the congestion control model, especially for the scenarios 1 and 3. The contribution of perturbation (for
T = 0.5s) in scenario 1 was ≈ 10% (the difference between the first and the second model), whereas in scenario 3 was ≈ 5%.
In scenario 2, where light congestion phenomena occurred, there was no significant contribution of perturbation. Increasingly,
the contribution of the local interactions in scenario 1 was ≈ 15% (the difference between the second and the third model), in
scenario 2 was ≈ 4%, whereas in scenario 3 was ≈ 8%. Similar behavior was observed for end-to-end delay evaluations as
shown in Fig. 47.

D. Robustness in failure prone environments

Sensor nodes are prone to failures, mainly due to fabrication process problems, environmental factors (disasters), enemy
attacks, and battery power depletion. Both Flock-CC v.1 and Flock-CC v.2.3 exhibit robustness against node failures due to
the inherent tendency of individuals to follow other flockmates that manoeuvre to avoid obstacles such as failing nodes.

Flock-CC v.1 The self-adaptive nature of the first model was tested using the scenarios 3 and 4.
It is expected that the self-adaptive nature of the flock-based models will enhance robustness against failing nodes. As far as

the first model is concerned, the bird-like motion of packets generated by the heavy grey shaded nodes in the middle bottom
part of Fig. 12 (scenario 3) before node failures is similar to Fig. 42.

Evaluation results based on scenario 3 (and transmission rate of 35 pkts/sec) present the obstacle avoidance behavior of
packet flocks when nodes located in the heavy grey shaded zone failed (at t = 60). Figs. 48(a) and (b) show the emerging
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Fig. 47. Flock-CC v.2.3 Emergent behavior: The effect on end-to-end delay (EED).

flocking behavior of packets, whilst avoiding 11 failed nodes (marked with the letter ‘X’) located within the path to the sink.
Fig. 48(a) illustrates a snapshot of the network state (instantaneous number of packets arrived at each node) right after node
failures, at time t = 65 sec. As can be seen, the main packet flock began to split apart into two separate packet flocks in
order to navigate around the dead zone. Fig. 48(b) shows that after a small period of time (t = 83 sec.) the two packet flocks
created completely distinct paths to the sink.

Fig. 49 shows two network snapshots, before and after node failures in the random topology of scenario 4. It is apparent that
the Flock-CC approach displayed outstanding flocking behavior in the presence of numerous node failures, and exemplified all
of the characteristics of a bird flock in terms of obstacle avoidance and manoeuvring around the zone of dead nodes. Results
showed that Flock-CC provided graceful performance degradation when node failures occurred exhibiting a slight decrease in
packet delivery ratio and a small increase in end-to-end delay.

Flock-CC v.2.3 The third scenario was used to demonstrate the robust nature of Flock-CC v.2.3. Fig. 45 shows a couple
of network snapshots before and after node failures. It is apparent that the Flock-CC approach displayed outstanding flocking
behavior in the presence of numerous node failures, and exemplified all of the characteristics of a bird flock in terms of obstacle
avoidance and manoeuvring around the zone of dead nodes.

E. Comparative studies

Both Flock-CC models (that incorporate both routing and congestion control capabilities) were compared with (a) a
conventional congestion-free multi-path routing protocol based on shortest paths, (b) a typical congestion-aware routing protocol
that routes packets over multiple paths, choosing each time the least congested node in terms of queue length, and (c) a well
known single-path routing protocol for adhoc networks, AODV [22].

Flock-CC v.1: In Flock-CC v.1, both scenarios 1 and 4 were used in comparative evaluations. For scenario 1, the values of
α, e and c were set to 0.4, 0.6 and 0.5 respectively, which demonstrated the best performance.

Results (Fig. 50) showed that the proposed approach clearly outperformed all other approaches in terms of both PDR and
EED, for all transmission rates. From the perspective of PDR, Fig. 50(a) shows that the Flock-CC v.1 delivered 18% more
packets than the congestion-free protocol under low loads (25 pkts/sec), as well as 23% more packets under high loads (45 pkts
/sec), where congestion phenomena were more intensive. Similarly, Flock-CC v.1 achieved 12 − 15% higher PDR compared
with the congestion-aware routing protocol. These results show that when there are multiple shortest paths to the sink, Flock-CC
v.1 allowed packets to exploit available resources on nodes involved in these paths (traffic spreading). The other two protocols
(congestion-free, congestion-aware) did not allow for packet spreading among all available paths, resulting in over-utilization
of some paths. In the congestion-free protocol, packets were sent over the shortest path, while the congestion-aware routing
protocol could allow for packet spreading if queues were filling up. In line with the previous statement, Fig. 50(b) shows
that the proposed approach exhibited the lowest EED among the other protocols for every transmission rate, because traffic
spreading prevented augmented buffer occupancies, and thus larger queueing delays, which were observed in the other two
scenarios. In all scenarios described earlier the proposed approach outperformed over the other two approaches.

For scenario 4 (random topology), parameters α, e and c were set to 0.5, 0.5 and 0.25 respectively. Fig. 51 shows that
Flock-CC v.1 approach clearly outperformed all other approaches in terms of both PDR and EED, for all transmission rates.

From the perspective of PDR, Flock-CC v.1 delivered around 16% more packets than the congestion-free protocol under
low and medium loads, and around 10% more packets under high loads. Similarly, Flock-CC v.1 achieved 5−7% higher PDR
compared with the congestion-aware routing protocol. Flock-CC v.1 also outperformed AODV by 38− 60%.

For the congestion-free protocol, packets were sent over the shortest path, while the congestion-aware protocol allows for
packet spreading if queues were filling up. This behavior is illustrated in Figs. 51(c) and (d). A remarkable observation is
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Fig. 48. Flock-CC v.1: Failing nodes (nodes fail at t = 60 secs): Instantaneous number of packets arrived at each node for the transmission rate of 35pkts/sec
at: (a) t = 65, and (b) t = 83.

(a) (b)

Fig. 49. Flock-CC v.1: Emergent behavior of moving packets at the presence of failures: (a) Before failures, (b) After failures. A small region of the network
involving packet activity is illustrated.

that Flock-CC v.1 exhibited low buffer overflows compared to the congestion-free and congestion-aware protocols due to its
traffic spreading ability. AODV achieved minimal buffer overflows something that is explained by looking at Fig. 51(d). AODV
suffered heavily from collisions, while the problem worsened with the increase of traffic load. This problem was attributed to
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the high number of broadcasted control messages that led to wireless channel capacity saturation. As a result, buffers were
rarely filled up. The other three protocols exhibited significantly lower number of collisions.

Fig. 51(b) shows that Flock-CC v.1 exhibited the lowest EED among the other protocols for every transmission rate, because
traffic spreading prevented augmented buffer occupancies which contribute to larger queueing delays. Note that only packets
successfully received at the sink were involved in EED evaluation. In line with this statement, AODV exhibited low EED in
high load conditions, since the majority of packets were lost.

Flock-CC v.2.3: Results of Fig. 52 show that Flock-CC v.2.3 clearly outperformed no congestion control and congestion
aware routing protocols in terms of both PDR and EED, for all traffic loads and scenarios. The results for the AODV protocol
were omitted due to the very low performance of the protocol compared to the other protocols shown in Fig. 52.

From the perspective of PDR, Fig. 52 shows that Flock-CC v.2.3 delivered around 15%, 23% and 19% more packets for
scenario 1 than the no congestion control protocol under low, high and extreme traffic loads respectively. The difference
in PDR between scenarios 2 and 3 was smaller. Similarly, in scenario 1, Flock-CC v.2.3 achieved 2% to 8% higher PDR
(better performance in low loads with decreasing trends in extreme loads) compared to the congestion aware routing protocol.
Differences of 2% to 4% in PDR between scenarios 2 and 3 were observed.

Based on the outcomes of the comparative study, it can be argued that the controlled traffic spreading that emerged from
the flocking behavior of packets allowed packets to exploit available resources on nodes involved in multiple paths to the sink,
resulting in higher performance. The no congestion control and congestion aware routing protocols did not allow for packet
spreading among all available paths, resulting in over-utilization of some (popular) paths. Under the no congestion control
protocol, packets were solely sent over the shortest path(s), while the congestion aware routing protocol allowed for packet
spreading after the appearance of buffer overflows. This behavior led to a high number of packet losses due to buffer overflows.
Further results showed that Flock-CC v.2.3 exhibited extremely low buffer overflows compared to both protocols due to the
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traffic spreading ability of the bird flocking behavior.
In addition, Fig. 52 shows that Flock-CC v.2.3 exhibited the lowest EED among the other protocols for every transmission

rate and scenario, because traffic spreading prevented augmented buffer occupancies that contribute to larger queueing delays.

V. CONCLUSION AND FUTURE WORK

This study focused on the bird flocking behavior to combat congestion in wireless sensor networks (WSNs). The synchronized
group behavior of birds flocks and their ability to avoid obstacles is mimicked in order to control the motion of packet flocks
through a network of constrained sensor nodes. Two Flock-CC models are proposed that guide packets towards the sink whilst
avoiding congestion regions and dead node zones in a robust way. Increasingly, both proposed models contribute to the emergent
behavior of high packet delivery ratio, low end-to-end delay and minimal energy tax.

The bio-swarm approach of Couzin [4] was reformulated from a metrical space to a topological space in order to manipulate
the direction of motion of packets in WSNs influenced by local interactions among neighboring packets. In both proposed
models, each packet perceives repulsive and attractive forces exhibited by other packets located on neighboring nodes within
the field of view, and decides a new hosting node on the basis of a desirability function. The desirability of each potential
next hop node is differentiated on the basis of magnetic field forces to account for biased selection of nodes located closer
to the sink. Also, perturbation, which allows for exploration, is introduced to allow packets to pick random routes, and thus
to avoid over-flooding popular (due to their low congestion levels) next hop nodes. The behavioral tendencies involved in
the proposed models were simulated to study the effectiveness of the models in mimicking the collective behavior of bird
flocks. Performance evaluations showed that the proposed models were able to alleviate congestion by balancing the offered
load, while offering acceptable PDR especially in high load scenarios, fast delivery (small EEDs) of packets to the sink, and
low energy tax. Furthermore, both Flock-CC models outperformed typical conventional congestion-aware and congestion-free
routing approaches in terms of PDR in low, medium and high loads. The second model, Flock-CC v.2, is simpler than the
first model, involving only one tunable parameter instead of three (hence easier to tune and thereafter deploy). Results showed
that the final version of the second model, Flock-CC v.2.3, maintains comparably good performance characteristics compared
to the first model, thus can be adopted.

Future work will investigate different functions for randomizing the attractiveness to the sink. Also, the performance in
terms of power, as well as the inclusion of power in the desirability function remains a matter of further research. In addition,
beyond the hop distance, new techniques for sink direction discovery are also left for future work. To conclude, an interesting
idea is to investigate if and how the Flock-CC approach can operate in the presence of multiple sinks.
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