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Complex collective behaviors and collective intelligence in groups of animals and

insects found in nature appear appealing for Wireless Sensor Network (WSN) con-

gestion control because they emerge from simple local interactions of the individuals

in the system. Animal and insect societies possess inherent properties like simplicity

(e.g. operate on the basis of a few simple rules), scalability (e.g. controllable be-

havior as the size of the system scales up), self-adaptiveness to internal or external

changes, and robustness against threats (e.g. system failures).

These properties are desirable in a WSN environment, whose constituent node

components can be constrained in terms of computation capability, memory space,

communication bandwidth and energy supply. Effective and efficient congestion

control approaches are expected to be self-adaptive to the dynamically changing

network and traffic conditions, robust against failures, and scalable as the size of

the network increases.

The thesis objective is to investigate nature inspired techniques in the context

of congestion control in WSNs. In particular, properties such as simplicity at the

individual node level, emerging behavior at the global network level and intrinsic
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properties of selected nature inspired techniques such as robustness, self-adaptation,

and scalability are evaluated. Specifically, this thesis draws inspiration from swarm

intelligence (SI) and mathematical models of population biology.

From the viewpoint of swarm intelligence, a considerable number of models based

on self-propelled particles have been developed to solve a variety of problems by

means of collective motion. The research framework behind the majority of network-

oriented studies involving self-propelled particles was fueled by the ACO theory

proposed by Dorigo et al. This theory was successfully involved in network-oriented

studies, especially in the field of ad-hoc and mobile ad-hoc networks (MANETs).

Previous work on congestion control involving mathematical models of population

biology is basically applicable to the Internet on the basis of either improving the

current TCP congestion control mechanism or providing a new way of thinking and

combating congestion.

This thesis proposes two novel nature-inspired congestion control and avoid-

ance approaches that aim at improving performance, in particular with respect to

packet delivery ratio, end-to-end delay and energy consumption in a variety of sen-

sor network applications that follow either the event-based or the continuous-based

(streaming) data delivery model. Both proposed congestion control approaches em-

body a nature-inspired development drive involving the aforementioned desirable

properties. These properties are not explicitly programmed into the network, but
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emerge as a result of the collective behavior among interacting individuals. In ad-

dition, the proposed approaches are simple to implement at the individual node,

involve minimal information exchange, and provide graceful performance degrada-

tion at low, medium and high traffic loads.

The first approach targets event-based applications and adopts a swarm intel-

ligence paradigm inspired by the obstacle avoidance behavior and the orientation

behavior of bird flocks having global self-* properties (e.g. self-adaptation) achieved

collectively without explicitly programming them into individual nodes. The main

idea is to ‘guide’ packets (birds) to form flocks and flow towards the sink node

(global attractor), whilst trying to avoid congestion regions (obstacles). In the

proposed flock-based congestion control (Flock-CC) approach, the motion of each

packet is influenced by: (a) the repulsive and attractive forces among closely located

individuals, (b) the limited visual perception that defines the field of view (FoV), (c)

the artificial magnetic field towards a global attractor, and (d) randomness. Perfor-

mance evaluations show the effectiveness of the Flock-CC approach in balancing the

offered load by exploiting available network resources. Flock-CC provides grace-

ful performance degradation in terms of packet delivery ratio, packet loss, delay

and energy tax as the traffic load increases to even extreme levels. In addition,

the proposed approach achieves adaptation to changing network and traffic condi-

tions, robustness against failing nodes, even at extreme cases, scalability to different

network sizes, and is shown to outperform typical conventional approaches.
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The second approach targets streaming applications and focuses on how con-

gestion can be prevented, or if not gracefully controlled, in small-scale networks

by regulating the rate of each traffic flow based on the Lotka-Volterra population

model. The Lotka-Volterra based congestion control (LVCC) strategy involves min-

imal exchange of information and computation burden and is simple to implement

at the individual node. Performance evaluations reveal that the LVCC approach

achieves adaptability to changing traffic loads, scalability and fairness among flows,

while providing graceful performance degradation, in terms of throughput and de-

lay of individual streams, as the offered load increases. However, its scalability is

questionable, and further work is required here, as for example the adaptive setting

of its control parameters.

This thesis successfully adapts techniques from nature and demonstrates their

usefulness in combating congestion in wireless sensor networks under changing net-

work and traffic conditions in the sense of reducing packet losses and thus retrans-

missions, leading to decreased delay in moving packets to the sink and low levels of

energy expenditure.

Pavlos Antoniou - University of Cyprus, 2012
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Chapter 1

Introduction

1.1 The Problem

Rapid technological advances and innovations in the area of autonomous systems

push the vision of Ambient Intelligence from concept to reality. Towards this direc-

tion, there has been an unprecedented research interest for autonomous networked

systems with emphasis on WSNs [16]. WSNs are deployed for several mission-critical

tasks (e.g. as platforms for health monitoring, process control, environmental ob-

servation, battlefield surveillance) and are expected to operate unattended (without

human intervention) for extended periods of time.

Typically, WSNs comprise of small (and often cheap), cooperative devices (nodes)

which may be (severely) constrained in terms of computation capability, memory

space, communication bandwidth and energy supply. Increasingly, with the rapid

development of low-cost hardware CMOS cameras and microphones, autonomous

4
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sensor devices are becoming capable of ubiquitously retrieving multimedia content

such as audio and low-rate video streams from the environment [17].

SINK


Figure 1: A WSN for wildlife monitoring.

In the context of WSN, autonomous nodes may interact (a) with the environ-

ment so as to sense or control physical parameters, and (b) with each other in

order to exchange information or forward data towards one or more dedicated sink

nodes. Typically, WSNs operate under light load, but large, sudden, and correlated-

synchronized impulses of data may suddenly arise in response to a detected or con-

stantly monitored event. More particularly, a number of nodes that at a particular

moment sense an event (as for example the grey-shaded nodes of Fig. 1), will gen-

erate data and inject them into the network. Alternatively, some nodes may be

constantly generating streaming data. All the amount of data must be directed in

a multi-hop manner to the sink node(s).

Large numbers of generated packets in conjunction with variable wireless network

conditions, may result in unpredictable behavior in terms of traffic load variations

and link capacity fluctuations. The problem is worsened due to topology changes

driven by node failures, mobility, or intentional misbehavior. Under these stressful



6

situations which are likely to occur in WSN environments and are expected to

provoke congestion.

Congestion conditions occur quite often, when the traffic load injected into the

network exceeds available capacity at any point of the network. The problem of

congestion in wireless sensor networks is unveiled in the beginning of this study,

while it is thoroughly investigated and effectively tackled in the remainder of this

study.

Congestion control involves measures taken for controlling the traffic injected into

the network in order to avoid or mitigate congestion collapse [18]. Congestion control

is considered to be one of the most basic components of a performance controlled

network. Robust, scalable and self-adaptable congestion control approaches aim to

keep the network operational under congestion conditions, whilst keeping packet loss

and end-to-end delay within tolerable levels as well as maximizing network lifetime.

1.2 Motivation

Early studies in the area of wireless sensor networks had mainly focused on more

fundamental networking problems, e.g. medium access control (MAC), topology,

routing, and energy efficiency, targeting applications in which network performance

assurances are not considered essential, such as agriculture and environmental mon-

itoring. Lately, with the emergence of mission-critical applications (e.g. health

monitoring, plant automation), there has been increased interest [19] in providing
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performance assurances, especially for metrics such as packet delivery ratio, delay

and energy consumption.

Increasingly, in the near future, various applications based on multimedia wire-

less networks are expected to arise, where many types of sensors such as cameras,

audio sensors, vibration sensors, and light sensors will be integrated in the same sen-

sor node. In addition, it is expected that the number of such highly capable sensor

nodes in multimedia applications will scale to tenths, hundreds or even thousands

[20].

Although many solutions have been proposed for the problem of congestion in

WSNs [21], [22], [23], [24] during the last few years, the overwhelming majority

of them inherit fundamental congestion control mechanism used in the Internet.

Bearing in mind the current and future expectations in the area of WSNs, new per-

formance control protocols are required, possessing desirable characteristics. The

unpredictable nature of WSNs necessitates robust, scalable, and self-adaptive mech-

anisms which are vital to the mission of dependable WSNs. Due to the constrained

nature of WSNs, the new approaches should be simple to implement at individual

node level with minimal exchange of information. The focal point of this study

is to design a robust, scalable, self-adaptive and energy-efficient congestion control

(CC) mechanisms for delivering enhanced application fidelity at the sink in terms

of packet delivery ratio and delay, under varying network conditions.

WSNs in many ways, can be likened to social groups found in nature (with nodes

or packets being constituents of these social groups) attempting to accomplish their
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tasks collectively (by simple neighbor-to-neighbor interactions), in a decentralized

manner, and in the absence of (external) central supervision. Bio-systems usually

exhibit remarkable survivability and robustness to external stimuli and internal per-

turbations or loss of units, as well as excellent scaling properties. Adaptation is one

of bio-systems’ major strengths as they must respond to addition or removal of mem-

bers, as well as to sudden changes in the environment. This study explores what can

be learned from the behavioral tendencies of natural systems and applies them in

designing robust network control techniques. Drawing inspiration from the collec-

tive behavior of natural social groups, local behavior can be dictated easier and an

emergent global behavior of minimum congestion and direction of information flow

to the sink can be determined. In this way, self-* properties, e.g. self-organization

and self-adaptation, are not implemented explicitly into individual devices or nodes,

but emerge as a result of the design of the congestion control approach.

This study is motivated by two examples of collective behavior found in nature:

(a) the obstacle avoidance and the orientation behavior of bird flocks, and (b) the

population dynamics of competition and coexistence among species found in nature.

The collective intelligence of bird flocks using a few simple rules that led to

efficient and effective solutions for real world problems (see next paragraph) served

as the basis for moving towards a bird flocking oriented approach. Also, the inherent

ability of bird flocks to manoeuvre around obstacles and the oriented movement

of migratory birds towards a global attractor (i.e. the poles) were seen as prime

sources of inspiration due to their similarities to the a possible way of avoiding
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congestion in WSNs. In WSNs, packets are expected to move in the network towards

a global attractor (the sink). In order to avoid congestion, packets should be able to

manoeuvre around regions of congestions or ‘dead’ nodes. WSNs necessitate simple,

decentralized and self-adapting solutions, and a bird flocking oriented approach has

all the prerequisites for successful development of a CC approach.

Flocking behavior was first simulated on a computer in 1986 by Craig Reynolds

[10] with his simulation program, Boids. As was made clear in this first attempt, the

potential of the flocking behavior comes from the ability of the flock to exhibit some

complex collective intelligence when just a few simple governing rules are applied

to each individual in the flock (i.e. a bird). The flocking behavior was success-

fully employed in many research studies but also it has some exciting real world

applications. More specifically, the flocking behavior was used: (a) for hypothesis

development and testing [11], (b) for creating visualizations for aesthetic and artistic

purposes in research [10], [25] and in movies [26], [27], (c) for solving mathematical

optimization problems [28], [29], (d) in aerospace engineering (e.g. by sending UAV

on missions in flocks) [30], [31], and (e) for distributed systems analysis, search, and

optimization [28], [29], [32].

The Lotka-Volterra (LV) competition model is a simple and well-studied math-

ematical population model of biology. The model was developed independently by

Alfred J. Lotka (1925) [33] and Vito Volterra (1926) [34]. This model describes
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animal populations that affect each other when competing for a limited shared re-

source. Animals are seen as analogous to traffic flows that compete for the limited

shared resources of a sensor network.

In the existing literature, the LV model was used (a) to simulate the behaviors

of economic systems (e.g. predict changes in wages and employment [35]), (b) in

epidemiology and immunology [36] (e.g. to model the spread of infectious diseases),

and (c) in the Internet to improve the TCP congestion control mechanism [37].

1.3 Contribution

This study proposes two novel nature-inspired congestion control approaches for

WSNs that are described in detail and evaluated under varying network and traffic

conditions in the following chapters. This section introduces the concept of each

approach.

It is worth pointing out that the two proposed approaches try to avoid and mit-

igate congestion on a different basis. Flock-CC guides packets to exploit alternative

available paths to the sink in order to bypass the congested or ‘dead’ region without

‘forcing’ source nodes to decrease their sending rates when congestion or node fail-

ures occur. In other words, Flock-CC follows a strategy of ‘fixed rate, find receiver’.

On the other hand, the LVCC approach regulates the transmission rates of source

nodes through given (established) paths to the sink. Thus, LVCC follows a strategy

of ‘fixed receiver, find rate’.
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1.3.1 The Flock-based congestion control (Flock-CC) approach [1], [2],

[3], [4], [5]

Flock-CC aims to provide congestion avoidance by mimicking the obstacle avoid-

ance behavior and the orientational movement of bird flocks, where packets are mod-

eled as birds flying over a topological space (e.g. a sensor network) whilst trying to

avoid obstacles (e.g. congestion regions and areas of ‘dead’ nodes).

The novelty of the proposed approach lies in the use of the flocking behavior of

birds, neither for aesthetic purposes, nor for solving an optimization problem, but

for solving a frequent realistic problem in the area of wireless sensor networks.

Physical

Obstacle


Physical

Obstacle


(a)
 (b)
 (c)


Figure 2: The obstacle avoidance behavior of bird flocks: (a) A flock of (migrating)
birds moves through an obstacle-free environment (towards a magnetic pole); (b) an
obstacle ‘forces’ the flock to split into 2 subflocks; (c) the obstacle extends further
on one side and the flock is reformed along the path bypassing the obstacle on the
other side. Flocking behavior was first simulated on a computer in 1986 by Craig
Reynolds [10] with his simulation program, Boids.

The main idea behind this study is to move packets to the sink, whilst provid-

ing congestion control by mimicking the obstacle avoidance behavior of bird flocks

illustrated in Fig. 2. The Flock-based Congestion Control (Flock-CC) approach is

proposed, where packets are modeled as birds flying over a topological space, e.g. a

sensor network. The main idea is to ‘guide’ packets to form flocks and flow towards
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a global attractor (which is the sink in WSNs), whilst trying to avoid obstacles

(failing nodes and congested regions). Inspiration for designing Flock-CC is drawn

by: (a) the repulsive and attractive interactions among closely located individuals

proposed by Couzin et al. [11], (b) the orientational movement of migrating birds

towards a global attractor (poles or equator) under the influence of the magnetic

field of Earth, and (c) the limited visual perception (field of view) of individuals

within the flock.

Congestion control is carried out in a hop-by-hop manner on each node along the

path to the sink using traffic spread in multiple paths. Each packet chooses its next

hop node taking into account a desirability function, which synthesizes attraction

and repulsion forces exercised by neighboring packets in the field of view (FoV), as

well as the global attractive force to the sink.

Here’s a possible real world analogy that describes the Flock-CC idea: When

arriving at an airport, a passenger is expected to clear immigration. Upon entering

the immigration area, the passenger observes that there are three potential queues,

out of which one is completely empty, one has a few people waiting, and one has

many people waiting. Which queue would you choose? One may argue that it is

the second one. Why not choose the third one is clear. You would have to wait a

long time. Thus, repulsion makes sense. Why not choose the first one? Because

presumably there is something wrong with it, for otherwise people would have chosen

that queue as well. Thus, attraction make sense.
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Initial attempts for the development of the Flock-CC approach are described in

[1], [2], and [3]. An improved version of the Flock-CC approach (second model)

is described in [4] and [5]. This study presents and evaluates the improved (and

final) Flock-CC model, which mimics more faithfully the bird flocking paradigm,

as presented by Couzin at al. [11]. The final model is simpler, involving only two

tunable parameters instead of four (hence easier to tune and thereafter deploy),

while it maintains comparably good performance characteristics. Initial attempts

on developing the Flock-CC approach are described in [38].

The Flock-CC approach differs in two aspects from Couzin’s model: (1) The

bio-swarm model of Couzin was formulated on the metrical (continuous three-

dimensional) space, whereas the Flock-CC model is applied on a two dimensional

topological (discrete) space defined by the graph of nodes. In this sense, the Flock-

CC approach can be applicable in other problem domains exhibiting discrete 2D

space. (2) in Couzin’s model (as well as in the Reynolds’ model) individuals form

flocks and move constantly in a given finite space without any attraction to a global

target (final destination). On the other hand, in the Flock-CC approach, packets

are expected to form flocks and move towards a global attractor (sink). The latter

Flock-CC characteristic necessitates the existence of a field of attraction towards

the sink.

Before introducing a detailed description of the Flock-CC approach, it is worth

illustrating in a simple WSN some intrinsic properties. The emergent global behav-

ior of the Flock-CC approach can be perceived by the visual representation of flock
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Figure 3: The obstacle avoidance behavior of packet flocks demonstrated through a
minimal topology. Color intensity indicates the intensity of packets visiting within
a given 1-second time slot. (a) A flock of packets moves through an obstacle-free
environment towards the sink; (b) an obstacle (failing node) ‘forces’ the flock to
split into 2 subflocks; (c) after the activation of the second sender, the obstacle is
supplemented by an overloaded node which causes the packet flock coming from the
back of the network to adapt and follow a less congested path to the sink (top part
of the network).

movements as well as on the basis of the performance evaluation metrics. We exper-

imented with a minimal topology (details of the simulation environment appear in

Chapter 5). Fig. 3(a) shows the movement of packet flocks over a sensor network on

the basis of the Flock-CC approach, mimicking the behavior of natural bird flocks of

Fig. 2(a) in a non-congested and failure-free environment. In Fig. 3(b), Flock-CC

exhibits the obstacle avoidance behavior of bird flocks in a failure prone environment

and in 3(c) in an overloaded environment. In Chapter 5, extensive results reveal the

significance of the intrinsic flocking characteristics for improving the performance of

WSNs.

The main challenges for Flock-CC are to achieve: (a) low number of collisions

and retransmissions, (b) low packet loss resulting in high packet delivery ratio and

thus reliability and low energy tax, (c) low latency, and (d) tolerance against failures.
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The Flock-CC approach primarily targets event-based WSNs used, for example,

in process control and disaster recovery missions. In event-based WSNs, packet

bursts can be dynamically and randomly initiated at any sensor node within the

network since each node is expected to report to the sink once the occurrence of a

given event has been detected. It is not uncommon for many neighboring nodes to

initiate transmission at the same time in order to report an event in their vicinity.

Major contributions arising from the Flock-CC approach are summarized below.

More specifically, Flock-CC:

• alleviates congestion by balancing the offered load through alternative paths

to the sink,

• offers acceptable packet delivery ratio (percentage of packets delivered to the

sink) especially in high load scenarios, fast delivery of packets to the sink and

low energy tax,

• achieves adaptation to changing network and traffic conditions, robustness

against failing nodes, scalability in different network sizes,

• outperforms typical conventional congestion-aware and congestion-free routing

approaches in terms of packet delivery ratio in low, medium and high loads.
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1.3.2 The Lotka-Volterra based congestion control (LVCC) approach [6],

[7], [8], [9]

Population dynamics has traditionally been the dominant branch of mathemati-

cal biology which studies how species populations change in time and space and the

processes causing these changes. Simple mathematical biology models [39] can be

used to model the evolution in species populations. Information about population

dynamics is important for policy making and planning. In this study, population

dynamics are used for designing a congestion control policy.

Population dynamics can be modeled with a simple balance equation that de-

scribes how the overall population size of a species changes over time as a result

of species interaction with resources, competitors, mutualists and natural enemies.

The second congestion control approach focuses on the Lotka-Volterra (LV) compe-

tition model [33], [34], which is a deterministic competition model of mathematical

biology which involves interactions among species that are able to coexist, in which

the fitness of one species is influenced by the presence of other species that compete

for at least one limiting resource. The LV competition model is considered to be

one of the most studied mathematical models of population biology.

Based on the LV competition model, a decentralized congestion control approach

is proposed that regulates the rate of every flow in order to prevent, or at least

gracefully minimize congestion whilst aiming to achieve fairness among competing

flows. More specifically, the main objective is to provide efficient and smooth rate
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allocation and control while maintaining fairness and friendliness with interfering

flows, and providing graceful performance degradation as the offered load increases.

The LV competition model was also applied by other researchers in modifying

the congestion control mechanism of TCP by Hasegawa and Murata [37]. However,

the novelty of the LVCC approach lies in the fact that the LV model is applied to

WSNs in a hop-by-hop manner.

The LV-based congestion control (LVCC) mechanism is targeted for small-scale

dependable multimedia WSNs [17] and especially for applications that require con-

tinuous stream of data.

Major contributions arising from the LVCC approach are summarized below:

• LVCC preserves the global properties of biological processes such as stability,

self-adaptation, scalability and fairness, that are achieved collectively with-

out explicitly programming them into individual nodes. Analytical evalua-

tions and simulations were performed to understand how the variations of the

model’s parameters influence stability, sensitivity to parameters, scalability

and fairness.

• Control system type simulations in Matlab validated the correctness of ana-

lytical results for plausible scenarios that could not be formally tested.

• Simulations showed that the proposed model achieves stability and smooth

network operation under the analytically proposed conditions. Realistic sce-

narios of network operation and conditions were also simulated for effective

parameter setting.
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• Realistic scenarios evaluation suggested certain values for parameters α, β and

r that are able to achieve high packet delivery ratio, low end-to-end delay,

scalability and fairness among competing flows.

• LVCC was found to outperform AIMD-like rate-based congestion control ap-

proaches for WSNs in terms of stability and flow rate smoothness.
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1.5 Structure of the report

This thesis is organized as follows: Chapter 2 gives background information

on the problem of congestion in WSNs, introduces both the novel paradigm of

Swarm Intelligence (with emphasis on the flocking behavior of birds) and the Lotka-

Volterra competition model as well as presents previous work on congestion control

for WSNs. Chapter 3 addresses congestion in event-based applications, and presents

the design of the proposed flock-based congestion control approach. Chapter 4

focuses on congestion in streaming applications and presents the Lotka-Volterra

based congestion control approach. In Chapter 5, performance evaluation results

are presented. Finally, Chapter 6 concludes this study and proposes areas of further

work.



Chapter 2

Background

2.1 Congestion in WSNs

In this section, the problem of congestion is discussed with respect to the different

types of WSNs applications. Next, the role of medium access protocols in congestion

is discussed on the basis of two prominent types of medium access control protocols.

Furthermore, this section presents the consequences of congestion supplemented by

the different types of congestion as well as where congestion occurs. The last two

subsections deal with congestion detection indicators that are mainly used in WSNs

as well as with congestion avoidance and mitigation techniques.

2.1.1 The problem

A WSN consists of spatially distributed autonomous sensor nodes that are able

to monitor physical or environmental conditions, such as temperature, humidity,

sound, vibration, pressure, motion or pollutants and to cooperatively pass their

23
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data through the network to one or more sink nodes. Sink nodes are responsible

for gathering data and forwarding them to the outer world, e.g. the Internet, for

further processing.

WSNs are currently being employed in a plethora of applications ranging from

medical to military, and from home to industry. All WSN applications can be

categorized under three data delivery models: (a) event-based, (b) continuous-

based (streaming) and (c) query-based. In this thesis, we focus on event-based

and continuous-based (streaming) data delivery models.

Event-driven applications: Typically, event-driven WSNs operate under light

load but large, sudden, and correlated-synchronized impulses of data may suddenly

arise in response to a detected or monitored event. Most event-driven applications

(e.g. target tracking, fire detection) are interactive, delay intolerant (real-time)

and mission critical. That means that data generated from sensor nodes should be

delivered within short span of time through a sink node to a processing center for

further actions.

The data traffic generated by a single sensor node may be of very low intensity.

However, very bursty traffic may be generated by a set of sensors due to a common

event or a phenomenon. In addition, the converging (many-to-one) nature of packets

from multiple sending nodes to one or more sink nodes may lead to congestion around

the sinks.

Continuous-driven (streaming) applications: Over the last few years, WSNs

are being developed towards a large number of multimedia streaming applications,
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e.g. video surveillance, traffic control systems, health monitoring, and industrial pro-

cess control. In streaming applications, sensor nodes send their data continuously

to the sink at a constant or regulated (by a formula) rate. Streaming applications

may server real-time or non-real-time data. Real-time data is delay-constrained and

has a certain bandwidth requirement. Packet losses can be tolerated to a certain

extent. On the other hand, non-real-time data can be send when the sink may want

to collect periodic data from the sensor field. In this context, delay and packet losses

are both tolerated.

In streaming applications, the increasing reporting rate of nodes, perhaps due to

demand of higher data fidelity, in conjunction with the uncontrolled use of scarce

network resources may lead to congestion. More specifically, packet flows left un-

controlled (i.e. to reach high sending rates, or to use the same paths to the sink)

are likely to cause congestion even if local contention is minimized.

2.1.2 The role of Medium access control (MAC) protocols in congestion

When two neighboring sensor nodes attempt to access the wireless communi-

cation channel (shared medium) simultaneously, contention takes place leading to

collision. Collision is a symptom of congestion in the wireless channel and can re-

sult in a time-variant channel capacity. Therefore, a medium access control (MAC)

protocol is needed to to co-ordinate the access of nodes to the shared medium so

that packets transmitted from the sensor nodes will not interfere with each other.
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Various MAC protocols with different objectives were proposed for wireless sen-

sor networks. Two major types of media access control protocols are prevalent in

WSNs: Time Division Multiple Access (TDMA) and Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA).

TDMA is a schedule-based, contention-free protocol. TDMA divides the channel

into time slots and only one node is allowed to transmit or receive data within each

time slot. In this way, TDMA does not allow any collisions and bounds the delay.

However, the major advantage of TDMA is its energy efficiency, because it directly

supports low-duty-cycle operations on node. On the other hand, TDMA assumes

that the sensor nodes are time-synchronized, which is not possible for large scale

sensor networks due to the significant amount of signaling traffic needed. Also,

TDMA protocols have limited scalability and adaptivity to the changes on number

of transmitting nodes. When nodes become active or nodes stop transmitting, the

slots should be reallocated according to the number of transmitting nodes. Frequent

changes may be expensive or slow to take effect. Also, static slot allocation can limit

the available throughput for any given node, and the the maximum number of active

nodes may be limited.

CSMA/CA is a contention-based, random access MAC protocol, that requires

no coordination among the nodes accessing the channel. In CSMA/CA, when a

sensor nodes has a packet to transmit, it senses the channel before transmitting and

is allowed to transmit after the channel is sensed idle. If a packet is successfully re-

ceived, the destination node issues an acknowledgement packet. The asynchronous
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mechanism of accessing the shared medium is not able to prevent collisions. When

a collision is detected, the lost packet is retransmitted by the MAC layer after a

random amount of time (back-off procedure). If the problem persists, the colliding

packet is discarded after a finite number of unsuccessful retransmission attempts.

CSMA/CA protocol employs a retransmission scheme in order to increase the reli-

ability of the lossy wireless channel. The main advantage of CSMA/CA is that it

adapts quite well with the variable condition of traffic and is quite robust against

interferences. The main drawback of CSMA/CA is that it consumes more energy

than contention-free protocols because of energy wastage in collisions and idle listen-

ing. Moreover, CSMA/CA does not provide bandwidth and delay guarantees. The

well-known WiFi (i.e. IEEE 802.11) protocol follows is a CSMA/CA-like protocol.

The majority of MAC protocols designed for WSNs rely on the CSMA/CA

protocol [40] and thus, both approaches proposed in this thesis assume a

CSMA/CA-based underlying MAC protocol with a maximum number of 7

retransmissions before discarding a recurring colliding packet. CSMA/CA has been

preferred to TDMA as medium access scheme for WSNs in the scenarios where the

traffic is bursty and multiple consecutive and contiguous packets generated from

the same collision neighborhood need to be sent. TDMA can be used in scenar-

ios where a small set of nodes is continuously transmitting packets with infrequent

activation/deactivation of transmitting nodes.
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2.1.3 Consequences of congestion

Congestion may cause increase in collisions and retransmissions at the CSMA/CA-

based MAC layer (multiple packet losses), low link utilization (throughput reduc-

tion), and increase of queueing delays, leading to the deterioration of the offered

quality of service (QoS). Increasingly, congestion in WSNs is responsible for en-

ergy waste, decrease of network lifetime and even for the decomposition of network

topology in multiple components.

2.1.4 Types of congestion

In traditional Internet wired networks, packet loss is taken as an indication of

congestion while congestion control is usually carried out in an end-to-end manner

(i.e. only the source-destination pair is involved). In these networks, packet loss is

solely attributed to buffer overflows as a result of finite buffer queues.

Wireless communication has significantly different characteristics compared to

wired networks such as higher bit error rates, higher latency, limited bandwidth,

multi-path fading of the signals and handoff. The problem is worsened in multi-

hop wireless networks, where communication between two end nodes is carried out

through a number of intermediate nodes whose function is to relay information

from one point to another. In wireless multi-hop networks like WSNs, packet losses

can be mainly attributed to either buffer overflows, or collisions in the wireless

medium when more than one nodes are trying to access the channel simultaneously.

A smaller but significant amount of packet losses can also occur randomly due to
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environmental factors as for example, interference from other devices, node mobility,

bad channel conditions, as for example multipath fading, disconnections due to

coverage limitations etc.

Based on the two aforementioned congestion symptoms in WSNs, congestion

phenomena can be categorized into two types:

1. Buffer-type: When the incoming traffic load exceeds the outgoing channel

capacity at a particular node, packets are being accumulated in the node’s

buffer. If the problem persists, instantaneous queue length exceeds the buffer

capacity leading to buffer overflow, and long delays.

2. Link-type: The multi-hop nature of WSNs, the shared communication medium

and the limited bandwidth give rise to link-type congestion. In wireless net-

works, local channel contention arises in the vicinity of a sensor node due

to the limited bandwidth and interference among multiple neighboring sensor

nodes that try to access the wireless medium simultaneously. The wireless

channel contention and interference that occur between different flows or be-

tween packets of a flow can result in a time-variant channel capacity in the

area of node. This time-variant nature makes the congestion level fluctuating

and unpredictable even in case of constant incoming traffic rate. The problem

is worsened when densely deployed sensor network topologies are considered

that exacerbate the impact of the channel contention. Even though the high

number of event sources may improve event detection efficiency, closely located

source nodes are expected to increase wireless channel contention.
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2.1.5 Where congestion occurs?

In densely deployed sensor networks, a large number of data packets are gen-

erated from nodes located in the area of the event that report the same event

concurrently. In this way, hotspots are created very close to source nodes leading

to the exhaustion of the locally available resources (wireless channel capacity, buffer

capacity of involved nodes).

Even in sparsely deployed sensor networks, when source nodes report at high data

rates, hotspots may arise around a sink node due to the converging (many-to-one)

nature of packets from multiple sending nodes to a single sink node. Furthermore,

in sparsely deployed networks, even when source nodes report at low data rates,

hotspots may occur anywhere but likely further from the sources, towards the sink

as a result of two or more intersecting traffic flows. Also, a clusterhead in a cluster-

based topology or a parent node with many children in a tree-based topology are

potential hotspot points.

From the earlier discussion it is clear that congestion can occur due to random

causes and also appear in many parts of the network.

2.1.6 Congestion detection

One of the main problems in designing a congestion control strategy for WSNs

is how to detect congestion. In the Internet, conventional congestion detection

techniques depend heavily on packet loss due to buffer overflows to infer congestion,

and to a lesser extend on queue occupancy, and end-to-end delay.
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Simulation studies conducted by [21] and [22] revealed that, in WSNs where the

wireless medium is shared using CSMA/CA-like protocols, wireless channel con-

tention losses can dominate buffer drops and increase quickly with offered load.

The problem of channel losses is worsened around hot spot areas, as for example, in

the proximity of an event, or around the sink (see next subsection). These phenom-

ena result in the starvation of channel capacity in the vicinity of senders, while the

wireless medium capacity can reach its upper limit faster than queue occupancy [41].

Thus, queue occupancy alone cannot accurately serve as an indication of congestion.

On the other hand, the study of Hull et al. [22] in a large sensor network testbed

revealed that when used alone, wireless channel-based congestion detection performs

worse than queue occupancy-based congestion detection. Therefore, congestion is

expected to be more effectively detected using a combination of buffer occupancy

and wireless channel load.

However, in small scale networks, or in networks with predefined deployment,

schedule-based medium access control protocols such as TDMA may be able to

resolve the problem of collisions. Therefore, the problem of buffer overflows is con-

sidered to be more critical in WSNs than the classical Internet due to buffer size

limitations. Even at low traffic rates, buffer overflows can be experienced at some

point of the network (usually close to the sink) due to the converging (many-to-one)

nature of packets from multiple sending nodes to a single sink node. The prob-

lem of buffer overflows can be somehow minimized user larger buffer spaces (if the

constrained memory of sensor nodes is sufficient) at the cost of larger delays.
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Currently, three congestion detection indicators are mainly used in WSNs, which

are presented below:

2.1.6.1 Buffer occupancy

Some congestion control approaches for WSNs as for example, [23], [42], [43], and

[44] are solely based on buffer occupancy to detect congestion. In these approaches,

congestion is detected when the instantaneous queue length of a node exceeds its

limited buffer capacity, leading to packet drops, or when the queue length exceeds a

certain percentage of the buffer capacity, leading to long delays. These approaches

assume that the underlying MAC protocol can efficiently provide a stable radio

link capable of resolving collisions. For example, some approaches like [42] assume

perfect MAC.

2.1.6.2 Buffer occupancy and wireless channel load

A large number of congestion control approaches in WSNs, as for example CODA

[21], Fusion [22], BGR [45] and Siphon [46] use both buffer occupancy and local

wireless channel load to infer congestion. In these approaches, while a packet waits

to be sent, the sensor node samples the state of the channel at a fixed interval.

Based on the number of times the channel is busy, it calculates a utilization factor.

If utilization rises above a certain level (e.g. the theoretical upper bound of the

channel throughput), the congestion bit is set. Otherwise, the congestion bit is

cleared.
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2.1.6.3 Packet inter-arrival and service time

Recent studies by [47], [48], [49] and [50] argue that congestion can be also

inferred by inspecting packet inter-arrival time and packet service time (or alter-

natively incoming and outgoing traffic rates). In these approaches, congestion is

inferred when the inter-arrival time is smaller than the service time, that is the in-

coming packet rate is higher than the outgoing traffic rate leading to accumulation

of packet in queues.

In this thesis, buffer occupancy and wireless channel load are cooperatively used

to infer congestion.

2.1.7 Congestion notification

After congestion detection, somehow the rest of the network should be notified in

order for nodes to take measures for congestion mitigation. Congestion notification

can be divided into two categories as shown below:

2.1.7.1 Explicit

In explicit congestion notification, nodes which detect congestion broadcast con-

trol packets in order to inform some (or all) nodes in the network about the event.

Early studies for congestion control in WSNs [21], [23], used this explicit way of

informing about congestion. However, it can be argued that this method increases

significantly the amount of traffic injected into the network, exacerbating the prob-

lem of congestion.
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2.1.7.2 Implicit

Implicit congestion notification dominates in the latest congestion control ap-

proaches in WSNs. In implicit notification, no additional control messages are

needed to propagate congestion information. In a number of CC approaches [23],

[21], [22], congestion information is piggybacked on normal data packets. This in-

formation can be a single bit on the data packet header [23]. In other approaches

like the proposed approach, congestion is implicitly inferred by each node located

inside a congestion region without any other node, involved in the process.

2.1.8 Congestion control: avoidance and mitigation

Congestion control (CC) is concerned with measures taken in order for a net-

work (a) to avoid congestion (congestion avoidance approaches) and (b) to mitigate

congestion (congestion mitigation approaches) and operate within an acceptable

performance level, even when demand is near or exceeds the capacity of network

resources. Congestion control is a global issue which involves every node within a

network. Congestion control is concerned with efficiently using a network at any

load.

Congestion control approaches in WSNs should monitor and control traffic flows

and network resources so as to avoid congestive collapse by attempting to detect and

avoid oversubscription of any of the buffer or wireless channel capabilities of sensor

nodes and taking appropriate steps to alleviate the problem. Congestion control can

be primarily achieved through traffic manipulation (e.g. rate adaptation to network
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changes, routing of packets through multiple paths, topology control in terms of

clustering formation), and network resource management (e.g. power control, mul-

tiple radio interfaces). It is beyond any doubt that without congestion control, a

network can easily become gridlocked, with little or no data being transported from

source nodes to the sink.

End-to-end CC approaches used in the Internet are not expected to be effec-

tive in multi-hop, error prone wireless environments because the end-to-end nature

may result in reduced responsiveness causing increased latency and high error rates,

especially during long periods of congestion. Due to their severely constrained na-

ture, WSNs necessitate autonomous, decentralized, fast time scale congestion control

strategies which promise immediate, effective and efficient congestion avoidance or

relief from congestion. Decentralized approaches are expected to adopt a hop-by-

hop model where all nodes along a network path can be involved in the procedure.

Each node should make decisions based only on locally available information (e.g.

buffer load, channel load) since it is not practical for the nodes to have complete in-

formation about the system state. This is a highly desirable feature as it minimizes

the exchange of messages, hence improves both energy and congestion.
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2.2 Swarm intelligence and the flocking behavior of birds

2.2.1 Biological (natural) swarms: The bird flock paradigm

This study draws inspiration from nature, which has been very successful in ef-

fectively solving similar types of complex problems. Recently, nature-inspired com-

puting has been fueled by the emergence of a novel computational paradigm, the

so-called Swarm Intelligence (SI) paradigm [28], [32]. A swarm is an apparently dis-

organized collection (population) of moving individuals that tend to cluster together

while each individual seems to be moving in a random direction1 . SI techniques,

motivated by the collective behavior of biological (or natural) swarms (e.g. bird

flocks, ant colonies, fish schools) living in decentralized, self-organizing, and adapt-

ing environments, reportedly provide a promising basis for computing environments

that need to exhibit these characteristics [12], [51], [52] and [53]. Research in SI

has provided computer scientists with powerful methods for designing distributed

control and optimization algorithms. These methods are applied successfully to a

variety of scientific and engineering problems [54]. In addition to achieving good

performance on a wide spectrum of ‘static’ problems, swarm-based algorithms tend

to exhibit a high degree of flexibility and robustness in dynamic environments [54].

Biological swarms found in nature carry out their tasks collectively in order to

accomplish a given task in a complex world (e.g. foraging, migration, nest building,

defence against predators). More specifically, they organize themselves into remark-

able, beautiful spatiotemporal structures in a process known as self-organization.

1This description was adapted from a presentation by R. C. Eberhard
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This organization is thought to arise from the instantaneous dynamics of individu-

als within a swarm, and not by any central leadership. In addition, an individual has

only local perception of the surrounding environment and exhibits specific behav-

ioral tendencies which are governed by a few simple rules. Individuals communicate

with each other through the modification of the environment in a biological process

known as stigmergy.

The collective global behavior of a swarm emerges from simple interactions

among the constituent entities. These interactions can be viewed at different levels:

the microscopic level describes the entities involved and their behavior on the basis

of simple rules; the macroscopic level describes the (emergent) behavior of the over-

all system. The global behavior of a swarm is emergent because the rules followed

by the constituents of the swarm do not contain any notion of the whole.

Mark Millonas [55], has articulated five basic principles of Swarm Intelligence:

1. Proximity principle: the population should be able to carry out simple space

and time computations

2. Quality principle: the population should be able to respond to quality factors

in the environment

3. Diverse response principle: the population should not commit its activities

along excessively narrow channels

4. Stability principle: the population should not change its mode of behavior

every time the environment changes
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5. Adaptability principle: the population must be able to change behavior mode

when it”s worth the computational price

Note that stability and adaptability can be seen as opposite sides of the same coin.

Figure 4: A bird flock with the characteristic ‘V’ shape formation.

Bird flocking is a particularly familiar natural example of Swarm Intelligence.

The aggregate motion of a flock of birds is a beautiful and familiar part of the natural

world. A bird participating in a flock only adjusts its movements to coordinate with

the movements of its flock mates, typically its neighbors that are close to it in the

flock [56]. Figure 4 shows a typical bird flock formation. It can be seen that the

amazing thing about the flock is that for long flight it’s usually organized in a ‘V’

shape, which can be proven to be the most energy-efficient formation. The bird in

front generates air movements that lessens the load of the birds behind. When the

front bird gets tired, some bird from behind takes over.

Natural flocks seem to consist of two balanced, opposing behaviors: a desire to

stay close to the flock and a desire to avoid collisions within the flock [10]. Each bird

does not take commands from any leader bird since there is no leading bird. Any
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bird can be in the front, center and back of the swarm. The basic urge to join a flock

seems to be the result of evolutionary pressure from several factors: protection from

predators, statistically improving survival of the (shared) gene pool from attacks

from predators, advantages for social and mating activities, and profiting from a

larger effective search pattern in the quest for food (essentially each bird is exploiting

the eyes of every other bird) [57].

There is no evidence that the complexity of natural flocks is bounded in any

way. When a new bird joins, the flocks do not become ‘full’ or ‘overloaded’. It was

observed that natural flocks seem to behave in exactly the same fashion over a huge

range of flock populations. In addition, it does not seem that an individual bird can

be paying much attention to each and every one of its flockmates. But in a huge

flock spread over vast distances, an individual bird must have a localized and filtered

perception of the rest of the flock. A bird might be aware of three categories: itself,

its two or three nearest neighbors, and the rest of the flock [58].

Another important feature of natural bird flocks is that when the flock meets an

obstacle, such as a tall building, it finds a perfect way to split apart to go around

an obstacle and reform again once the obstacle is passed. The proposed flock-

based congestion control approach presented in Chapter 3 exploits this behavior

and features the properties discussed above.
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2.2.2 Artificial swarms

Artificial swarms are the software equivalent of these remarkable biological swarms

(e.g. flocks of birds) found in nature. An artificial swarm consists of a number of

artificial entities, often called particles (i.e. the individuals within a social group like

a bird in a flock, an ant in a colony, a buffalo in a herd). At a more abstract level,

an artificial swarm exists as a set of local rules, or interactions between artificial

entities. The set of rules and interactions follow the theoretical models of biological

swarms. An artificial swarm may be visualized, keeping in mind that the emergent

pattern formations depend on local interactions among artificial entities.

The centralized approach to simulate artificial swarms is to formulate the collec-

tive behavior as a script which each artificial entity must obey. In this way, swarming

behavior is not emergent because it is built into the script from the outset. However,

the famous study of Craig Reynolds2 [10] supported the hypothesis that swarms

and flocks are self-organizing when local, decentralized rules are followed by each

artificial entity.

2Craig Reynolds realized that the coordinated motion of a flock of birds could be modeled by
applying three simple rules to be followed by simulated flocking creatures, the so-called ‘boids’.
More details on this approach are found in Section 2.2.4.
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Figure 5: Rules governing the interactions among neighboring particles in a swarm:

Particle i currently at x and moving with velocity v, is attracted to particle j located

inside Zone of Attraction (ZoA) and repelled from particle k located inside Zone of

Repulsion (ZoR). The rest of the particles are outside i’s perception.

The study of artificial swarms involves reference to spatial neighborhoods around

individual particles. In particular, it is assumed that individuals have a finite range

of perception in which a given individual feels the influence of neighbors. Typically,

as shown in Figure 5, individuals repel each other at close range, attract each other at

medium range and are oblivious to each other at long range. The attractions provide

coherence, maintaining a shared neighborhood (which may be a sub-swarm or the

entire swarm) and the repulsions prevent collisions between nearby particles. The

attractive and repulsive accelerations are the analogues of positive and negative

feedback. At its simplest, a swarm algorithm considers the individual swarming

participants as purely dynamic entities. These entities are represented as point
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particles in d-dimensional real space with dynamic state (x, v). The basic rules

governing the interactions between neighboring particles in a swarm or flock are:

1. if apart, move closer (cohesion)

2. if too close, move apart (separation)

3. attempt to match velocities (alignment)

The final rule only applies to collectives where their entities move in unison, such

as flocks, herds and schools. Swarming entities have more chaotic motions and drop

the rule of alignment.

2.2.3 Classification of contemporary swarm algorithms

A classification of contemporary swarm algorithms was raised by Blackwell [25].

In accordance with [25], contemporary swarm algorithms can be split into three

groups (in order of faithfulness to natural swarms), although there are overlaps, as

follows:

1. Bio-swarms are used to develop scientific models of natural systems (for ex-

ample the refined bio-swarm of Couzin et al. [11] and the prey-flock escaping

model of Lee et al. [59]). These swarms may be visualized, but are primarily

intended for hypothesis development and testing.

2. Simulation swarms are visualizations for aesthetic and artistic purposes and do

not need to accurately represent nature (Reynolds [10], Blackwell [25]). These

swarms move in real time so that the visualizations have a sense of realism.
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3. Social swarms use an information network rather than a spatial region to

define a neighborhood for interactions. Social swarms are frequently used to

solve mathematical problems, as in ant colony optimization (ACO), Bonabeau

et al. [28], and particle swarm optimization (PSO), Kennedy et al. [60].

These swarms have the loosest connection to nature: the visualizations take

secondary importance to the algorithmic details and in fact they can look quite

unrealistic.

In the rest of this study, this terminology is followed.

2.2.4 The ‘Boids’ model of Reynolds [10]

Boids is an artificial life program, developed by Craig Reynolds in 1986, which

simulates the flocking behavior of birds. The idea was published in a seminal paper

that appeared in the ACM SIGGRAPH conference in 1987 [10].

The model involves behaviors that correspond to the opposing forces of collision

avoidance and the urge to join the flock. More specifically, the bird flocking ‘boid’

model consists of three simple steering behaviors which describe how an individual

bird maneuvers based on the positions and velocities of its nearby flock-mates [10]:

1. Collision Avoidance (Separation): steer to avoid crowding nearby flock-mates

so as to prevent collisions.

2. Velocity Matching (Alignment): attempt to match velocity with nearby flock-

mates (steer towards the average heading of nearby flock-mates).
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(a) Separation (b) Alignment (c) Cohesion

Figure 6: The three steering behaviors in the Boids’ model of Reynolds [10].

3. Flock Centering (Cohesion): attempt to stay close to nearby flock-mates (steer

to move toward the average position of nearby flock-mates).

These three steering behaviors are illustrated in Fig. 6.

Each bird has direct access to the whole scene’s geometric description, but flock-

ing requires that it reacts only to flock-mates within a certain small neighborhood

around itself. The neighborhood is characterized by a distance (measured from

the center of the bird) and an angle, measured from the bird’s direction of flight.

Flock-mates outside this local neighborhood are ignored. The neighborhood could

be considered of limited perception. This process happens millisecond by millisec-

ond. As birds fly together, individuals within the flock make decisions resulting

in the collective direction the flock will travel. A flock of birds moves like a well-

choreographed dance troupe. They can veer to the left in unison, and then suddenly

they may all dart to the right and swoop down toward the ground, coordinating their

actions very well.
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The boids framework is often used in computer graphics, providing realistic-

looking representations of flocks of birds and other creatures, such as schools of fish

or herds of animals.

2.2.5 The Bio-swarm model of Couzin et al. [11]

Couzin et al. [11] proposed a self-organizing model of group formation in three-

dimensional space which is intended for investigating the spatial dynamics of animal

groups such as fish schools and bird flocks. The proposed model simulates the

behavior of individuals in a bio-swarm as resulting from local repulsion, alignment

and attractive tendencies based upon the position and orientation of individuals

relative to one another.

The behavioral rules followed by individuals are:

1. Individuals attempt to maintain a minimum distance between themselves and

others at all times. This rule has the highest priority and corresponds to a

frequently observed behavior of animals in nature (Krause and Ruxton [61]).

2. If individuals are not performing an avoidance manoeuvre (rule 1) they tend

to be attracted towards other individuals (to avoid being isolated) and to align

themselves with neighbors (Partridge and Pitcher [62], Partridge [63]).

These behavioral tendencies are simulated using local perception and simple re-

sponse behaviors.

As shown in Fig. 7, bio-swarms use three concentric zones; the rule of cohesion

applies in the outer zone, alignment applies in a middle zone and at short distances
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the rule of separation dominates. Individuals in bio-swarms may also have a ‘blind

volume’ in which neighbors are undetectable.
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Figure 7: Representation of an individual in the model centered at the origin:
ZoR =zone of repulsion, ZoO =zone of orientation, ZoA =zone of attraction. The
possible ”blind volume” behind an individual is also shown. α =field of perception.

In order to define the attraction and repulsion forces among individuals, some

basic notations are introduced. Each individual i has a position vector ci, and unit

direction vector vi. Time is partitioned into discrete time steps t with a regular

spacing τ . In each time step, individuals assess the position and/or orientation

of their neighbors within three nonoverlapping behavioral zones described above.

This information is used to determine a desired direction for each individual for the

successive time step di(t+ τ) using the following rules.

The ‘zone of repulsion’ (ZoR) is modeled as a sphere (with radius rr) within

which each individual attempts to maintain a minimum distance from others. If nr

neighbors are present in the ZoR at time t, individual i responds by moving away
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from neighbors within this zone:

dr(t+ τ) = −
nr∑
j ̸=i

rij(t)
|rij(t)|

, (1)

where rij = (cj − ci)/ |cj − ci| is the unit vector in the direction of neighbor j.

If no neighbors are within the zone of repulsion, the individual responds to

others within the ‘zone of orientation’ (ZoO) and the ‘zone of attraction’ (ZoA).

These zones are spherical, except for a volume behind the individual within which

neighbors are undetectable. This ‘blind volume’ is defined as a cone with interior

angle (360− α)o, where α is defined as the field of view (FoV). An individual with

α = 360o can respond to others in any direction within the behavioral zones. An

individual will attempt to align itself with neighbors within the zone of orientation,

giving:

do(t+ τ) =
no∑
j=1

Vj(t)

|Vj(t)|
, (2)

and towards the positions of individuals within the zone of attraction:

dα(t+ τ) =
nα∑
j ̸=i

rij(t)
|rij(t)|

. (3)

Birds cannot see too far, thus there is no interaction with neighbors located outside

the ZoA.

The attraction represents the tendency of organisms to join groups and to avoid

being on the periphery, whereas the orientation allows collective movement by min-

imizing the number of collisions between individuals.

An analytical analysis of the model on the basis of changing parameters values

revealed the existence of major group-level behavioral transitions related to minor



48

changes in individual-level interactions. More particularly, the bio-swarms model

exhibits several collective behaviors (swarm, torus, dynamic parallel group, highly

parallel group) with sharp transitions between them. Biologically, the transitions

are important in allowing animal groups to change from one type of group structure

to another in response to internal (e.g. hunger) or external (e.g. detection of a

predator) stimuli, as individuals attempt to maximize their fitness as circumstances

change.

2.2.6 Basic characteristics of the bird flocking behavior: The building

blocks of the Flock-CC

The Flock-CC approach involves reference to artificial bird flocks consisting of

individuals with the same behavioral model (homogeneity) with finite range of view

(perception). These individuals interact with each other as well as with the environ-

ment. The design of the interactions in packet groups is influenced by the bio-swarm

model of Couzin et al. [11]. The behavior of each individual is influenced by other

individuals within its neighborhood.

Three inherent characteristics of bird flocks are presented next. These charac-

teristics served as the basis for developing the Flock-CC approach.

2.2.6.1 Repulsion and attraction zones and forces in bird flocks

The notions of repulsion and attraction zones in bird flocks, as modeled by the

study of Couzin et al. [11], can be used in the Flock-CC approach in order to

simulate the local interactions among individuals in the flock.
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However, the Flock-CC approach differs in two aspects from Couzin’s model: (1)

The bio-swarm model of Couzin was formulated on the metrical (continuous three-

dimensional) space, whereas the Flock-CC model is applied on a two dimensional

topological (discrete) space defined by the graph of nodes, and (2) in Couzin’s model

(as well as in the Reynolds’ model) individuals form flocks and move constantly in

a given finite space without any attraction to a global target (final destination). On

the other hand, in the Flock-CC approach, packets are expected to form flocks and

move towards the sink. The latter Flock-CC characteristic necessitates the existence

of a field of attraction towards the sink. These characteristics are discussed in the

next subsection.

Motivated by Couzin’s model, the collective behavior of the flock is considered

an emergent behavior arising from a few simple behavioral rules that are followed

by individuals, such as:

1. repel from neighbors (if too close, i.e. within the ZoR) to avoid collisions,

2. attract to neighbors (if apart, i.e. within the ZoA) to maintain coherence

among the members of a flock,

3. match velocity (speed and direction) with neighbors (within the ZoO),

4. introduce a randomness that allows for exploration of alternative paths.

These behavioral rules govern individual-level interactions which collectively result

in the emergence of group-level transitions.
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2.2.6.2 Birds vision and the field of view

The motion of each individual in the flock is only influenced by its nearest flock

mates. Therefore, vision is the most important sense for birds. The field of view

(FoV) determines the extent of the observable world that is seen by each bird at

any given moment. Depending on the placement of the eyes, different animals have

different fields of view. Some birds have a 360o FoV.

As shown in Fig. 8, the range of visual abilities is not uniform across a field of

view, and varies from animal to animal 3 .

Figure 8: Fields of view for an owl and a pigeon.

2.2.6.3 Magnetic fields and birds orientation

The aforementioned behavioral rules and the presence of the field of view do not

imply that a bird flock will establish a flight path towards a specific attractor. The

3The type of vision in which each eye is used separately is called monocular vision. The vision
that occurs when the field of vision from each eye overlaps is called binocular vision, and it is quite
important for depth perception. Monocular vision refers to the area seen with one eye.
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notion of orientation and attractiveness to a global attractor can be extracted from

the orientational movement of migratory birds. In accordance to [64], migrating

birds use the magnetic field for direction finding, either towards magnetic poles

(polewards, northern or southern) or the magnetic equator (equatorwards).

Figure 9: Schematic drawing of the Earth”s magnetic field (redrawn from Wiltschko
and Wiltschko [15]). The arrows show the course of the magnetic field lines and their
length is drawn relative to the magnetic field intensity at different latitudes. The
magnetic field intensity is strongest at the magnetic poles (about 68 µT ) and weakest
at the magnetic equator (about 23µT ). The steepness of the magnetic field lines
relative to the surface of the Earth shows the angle of inclination, which is maximal
at the magnetic poles (±90o) and minimal (0o) at the magnetic equator.

It is a biological fact that migrating birds can take advantage of the environment

for their movements. Migrating birds can sense the Earth’s magnetic field and orien-

tate themselves with the ease of a compass needle. This ability is a massive boon for

these birds, keeping frequent flyers on the straight and narrow. The use of magnetic
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information in bird orientation was discussed in the past, when von Middendorff [65]

(1859) proposed what someone, in modern terms, would call a ‘magnetic compass’,

and Viguier [66] (1882) suggested that displaced pigeons use total magnetic intensity

and inclination to determine their home direction. In accordance to [64], migrating

birds use the magnetic field (Fig. 9) for direction finding, either towards magnetic

poles (polewards, northern or southern) or the magnetic equator (equatorwards).

In addition, the findings summarized in another paper [15], clearly show that

the geomagnetic field provides important orientational information4 .

2.3 The Lotka-Volterra (LV) competition model

Often, biological systems are studied in terms of simple non linear mathematical

models [39] which aim at modeling natural and biological processes using analytical

techniques and tools. Population dynamics has traditionally been the dominant

branch of mathematical biology which studies how populations of species change in

time and space as well as the processes that cause these changes. Information about

population dynamics is of fundamental importance for policy making and planning.

Population dynamics can be modeled with a simple balance equation that de-

scribes how the overall population size of a species changes from time to time as a

result of species interaction with resources, competitors, mutualists and natural ene-

mies. This study adopts similar ideas so as to design congestion avoidance strategies

4A recent study by Heyers et al. [67], strongly supports the hypothesis that migratory birds use
their visual system to navigate using the magnetic field. In accordance with Heyers, the magnetic
field or magnetic direction may be perceived as a dark or light spot which lies upon the normal
visual field of the bird, and which, of course, changes when the bird turns its head.
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for competing streams of data flows. The proposed approach is based on a deter-

ministic competition model which involves interactions among species that are able

to coexist, in which the fitness of one species is influenced by the presence of other

species that compete for at least one limiting resource. An in depth investigation and

modeling of competitive interactions between organisms provides an initial basis for

predicting outcomes.

This study focuses on the Lotka-Volterra (LV) competition model [33], [34],

which is considered to be one of the most studied mathematical models of population

biology. The proposed LV-based congestion control approach is based on one of

the basic characteristics of the Lotka-Volterra competition model. As thoroughly

discussed below, the LV competition model guarantees that the only non-negative

equilibrium point of the LV-based system ensures coexistence of all flows, stability,

and fairness among active flows when a few conditions are satisfied.

2.3.1 The microscopic level of system behavior: Interactions and rules

From the microscopic level, the species within an LV-based ecosystem follow a

set of rules:

1. The population of each species i grows at a given intrinsic growth rate ri in

the absence of all other competing species.

2. Each species i reproduces proportionally to the population of the same species

i, by an intra-specific competition coefficient βi. The parameter βi represents

the competitive effects among individuals of species i.
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3. Each species i reproduces proportionally to the population of species j, by

an inter-specific competition coefficient αij. The parameter αij represents the

competitive effects of species j on growth of species i.

If αij < βi, then the competitive effect of species j on population growth of species

i is less than that of an individual of species i. The rules can be described in an

aggregated form by a set of differential equations.

2.3.2 The mathematical model

The generalized form of an n-species LV system is expressed by a system of

ordinary differential equations:

dxi

dt
= xi

(
ri −

βiri
Ki

xi −
ri
Ki

(
n∑

j=1,j ̸=i

αijxj

))
, (4)

for i = 1, ..., n, where xi(t) is the population size of species i at time t (xi(0) > 0).

Also Ki is the carrying capacity of species i. Ki is the maximum number of individu-

als of species i that can be sustained by the biotope in the absence of all other species

competing for the same resource when β = 1. Otherwise, the maximum population

size of species i can reach Ki/βi. If only one resource exists and all species (having

the same carrying capacity K) compete for it, then K can be seen as the resource’s

capacity. The LVCC approach is developed on the basis of the n-species LV model,

assuming that the n species have the same characteristics: ri = r, Ki = K, βi = β

and αij = α for every i, j.
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2.3.3 The macroscopic level of system behavior

In the macroscopic level, the system emergent behavior is described in terms

of the species populations evolution. According to the analytical study of the LV

competition model by Brauer and Chavez [39], the system can be in one of the

following states:

1. All species in the system can survive and coexist.

2. At least one species can survive, out-competing the rest and condemning them

to extinction.

It is beyond any doubt that these states cannot be intuitively deduced from the

microscopic rules.

The system of Eq. 4 cannot be analytically solved, but some information

about the behavior of its solutions can be obtained. Instead of trying to solve

for x1, x2, ..., xn as functions of t, t can be eliminated so as to look for the relation

between all xi, for i = 1, ..., n. In geometric terms, the phase plane, the (x,y) plane

is a useful visual aid, which can be used to predict the outcome of competition

over time (emergent system behavior). The dynamic path of this many-commodity

ecosystem can be determined on the basis of the trajectories (or orbits) of solutions

5 . Conceptually, the state of such a system is represented by a point (a vector of n

components) lying on an n-dimensional trajectory, and the movement of this point

over the trajectory through time is governed by the system of differential equations.

5Curves in the plane representing the functional relationship between all xi, i = 1, ..., n, with
the time t as parameter.
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Unfortunately, most problems that arise in the real world are not linear, and in

most cases, nonlinear systems can not be solved - there is typically no method for

deriving a solution to the equations. When confronted with a nonlinear differential

equation system such as the n-dimensional system of Eq. 4, an approximate solution

may be satisfactory. One method to find approximate solutions is linearization near

a constant solution. The equilibria are constant solutions of the system of differential

equations (e.g. Eq. 4) that satisfy the equations dxi/dt = 0, for i = 1, ..., n.

Geometrically, an equilibrium is a point in the phase plane that is the orbit of a

constant solution. Therefore, it seems more convenient to study the behavior of the

system around equilibria (if any) and investigate their stability.

In this study, the 2-species LV competition model is taken into consideration

when investigating the stability of equilibria. The system of differential equations

is given by:

dx1

dt
= f (x1, x2) = rx1

(
1− β

K
x1 −

α

K
x2

)
,

dx2

dt
= g (x1, x2) = rx2

(
1− β

K
x2 −

α

K
x1

)
.

(5)

An equilibrium is a solution (x∗
1, x

∗
2) of the pair of equations dx1/dt = f(x∗

1, x
∗
2) =

0, dx2/dt = g(x∗
1, x

∗
2) = 0. Four possible equilibria can be distinguished: (a) (0, 0),

(b)
(

K
β
, 0
)
with K

β
> 0 and f(K

β
, 0) = 0, (c)

(
0, K

β

)
with K

β
> 0 and g(0, K

β
) = 0,

and (d)
(

K
α+β

, K
α+β

)
with K

α+β
> 0, f

(
K

α+β
, K
α+β

)
= 0 and g

(
K

α+β
, K
α+β

)
= 0.

The first equilibrium (0, 0) describes the situation in which no species survive.

Both equilibria
(

K
β
, 0
)
and

(
0, K

β

)
describe the situation in which one species sur-

vives but the other species loses the struggle for existence and becomes extinct. The
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last equilibrium describes the coexistence of species. In the presence of n species,

there will be n equilibrium points: all species coexist, all species extinct, and n− 2

combinations of some species surviving and some vanishing. As from a biologi-

cal point of view only non-negative population sizes are of interest; only equilibria

having non-negative coordinates are considered.

The behavior of solutions near an equilibrium can be determined by the behavior

of solutions of the linearization at the equilibrium. The linearization of the system

5 using Taylor’s theorem at the equilibrium (x∗
1, x

∗
2) (neglecting higher order terms)

gives the coefficient matrix:

M (x∗
1, x

∗
2) =

fx (x
∗
1, x

∗
2) fy (x

∗
1, x

∗
2)

gx (x
∗
1, x

∗
2) gy (x

∗
1, x

∗
2)

 =
r

K

K − 2βx∗
1 − αx∗

2 −αx∗
1

−αx∗
2 K − 2βx∗

2 − αx∗
1

 .

(6)

which is called the community matrix of the system at the equilibrium (x∗
1, x

∗
2). It

describes the effect of the size of each species on the growth rate of itself and the

other species at equilibrium.

An equilibrium (x∗
1, x

∗
2) is said to be stable if every solution (x1(t), x2(t)) with

(x1(0), x2(0)) sufficiently close to the equilibrium remains close to the equilibrium

for all t ≥ 0. An equilibrium (x∗
1, x

∗
2) is said to be asymptotically stable if it is

stable and if, in addition, all solutions with (x1(0), x2(0)) sufficiently close to the

equilibrium tend to the equilibrium as t → ∞.

The asymptotic stability or instability of a linear system can be determined

by the eigenvalues of the matrix M . The sum of the eigenvalues is the trace of the

matrixM and the product of the eigenvalues is the determinant of the matrixM . An
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equilibrium (x∗
1, x

∗
2) is asymptotically stable if all eigenvalues of the coefficient matrix

of the linearization at this equilibrium, M , have negative real part, specifically if:

tr M (x∗
1, x

∗
2) = fx (x

∗
1, x

∗
2) + gy (x

∗
1, x

∗
2) < 0, (7)

det C (x∗
1, x

∗
2) = fx (x

∗
1, x

∗
2) gy (x

∗
1, x

∗
2)− fy (x

∗
1, x

∗
2) gx (x

∗
1, x

∗
2) > 0. (8)

Based on Eqs. 7 and 8, the stability of the equilibrium points depends on the

relationship between α and β. When β > α, only the equilibrium
(

K
α+β

, K
α+β

)
is

asymptotically stable (having positive determinant and negative trace), while the

other three equilibria of the system 5, namely (0, 0),
(

K
β
, 0
)
and

(
0, K

β

)
are classified

as unstable. On the other hand, when β < α, only the equilibria
(

K
β
, 0
)
and

(
0, K

β

)
are asymptotically stable.

Each linearization provides a good approximation to the behavior of system 5

near the corresponding equilibrium point. In addition, the eigenvalues at each equi-

librium determine the stability of the equilibrium. However, the local linearizations

do not tell us what is happening in the phase plane far from the equilibria. In

order to provide a better understanding of the system behavior far from equilibria

under different initial conditions phase portraits6 graphs are considered. For each

species, there is a straight line on the phase portrait called a zero isocline7 (or

nullcline). Any given point along, for example, species 1’s zero isocline represents a

combination of populations of the two species where the species 1 population does

6A phase portrait is a geometric representation of a dynamical system which depicts the system’s
trajectories, the stable steady states and the unstable steady states in the phase plane.

7The zero isocline for a species is calculated by setting the growth rate, dx/dt, equal to zero
and solving for x.
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not increase or decrease. Figure 10 shows the zero isoclines for species 1 (left) and

species 2 (right).

0
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x
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 x
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Figure 10: Zero isoclines for (a) species 1 and (b) species 2.

Note that the zero isoclines divide each phase portrait into two parts. Below

and to the left of the isocline the population size increases because the combined

populations of both species are less than the maximum population size of each

species (K/β, while above and to the right the population size decreases because

the combined populations are greater than the K/β. For the phase portrait of

species 1, the isocline intersects the graph on the x-axis when x1 reaches K/β and

no individuals of species 2 are present. The isocline intersects the phase portrait on

the y-axis at K/α, when the carrying capacity of species 1 is filled by the equivalent

number of individuals of species 2 and no individuals of species 1 are present. The

intersections of the isocline for species 2 are essentially the same, but on different

axes.
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Figure 11: Zero isoclines for species 1 and 2 when (a) β > α and (b) β < α.

The phase portraits of Fig. 11 include both species’ isoclines, and illustrate

the possible outcomes of interspecific competition depending on where each species’

isocline lies in relation to the other. In each phase portrait, the solid line represents

the isocline of species 1, and the dashed line represents the isocline of species 2.

The arrows indicate the trajectories of species’ population sizes for different initial

values while converging/diverging to/from systems’ equilibria.

Fig. 11(a) shows the isoclines of both species when β > α. It can be observed

that regardless of the initial values of population sizes, all trajectories head toward

the intersection of isoclines. More specifically, below and above the two isoclines

both populations increase and decrease respectively. Also, when the species popula-

tions are between the isoclines their trajectories always are directed to the intersec-

tion point. The coordinates of the intersection point are
(

K
α+β

, K
α+β

)
and correspond

to the equilibrium point which was analytically found to be stable when β > α. Fig.

11(a) verifies this finding graphically, according to which the two species, rather
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than outcompeting one another, are able to coexist at this asymptotically stable

equilibrium point (shaded circle). The other three equilibrium points represented

by open circles are unstable as no trajectory tends to (0, 0),
(

K
β
, 0
)
and

(
0, K

β

)
.

Fig. 11(b) illustrates the phase portrait of the system when β < α. As analyti-

cally found earlier, the equilibria
(

K
β
, 0
)
and

(
0, K

β

)
are both asymptotically stable

(shaded circles). These equilibria divide the phase portrait into two regions, one

containing initial points for which trajectories tend to
(

K
β
, 0
)
, and the other con-

taining initial points for which trajectories tend to
(
0, K

β

)
. In this case, coexistence

of of the two species is impossible, and one species will always win the competition

for survival (i.e. competitive exclusion of one species by the other species). The

winner of this competition is determined by the initial population sizes.

2.3.4 Stability analysis of the generalized Lotka-Volterra model

The existence of globally stable equilibria in the generalized Lotka-Volterra

ecosystem has been investigated extensively in literature [68], [69]. Prior to in-

vestigating stability issues, Eq. 4 is expressed in vector form:

dxi/dt = X (b− Ax) , (9)

where x = (x1, ..., xn)
T is an n-dimensional state vector, X = diag (x1, ..., xn) is

an n × n diagonal matrix, b = (b1, ..., bn)
T is an n-dimensional real vector, and

Aij = (aij) is an n× n community matrix.

The n-dimensional Euclidean space is denoted by Rn. Let I be a subset of

N = {1, ..., n} such that x∗
i = 0 ∀i ∈ I, where x∗ = (x∗

1, ..., x
∗
n)

T is a non-negative
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equilibrium point of Eq. 4. If we let J = N − I such that x∗
j > 0 ∀j ∈ J , we

can define Rn
I = {x|x ∈ Rn, xi ≥ 0 for i ∈ I and xj > 0 for j ∈ J}, as the set

corresponding to x∗. Below, two definitions and a theorem related to the concept of

stability are provided:

Definition 1. When A is an n× n real matrix, A ∈ SW implies that there exists

an f n × n positive definite diagonal matrix W such that WA + ATW is positive

definite.

Theorem 1. A real, symmetric matrix A is positive definite if and only if all its

eigenvalues are positive.

Definition 2. A non-negative equilibrium point x∗ of Eq. 4 is called asymptot-

ically stable with respect to the set Rn
I , iff: (a) The equilibrium point x∗ ≥ 0 is

stable with respect to Rn
I , namely, if for every ϵ > 0 there exists δ(ϵ) such that if

|x0 − x∗| < δ(ϵ) and the solution x(t) ∈ Rn
I , then |x(t)− x∗| < ϵ for t ≥ 0, and (b)

every solution converges to x∗ as t → +∞, if x0 ∈ Rn
I .

According to Takeuchi and Adachi [68], if A ∈ SW , then Eq. 9 has a non-negative

and stable (in the sense of Definition 2) equilibrium point for every b ∈ Rn. This

stability concept is being investigated in the proposed model assuming that the n

species have the same characteristics. That means that in terms of Eq. 4, we have

ri = r, Ki = K, βi = β and αij = α for every i, j. Based on these assumptions, the
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matrixes A and b of Eq. 9 are constructed as follows:

A =



βr
K

αr
K

· · · αr
K

αr
K

βr
K

· · · αr
K

...
...

. . .
...

αr
K

αr
K

· · · βr
K


=

r

K



β α · · · α

α β · · · α

...
...

. . .
...

α α · · · β


= AT , b = (r, r, ..., r)T . (10)

Based on Definition 1, if A + AT is positive definite then A ∈ SW which means

that Eq. 9 has a non-negative and stable equilibrium point. As illustrated above,

A + AT = 2A is a symmetric real matrix which can be considered to be positive

definite if and only if all its eigenvalues are positive (by Theorem 1). Using the

characteristic polynomial of the n × n matrix A + AT all its eigenvalues can be

computed which are expressed by: λ1 = β+(n− 1)α, and λi = β−α for i = 2, .., n.

It can be easily observed that all the eigenvalues are positive if β > α and α, β > 0.

Therefore, the proposed system has a non-negative and stable equilibrium point when

inter-specific competition is weaker than intra-specific competition.

Intuitively, the next step is to seek the main attraction point of the n-dimensional

LV system. As demonstrated in [68], Eq. 9 can be transformed to a linear com-

plementarity problem (LCP) (q,M) [70] whose feasible solution can be obtained

using algorithms found in literature like PATH [71]. Hence, the non-negative stable

equilibrium point of the proposed system obtained using the using PATH algorithm

[71] is given by:

x∗
i =

K

α(n− 1) + β
, i = 1, ..., n. (11)
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Eq. 11 reveals that the main attraction point is a coexistence solution. So, when

the condition β > α is satisfied, all species coexist (survive).

The aforementioned analysis is used in Chapter 4 for developing the Lotka-

Volterra-based congestion control approach (LVCC).

2.4 Related Work

2.4.1 Congestion control approaches in WSNs

Early studies in the area of sensor networks had mainly focused on more fun-

damental networking problems, e.g. medium access control (MAC), topology, rout-

ing, and energy efficiency, and had largely ignored network performance assurances.

Lately, with the emergence of mission-critical applications (e.g. health monitoring),

there has been increased interest in performance control mechanisms, so as to avoid

congestion caused by the uncontrolled use of scarce network resources.

Various CC approaches can be found in WSNs literature based on traffic ma-

nipulation (e.g. rate adaptation to network changes [23], [21], [22], [47] multi-path

routing [45], [72], [42]), topology control (e.g. clustering formation [73]), and net-

work resource management (e.g. power control, multiple radio interfaces [46]). The

majority of CC approaches are based on rate control that alleviates congestion by

throttling the injection of traffic in the network. However, rate control attempts to

decrease nodes’ reporting rate during transient or persistent congestion phenomena

and may result in the deterioration of the offered quality of service, perhaps when
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needed the most. In addition, rate control can not be efficiently used during tran-

sient congestion phenomena caused by aperiodic and short term packet bursts (e.g.

in event monitoring applications) due to the slowness of rate-based approaches to

react. Also, approaches that require the sink to regulate the sensors’ sending rates

[23] seem quite unrealistic, especially in large-scale sensor networks or in networks

deployed in an area with obstruction characteristics. Furthermore, clustering for-

mation assumes special roles in the network (e.g. clusterheads), while additional

mechanisms are needed for maintaining and re-assigning roles. Also, areas around

clusterheads may progressively become collision hot spots. Congestion mitigation

based on power control and multiple radio interfaces seems unrealistic in WSNs since

the low-cost nodes incentive is violated. On the other hand, multi-path routing has

potential to effectively and efficiently alleviate congestion without deteriorating the

offered network QoS. CAR [72] dynamically discovers a congestion zone and routes

high priority packets inside the zone while low priority packets are routed outside

the zone. One of the problems with this approach is how to categorize traffic. Biased

Geographical Routing (BGR) [45] alleviates congestion by splitting traffic flows and

performing rate control. Both studies in [45], [72] use location information provided

by the Global Positioning System (GPS) to discover congestion regions. However,

GPS can work only outdoors in the absence of any obstruction, while GPS receivers

are expensive and not suitable in the construction of small cheap sensor nodes. In a

similar approach, TADR [42], a mixed potential field is constructed using depth and

normalized queue length to route packets around the congestion areas and scatter
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the excessive packets along multiple paths consisting of idle and under-loaded nodes.

However, the dynamic conditions of the wireless medium which may cause excessive

packet loss in WSNs are not considered, while the authors evaluate their scheme

assuming a perfect (but practically infeasible) MAC protocol that provides a stable

radio link without causing collisions.

Some of the aforementioned CC schemes [21], [45] are based on traditional

methodologies and protocols known from the Internet, for example, the AIMD rate

control. Due to its ACK-controlled packet injection method, AIMD does not sup-

port loss differentiation in order to distinguish wireless losses from congestion losses.

Thus, it is shown to provide unsatisfactory performance in wireless environments

where high packet loss rates are often attributed to the time-varying conditions of

the wireless channel, e.g. interference, multi-path fading, etc. In addition, AIMD

takes a very long time to converge or recover from a burst of loss something which is

quite usual in event-based wireless sensor networks. The problem of delay is wors-

ened when the ACKs are sent end-to-end between sensor nodes and the sink (as

done in both [21] and [45]).

AIMD policy is not very effective in WSNs because it results in a saw-tooth

rate behavior which may violate the QoS requirements (e.g. fidelity of the reported

events) and it is inefficient. More specifically, the AIMD policy exhibits a linear

growth of the number of packets sent, combined to an exponential reduction when

a congestion occurs. The result is a saw tooth behavior representing the probe for

bandwidth which makes it inappropriate for real time traffic.
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Conventional optimization techniques for CC may also be adopted, but these

rely on complex mathematical models and have proven hard to apply in the context

of autonomous decentralized environments, while the sensitivity of these models

to the dynamic and unpredictable environment is a challenge. Also, centralized

multi-objective optimization is not practical especially in the context of large-scale

autonomous networks.

2.4.2 Swarm intelligence approaches for solving network problems

From the viewpoint of swarm intelligence (SI), a considerable number of models

based on self-propelled particles have been developed to solve a variety of problems

by means of collective motion. The research framework behind the majority of

network-oriented studies involving self-propelled particles was fueled by the ACO

theory proposed by Dorigo et al. [74]. Both theories were successfully involved

in network-oriented studies, especially in the field of ad-hoc and mobile ad-hoc

networks (MANETs). A large number of SI-based routing approaches for MANETs

can be found in [75], while some notable examples are presented below.

Driven by the collective behavior of ants in finding paths from the colony to

food, many researchers [12], [76], and [51], developed ACO-based algorithms to

solve the problem of routing in ad-hoc networks. In ACO, artificial ants build solu-

tions by moving on a graph of nodes and, by mimicking real ants, deposit artificial

pheromone on the links (that form the route traveled by each ant) in such a way

that future artificial ants can build new better solutions. The work of Di Caro et
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al. [12] incorporates congestion awareness in an end-to-end manner (AntHocNet).

According to [77], AntHocNet outperformed the Ad-hoc On-demand Distance Vec-

tor (AODV [78]8 ) routing protocol in terms of delivery ratio, end-to-end delay

and delay variation (jitter). An important observation was that the advantage of

AntHocNet over AODV grew for larger networks, especially in terms of overhead,

suggesting that AntHocNet is more scalable than AODV. Rajagopalan et al. [76]

presented an Ad-hoc Networking with Swarm Intelligence (ANSI) routing protocol

with congestion-aware characteristics. The ANSI protocol was found to outperform

AODV in terms of packet delivery, number of packets sent, end-to-end delay, and

jitter experiencing fewer route errors as compared to AODV. Xiangquan et al. [51]

developed an ACO algorithm to optimize energy, congestion and load balancing

along with providing efficient routing in ad-hoc networks.

Based on the aforementioned results, it seems that nature-inspired approaches

are able to outperform conventional routing algorithms in (mobile) ad-hoc networks.

However, the aforementioned approaches are not well suited for the unique features

and application requirements of WSNs. According to Akyildiz et al. [16] there

are some important differences between ad-hoc and sensor networks. For example,

sensor nodes are limited in power, computational capacities, and memory whereas

nodes involved in ad-hoc networks may be more powerful and less constrained ma-

chines like laptops and PDAs. Also, the number of sensor nodes in a sensor network

can be several orders of magnitude higher than the nodes in an ad-hoc network, and

can often be densely deployed over large areas. Sensor nodes are prone to failures

8AODV [78] is a conventional single-path ad-hoc routing protocol.
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and are mostly statistically deployed. On the other hand, ad-hoc nodes are usually

less densely deployed in small areas.

These differences drive the necessity for novel CC strategies for WSNs, on which

this study focuses. It is worth pointing out that there are not many nature-inspired

studies that have explicitly focused on avoiding or combating congestion in sensor

networks. A notable related approach is the ant-based multi-QoS routing protocol

for sensor networks (AntSensNet) [13]. AntSensNet combines a hierarchical struc-

ture of the network with the principles of ACO-based routing, whilst trying to satisfy

the QoS requirements of different kinds of traffic requested by the applications. By

using clustering, AntSensNet aims to avoid congestion after quickly judging the av-

erage queue length and solving convergence problems, which are typical in ACO.

However, AntSensNet has some important drawbacks (e.g. computation and com-

munication overhead and large number of tunable parameters) that increase pro-

tocol’s complexity and decrease the protocol responsiveness to changes (e.g. node

failures) in the network. These are discussed at the end of the performance eval-

uation section when comparing AntSensNet to Flock-CC. The potential of the

Flock-CC approach emerges from its simplicity (a set of simple rules,

two tunable parameter) and its fast responsiveness to network and traf-

fic changes since only local information are used in the decision-making

process.
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2.4.3 Population biology approaches for congestion control

Previous work on congestion control involving mathematical models of popula-

tion biology is basically applicable to the Internet on the basis of either providing

a new way of thinking and combating congestion [37], [79] or improving the current

TCP congestion control mechanism [80], [81], [82].

Competition theory can serve as a basis for mapping Internet congestion con-

trol. Recent work by Iguchi et al. [79] and Hasegawa and Murata [37] focused on

a new TCP congestion control mechanism (TCP Symbiosis) based on the Lotka-

Volterra competition model, that utilized available bandwidth information obtained

from inline measurement techniques. The aforementioned model which describes

changes in the population of species was applied to the congestion window updat-

ing mechanism of TCP. This application can be done by considering the number

of a single species as window size of a TCP connection, a carrying capacity as a

bottleneck link bandwidth, and competition among species as a bandwidth share

among competitive TCP connections. Each source was in charge of adjusting its

congestion window based on competitive interactions with other flows sharing the

available network bandwidth. This evaluation required each source to be aware of

the data transmission rates of all other competing flows, something which is quite

unrealistic in the current Internet. However, this quantity can be approximated by

each source via subtracting the estimated available network bandwidth from the

physical bandwidth of the bottleneck link. Authors state that the TCP Symbiosis
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approach exhibits remarkable results in terms of stability, convergence speed, fair-

ness and scalability. However, this approach depends heavily on measurement tools

that measure the physical capacity and available bandwidth of end-to-end network

paths. A few measurement tools have been proposed and evaluated in simulation

and over a limited number of Internet paths, but there is still great uncertainty in

the performance of these tools over the Internet at large [83]. Errors and uncer-

tainties that may emerge depend mainly on on hardware and software specifications

(CPU frequency, OS version) and resulting in latency in packet sending operations

[84].

In addition to Lotka-Volterra competition model, the Lotka-Volterra prey-predator

model can be used for controlling congestion. A multidisciplinary conceptual frame-

work providing principles for designing and analyzing bio-inspired Internet conges-

tion control algorithms was proposed by Analoui and Jamali [80]. A bio-inspired

congestion control (BICC) mechanism was designed and implemented in the context

of the proposed framework taking into account that the relations between entities

involved in Internet congestion control mechanisms (i.e., routers, links and hosts)

are similar to population interactions like predator-prey. More specifically, the In-

ternet was viewed as an ecosystem that connects a wide variety of habitats such

as routers, hosts, links, operating systems, etc. Some species such as, congestion

window, packet drop, queue length, and link utilization were considered to live those

habitats. The population size of each species is affected as a result of inter-species

interactions but it should be controlled so as to avoid congestion. Towards this
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direction, the predator-prey behavior was employed to regulate the population size

of each species, thus contributing to the elimination of congestion in the Internet.

BICC is a unified source/AQM (Active Queue Management) approach that ad-

dresses both the source and the AQM algorithms. This approach was extended in

[81] and [82] which attempt to examine how the Lotka-Volterra predator-prey model

can be applied to the dynamics of the Internet while addressing stability, robustness,

scalability, and fairness. In particular, BICC involves two predator species living

in congested routers which can control the population size of a single prey species.

Congestion was quantified by the population sizes of these species which are evalu-

ated at each congested router taking into account the incoming packet rate as well as

the local queue size. In this way, every router infers the level of congestion and uses

a marking probability function to generate explicit congestion notification signals.

Therefore, each source is informed of congestion levels and adjusts its sending rate

accordingly. According to the authors, BICC exhibits fairness, acceptable network

throughput and utilization but results show slow adaptation to traffic demand (long

convergence time).

The approaches discussed above are based on the end-to-end model of the In-

ternet, which is completely different from the hop-by-hop nature of autonomous de-

centralized networks like WSNs. The novelty of the proposed Lotka-Volterra

Congestion Control (LVCC) approach presented in Chapter 4 lies in the

fact that the LV model is applied to WSNs in a hop-by-hop manner.
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2.5 Concluding remarks

This chapter provides an outline on the problem of congestion in WSNs focus-

ing on the different types of congestion as well as on strategies needed for avoiding

or mitigating congestion. In addition, this chapter gives an introduction to swarm

intelligence with emphasis on the basic characteristics of the flocking behavior of

birds, followed by an introduction to the Lotka Volterra competition model with

emphasis on the stability analysis of the model. Finally, the chapter presents related

studies for avoiding and controlling congestion is WSNs based on both conventional

(Internet-like) and nature-inspired strategies and highlights the novelties that differ-

entiate the two approaches proposed (Flock-CC and LVCC), presented in Chapter

3 and Chapter 4 respectively, from the previous work.



Chapter 3

The Flock-based congestion control (Flock-CC)

approach

This section, firstly, presents the concept behind the Flock-CC model, explaining

how the movement of packets is modeled as a flock of birds. Secondly, the elements

of the Flock-CC model are defined on the basis of the characteristics of natural

bird flocks. Thirdly, the elements of the model are composed together to form the

Flock-CC protocol.

3.1 The concept

A WSN is viewed as a virtual ecosystem, where multiple packets are generated

at source nodes and must be directed towards a dedicated sink node. The main

idea of the proposed Flock-CC model is to ‘guide’ packets to form groups or flocks,

and flow towards a global attractor (sink), whilst trying to avoid obstacles such as

74
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congestion regions and dead zones (regions with failing nodes) as illustrated in Fig.

12.

obstacle = region of congestion

         or failing nodes


simple node


����sink node


packets' directions


global attractor

(sink)


Figure 12: Packet flock moving towards sink whilst avoiding ‘obstacles’.

In the Flock-CC model, each packet is analogous to a bird with dynamic position

and direction updates, which ‘flies’ over the network undergoing successive hop-by-

hop transitions over discrete points in the 2D space, defined by the positions of

hosting nodes. The set of sensor nodes comprises the environment where packets

move. The sequence of transitions determines the packet’s (bird’s) trajectory from

its source to the sink. Note that this model differs from Couzin model, which is in

a continuous 3D space.

Conceptually, in order to make moving packets behave like a flock, the basic

characteristics of natural flocks discussed in the previous section are incorporated

in the Flock-CC model. At each hop, a packet interacts (attraction and repulsion

forces) with other packets located on neighboring nodes in the packet’s FoV. Also the

packet experiences a ‘magnetic’ force in the direction of the sink (global attractor).

More specifically, the proposed Flock-CC approach is governed by 4 simple rules.

Each packet is:
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• Rule 1: repelled from neighboring packets located on nodes at close distance

(i.e one hop away from packet) within the packet’s FoV,

• Rule 2: attracted to neighboring packets located on nodes at medium distance

(i.e. two hops away from packet) within the FoV,

• Rule 3: oriented and attracted to the global attractor under the influence of

the environmental magnetic field, and

• Rule 4: experience some perturbation that may help the packets to pick a

random route (i.e. trading exploration versus exploitation).

More detailed discussion on the implementation of these features on the Flock-CC

approach follows next.

3.2 The Flock-CC model elements

The basic elements of the Flock-CC approach are defined in this section: (a)

the repulsion and attraction zones and forces, (b) the artificial magnetic field, (c)

the field of view (FoV), (d) the desirability function, and (e) randomness. The

desirability function synthesizes the first three elements and determines the direction

of movement of each packet, whilst randomness allows for exploration.

It is worth noting here that a basic design objective was to keep the number

of adjustable parameters as small as practical in order to reduce complexity in

optimizing parameter values for different network environments and conditions.
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Consider a network of N autonomous nodes, N > 0, that are able to generate

packets. A finite queue is associated with each node, while the node’s throughput

is constrained by the wireless channel capacity. A packet i and its current hosting

node n ∈ {1, .., N} (i.e. packet i is residing in the queue of node n) are taken as

points of reference in order to define and discuss repulsion and attraction zones, the

magnetic field and the field of view. The position of node n determines the position

of the hosted packet i.

Each node n maintains four one-dimensional tables: (a) an attraction table, sn,

(b) a repulsion table, qn, (c) a transmission table, tn, and (d) an adjacency table, An.

Each of these tables contains different information for a set of neighboring nodes for

which node n has an active wireless link to. An entry snm of the attraction table of

node n contains information about node m. The same applies for all tables. The

contents of each table are discussed later.

All quantities defined herein are regularly sampled at discrete time intervals of

T seconds at each sensor node. Then, the values of these quantities are broadcasted

periodically (every T seconds) to all neighboring nodes (within transmission range),

using a dedicated control packet. These periodic control packets are also used to

update information about the connectivity of neighboring nodes.

Below, the five basic elements of the Flock-CC approach are defined.
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3.2.1 Repulsion and attraction zones and forces

The design of the Flock-CC model was primarily motivated by the neighborhood-

based model of Couzin et al. [11]. As discussed earlier, the Flock-CC model is

applied on a two dimensional topological (discrete) space defined by a graph of

nodes. The edges in the graph indicate the existence of wireless connection between

two nodes. Each packet is expected to move in a hop-by-hop manner, over a set of

nodes along the path to the sink. �R
0


Sink


ZoA

ZoR


n


R
1


Figure 13: Representation of a sensor network. R0 is the transmission range of
node n and defines an area (zone of repulsion) that includes all packets located on
grey-shaded nodes (one hop away). The outer area (zone of attraction) includes all
packets located on black-shaded nodes (two hops away).

As shown in Fig. 13, the zone of repulsion is defined as a circle of radius R0,

the transmission range of node n, around packet i that includes all packets at close

distance. Practically speaking, these packets reside in the queues of the grey-shaded

nodes (practically 1 hop away). On the other hand, the zone of attraction is the

outer zone of Fig. 13 and includes all packets at medium distance from packet i.



79

In practise, these packets reside in the queues of black-shaded nodes two hops away

from node n. The zone of orientation proposed in Couzin model is not defined in

the context of the Flock-CC approach since the notion of velocity matching (with

neighbors in that zone) is not relevant in this problem’s context.

The strength of the repulsive and attractive forces exhibited by packets on nodes

one and two hops away respectively is selected to be proportional to the number of

packets located on these nodes respectively. The number of packets on nodes one

hop away (number of packets in the queue) is obtained directly through broadcasted

control packets. These control packets are seen as a means of transferring knowledge

(propagate information) within the environment (sensor network) that is observable

by a packets’ eyes.

On the other hand, in practise, the number of packets on nodes two hops

away cannot be obtained directly through broadcasted control packets since (black-

shaded) nodes two hops away are outside the transmission range of the current

hosting node n. Thus, this number is locally inferred at node n by measuring the

number of successfully transmitted packets sent from nodes one hop away to nodes

two hops away. These packets are ‘visible’ due to the broadcasting nature of the

wireless channel. Hence, packet i is repelled from packets residing in the queues of

grey-shaded nodes and attracted to packets moving to black-shaded nodes.
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3.2.2 Artificial magnetic field

In order to avoid unnecessary routing loops and to minimize packet losses, pack-

ets should be ‘guided’ to establish flight paths towards the sink. The artificial mag-

netic field is adopted for two reasons: a) to provide orientation and b) attraction of

packets toward the sink.

The magnetic field of the Earth is responsible for guiding migratory birds to fly

polewards or equatorwards as shown in Fig. 14(a). In the same context, the sink

node is seen as an artificial magnetic pole within the sensor network and packets

are expected to ‘fly sinkwards’ under the influence of the artificial magnetic field as

shown in Fig. 14(b).

Orientation to the sink is deduced from the direction of the magnetic field (shorter

paths point to the sink), while attraction to shortest paths to the sink is driven by the

magnetic field strength. The magnetic field strength is higher through the shortest

path to the sink and attenuates through longer paths. Orientation allows packets

to perceive the direction of the sink, otherwise the absence of attraction to shortest

paths towards the sink causes packets to wander around (trapped in loops between

neighboring nodes). This looping behavior deteriorates the quality of service offered

by the congestion control protocol. In addition, it is impossible for a packet to feel

the attraction to shortest paths to the sink without orientating itself toward the

sink.

In literature, there is a number of methods for implementing a magnetic field

(or similarly called gradient field) in order to ‘guide’ packets in the direction of the
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Figure 14: (a) A bird flock moving polewards under the influence of the magnetic
field of the Earth (black arrows). The FoV of the bird placed in the center extends
forward in the direction of the magnetic pole. (b) Packets generated in a sensor
network will move sinkwards under the influence of the artificial magnetic field
(black arrows). The number on each node indicates the hop distance from the sink
(smaller numbers indicate closeness to the sink). The field of view (FoV) of packet i
(on node n) extends forward in the direction of the sink. The ZoR and ZoA around
packet i are redefined as ‘circular’ (in the sense of hop count) zones, except for an
area behind the packet i that is outside the FoV. (c) Repulsion forces exercised on
packet i from packets in the ZoR (heavy-gray-shaded packets). (d) Attraction forces
exercised on packet i from packets in the ZoA (black-shaded packets).
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sink as, for example, [85], [86], and [87], [88]. In these approaches, no routes are

set prior to sending data, only costs are assigned to nodes. All the costs create a

discrete gradient field whose minimum is located at the sink. When several sink

nodes exist, several cost fields are determined. The cost field is either set up by

an a-priori flooding stage (usually initiated from the sink) [86], [85] or on-demand

with a request / response packet exchange [88]. The cost may take different forms

such as hop distance, energy overhead, or even physical distance (in cases where a

coordinate system like GPS exists). The gradient broadcast (GRAB) protocol [85]

builds and maintains a gradient field, where the cost at each node is the minimum

energy overhead to forward a packet from this node to the sink along a path1

. Other routing protocols [86], [87] and [88] involve the hop distance of nodes to

the sink as the cost of each node. The proposed Flock-CC approach uses the hop

distance, which can be easily calculated, as the cost for building the magnetic field.

Orientation of packets to the sink is implemented as follows: The artificial mag-

netic field within the sensor network must point to the sink node. The direction

of the sink is determined on the basis of the hop distance, hj(k), j ∈ {1, .., N},

indicating the number of hops between each node j and the sink at the kth sam-

pling period. Each node evaluates its hop distance by adding one to the smallest

hop distance of neighboring nodes. The sink node initiates the process of evaluating

the hop distance value at each node by broadcasting (in a control packet) its zero

1GRAB protocol assumes that each node can estimate the cost of sending data to nearby
neighbors (e.g., based on the signal-to-noise ratio of neighbors” transmissions).
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hop distance. The hop distance value is gradually propagated (over control packets)

from the sink (pole) to each node into the network (environment where packets live).

It is worth pointing out that the hop distance may change due to network topol-

ogy modifications caused by node failures or displacement or other internal causes.

If node n does not hear control messages from a given neighboring node for a maxi-

mum of Tlost seconds, then the node n assumes that the neighbor either has failed or

gone out-of-range or is very busy. In this case, the unreachable neighbor is deleted

from the adjacency table of node n containing the hop distances of all nodes one

hop away. Similarly, the hop distance value of node n is re-evaluated if the loss of

a neighboring node influences the value. Every change in hop distance values will

be propagated backwards within the network and all affected nodes are expected

to update their hop distance values. A simple hop distance protocol is adopted for

this study. Note that it is anticipated that missing or incorrect hop count informa-

tion will not affect Flock-CC adversely. This together with a detailed study of an

optimized hop distance protocol are beyond the scope of the current study.

The magnetic field is visualized in Fig. 14(b), where the arrows point in the

direction of the magnetic pole. A simpler way to visualize the magnetic field is to

‘connect’ the arrows to form ‘magnetic field lines’. The magnetic field lines pass over

paths of descending hop distance. Packets retrieve environmental information such

as the direction of the artificial magnetic field (i.e. the hop distances of potential

new hosting nodes) from their current hosting node.
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Attraction to shortest paths toward the sink are implemented as follows: Besides

orientation, the artificial magnetic field creates attraction to shortest paths to the

sink. When a packet with orientation to the sink is ready to move, it has to choose

between a number of potential new hosting nodes with different (equal or shorter)

hop distances, taking into account the attraction and repulsion forces, as synthesized

in the desirability function described later. The magnetic field guides packets to

move to nodes closer to the sink where the strength of the field is higher. The

movement of packets through nodes with shorter hop distances (forward movement)

provides faster transitions to the sink and minimization of packet looping. This

behavior is realized by enforcing differentiated attraction to potential new hosting

nodes. In particular, packets perceive higher attraction to nodes closer to the sink

(i.e having shorter hop distance) than to nodes at equal hop distance. A rule-

based strategy for differentiated attraction is proposed for the Flock-CC protocol,

as described in Section 3.3.

3.2.3 Field of view (FoV)

Motivated by the limited visual perception of birds, packet i cannot ‘see’ and

interact with all packets on nodes in its neighborhood, as shown in Figs. 15(a) and

(b). Packet i can perceive only a fraction of packets, i.e. those located in the FoV,

on the observable world of the packet.

In general, the orientation of a bird’s FoV can be set towards any direction,

driving the movement of the bird accordingly. However, the orientation of a bird’s
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Figure 15: (a) Narrow FoV – includes nodes with shorter hop distance to the sink.
(b) Wide FoV – includes nodes with shorter or equal hop distance to the sink. (c)
Complete 360-degree FoV.

FoV can be affected by the presence of magnetic fields. Migratory birds that need

to travel polewards turn the orientation of their head, and thus their FoV, towards

the pole. In the same way, the FoV of packets is influenced by the artificial magnetic

field and extends forward in the direction of the sink node as shown in Fig. 14(b).

The FoV of a packet may span from a few degrees up to 360o. In the proposed

approach, three different FoV apertures were considered as illustrated in Fig. 15.

In the case of narrow FoV, packet i on node n (node in the middle) can ‘see’ only

packets located on nodes with shorter hop distances than node n. In the case of

wide FoV, packet i can ‘see’ packets located on nodes with shorter or equal hop

distances to the sink compared to node n. In the extreme case, the 360-degree FoV

of packet i includes all nodes in the neighborhood of the packet.

Simulations show that the complete 360-degree FoV, Fig. 15(c), allowing packets

to move in any direction, exhibits poor performance [38]. The reason is the absence

of orientation, and thus attraction to the global attractor. This caused high packet
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concentration in the network, especially in the vicinity of source nodes, because

packets become trapped in loops. Eventually, the overwhelming majority of packets

were lost due to collisions in the wireless channel.

A natural way to address the problem of packet loops is to insist on using the

narrow FoV where packets are allowed to move forward only, as shown in Fig. 15(a).

This natural solution is too rigid, as it artificially excludes consideration of other

nodes which are not necessarily on the direct path, but may have higher desirability,

and makes paths towards the sink ‘too narrow’, thus increasing contention and node

loading as well as minimizing the exploration of new paths. Furthermore, if the same

nodes are always considered, then a higher power drain will be observed on these

nodes and this may result in a shorter network lifetime. In addition, a problem

may arise when front nodes either become unreachable (due to failures) or seen

momentarily as unreachable (due to loss of control packets). In this case, packets

reaching a dead end will be dropped.

Thus, the wide FoV of Fig. 15(b) that allows packets to be forwarded even

to nodes that are placed at equal hop distance from the sink is selected in the

proposed Flock-CC protocol. Each node n keeps the hop distances of its neighbors

in its adjacency table, An.

Both the ZoR and the ZoA are redefined to involve the FoV as shown in Fig. 15.

In this case, the ZoR is redefined as a circular zone of radius R0, except for an area

behind the packet i (‘blind’ area) that includes packets on nodes with longer hop

distance than the current hosting node. The ZoR involves packets located in the
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queues of the heavy-gray shaded nodes of Fig. 14(b). Therefore, packet i is repelled

from these packets as illustrated in Fig. 14(c). Each node n keeps the queue sizes

of each node in the ZoR in its repulsion table, qn.

Similarly, the ZoA is the outer circular zone of Fig. 14(b) that includes pack-

ets on nodes at shorter or equal hop distance compared with the current hosting

node (black-shaded nodes) within the FoV. As discussed earlier, since the number of

packets on (black-shaded) nodes two hops away cannot be obtained with one broad-

cast message, each node n records the number of packets successfully transmitted

from each node in the ZoR towards nodes in the ZoA in its attraction table, sn.

In addition, for each sampling period T , each node n records the total number of

all packet transmission attempts (including retransmissions) from each node in the

ZoR towards nodes in the ZoA in its transmission table, s′n. The values of table s′n

are used for calculating the channel loading, as shown in the next section.

3.2.4 Desirability function

The repulsive and attractive forces (exercised by packets one and two hops away

respectively) are synthesized by the decision making process which is invoked by

the hosting node of each packet. The synthesis of repulsive and attractive forces

is captured through a desirability function. The decision making process results in

selecting the most desired next hop node on the basis of avoiding or minimizing

congestion phenomena on next hop nodes. The desirability function is evaluated
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once every sampling period and is used for directing each packet sent within this

period to the next hop node, as discussed below.

An M -dimensional desirability vector,
−→
D(k), is used where M ≤ N , is the

number of potential new hosting nodes at the kth sampling period. The potential

new hosting nodes are the nodes in the transmission range of the current hosting

node n within the FoV. Each element, Dnm(k), of the vector
−→
Dn(k) represents the

desirability for each node m,m ∈ {1, ..,M} measured at node n. The desirability

Dnm(k) of every node m in the FoV is evaluated once every sampling period k (at

the start of this period) and is used for directing each packet sent from its hosting

node within this period to its next hop. The desirability of each node m evaluated

at node n is given by:

Dnm(k) = snormnm (k)− qnormnm (k), (12)

where

snormnm (k) =


snm(k)
s′nm(k)

if s′nm(k) > 0;

ξ otherwise,

(13)

where ξ ∈ [0, 1] is the spreading variable (discussed later), snm(k) is the number of

successfully transmitted packets from node m to nodes two hops away from node n,

s′nm(k) is the total number of all packet transmission attempts at each node m, and

qnormnm (k) =
qnm(k)

Qm

, (14)

where the function qnormnm (k) is the number of packets in the queue of nodem, qnm(k),

divided by the queue capacity of each node m, Qm.
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The function snormnm (k) can be seen as a measure of quality of the wireless channel

loading around node m as perceived from node n. The function snormnm (k) ranges

from 0 to 1 and represents the normalized attraction force exercised on packet i

by packets that moved (successfully transmitted) from each node m to nodes two

hops away from packet i’s current hosting node (i.e these packets are now within

the ZoA). When snm(k) → 1, the channel around node m is not congested and a

large percentage of packets are successfully transmitted (few packet retransmissions

are observed). As snm(k) → 0, the channel is congested and a small percentage of

packets are successfully transmitted, after a large number of retransmissions (i.e.

the contention for this channel is very high).

An idle node m, i.e. with zero total transmission attempts (s′nm(k) = 0) does

not provide any evidence of the wireless channel quality in the vicinity of the

node. Therefore, it cannot be said whether this node is either highly attractive,

i.e. snormnm (k) = 1, or highly repulsive, i.e. snormnm (k) = 0. The spreading variable ξ is

introduced as the normalized attraction force exercised by each node l that is idle

(s′nl(k) = 0). High values of ξ result in packet spreading since packets are attracted

to idle nodes (most probably at the borders of the flock), whereas small ξ values

lead to coherent flock motion (low spreading). These observations as well as further

explorations of ξ values are presented in Chapter 5.

The function qnormnm (k), with 0 ≤ qnormnm (k) ≤ 1, is the percentage of queue occu-

pancy at node m and represents the normalized repulsion force exercised on packet

i by packets residing in the queue of each node m (i.e. these packets are now within
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the ZoR). When qnm(k) → 0, the queue is empty or nearly empty, indicating low

levels of congestion. On the other hand, as qnm(k) → 1, node m is considered

congested due to high queue occupancy.

In the simple case, after evaluating the desirability of each node m, with −1 ≤

Dnm(k) ≤ 1, a packet can be forwarded from node n to node m∗, where the node

m∗ is a node within the FoV with the highest desirability. Even though the above

approach allows for exploitation of existing good paths, it does not allow for explo-

ration. Therefore to this basic approach we add the last flocking behavior charac-

teristic, namely randomness.

3.2.5 Randomness

Randomness (or perturbation) is that part of nature which allows for exploration,

and perhaps identification of better paths. Randomness also addresses the problem

of always transiting to the same (highly desirable) new hosting nodes within a

sampling period (recall that desirabilities are evaluated once every sampling period

k), which can cause high queue occupancy on popular new hosting nodes. The

next section includes a detailed description of how randomness is involved in the

Flock-CC approach during the process of selecting a new hosting node.

3.3 The Flock-CC protocol

All the elements discussed above are composed together to form the Flock-CC

protocol. Every time a packet is about to be sent, the decision making process
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is invoked by the current hosting node to determine the new hosting node. The

decision process employs three stages: (a) selection of direction (forward, sideways,

backwards2 ) using the notion of the FoV and the magnetic fields, (b) sorting of all

neighboring nodes in the selected direction in descending order by their desirability,

and (c) probabilistic, biased (proportional to desirabilities) selection of the new

hosting node.

The position of the sink plays an important role in evaluating the direction of

movement of a packet. Under the influence of the magnetic field, a packet turns

its FoV towards the sink and perceives the attraction of this artificial pole. The

Flock-CC protocol uses a simple rule-based strategy of providing global attraction

to the sink through differentiation of attraction to nodes in the FoV3 . This strategy

chooses the set of potential new hosting nodes among nodes placed in the FoV3 using

the following rules, given in decreasing order of priority:

1. Choose all nodes placed closer (smaller hop distance) to the sink. If there

is at least one node among them with available buffer space then the packet

moves forward.

2. If all nodes closer to the sink either have no available buffer space or are seen

to be unreachable, choose all nodes placed at equal hop distance to the sink.

If there is at least one node among them with available buffer space then the

packet moves sideways.

2When a wide FoV is used, it is impossible for a packet to move backwards i.e. to nodes that
are not observed by a packets’s ‘eye’. However, this restriction can be relaxed under the extremely
rare situation where all front and side nodes are either unreachable or lack buffer space.

3Unless nodes within the the FoV are unavailable, e.g. failing or fully congested nodes.
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3. Otherwise, the packet moves backwards.

The least priority rule allows a packet to move backwards to a node outside of

the FoV in the extremely rare situation where all front and side nodes are either

unreachable or lack buffer space.

The proposed rule-based strategy is quite similar to the rule-based process fol-

lowed in Couzin’s model [11] when determining the desired direction of each indi-

vidual. This process was discussed in Chapter 2.

After choosing the set of potential new hosting nodes, the selected nodes are

sorted in descending order based on their desirabilities. To implement randomness,

the new hosting node is selected using a probabilistic selection. In order to provide

a fair way of selection, the probability of selecting a node can be made proportional

to either the desirability of that node, or the rank of the desirability of that node in

the descending order of desirabilities.

In the Flock-CC approach, randomness is invoked whenever a packet is ready

to choose its new hosting node. Randomness can be implemented on the basis

of selection methods used in genetic algorithms [89], for example, roulette wheel

selection or rank based selection. Selection methods are used for randomly selecting

members from the population of chromosomes with probability proportional to their

fitness.

The behavior of the Flock-CC protocol was tested for both roulette wheel selec-

tion and rank based selection. Results showed that the rank based selection prevailed

over roulette wheel selection. Thus, rank based selection was adopted in the final
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model of the Flock-CC protocol. Rank based selection ranks each individual i based

on its fitness, fi, and a new fitness value, f ′
i , is assigned according to the rank the

individual receives. Individuals in Flock-CC are the potential new hosting nodes,

M , and desirability is seen as the fitness of each potential new hosting node. The

weakest (in terms of desirability) potential new hosting node receives a new fitness

value of 1, the second worst receives a value of 2, etc. and the fittest individual

receives a value of J , where J = M is the number of individuals in the population.

The probability pi of an individual to be selected is equal to the new fitness of the

individual divided by the total new fitness of all the individuals, as follows:

pi =
f ′
i∑J

j=1 f
′
j

. (15)

3.4 Concluding remarks

This chapter described the development of the Flock-CC protocol on the basis of

the 4 rules that govern the flocking behavior. The performance of the proposed pro-

tocol is assessed in Chapter 5 using a number of scenarios with different topologies,

traffic loads and instantaneous network conditions (number of idle/source nodes,

position of source nodes, failing nodes).



Chapter 4

The Lotka-Volterra-based congestion control

(LVCC) approach

4.1 The concept: wireless sensor networks as ecosystems

A WSN is considered to be analogous to an ecosystem. An ecosystem comprises

of multiple species that live together and interact with each other as well as the non-

living parts of their surroundings (i.e. resources) to meet their needs for survival

and coexist. Similarly, a wireless sensor network involves a number of cooperative

nodes. Each node has a buffer in order to store packets, a communication channel

of a certain (dynamic) capacity, and is able to initiate a traffic flow.

Traffic flows can be seen as species that compete with each other for available

network resources (buffer space communication channel capacity) while traversing

a set of intermediate nodes forming a multi-hop path leading to the sink. The

population size of each species corresponds to the rate of each traffic flow. In analogy

with ecosystems, the goal is the coexistence of traffic flows.

94
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The LVCC approach as well as the Flock-CC approach provide congestion con-

trol and avoidance in a decentralized manner. Decentralization is the process of

dispersing decision-making closer to the point of service or action. This is a basic

feature of the two proposed approaches that allows flexibility that facilitates self-

organization. Such flexibility is facilitated by the lack of dependency on central

decision-making. However, it has to be done in a manner that allows some control.

This control arises through the interaction between components.

To design a decentralized and autonomic approach, a network is divided into

smaller neighborhoods called sub-ecosystems. Each sub-ecosystem involves all nodes

that send traffic to a particular one-hop-away node (parent node). The traffic flows

initiated by each node play the role of competing species and the buffer (queue)

capacity of the parent node is considered in this thesis as the limiting resource within

the sub-ecosystem.

Within a virtual ecosystem, participant nodes may perform different roles. In

particular, each node is able to either initiate a traffic flow i.e. is a source node

(SN), or serve as a relay node (RN) to forward packets of multiple flows passing

through it, or perform both roles being a source-relay node (SRN). Source nodes

are mostly located at the edges of a network (e.g. leaf nodes) while relay nodes are

internal nodes (e.g. backbone nodes). The proposed approach provides hop-by-hop

rate adaptation by regulating the traffic flow rate at each node. Each node is in

charge of self-regulating and self-adapting the rate of its traffic flow i.e., the rate

at which it generates or forwards packets. The traffic flows compete for available
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buffer capacity at their one-hop-away receiving node involved in the path leading to

the sink.

SN


RN


buffer x


SN


SN


SN


SN


Resources:

Buffer capacity


ECOSYSTEM


Competing Species:

Traffic flows


SUB-

ECOSYSTEM 1
 (S)RN


buffer y


RESOURCES / SPECIES


SUB-

ECOSYSTEM 2


Traffic flow 1
Traffic flow 2


Traffic flow 3


Traffic
 flo

w 4


Superflow


Figure 16: Traffic flows competition in WSNs.

Each sending node is expected to regulate its traffic flow rate in a way that lim-

iting buffer capacities at all receiving nodes along the network path towards the sink

are able to accommodate all flows. Thus, the sending rate evolution of each flow will

be driven by variations in buffer occupancies of relay nodes along the network path

towards the sink. Due to the decentralized nature of the proposed approach, each

node will regulate its traffic flow rate using locally available information (i.e. from

one-hop away neighbors), thus satisfying the need for low communication overhead.

4.2 Entities of the LVCC approach

This section deals with the roles of the different entities involved in the congestion

avoidance mechanism along the path towards a sink: the source node (SN), the relay
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node (RN) and the source-relay node (SRN). A SRN acts as both source and relay

node, having both functions concurrently operated as described below.

4.2.1 Source nodes (SNs)

Pure source nodes are end-entities which are attached to the rest of the network

through a downstream node e.g. a relay node (RN), or a source-relay node (SRN)

located closer to the sink, as shown in Fig. 17.

SN1


SN2


SN3


SNn


(S)RN

.


.

.


flow_
n


flow_3


flow_2


flow_1

(S)
RN

buffer


SN


SN


SN


SN


SN


SN


SN
i
buffer


downstream


Figure 17: Source nodes competing for a limiting resource at their downstream node.

Each SN is expected to initiate a traffic flow when triggered by a specific event.

The transmission rate evolution of each flow is calculated by Eq. 16 (the solution of

Eq. 4) that gives the number of bytes sent xi by flow i. In order to be able to solve

Eq. 4 for a single node i, it is necessary to be aware of the aggregated number of bytes

sent from all other nodes
∑n

j=1,j ̸=i xj which compete for the same resource. This

quantity is denoted by Ci. In decentralized architectures, the underlying assumption

of Ci-awareness is quite unrealistic. However, each SN can indirectly obtain this



98

information through a small periodic backpressure signal sent from its downstream

SRN/RN (parent node) containing the total number of bytes sent from all parent’s

children, denoted by BS. Each node can evaluate its neighbors’ contribution Ci by

subtracting its own contribution xi from the total contribution BS as expressed by:

Ci =
∑n

j=1,j ̸=i xj = BS − xi. Thus, Eq. 4 becomes:

dxi

dt
= rxi

[
1− β

K
xi −

α

K
Ci

]
, i = 1, ..., n. (16)

Eq. 16 is integrated to obtain the calculated transmission rate of each SN, xi, given

by:

xi(t) =
wxi(0)

βxi(0) + [w − βxi(0)] e
−wr

K
t
, w = K − αCi (17)

The population size of each species i, xi(t), corresponds to the rate of each traffic

flow at time t. In the thesis, the terms flows and species are used interchangeably.

As described in Section 2.3.1, the LV model involves four parameters: r, α, β and

K. Parameter r corresponds to the speed (how quickly) each traffic flow’s rate

increases. Parameter α measures the intensity at which the packets of a given traffic

flow interact with each other, whereas parameter β measures the intensity at which

the packets of different traffic flows interact with each other. Finally, parameter K

is the buffer’s capacity on each node (the shared resource).

In Section 2.3.4, it was found that the n-species LV system has a global non-

negative and asymptotically stable equilibrium point when inter-specific competition

is weaker than intra-specific competition i.e. β > α and α, β > 0. This global
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coexistence solution is given by Eq. 11, reproduced here for easy reference:

x∗
i =

K

α(n− 1) + β
, i = 1, ..., n. (11)

A detailed proof of this solution is given in Section 2.3.4.

Furthermore, in order to avoid buffer overflows, it needs to be ensured that when

a system of n active nodes converges to the coexistence solution, each node i will

be able to send less than or equal to K/n bytes. This is satisfied by Eq. 11 when

α(n − 1) + β ≥ n or β − α ≥ n × (1 − α). If we set α ≥ 1 and require β > α (as

imposed by the equilibrium stability condition), then the aforementioned inequality

is always satisfied. Therefore, to ensure both convergence and no buffer overflows

the following two conditions must be satisfied:

β > α, α > 1 (18)

The calculated transmission rate of each node, xi(t), is initiated by xi(0) and

converges to the stable coexistence solution, x∗
i within time Tconv. The convergence

time, Tconv, can be evaluated by xi(Tconv) = x∗ (on the basis of Eq. 17) and is

found to be proportional to parameter α and inversely proportional to parameters

r. This observation practically means that fast convergence can be achieved using

small values of α or large values of r, but further discussion is given in performance

evaluations.

Each SN evaluates the number of bytes it is able to send using Eq. 17, where a

series of values are generated which correspond to number of bytes sent every period

T . In Eq. 17, when we set the initial value of the transmission rate xi(0) and the
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current time to 0, we can directly obtain the transmission rate xi(t) for any time t.

Iteratively, if the transmission rate at time kT is xi(kT ) then we can calculate the

transmission rate at time (k + 1)T by:

xi((k+1)T ) =
w(kT )xi(kT )

βxi(kT )+ [w(kT )-βxi(kT )] e
-
w(kT )r

K
T
, w(kT ) = K − αCi(kT ) (19)

4.2.2 Relay nodes (RNs)

Pure relay nodes are entities which do not generate any packets, but forward

packets belonging to several flows traversing themselves which compete for their

resources.
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Figure 18: Relay node creates a superflow which competes for downstream node’s

buffer.

The main function of a RN is to combine (or multiplex) all incoming flows into

a superflow and relay it to the dedicated downstream node (SRN or RN) as shown

in Fig. 18. Each RN allocates resources for its active upstream nodes based on a
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slightly modified expression of Eq. 19 as follows:

xRN((k + 1)T ) =

m

[
w(kT )H(kT )

βH(kT ) + [w(kT )− βH(kT )] e−
w(kT )r

K
T

]
,

where H(kT ) = xRN (kT )
m

, w(kT ) = K − αC∗
RN(kT ) and m is the total number of

active upstream nodes which belong to the tree having RN as root. Each RN can

calculate the number of its active upstream nodes, m, by examining the source id

field of each packet traversing itself. C∗
RN(kT ) reflects the total number of bytes sent

(BS) to the downstream node from all its competing children nodes, subtracting

the contribution of a single flow belonging to the superflow, given by:

C∗
RN(kT ) = BS − xRN(kT )

m
. (20)

4.2.3 Source-relay nodes (SRNs)

A source-relay node acts as both source and relay node, having both functions

concurrently operated as described above.

4.3 Concluding remarks

This chapter described the development of the LVCC protocol on the basis of

the Lotka Voltera population model that governs the coexistence of species compet-

ing for limited resources. The performance of the proposed protocol is assessed in

Chapter 5 using realistic simulation scenarios of network operation and conditions in

order to understand how the variations of the model’s parameters influence stability,

sensitivity to parameters, scalability and fairness.



Chapter 5

Performance evaluations

This chapter evaluates the performance of the two proposed nature inspired

approaches. Each approach is evaluated separatively on the basis of parameter

tuning with respect to known networking performance metrics, intrinsic properties

and comparison among other related approaches.

5.1 The Flock-based congestion control approach

This section evaluates the performance of the Flock-CC protocol using a num-

ber of scenarios with different topologies, traffic loads and instantaneous network

conditions (number of idle/source nodes, position of source nodes, failing nodes).

Performance evaluations initially focus on tuning the parameters T and ξ, based

on well known networking performance metrics. It is worth noting that by design

the behavior of the tunable parameters is well understood, and these were kept

at a minimum. Then, the effectiveness of the Flock-CC protocol in mimicking

102
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the bird flocking behavior and its intrinsic properties, in combating congestion was

demonstrated. Finally, the superiority of the protocol against related CC protocols

was shown. The Flock-CC protocol was evaluated on the basis of the performance

measures presented next:

1. Parameter selection: The first step was to experiment with the Flock-CC

parameters: the values of the spreading variable ξ and the sampling period

variable T were selected, based on networking performance metrics as packet

delivery ratio (PDR), end-to-end delay (EED) and energy tax. More details

on these metrics are given below.

2. Demonstration of emerging behavior, self-adaptation, robustness against fail-

ing nodes and scalability : The second step highlights the aforementioned prop-

erties of the Flock-CC protocol using both visual representations and the per-

formance metrics.

3. Comparative evaluation: Finally, the Flock-based protocol was compared against

related (nature-inspired and conventional) congestion control approaches.

Results were collected from simulation studies conducted using the ns-2 network

simulator [14]. The relevant simulation scripts can be found in [38].
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5.1.1 Evaluation setup

5.1.1.1 Topologies

The evaluation topologies consist of a considerable number of nodes which are

deployed either in a 2D lattice, or in a random manner, over an area of 400 × 800

m2. A 300-node lattice topology is shown in Figs. 19(a) and (b). Lattice topologies

of 200 and 400 were also considered. In lattice topologies, neighboring nodes were

placed at the same distance (25 ·
√
2m) from each other, in such a way that each

node has at most 8 neighboring nodes one hop away. In this way, a dense topology

was developed with uniform node placement. The lattice topology was used in the

overwhelming majority of scenarios so as to better understand and interpret the

behavior of the flock-based mechanism. In order to experiment with more realistic

topologies, nodes were also deployed in a random manner, as described later.

All nodes were homogeneous and identical in hardware and software setup. The

radio propagation range of each node was 50m. A two-ray reflection propagation

model was used which accounts for the effect of multipath and fading. The radio

model assumes that the radio can lock onto a sufficiently strong signal in the presence

of interfering signals. The control packet size and the data packet size were set

to 10 and 50 bytes respectively. The CSMA-based IEEE 802.11 MAC protocol,

provided in the ns-2 simulator, with an exponential backoff policy was adopted,

having RTS/CTS packet exchanges disabled for energy saving and low signalling

overhead purposes. Two transmission rates of 2 Mbps and 250 Kbps were used1

1The 802.11 protocol is not considered by many researchers as not necessarily the best MAC
protocol for WSNs (even though it performs well in general wireless ad hoc networks) because of the
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Figure 19: A 300-node evaluation topology with 3 scenarios of operation: (a) Scenar-
ios 1 and 2 with 10 active nodes but different source node placement, (b) Scenario 3
with 10 active nodes and node failures (after 40s). Short description of each scenario
is given below.

. In the former case, the queue size of each node was set to 50 packets, while in

the latter case it was set to 15 packets. During the communication phase, energy

is consumed for both transmitting and receiving data and control packets as well

as for idle phases. The power consumption during the idle phase was 712µW , for

receiving 35.28mW , and for transmitting 31.32mW .

high power consumption and excessively high data rate. However, the IEEE 802.11 MAC protocol
was also adopted by many other early research efforts on WSNs as well as on some commercial
sensor nodes, like Crossbow’s Stargate platform. The apparent unsuitability of IEEE 802.11 MAC
protocol for WSNs has motivated several research efforts to design more energy efficient MAC pro-
tocols. The most popular commercial MAC protocol is the IEEE 802.15.4, which was specifically
designed for short range and low data rate wireless personal area networks (WPAN). Its applica-
bility to WSNs was soon supported by several commercial sensor node products, including MicaZ
and Telos. The majority of the MAC protocols proposed for WSNs (a) rely on the CSMA medium
access scheme and (b) provide transmission of packets at low data rates in order to save energy
[40]. Both features were taken into account in performance evaluations in this thesis. Firstly, the
IEEE 802.11 is a CSMA-based MAC protocol, and secondly, both high and low data rates were
used in the simulation scenarios. It is worth pointing out that the Flock-CC approach does not
depend on the underlying MAC protocol, but uses information available at MAC protocols like
queue sizes, the number of successful transmissions and number of retransmissions, if provided.
In this thesis, Flock-CC was evaluated over a CSMA-based protocol, whereas its applicability on
other medium access schemes as, for example, TDMA is left for future work.
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5.1.1.2 Scenarios

The Flock-CC protocol was evaluated under four distinct congestion scenarios

to better understand the protocol’s behavior and dynamics in responding to the

different congestion conditions (persistent and transient hotspots) that could be

found in sensor networks. Each scenario corresponded to events occurring in different

locations, involving different sets of source nodes and different times of operation.

The first three scenarios were related to the 2D lattice topology, while the fourth

scenario involved random topologies. All scenarios were tested on topologies of 300

nodes (scenarios 1− 3 are illustrated in Fig. 19), while scenario 1 was additionally

tested on topologies of 200 and 400 nodes. All simulation scenarios were run for a

period of 100 seconds.

The first scenario (scenario 1) emulated persistent congestion phenomena and

involved a set of 10 closely placed source nodes shown as black shaded in the middle

bottom part of Fig. 19(a). The same setting was used in the larger topologies. In

many real-world WSNs applications, it is quite common to have source nodes which

are closely placed to each other being activated almost at the same time when an

external event (e.g. a disaster-related event such as fire, earthquake) is detected. In

these cases, persistent hotspots are created in the vicinity of source nodes.

The second scenario (scenario 2) emulated transient congestion phenomena. Ini-

tially, the front set (1) of 5 grey shaded source nodes of Fig. 19(a) (close to the

sink) were sending packets. In this way, a small, transient congestion hotspot (of

heavily loaded queues and wireless channel) was created around and in front of
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source nodes towards the sink. In order to demonstrate the ability of the packets to

manoeuvre around the hotspot, the bottom set (2) of 5 grey shaded source nodes

started sending packets at t = 50s. At t = 70s, the upper set of nodes (1) stopped

sending packets.

The third scenario (scenario 3) emulated an extreme scenario of node failures.

The black shaded source nodes located in the bottom part of the network of Fig. 19

(b) were initially sending packets (as in the first scenario), while bold circled nodes

in the middle of the network failed at t = 40s. The aim was to demonstrate the

ability of the packets to manoeuvre around a dead zone. The shape of the dead zone

(involving failed nodes) was chosen so as to demonstrate the ability of the algorithm

to manoeuvre around areas where packets can get trapped and as such cannot move

forward.

Finally, the fourth scenario (scenario 4) was used to demonstrate the ability of

the Flock-CC protocol to also perform well when the underlying sensor network

infrastructure is random. This scenario involved two randomly generated uniform

topologies with 10 closely placed source nodes and 1 sink node. The sink was

randomly selected from nodes in the network. The two random topologies were: (a)

a sparse topology of 175 nodes where the average node degree2 was 4.72 and (b) a

dense topology of 300 nodes where the average node degree was 8.85. An indicative

figure of the random topology used is shown below, and further details can be found

in [38].

2The node degree is the number of connections the node has to other nodes in the network.
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All scenarios were used for parameter selection and comparative evaluations

among all approaches. Additionally, the second scenario was used to evaluate the

emerging behavior and the self-adaptive behavior of the Flock-CC model. Further-

more, the third scenario was chosen to demonstrate the robustness of the Flock-CC

protocol against failing nodes, even under extremely undesirable situations.

5.1.1.3 Variables

The spreading variable ξ was chosen to range from 0 to 1 to allow experimenting

with zero spreading to wide spreading of the flock. The time between successive

control packets, T (sampling period), was assigned the values 0.5, 1.0, 1.5 and 2.0s

in all approaches. The selection of T to be less than or equal to 2s was guided by

the desire to maintain responsiveness to changes in the network state. It was also

desirable to avoid overwhelming the network with control packets, thus T should

not be very low, hence T ≥ 0.5 was also selected. Tlost was set at 3T .

In all scenarios, three different traffic loads were considered: low, high and ex-

treme. At high MAC transmission rates (2 Mbps), each sender node was allowed to

generate constant bit rate (CBR) traffic of either 25 (low load), or 35 (high load),

or 45 (extreme load) pkts/s when triggered by an event. These three cases were

considered as slightly congested, congested, and heavily congested network condi-

tions, respectively. In each scenario, all nodes were sending at the same rate. The

corresponding traffic rates for the transmission rate of 250 Kbps was 10, 15 and 20

pkts/s.
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5.1.1.4 Related approaches for comparison

From the perspective of network layers, the Flock-CC approach provides multi-

path routing and congestion control capabilities for WSNs. Flock-CC was compared

to five protocols that can be adopted during a congestion crisis period: (a) a conven-

tional congestion-free multi-path routing protocol based on shortest paths (baseline

scenario), (b) a typical congestion-aware routing protocol that routes packets over

multiple paths, choosing each time the least congested next hop node in terms of

queue length (among nodes involved in the shortest paths to the sink), (c) a well

known single-path routing protocol for adhoc networks, AODV [78], (d) an ant-based

algorithm for multi-path reactive and proactive routing in mobile ad-hoc networks

which is based on ideas from Ant Colony Optimization, AntHocNet [12], and (e) an

ant-based multi-QoS routing protocol, AntSensNet [13]. These strategies/protocols

are summarized in Table 1.

Table 1: Congestion control strategies for comparative analysis.

Strategy Congestion detection Routing
scheme

Flock-based Queue loading, Multi-path
Congestion Control (Flock-CC) MAC layer collisions

and retransmissions
No Congestion Control (NCC) None Single-path

shortest paths
Congestion-Aware Queue occupancy Multi-path
Routing (CAwR)

AODV [78] None Single-path
AntHocNet [12] MAC layer activity Multi-path
AntSensNet [13] MAC layer activity Multi-path



110

5.1.1.5 Metrics of performance

Three performance metrics for congestion control approaches were taken into

account: the packet delivery ratio (PDR), the mean end-to-end delay (EED), and

the energy tax. Each performance metric is further discussed below:

• Packet delivery ratio (PDR) is defined as the ratio of the total number of

data packets received at the sink (control packets are disregarded) divided by

the total number of data packets generated by all source nodes (destined to

the sink). The following formula used to calculate PDR at the sink at the end

of each simulation scenario:

PDR =
Pr

Pg

, (21)

where Pr is the number of data packets received at the sink (from all source

nodes) and Pg is the number of data packets generated by all source nodes

throughout the scenario duration.

• Mean End-to-end delay (EED) is defined as the mean time taken for a

data packet to be transferred across the sensor network from the source node

to the sink. If, at any part of the network, a data packet is retransmitted

by the MAC protocol after facing collision, the additional delay is included in

the EED. The end-to-end delay is calculated over all surviving data packets

that reach the sink throughout a simulation scenario. Packets that are lost

due to either buffer drops or wireless channel collisions (after a finite number

of retransmissions) can not be considered. The following formula used to
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calculate EED at the sink at the end of each simulation scenario:

EED =

∑Pr

i=1(T
i
r − T i

s)

Pr

, (22)

where T i
r is the time that each packet i was received at the sink and T i

s is the

time that each packet i was generated at the source node. In scenarios with

high packet losses, where only a small number of packets are delivered at the

sink, the EED metric may not be accurate enough.

• The energy tax metric is defined as the mean energy consumption per node

per delivered data packet, measured in mJoules/delivered packet at the sink.

The energy tax is calculated by the following formula:

Energy Tax =

∑N
i=1 E

i
c

N × Pr

, (23)

where N is the number of nodes within the sensor network, and Ec is the

energy consumed at each node i throughout the simulation scenario.

5.1.2 Parameter selection

This section evaluates the performance of the Flock-CC protocol and provides

parameter selection guidelines. Only topologies of 300 nodes are discussed in this

section. Results regarding larger topologies are presented later. Each scenario, using

different combinations of parameter values, was executed 30 times and the mean

values of the metrics over all scenarios are presented below. In selected figures, the

mean values are supplemented with 95% confidence intervals. When dealing with

non-normal distributions, ‘confidence intervals’ are used as a measure of variability
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instead of using the standard deviation. A 95% confidence interval contains the

middle 95% of the numbers in a list.

The Flock-CC protocol development was investigated in several stages (detailed

results and conclusions can be found in [38]). The notions of the FoV, the magnetic

field and randomness were progressively added to the protocol. Each element con-

tributed a significant improvement in the performance of the Flock-CC protocol. In

the absence of orientation and attraction to the sink (no FoV and magnetic field),

packets were wandering around in the network and got trapped in routing loops.

Eventually, the overwhelming majority of packets were lost due to collisions in the

wireless channel. The introduction of the FoV and the magnetic field caused a steep

rise in PDR of approximately 55% (in scenario 1). Increasingly, the introduction of

perturbation provoked further increase in PDR of up to 10% (scenario 1).

More specifically, perturbation was realized on the basis of two random selection

techniques: roulette wheel selection and rank based selection. Rank based selection

was shown to outperform roulette wheel selection, exhibiting slightly higher PDR

values (1− 3%) across all three scenarios, for almost every value of T and ξ. Thus,

the rank based selection was incorporated in the Flock-CC protocol.

Below, we present the results and discuss the performance of the final model of

the Flock-CC protocol involving all flocking characteristics.
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5.1.2.1 Packet delivery ratio (PDR):

Fig. 20 illustrates the PDR for all three scenarios of Fig. 19 with respect to

parameters T and ξ. The results presented here consider sending nodes generating

traffic at the rate of 35 pkts/s (high traffic load, i.e. the network can be considered

congested). Similar observations apply for low (25pkts/s) and extreme (45 pkts/s)

traffic loads, thus the figures were omitted.
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Figure 20: Packet delivery ratio (PDR), Flock-CC with all flocking characteristics,
all scenarios (high traffic load). The vertical lines indicate 95% confidence intervals.

In scenarios 1, 2 and 3, the highest value of PDR (around 82%, 93% and 78%

respectively) was observed for ξ = {0.5, 0.75}. Significant performance deterioration

was exhibited for low spreading values, ξ = {0, 0.25}. In the first scenario, poorer

performance was also observed for high spreading, ξ = 1, but not at the same scale.
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At low ξ values, weak attraction was exercised by each idle node, even if these nodes

were able to accommodate incoming traffic load. Since idle nodes are usually found

at the borders of the packet flock, low ξ values ‘force’ packet flocks to move in a

coherent formation. In this case, a number of available paths were left unexploited

while other (popular and perhaps, shorter paths to the sink) faced overloading, thus

resulting in low PDR. On the other hand, at very high ξ values (close to 1), each idle

node was exercising strong attraction (causing high packet spreading towards the

border of the flock). In this case, two problems may occur: (a) There is no evidence

of the channel quality in the vicinity of each idle node, thus if the channel is busy a

high number of losses may arise. (b) A large number of packets are attracted to the

borders of the flock (left and right), where the majority of idle nodes reside. At the

same time, these packets are also attracted to the sink due to the inherent attraction

of the magnetic field. Thus, packets at the borders of the flock follow a diagonal

path (towards the sink) and collide with ongoing packets ‘flying’ through the center

of the flock towards the sink, resulting in a lower PDR. The slight problem with

high ξ values was more pronounced in the first scenario, where packet spreading was

apparent on a larger scale.

An interesting observation is that, for scenarios 1 and 2, PDR reached around

82% for T = 1s, while it exhibited slight decrease for T = 1.5s and T = 2s. On

the other hand, for the third scenario (failing nodes), the PDR ranged from 76% to

79% for T = 0.5s for ξ values of 0 to 1, with steep decreasing trends of 10 − 11%

as T approached 2s. For low T values where control packets were broadcasted quite
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frequent, the Flock-CC mechanism was kept updated regarding the network state.

Frequent updates are of prime importance in scenarios with failing nodes. This of

course happens at the cost of higher energy expenditure-overhead, however with a

reduced number of retransmissions expected.

In scenario 2, lighter congestion phenomena occurred compared to scenarios 1

and 3 due to the low number of closely located sending nodes. Traffic load injected

into the network in the two small hotspots of scenario 2 did not overload the network

resources as much as the injected traffic load in the hotspot of scenarios 1 and 3.

5.1.2.2 Packet loss:

In scenario 1 (Fig. 21), the number of collisions dominated the number of buffer

overflows for all values of T and ξ, while the overwhelming majority of packets were

lost within the hotspot area.

Quite often, due to the shared wireless medium, packets collide before reach-

ing the receiver node. Thus, buffers are less often filling up. The coherent packet

movement (through popular nodes in the shortest paths) observed at low ξ values

(close to 0) resulted in quite high number of collisions. This is because packets were

traversing a small, and closely located (correlated), set of paths toward the sink

causing overloading of the limited wireless channel resources. In CSMA-based MAC

protocols, a detection of a collision causes retransmission of the collided packet.

Therefore, the increase of collisions causes in increase in the number of retransmis-

sions.
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Figure 21: Buffer overflows and collisions, scenario 1, high load.

Fig. 22 illustrates the ratio of retransmissions over successful transmissions in

scenario 1 (T = 0.5s, 35 pkts/sec) and reveals the high number of retransmissions

at ξ = 0 and 0.25. An important observation is that the number of retransmis-

sions exceeded the number of successful transmissions for every value of ξ. This is

attributed to the high traffic load injected into the network causing overloading of

wireless channel. At medium ξ values (0.5, 0.75), packets spread over uncorrelated

paths minimizing the number of collisions, and thus retransmissions. The effect of

high packet spreading at ξ = 1 resulted in a slight increase of collisions. This is

due to the fact that packets were allowed to move (parallel to the sink) to nodes at

equal hop distance from the sink, being able to get trapped in loops.
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Figure 22: Ratio of retransmissions over successful transmission, scenario 1, T =
0.5s, high load.

For scenario 1, the lowest total packet loss was observed at ξ = {0.5, 0.75}. As

shown in Fig. 20, these two ξ values consistently achieved the best performance in

terms of PDR. The reason for the efficiency of these two ξ values is found in the

balanced way of packet movement between coherent formation and spreading. The

attraction to idle nodes is strong enough to exploit their resources (buffer space,

channel capacity) without causing overconsumption.

Another observation in scenario 1 is that, the increase of T provoked an increase

in the number of buffer overflows and a reduction in the number of collisions and

retransmissions. The reason is the following: recall that the desirability function

is evaluated once every sampling period T and the calculated desirability values of
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neighboring nodes are used throughout the sampling period. At high T values, the

desirability values are evaluated infrequently. Packets sent within the same sampling

period choose, with high probability, the same set of hosting nodes (those having

high desirability values). Since the sampling period is longer, the set of desirable

(and most preferable) nodes (within each sampling period) becomes overloaded,

facing high queue occupancy. In addition, the preference of packets to the same

new hosting nodes eliminates packet spreading and reduces collisions. On the other

hand, at low T values, packets spread more frequently to different new hosting nodes

eliminating buffer overloading but causing an increase of channel collisions around

the chosen nodes.
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Figure 23: Buffer overflows and collisions, scenario 3, high load (major node failures).
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Fig. 23 shows buffer overflows and collisions in scenario 3 where major node

failures were simulated. In this scenario, it is worth noting that the majority of

packets were lost around failing nodes. As can be seen, buffer overflows followed the

same increasing trends with the increase of T as in scenario 1. On the other hand, in

scenario 3, as the value of T increases the number of collisions increased, as opposed

to scenario 1 where the number of collisions decreased. Also, it can be seen that

there was a steep rise in the number of collisions (as well as in the number of buffer

overflows) as T approached 2s. The reason is that the slow-paced mechanisms of

control packets exchange and desirability evaluation made the flock of data packets

incapable of adapting to the rapidly changing network conditions. For example, the

high number of packets destined to the sink through the dead zone is expected to

cause fast exhaustion of wireless channel (and buffer) capacity around the nodes

one or two hops away from ‘dead’ zone area. This was the case at high T values.

On the other hand, at lower T values, fast-paced exchanges of control packets and

evaluation of desirabilities ‘forced’ the flock of packets to quickly manoeuvre around

the zone of ‘dead’ nodes and let to a significant reduction of packet losses. Based on

Fig. 23, choosing T = 0.5s is definitely better for this metric in the case of failing

nodes.

Overall, scenario 3 exhibited higher number of buffer overflows and lower number

of collisions than scenario 1 for almost all values of T and ξ. This is because in sce-

nario 1 packets were spread in the network throughout the duration of the scenario

causing higher collision rates. On the other hand, in scenario 3, the incidence of



120

node failures led data packets to find alternative paths to the sink by bypassing the

‘dead’ zone as shown in Fig. 31. In this case, the movement of packets through the

new paths to the sink was necessarily very cohesive due to the new topology, which

resulted in this particular example. Thus, packets reaching a diagonal position from

the sink had only one (highly attractive) node in their FoV placed closer to the

sink. The attraction of packets to nodes along the diagonal led to a very narrow

packet movement and thus, high number of buffer overflows and a lower number of

collisions.
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Figure 24: Total number of bytes in data packets sent, data packets received and
control packets sent, in scenarios 1 and 3 for different values of T when ξ = 0.75,
high load.
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Figs. 24(a) and (b) illustrate the total number of bytes in control packets sent

from all 300 nodes in the network throughout the simulation scenario (around 100

sec) over the total number of bytes sent (injected into the network from source

nodes) and received (at the sink) for all values for all values of T (when ξ = 0.75) in

scenarios 1 and 3 respectively, for 35 pkts/sec. Recall that in our scenarios the size

of each control packet was 10 bytes and the size of each data packet was 50 bytes.

It is worth pointing out that the total number of control packet overhead depends

solely on the network configuration (data and control packet sizes, number of nodes,

value of T , simulation duration) and it is independent of the number of active nodes

and of the amount of data packets injected into the network. For example, the

number of control packets transmitted on a network of 300 nodes when T = 0.5s

and the simulation duration is 100s is 60 ∗ 103 packets. This amount of control

packets is needed for network (route) maintenance.

Fig. 24(a) shows that, in scenario 1, the control packet overhead exhibited a

steep decline as T approached to 2. An important observation is that, at the same

time, the number of bytes received at the sink exhibited only a very slight decrease.

Therefore, there was no need for fast updates (and thus frequent control packet

transmissions) as previously discussed for scenario 1. The control packet overhead

is expected to be significant at lower traffic loads and to to become negligible at

higher traffic loads.

Fig. 24(b) confirmed the fact that frequent control packet transmissions are

needed in scenarios involving failing nodes. More specifically, the number of bytes
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received at the sink in scenario 3 exhibited significant reduction (resulting in lower

PDR) as the number of control packets (and bytes) decreased (with the increase of

T ). Therefore, even though the packet control overhead is high at low T values,

frequent control packet transmissions are necessary in order to achieve high PDR.

This observation emphasizes the need for adapting T in accordance to the network

(failure) conditions, which is discussed below. In failure-free scenarios, higher T

values can be considered in order to avoid high control packet overhead.

5.1.2.3 End-to-end delay (EED):

As shown in Fig. 25, from the viewpoint of EED, comparably low delays were

observed for ξ = 0.75, especially in scenarios 1 and 3. In scenario 1, the Flock-CC

protocol achieved the lowest EED (≈ 335ms) for ξ = 0.75 and T = 0.5s. In scenario

3, the selection of T from 0.5s to 2s was fairly insensitive with marginal gains for

optimally tuning T .

As can be seen in all scenarios, but with emphasis in scenarios 1 and 3, the values

of EED for ξ = {0, 0.25} were significantly high compared to other ξ values. High

EED values were observed for both low and high T values. At low T values, frequent

evaluations of desirabilities were performed and thus desirable next hop nodes were

changing at a fast pace. At the same time, due to low ξ values, packets were ‘forced’

to move in coherent packet flock formations, i.e. choosing next hop nodes belonging

to a very small number of closely located paths to the sink. The proximity of these

paths led to very high number of collisions, and thus retransmissions. At high
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Figure 25: End-to-end delay (EED), Flock-CC with all flocking characteristics, all
scenarios (high traffic load). The vertical lines indicate 95% confidence intervals.

T values, desirable next hop nodes were changing at a slow pace. The coherent

movement of packets led to fast consumption of buffering capacities on the small

set of desirable nodes, and progressively to high number of buffer overflows (see

Fig. 23), and thus retransmissions. As a result, increased queueing delays and were

observed. Results for scenario 1 show that at higher ξ values (ξ = 0.5, 0.75, 1), faster

transitions of packets to the sink were observed for low values of T (T = 0.5s). The

reason is that frequent changes in desirable nodes (low T ) are effective when packet

spreading is enabled (medium to high ξ values) and a high number of paths to the

sinks are available. Under these conditions, individuals in the flock are allowed to

exploit the whole space and move on a balanced way over multiple paths to the sink.

And this, in turn, leads to reduced number of buffer overflows and collisions, and

thus fewer retransmissions and lower EED.
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5.1.2.4 Energy tax:

Fig. 26 shows the results concerning the energy tax spent per delivered packet.

The first observation is that the least energy tax was paid in the second scenario,

where packets traveled shorter paths to the sinks on average since the half of active

nodes were located close to the sink. The highest energy tax was paid in scenario

3 (with failing nodes) due to the fact that packets traveled longer paths to the sink

on average in an effort to manoeuvre around the ‘dead’ zone of failing nodes.

Results confirmed the intuitive reasoning (made earlier) that frequent updates at

low T values led to higher energy tax in scenarios with no failing nodes (scenarios 1

and 2). The highest energy tax per delivered packet in the aforementioned scenarios

was spent for T = 0.5s while less energy was consumed for T = 1.0−2.0s. However,

the difference was marginal reaching up to only 1.5µJ per delivered packet. The

changes in energy tax values were fairly insensitive to ξ (besides for ξ = 0), but the

values ξ = {0.25, 0.5, 0.75} exhibited better behavior.

In scenario 3, low T values led to less energy expenditure. This is because

frequent updates at low T values was the key to the fast establishment of alternative

paths around the ‘dead’ zone and to the reduction of wandering around packets.

Taking all the results of this section into consideration, a good compromise value

for ξ is 0.75. The value of T can be set to T = 0.5s since the gain from minimizing

buffer overflows (observed at T = 0.5s) is larger than the gain from minimizing

energy expenditure (observed at T = 2s). Nevertheless, if slight energy gains are

of utmost importance, parameter T can be set to higher values. Alternatively, an
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Figure 26: Energy tax spent per delivered packet, Flock-CC with all flocking char-
acteristics, all scenarios (high traffic load).

adaptive mechanism can be used to dynamically adjust the value of T according to

changes in the network state. A set of simple guidelines for tuning parameter values

is given at the end of this section.

Based on the aforementioned compromise values for ξ and T , the achievable

throughput of each active node per scenario measured at the sink is shown in Fig.

27. More specifically, the number of packets per second received at the sink from

each one of the 10 active nodes is illustrated. As can be seen, in scenario 1, Flock-

CC achieved resource fairness between flows, meaning that all flows (initiated from

active nodes) got roughly the same amount of buffer space and wireless channel

capacity on each node along the paths (following the packets) toward the sink. In

particular, 25 − 30 packets per second on average were received at the sink from

each active node.
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Figure 27: Throughput of each active node measured at the sink when ξ = 0.75 and
T = 0.5s, all scenarios (high traffic load).

In scenario 2, the front set of 5 nodes were initially (from t = 10s to t = 50s)

activated. Almost all 35 pkts/sec were received at the sink during this time period.

When the bottom set of 5 nodes was activated (from t = 50s to t = 70s), around

25 − 30 pkts/sec were ‘fairly’ delivered at the sink from each one of the 10 active

nodes.

Results for scenario 3 are similar to those of scenario 1, except for the time

period between t = 40s and t = 50s. During this time period, the throughput
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of almost all active nodes exhibited a steep decline as a result of node failures at

t = 40s. However, results show that approximately 10s after the catastrophic event

that caused a temporary disruption of ‘established’ paths to the sink, Flock-CC

allowed for throughput recovery of all active nodes to the same levels as before

failures.

5.1.2.5 Low data rate WSNs:

The applicability of the Flock-CC protocol on low data rate WSNs (e.g. 250

Kbps) was also evaluated on the basis of scenario 1 to 3. Low, high and extreme

traffic loads were considered. The results were similar to those obtained with high

data rates of 2 Mbps (see Fig. 20). The most significant difference was that in

low data rate WSNs the overwhelming majority of packet losses were attributed to

collisions. Due to the low transmission rates, buffers were occasionally filling up,

and rarely leading to overflows.

5.1.2.6 Random topologies:

The performance of the Flock-CC protocol was also evaluated on sparsely and

densely deployed random topologies (scenario 4). The results for the dense topology

in terms of PDR and EED are illustrated in Fig. 28.

The traffic load transmitted from each sender was 25 pkts/s (low load). Due to

the high density of nodes (average node degree= 8.85), the PDR was around 10%

lower compared to the grid topology of scenario 1 (node degree= 8). As expected,

the reduction in PDR was expected due to the extremely high number of collisions.
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Figure 28: Packet delivery ratio (PDR) and end to end delay (EED), scenario 4
(random dense topology), 25 pkts/s.

The highest PDR was achieved for ξ = 0.5 and T = 2s, while acceptable levels of

PDR were achieved for ξ = {0.75, 1} and T = 1 − 2s. The same combination of

values led to a low EED. The decrease in the number of collisions as T approached

2 was reflected in the increasing trends of PDR and the decreasing trends of EED.

There was a concurrent, but slight increase in the number of overflows which did

not have a major influence on PDR and EED.

Results for the sparse topology (average node degree= 4.72) are shown in Fig.

29. As can be seen, the PDR was reduced by up to 20% compared to the dense

topology while the EED exhibited increases of up to 0.5s. The poor performance

experienced in the sparse topology was attributed to the limited network resources

that led to the steep increase of buffer overflows. More specifically, in the sparse

topology, buffer overflows increased by almost 10 times regardless of the values of
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Figure 29: Packet delivery ratio (PDR) and end to end delay (EED), scenario 4
(random sparse topology), 25 pkts/s.

T and ξ. This behavior was expected, since the sparse placement of nodes forced

packets to move through a small number of paths to the sink. Therefore, the traffic

load injected into these paths could not be accommodated by the limited buffer

capacity of nodes in these paths. This is of course a design and dimensioning issue,

and for example increasing buffer capacity can improve the performance in terms of

PDR at the expense of longer delays (higher EED).

5.1.2.7 Recommended setting of ξ and T :

The results for dense and sparse topologies suggest that a good compromise value

for parameter ξ should be either 0.5 or 0.75. The latter value seems more preferable

since it was found to be effective and efficient in scenarios with grid topologies with



130

low and high MAC transmission rates. For the rest of this study, the value of ξ is

set to 0.75.

On the other hand, the value of T can be set according to the network char-

acteristics and conditions. More specifically, results showed that in a controlled

environment (e.g. a predefined topology) like a grid topology, for network devices

with characteristics as in the simulations, the value of T can be initially set to 1s

(not too small to avoid high packet overhead and not too high to maintain respon-

siveness to changing traffic conditions) while a reduction to 0.5s is required in the

presence of failures to allow for fast recovery. Furthermore, in random topologies,

a good compromise value for T was found to be 2s for maximizing PDR and mini-

mizing energy consumption at the same time. Therefore, an adaptive mechanisms

for tuning T taking all these into consideration is of prime importance.

An initial attempt towards developing an adaptive mechanism for T was imple-

mented and some first results are presented below. In the simple adaptive mech-

anism, the value of T was initialized to 1s. In the case of a failure, the value of

T was reduced to 0.5s for all nodes one hop away from a failing node. After 2s

with no other node failures sensed, T was reset to 1s for energy saving purposes.

Scenario 3 involving a set of failing nodes was considered when evaluating the adap-

tive mechanism. Results showed that the achieved PDR was quite similar as in

scenarios for T = 0.5s. Even though, the simple adaptive mechanism seems quite

promising, design choices for optimally tuning T for different kind of traffic rates,

network topologies, and network conditions need further study. More specifically,
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there is a need for defining which nodes will get involved in decreasing their T values

(e.g. number of hops from a failure point), for how long, and whether the variation

of T values is to be done on a rule basis or on an equation basis. Therefore, further

study of adaptive techniques is left for future work. For the rest of this study, the

value of T is set to 0.5s.

5.1.3 Emergent behavior of group-level transitions

This section investigates the emergent behavior of the collective motion of packet

flocks through the network using the scenarios 1 − 3. The emergent behavior can

be perceived: (a) directly by the visual representation of flock movements and (b)

indirectly on the basis of the performance evaluation metrics. The visual repre-

sentations of Figs. 30 and 31, using the Flock-CC protocol, depict the sink node

in the upper side of each figure, while active nodes are highlighted by bold circles.

The number of packets visiting each node within a 1-second time slot snapshot is

indicated inside every node. Darker colors indicate higher number of packets.

Evaluation results based on scenario 2 and high traffic load demonstrated the

obstacle avoidance behavior of packet flocks. Fig. 30(a) depicts the bird-like motion

of packets generated by the front set of the five dark grey shaded nodes. In line

with the flocking behavior, packets were spread in the network, but not too much,

choosing a number of paths to the sink. Fig. 30(b) shows that after the activation

of the bottom set of source nodes, the new flock of packets splits apart into two

separate groups in order to avoid colliding with packets generated from the front
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Front set of nodes sending
 Both sets of nodes sending
 Back set of nodes sending


a
 b
 c


Figure 30: Emergent behavior: Visual representation of moving packets in scenario
2 (high load). The number of packets visiting each node within a 1-second time slot
snapshot is indicated inside every node. Darker colors indicate higher number of
packets.

set of source nodes. The direction of motion of the two sub-flocks is highlighted by

transparent arrows. Furthermore, when the front set of nodes stopped transmitting,

the two sub-flocks rejoined to a single, more coherent flock moving over the area

that used to be a congestion region Fig. 30(c).

Fig. 31 shows the emergent behavior of moving packets before and after node

failures in scenario 3. The emerging reorganization of moving packets after node

failures is shown in Fig. 31(b), where the single flock of packets splits into two

smaller compact groups, both of which ‘fly’ around the ‘dead’ zone. For visualiza-

tion purposes, an extension to the third scenario was made. At some point after

failure (t = 70s), the center failed node became alive, thus creating a potential new

path down the middle. The adaptive motion of packets through three alternative

paths to the sink is shown in Fig. 31(c). After the reactivation of the node in
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Figure 31: Emergent behavior: Visual representation of moving packets in the pres-
ence of 15 failing nodes in scenario 3 (high load): (a) before nodes fail, (b) after
nodes fail, and (c) one node in the middle gets reactivated. The number of packets
visiting each node within a 1-second time slot snapshot is indicated inside every
node. Darker colors indicate higher number of packets.

the middle, the magnetic field lines passing through the ‘hole’ helped packets per-

ceive the newly created shortest path leading to the sink. Network resources inside

the ‘horse-shoe’ area and close to the ‘hole’ were incapable of accommodating the

whole generated traffic load. In the case of a routing protocol forwarding pack-

ets on shortest paths, congestive phenomena would be expected to arise inside the

‘horse-shoe’ area towards the ‘hole’. However, under the Flock-CC protocol, packets

moving through the ‘horse-shoe’ area exhibited both repulsive as well as attractive

forces, readjusting the flows both through the ‘horse-shoe’, as well as around it, in

an adaptive dynamic fashion.

Fig. 32 depicts the obstacle avoidance behavior of packet flocks as different sets

of nodes were progressively turned off. This scenario demonstrates the ability of the

Flock-CC approach to find alternative paths to the sink at even more catastrophic

conditions than in scenario 3. In particular, a similar ‘horse-shoe’ dead zone to
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Figure 32: Emergent behavior: Visual representation of moving packets in the pres-
ence of 29 failing nodes (high load): (a) before node failures, (b)-(h) after each set
of 4 failing nodes. The number of packets visiting each node within a 1-second time
slot snapshot is indicated inside every node. Darker colors indicate higher number
of packets.
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scenario 3 was used. However, in this scenario 29 nodes were selected to gradually

fail, whereas in scenario 3 shown in Fig. 31 15 nodes failed at once. In the current

scenario, the first set of 5 nodes failed at t = 40s, and ever since then 6 sets consisting

of 4 nodes each (2 nodes at each side) were failing gradually every 5 seconds until

t = 70s. The throughput of the node located at the lower left-hand side of Fig. 32

is shown in Fig. 33, while the throughput of all active nodes in the scenario under

study is shown Fig. 34.
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Figure 33: Throughput of the node located at the lower left-hand side of Fig. 32
measured at the sink when ξ = 0.75 and T = 0.5s, scenario 3 with additional failing
nodes (high traffic load).

It can be seen that there was no steep decline in throughput as in scenario 3 (see

Fig. 27) where the loss of nodes was sudden. However, as shown in Fig. 33, there

was a decrease in throughput right after t = 70. At that moment, the final set of
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nodes failed as shown in Fig. 32(h). The loss of the last set of nodes was crucial

since the access of packets to the sink became quite limited (only one available path

at each side left). Also, even if the throughput of active nodes in the scenario under

study was fluctuating more severely than in scenario 1 (without node failures) the

average number of packets received at the sink per second for both scenarios were

quite similar.
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Figure 34: Throughput of each active node measured at the sink when ξ = 0.75 and
T = 0.5s, scenario 3 with additional failing nodes (high traffic load).

Based on the outcomes of both Figs. 27 and 34, the Flock-CC approach (with

ξ = 0.75 and T = 0.5s) can achieve reasonable (according to network resources)and

similar throughput levels across failure-free and failure-prone environments. In the
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presence of a sudden, catastrophic event (as in scenario 3), a small amount of time

is needed for the Flock-CC approach to re-establish a new ‘flight’ paths to the sink

and recover active nodes throughput to the same levels as before failures.

This section focused on the ability of moving packets to mimic the obstacle

avoidance behavior of bird flocks. Visual representations demonstrated the self-

adaptiveness of the proposed approach to changing traffic (Fig. 30) and network

conditions (Fig. 31). In particular, it was shown that packets were dynamically

moving apart to avoid queue and channel loading phenomena or node failures (thus

causing traffic spreading among available paths to the sink) and moving back to-

gether once the congested or faulty situations elapsed. As a side effect, the network

energy expenditure was ‘fairly’ shared among nodes along these paths, resulting in

increased network lifetime. If packets were routed via a single path, or were spread

among multiple paths in an unbalanced manner, some of these paths could progres-

sively become over-utilized, causing an unbalanced network energy expenditure, and

possibly increased contention.

Fig. 35 visualizes the packet movement in scenario 3 (at high traffic load) when

one or more of the flocking behavioral rules were removed from the full Flock-CC

model. The packet movement under the full Flock-CC model is also visualized Fig.

35(a)-(c) for comparative purposes. The objective here is to emphasize the need

of these simple rules and demonstrate that the emerging behavior is achieved by

the set of all the behavioral rules. The first experiment, Fig. 35(d)-(f), excludes

only randomization (rule 4). The second experiment, Fig. 35(g)-(i), excludes only
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Figure 35: Lack of emergent behavior: The effect of flocking characteristics on
packet flocks movement in scenario 3 (high load) when there is: (a)-(c) full Flock-
CC model, (d)-(f) no randomness (rule 4), (g)-(i) no local interactions (rules 1 and
2).
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local interactions i.e. repulsion and attraction forces (rules 1 and 2). The third

experiment excludes both randomization and local interactions. Note that visual

representations concerning the third experiment were omitted since they were al-

most identical to the second experiment. Figs. 35(d) and (g) illustrate the packet

movement before node failures. The feature of exploration, which emerges from the

randomized selection of new hosting nodes, allows for traffic distribution through

alternative paths to the sink. This feature was apparent in Fig. 35(a), where the

full Flock-CC model involving all flocking characteristics was used. On the other

hand, as shown in Fig. 35(d), the exclusion of randomization eliminated packet

spreading. The problem was worsened by removing only local interactions as il-

lustrated in Fig. 35(g). Local interactions form the flock and also allow packets

‘exploit’ previously idle nodes (using attraction forces) and avoid congested nodes

(using repulsive forces). When these forces were omitted, packet paths became too

coherent, thus causing deterioration of PDR and EED. The effects on performance

metrics is discussed below.

Figs. 35(e), (f) and (h), (i) illustrate the packet movement after node failures

in scenarios with no randomization, or local interactions respectively. In scenario

with no randomization, packets found the alternative path to the sink faster than

the scenario with no local interactions. As can be seen in Fig. 35(e), 7 sec. after

node failures, a few packets found the way to move at the left hand side of the ‘dead

zone’. This happens due to the higher tendency of packets to spread as a result of

the attraction and repulsion forces. As shown in 35(b), in the full Flock-CC model,
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the reaction to failures was more effective since 7 sec. after node failures the packets

found both alternative paths to the sink.
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Figure 36: Emergent behavior: The effect of flocking characteristics on packet de-
livery ratio (PDR).

The emergent behavior was also perceived through performance evaluation met-

rics. Fig. 36 compares the full Flock-CC model involving all flocking characteristics

against the three subvariants of the Flock-CC model described above.

Fig. 36 shows that the full Flock-CC model exhibited the highest PDR, especially

for the scenarios 1 and 3. The exclusion of randomization from the Flock-CC model

led to the deterioration of PDR. In scenario 1, the reduction was ranging from

9% for T = 0.5s to 17% for T = 2s, whereas in scenario 3 the reduction was

from 5% to 11%. In scenario 2, where light congestion phenomena occurred, there

was no significant deterioration of quality in the absence of randomization. Traffic

distribution through perturbation was highly effective especially in scenarios with
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large hotspot areas (scenarios 1 and 3). Thus, the gain (low buffer overflows and

collisions) from path exploration (rule 4), emerging from the randomized selection

of new hosting nodes, is significant.

Further PDR deterioration occurred by removing only local interactions. For

scenario 1, the reduction was around 15%, for scenario 2 the reduction was from

3% to 5% and for scenario 3 the reduction was from 8% to 10%. Clearly, the gain

from local interactions among packets is even higher than what is achieved with

randomization. In particular, a steep decrease in the numbers of buffer overflows

and collisions emerges due to the social activity between neighboring packets (rules

1 and 2).

As expected, the exclusion of both randomization and local interactions led to

further deterioration of the PDR. Furthermore, the exclusion of the magnetic field

(rule 3) and the FoV had devastating effects on PDR. Results are omitted due to

the extremely low values of PDR, which even fell to 1%−2% (scenario 1, high load).

Results concerning EED evaluations exhibited similar behavior to PDR as shown

in Fig. 37.

5.1.4 Robustness in failure prone environments

Sensor nodes are prone to failures, mainly due to fabrication process problems,

environmental factors (disasters), enemy attacks, and battery power depletion. The

proposed approach exhibits robustness against node failures due to the inherent

tendency of individuals to follow other flockmates that manoeuvre to avoid obstacles
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Figure 37: Emergent behavior: The effect of flocking characteristics on end-to-end
delay (EED).

such as failing nodes. The third scenario was used to demonstrate the robust nature

of the flock-based approach.

Fig. 31 shows network snapshots before and after node failures. It is apparent

that the Flock-CC approach displayed outstanding flocking behavior in the presence

of numerous node failures (selected in a horse-shoe orientation, which after failures

traps packets), and exemplified all of the characteristics of a bird flock in terms of

obstacle avoidance and manoeuvring around the zone of dead nodes, dynamically

reforming even in the case of reactivation of nodes.

5.1.5 Scalability

The Flock-CC protocol scalability refers to the ability of the protocol to support

WSNs expansion to include more nodes that might be anticipated during the initial
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network design stage. This section presents the results obtained when testing Flock-

CC on different sizes of networks consisting of 200, 300 and 400 nodes. In each case,

a grid topology was used, having a set of 10 source nodes closely placed in the middle

bottom part of the network.
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Figure 38: Scalability: The effect of network size in packet delivery ratio (PDR)
and end-to-end delay (EED).

As can be seen in Fig. 38, there was a slight rise of PDR values with the

increase of network size. The Flock-CC protocol is shown to perform better in large

scale networks compared to small scale networks (since diversity increases). As the

number of nodes in a network scales up, the amount of available resources increases

and packets are able to spread widely through the network, thus minimizing packet

losses, primarily due to buffer overflows. On the other hand, in small scale networks

packets move in more restrictive coherent formations that increase the likelihood of

buffer overflows due to the limited number of paths to the sink. Fig. 38 illustrates
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the effect of network size on EED. As the network size increases (spanning same

geographical area), the time needed for packets to reach the sink shortens (i.e. lower

EED). This is because the increase of network resources, and as a result the increase

of alternative paths to the sink, reduces the buffer occupancy (and buffer overflows)

at each node. Therefore, packets face lower queueing delays and travel from source

nodes to the sink at a faster pace. Finally, as expected, EED delay increases with

the increase in traffic rates due to the rise in buffer occupancy at each node.

5.1.6 Comparative studies

The proposed Flock-CC protocol was quantitatively compared against NCC,

CAwR and AODV [78] protocols, as well qualitatively compared against AntHocNet

[12] and AntSensNet [13]. It is worth pointing out that the comparative evaluation

does not include issues such as robustness and scalability. However, due to its nature

Flock-CC can be expected to outperform (by far) these schemes. The characteristics

of each protocol are summarized in Table 1.

Results of Figs. 39 (a)-(f) show that Flock-CC, the proposed flock-based ap-

proach, clearly outperformed NCC (no congestion control) and CAwR (congestion-

aware routing) protocols in terms of both PDR and EED, for all traffic loads and

scenarios. In addition, as shown in Figs. 39 (g)-(i), Flock-CC consumed less energy

per delivered packet in low traffic rates (25 pkts/s) for all scenarios and slightly in-

creased energy in higher loads. The results for the AODV protocol were omitted due

to the very low performance of the protocol compared to the other protocols shown
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Figure 39: Comparative experiments in scenarios 1 − 3 for T = 0.5s. The perfor-
mance of AODV was considerably poorer, thus related results were omitted from
this figure.
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in Fig. 39. Note that AODV suffers from two limiting factors: (a) it is an end-to-

end routing protocol that routes packets from a given source to a given destination

through the shortest path connecting each other; (b) it is a reactive routing proto-

col, meaning that the path needs to be established from source on demand (when

source has packets to transmit) using a series of control messages. These control

messages are broadcasted in all directions, which is useless when they are sent in

the opposite direction of the destination, causing high bandwidth consumption.

From the perspective of PDR, Figs. 39 (a)-(c) show that the Flock-CC approach

delivered around 15%, 23% and 19% more packets for scenario 1 than the NCC

protocol under low, high and extreme traffic loads respectively. The difference in

PDR between scenarios 2 and 3 was smaller. Similarly, in scenario 1, the Flock-CC

approach achieved 2% to 8% higher PDR (better performance in low loads with

decreasing trends in extreme loads) compared to the CAwR protocol. Differences

of 2% to 4% in PDR between scenarios 2 and 3 were observed.

Based on the outcomes of the comparative study, it can be argued that the con-

trolled traffic spreading that emerged from the flocking behavior of packets allowed

packets to exploit available resources on nodes involved in multiple paths to the

sink, resulting in higher performance. The NCC and CAwR protocols did not allow

for packet spreading among all available paths, resulting in over-utilization of some

(popular) paths. Under the NCC protocol, packets were solely sent over the shortest

path(s), while the CAwR protocol allowed for packet spreading after the appearance

of buffer overflows. This behavior led to a high number of packet losses due to buffer
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overflows. Further results showed that the Flock-CC approach exhibited extremely

low buffer overflows compared to both protocols due to the traffic spreading ability

of the bird flocking behavior.

In addition, Figs. 39 (d)-(f) show that the Flock-CC approach exhibited the

lowest EED among the other protocols for every transmission rate and scenario,

because traffic spreading prevented augmented buffer occupancies that contribute

to larger queueing delays. As far as energy consumption is concerned, Figs. 39

(g)-(i) show that the Flock-CC protocol spent less energy per delivered packet in

low loads compared to NCC and CAwR.

Flock-CC was also qualitatively compared against AntHocNet and AntSensNet.

Due to the high degree of complexity of both AntHocNet and AntSensNet, quantita-

tive comparative scenarios are left for future work. Below, a detailed discussion into

the insights of these 2 protocols is given, revealing the difficulties of implementing

accurately these approaches.

According to the researchers, AntHocNet showed better performance compared

with AODV in terms of data delivery ratio and end-to-end delay [12]. Also, simula-

tion results show that the performance of AntSensNet outperforms AODV in terms

of delivery ratio, end-to-end delay and routing overhead [13].

Both AntHocNet and AntSenseNet are quite complicated protocols involving

a large number of parameters and functions (see Table 2 and Table 3). These

parameters have to be tuned for a variety of network and traffic conditions since they
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can be sensitive to the environment. On the other hand, the Flock-CC approach is

quite simple involving only two parameter and one equation (desirability function).

Both protocols are able to find routes to a possible destination in a proactive3

and reactive4 manner using two kinds of control packets (forward and backward

ants). Re active forward ants are sent by the source node to find multiple paths

towards the destination node. Backward ants are used to actually setup the route.

While the data session is open, paths are monitored, maintained and improved

proactively using different agents, called proactive forward ants. The protocols

react to link failures with either a local route repair or by warning preceding nodes

on the paths.

The overhead generated by the ants (i.e. the control packets moving back and

forward into the network) is quite high for both AntHocNet and AntSensNet. Dur-

ing the route discovery process, several ants leave their node source, aiming for their

neighbors, each one with the task of finding a route, meaning that sensor nodes must

communicate with one another and the routing table of each node must contain the

identification of all sensor nodes in the neighborhood as well as their corresponding

levels of pheromone left on the trail. As the number of nodes grows, the number of

agents required to establish the routing infrastructure may explode [90]. The high

packet overhead causes scalability problems in AntHocNet and the performance of

3In proactive routing, while a data session is in progress, paths are probed, maintained, and
improved proactively.

4In reactive routing, routes are set up when needed, not before. Once routes are set up, data
packets are sent stochastically over the different paths using a pheromone table placed in each
router.
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the protocol degrades as the number of nodes in the MANET increases. AntSen-

sNet overcomes the overhead explosion and reaches scalability using a hierarchical

routing approach involving clusters. However, clustering formation assumes special

roles in the network (e.g. clusterheads), while additional mechanisms are needed for

maintaining and re-assigning roles. Also, areas around clusterheads may progres-

sively become collision hot spots and deteriorate congestion. In Flock-CC protocol,

the overhead is lighter since each node broadcasts periodically a control packet only.

Also, the Flock-CC protocol was shown to be scalable with the increase of sensor

nodes without involving any added complexity like clustering.

In ant-based approaches, the problem of overhead is worsened since reactive for-

ward ants (packets used for exploration) store the full array of nodes that they have

visited on their way to the destination. In this way, a large amount of information is

progressively added to these packets, thus increasing the probability of collision at

considerably high levels. Also, the amount of energy needed to transmit or receive

a packet increases. Finally, the effect of packet loss on robustness is expected to be

non-negligible. On the other hand, in Flock-CC, the size of a control packet remains

always small and constant and each control packet is transmitted over only one hop.

Furthermore, both AntHocNet and AntSensNet necessitate large memory space

to store all information used by the protocol. Indicatively, AntSensNet involves

four pheromones for each traffic class. Every node x has to keep in its pheromone

table the four pheromone values for each traffic class that passes through each link

connecting node x and its neighboring nodes. Similarly, in AntHocNet, each node
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i maintains one pheromone table Ti which is a two-dimensional table. An entry T d
ij

of this matrix contains information about the route from node i to destination d

over neighbor j. This includes a regular pheromone value τ dij, a virtual pheromone

value ωd
ij, and an average number of hops hd

ij. The regular pheromone value τ dij is

an estimate of the goodness of the route from i to d over j. The virtual pheromone

value ωd
ij forms an alternative estimate of the goodness of the route from i to d over

j. Apart from a pheromone table, each node also maintains a neighbor table Ni, a

one-dimensional vector, in which node i keeps track of its neighbors. Only highly

capable sensor nodes with extended memory capacities are able to store this mass

of information. On the other hand, in Flock-CC, each node employs four small uni-

dimensional tables that contain information about neighboring nodes only. The size

of each table is equal to the number of nodes in the FoV. Table 2 and Table 3 sum-

marize the functions and parameters employed in each of the aforementioned three

approaches. The simplicity of Flock-CC is highlighted by the quite small number

of functions and parameters employed in the protocol compared to AntHocNet and

AntSensNet. Both AntHocNect and especially AntSensNet involve 2 and 5 times

more functions and parameters than Flock-CC respectively.

In addition, AntSensNet requires modifications in the queueing policies of the

underlying MAC protocol in order to accept multi-class and multi-priority traffic.

On the other hand, AntHocNet does not rely on information that are available

by the MAC layer protocols. AntHocNet collects gathers, maintains and updates

information about paths (quality of wireless links) and destinations that are involved
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in communication sessions using dedicated control packets (forward and backward

ants). As mentioned before, the cost of complexity and overhead is high. Flock-

CC needs only local information that can be obtained by the MAC layer protocol of

each node. Flock-CC cooperates well with a large number of MAC protocols without

necessitating important modifications in the MAC layer. Flock-CC needs to obtain

link quality measurements and queue occupancy from the underlying MAC layer

protocol. More specifically, Flock-CC needs three values from the underlying MAC

protocol: (a) the number of packets in the queue at the end of each sampling period,

(b) the number of packets successfully transmitted within each sampling period and

(c) the number of total transmission attempts within each sampling period. These

information is available at any MAC layer protocol. The overwhelming majority of

MAC protocol implementations do not make these information available to higher

layers. Thus, dedicated functions are needed to be implemented in the MAC layer.

It is worth noting that the IEEE 802.11k group (Radio Resource Measurement) is

currently developing a standard which is intended to improve the provision of data

from the physical and medium access layers by defining a series of measurement

requests and reports that can be used in the upper layers to carry different radio

resource management mechanisms. The current draft version is 9.0 [91].

All the aforementioned issues make the implementation of both AntHocNet and

AntSensNet quite complicated, difficult and time-consuming process.

The following table summarizes the differences among the three nature-inspired

protocols Flock-CC, AntHocNet [12] and AntSensNet [13]:
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5.2 The Lotka Volterra based congestion control approach

This section evaluates the performance of the LVCC model and discusses the

effectiveness of the model in preventing congestion by mimicking the species compe-

tition in nature. More specifically, control system type simulations (through Matlab

[92]) and realistic network simulations (using NS2 network simulator [14]) were con-

ducted to show the basic features of the proposed bio-inspired mechanism such

as graceful performance degradation, self-adaptiveness, scalability and fairness. In

addition, evaluation studies investigate how parameters affect the performance of

the proposed mechanism in terms of stability and convergence and provide effective

parameter setting on the basis of congestion-oriented metrics.

5.2.1 Analytical results: The basis

Based on analytical results of Chapter 4 about α and β, the calculated rates of

all flows converge to a global and asymptotically stable solution when β > α, and

α > 1 for avoiding buffer overflows. Note that there is no upper limitation on β but

as it becomes larger, the steady state traffic rate (Eq. 11) decreases. In this case,

each active node will be limited to transmit data at a lower rate leading to lower

quality of the received streams at the sink. As far as r is concerned, the system

of Eq. 4 has a stable equilibrium point for any value of r > 0 [6], [68]. An upper

bound for r is not analytically known, thus will be experimentally explored. The

mathematical analysis of the proposed model gives a general understanding of the

system’s behavior on the basis of stability as function of the parameters α and β.
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However, the complexity of WSNs necessitates simulation evaluation using plausible

scenarios that cannot be formally tested. The analytical study serves as the basis

for the simulations.

5.2.2 Simulation studies: The step further

In order to supplement the analytical results, some simulation experiments were

conducted both in Matlab [92] (theoretical model analysis scenarios) and in NS2

[14] (realistic network scenarios).

Topology: A wireless sensor network consisting of 25 wireless nodes was con-

sidered having nodes being deployed in a cluster-based topology (Fig. 40). The

proposed approach can be efficiently and effectively used on top of routing or MAC

protocols that create small depth (< 4) cluster/treebased logical topologies over any

physical topology. However, a detailed study of such protocols is beyond the scope

of this study. In this study, a dedicated routing protocol that creates the underlined

topology was assumed. This type of topology was used so as to better understand

and evaluate the behavior of the LV-based mechanism. The grey-shaded area repre-

sents a collision domain. For example, the nodes of cluster 1 (nodes 5, 6, 7, 8, and

9) will perceive each other’s transmissions. Also nodes 1, 2, 3, and 4 can reach the

sink.

Theoretical model analysis using control system type simulations: The validity

of analytical results in complex scenarios that could not be formally tested was

further investigated in Matlab. It was assumed that nodes 5, 6, 10, 14, 16 and 20
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Figure 40: Evaluation cluster-based topology of 25 nodes (all links are wireless).

were activated at 1T , 150T , 300T , 450T , 600T and 900T respectively. Node 14 was

deactivated at 750T . Each node buffer size was set to K = 35 KB.

Realistic network simulations: In addition, the proposed mechanism was eval-

uated in a realistic static and failure-free network environment, using a series of

representative network operation scenarios under NS2 networking simulator. The

two-ray ground radio propagation model was used in all experiments. The buffer

capacity of each node was set to 35 KB. The time period T between successive eval-

uations of the calculated rate of each SN, as well as the time between backpressure

control packets was set to 1 s. The selection of 1 s is guided by the desire to main-

tain responsiveness to changes in the network state and to avoid overwhelming the

network with control packets. The CSMA-based IEEE 802.11 MAC protocol with

1 Mbps transmission rate and an exponential backoff policy was adopted. Table 4

summarizes all scenarios evaluated in NS2. In each scenario, different sets of nodes

were activated.
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Table 4: Description of scenarios in NS2

Scenario No. of active nodes Active nodes

1 3 5, 6, 10
2 5 5, 6, 10, 13, 14
3 7 5, 6, 10, 12, 13, 14, 21
4 10 5, 6, 10, 11, 12, 13, 14, 18, 21, 24

Based on the LV competition model, each node is able to calculate its transmis-

sion rate i.e., the number of bytes it can send per time unit. In realistic scenarios, it

was assumed that each node will transmit in one of 5 different levels namely, 1, 2, 4, 6,

and 8 Kbytes per T = 1 s, starting from 1 Kbytes/T (i.e. 8 Kbps). Each node can

increase its flow (or stream) rate to an upper level rate only when the calculated

transmission rate exceeds the specific upper level rate. The calculated transmission

rate (in bytes/T ) is given by Eq. 19, reproduced here for easy reference:

xi((k+1)T ) =
w(kT )xi(kT )

βxi(kT )+ [w(kT )-βxi(kT )] e
-
w(kT )r

K
T
, w(kT ) = K − αCi(kT ). (19)

For example, if xi = 1.5 Kbytes/T , node i transmits at 1 Kbyte/T . As xi ranges

from 2 to less than 4 Kbytes/T , node i transmits at 2 Kbytes/T . Similarly, there

should be a transition from the current level rate to a lower level rate when the

calculated transmission rate falls below the current level rate but is above the lower

level rate. For example, if node i transmits at 2 Kbytes/T and xi falls below 2

Kbytes/T , then node i can transmit at 1 Kbyte/T .

Performance metrics: Two common performance metrics for congestion control

approaches were taken into account: the packet delivery ratio (PDR) and the end-to-

end delay (EED). The definitions of both performance metrics are given in Section

5.1.1.5.
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5.2.3 Verification of stability and convergence time through control sys-

tem type simulations

Matlab [92] is a technical computing software that can be used for control system

type simulations. In these simulations, realistic network conditions such as queueing

delays and wireless channel collisions were not considered.
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Figure 41: Calculated transmission rate (bytes/s) when α = 1, β = 2, r = 1.

Initially, α and r were set equal to 1 while the value of β varied. Figs. 41-

43 illustrate the results obtained using Matlab. Fig. 41 depicts the calculated

number of bytes that can be sent per T from each active node when β = 2. Bear

in mind that low α and β values result in high calculated transmission rates at

equilibrium, x∗, as evaluated by Eq. 11. As can be observed, the system was

able to re-converge to a new stable point after each change in network state (node
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activation), with some fluctuations in calculated sending rates exhibited by flows

initiated from nodes 10, 16 and 20. This behavior5 is attributed to the fact that the

buffers of nodes involved in the path between active nodes were highly loaded (since

traffic flow rates were allowed to converge at high equilibrium values). Thus, with

the activation of a new node, the increase of traffic injected into the network could

not be smoothly accommodated by network’s resources. Also, some fluctuations

occurred when the flow of node 14 was deactivated. However, buffer overflows never

occurred since the buffer overflow avoidance condition (α[n − 1] + β ≥ n) was

satisfied. On the other hand, high traffic load injection into the network may lead

to wireless channel capacity saturation, a phenomenon that was apparent in realistic

network simulations.

When β increased to 4 (Fig. 42) all flows became almost well-behaved while

some very small fluctuations occurred after changes in the number of active nodes.

Recall that the increase of β resulted in convergence of calculated rates at smaller

equilibrium values x∗. As a result, the buffers within the network were not highly

loaded. Hence, the increase of the traffic injected into the network was conveniently

accommodated by network resources, while smooth converging behavior of the cal-

culated transmission rates was preserved. Even though there is no analytical upper

bound for β value, as β increases, the incoming traffic load can be conveniently

accommodated but the quality of the received data at the sink may be reduced.

It can be argued that the best setting for parameter β would be the lowest value

5In control theoretic terms, this condition would indicate that some damping is required. When
β is increased (e.g. to 4), this condition is illustrated, but with reduced steady state transmission
rates, as theory predicts
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Figure 42: Calculated transmission rate (bytes/s) when α = 1, β = 4, r = 1.

that ensures stability and high calculated transmission rates at equilibrium (and

thus, high quality), without causing wireless channel capacity saturation and buffer

overflows. The upper bound for β is further explored in realistic network scenarios.

The role of parameter α is discussed on the basis of Fig. 43. In this scenario,

parameters α and β were set to 3 and 4 respectively. Based on both buffer overflow

avoidance and stability conditions, parameter α is lower bounded by 1 and upper

bounded by β respectively (1 < α < β). As can be seen, large oscillations were

observed at source nodes (Fig. 43(b)) because the system was close to the stability

limits. In addition, parameter α was found to be proportional to convergence time.

Thus, fast convergence to the stable solution requires α to be close to 1 rather
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Figure 43: Calculated transmission rate (bytes/s) when α = 3, β = 4, r = 1.

than close to β (i.e. far from stability limits). This analytical finding is supported

by Fig. 43 which illustrates the slow response of the system towards convergence

when α was close β. On the other hand, low α values result in high calculated

transmission rates at equilibrium that may not be accommodated by the underlying

wireless medium. This issue as well as the influence of α on system performance

were further investigated in realistic network scenarios.

In all the previous scenarios, the parameter r was set to 1. Further matlab

simulation studies were carried out in order to study the influence of r on stability.

Recall that r was analytically found to be inversely proportional to convergence

time, i.e. how fast or slow the system converges to the stable solution. Simulation

results showed the value of r cannot grow unboundedly in order to achieve fast
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convergence. The value of r was tested across quite a large number of combinations

of α and β values. Results showed that the calculated flow transmission rates were

able to converge for every combination of α and β when r ≤ 2.

5.2.4 Parameter setting using NS2-based realistic network scenarios

In this section, the impact of parameters α, β and r on a realistic network

environment is investigated. Each scenario, concerning different combinations of

α, β and r values, was executed 10 times and the average values of metrics over

all scenarios are presented below. The values of each parameter were chosen to be

4 ≤ β ≤ 7, 1 ≤ α ≤ 4 (in order to satisfy the conditions of stability and buffer

overflow avoidance), and 0.5 ≤ r ≤ 2. Initially, parameter r was set to 1.
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Figure 44: Packet Delivery Ratio for 3 active nodes (r = 1).
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Fig. 44 illustrates the impact of α and β on packet delivery ratio (PDR) when

3 nodes were active. It can be observed that the PDR for all active nodes was close

to 1 (i.e. the sink received almost all packets sent from all active nodes) for the

majority of β and α values. More specifically, for high values of β as for example

6 ≤ β ≤ 7, high PDR was achieved for almost all values of α. Similarly, high PDR

(close to 1) was achieved for lower β values 5 ≤ β ≤ 6 when 2 ≤ α ≤ 4, and

for 4 ≤ β ≤ 5 when 2 ≤ α ≤ 3. Realistic network simulation results validated

control system type simulations. In particular, the decrease in PDR perceived for

low values of α was mainly attributed to the increase in calculated transmission

rates at equilibrium. Thus, the increase of traffic load injection into the network

provoked wireless channel contention leading to packet loss. In addition, a sharp

decrease in PDR was observed when the stability condition was threatened, as for

example for 3.5 ≤ α ≤ 4 and β = 4.

Fig. 45 presents the PDR for 10 active nodes. The highest PDR (≈ 0.9) was

obtained for 6 ≤ β ≤ 7 and 1.8 ≤ α ≤ 2.1. In addition, low delay values (≈ 10µs)

were achieved when α was set between 1.8 and 2.1, while β was ranging between 6

and 7.

Fig. 46 takes a closer look at the behavior of active flows under changing param-

eter values. The aim is to reveal how the violation of conditions for stability and

buffer overflow avoidance could impact smooth network operation. In particular,

Fig. 46(a) shows the calculated transmission rates and Fig. 46(b) illustrates the

stream throughput measured at the sink for the 3 active nodes for 3 combinations
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Figure 45: Packet Delivery Ratio for 10 active nodes (r = 1).

of parameter values. Table 5 refers to the validation of stability and buffer overflow

avoidance conditions for the scenarios of Fig. 46.

Table 5: Validation of stability and buffer overflow avoidance conditions for scenarios
of Fig. 46

α β β > α α [n− 1] + β ≥ n x∗ (Kbytes/s)
when all active

1.0 0.8 X 2.8 ≥ 3 X −
0.25 0.5

√
1 ≥ 3 X 35

3.0 5.0
√

11 ≥ 3
√

3.18

As can be seen in Table 5, when α = 1 and β = 0.8, neither stability nor buffer

overflow avoidance conditions were satisfied. In these scenarios, nodes 5, 6 and

10 started transmitting at t = 4, 74 and 144 s respectively, while node 6 stopped

transmitting at t = 404 s. Due to the violation of the first condition, only the flows

of nodes 5 and 10 survived while the flow of node 6 became extinct. In addition, the
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Figure 46: Scenario with 3 active nodes (r = 1).
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calculated transmission rates of the survived active nodes exhibited cycle instability

as shown in Fig. 46(a)(1). The phase plane of this scenario shown in Fig. 47

illustrates the oscillatory nature of the population of the two survived flows. In

addition, due to the violation of the second condition, the summation of calculated

rates of the survived active nodes was greater than the buffer capacity of each node

(35 Kbytes), thus leading to buffer overflows.
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Figure 47: Phase plane for survived nodes: Cycle instability in calculated transmis-
sion rates.

As illustrated in Fig. 46(a)(2), when α = 0.25 and β = 0.5, the stability con-

dition was satisfied whereas the buffer overflow avoidance condition was violated.

Fig. 46(a)(2) shows the calculated transmission rates after convergence, x∗, for each

active node. As can be seen, the calculated transmission rate of each node is higher

than or equal to 35 Kbytes/s. However, nodes were not actually transmitting at such

high rates but at the highest level of 8 Kbytes/s throughout the scenario duration.

Even though the buffer capacities within the network could accommodate the gen-

erated traffic load, collisions at the wireless channel led to packet loss. As a result,
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the stream throughput for each active node measured at the sink was fluctuating as

shown in Fig. 46(b)(1).

On the other hand, as shown in Fig. 46(a)(3), when β = 5 and α = 3 none of the

conditions were violated, while the calculated transmission rates were kept at lower

values. Thus, each node was transmitting at the highest allowed predetermined

transmission rate (see 46(b)(2)) without causing packet loss. Due to the low traffic

load injected into the network in the presence of 3 active nodes, the mean end-to-end

(EED) delay was kept below 4µs.

The results of Fig. 46(a) show that for proper parameter selection, stability can

be preserved under dynamically changing traffic injection in the network caused by

variation in the number of active nodes. However, note that earlier results indicate

the need to carefully tune the parameters according to different network/traffic

conditions. For example, as seen before, for high number of active flows the setting

of parameters is very sensitive. Thus, an adaptive scheme for changing parameter

value according to network and traffic conditions can be proposed.

In addition, Fig. 48 depicts the influence of parameters β and α on EED when

10 active nodes were involved. Low delay values (≈ 10µs) were achieved when α

was set between 1.8 and 2.1, while β was ranging between 6 and 7.

Analytical evaluations suggested that high values of r can contribute to fast

convergence to the stable equilibrium solution. However, theoretical model analysis

of complex scenarios in Matlab showed that network stability was achieved for r ≤ 2.

Increasingly, realistic network experiments in NS2 showed that for r << 1 (e.g.
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Figure 48: End-to-end delay for the fourth scenario of Table 4 involving 10 active
nodes (r = 1).

r = 0.5 in Fig. 49), the calculated transmission rates of active nodes were not able

to converge. On the other hand, convergence of calculated transmission rates was

achieved for r = 1. Extensive simulation results showed that the value of r must

be kept between 1 and 2 (included) in order to preserve system stability for all

combinations of α and β values, regardless of the number of active nodes.

Table 6 presents the combinations of α and β values that achieved the highest

PDR for different number of active nodes. The parameter r was set to 1 in order

to preserve smooth flow rate regulation. The last column of Table 6 shows results

obtained using 2 Mbps transmission rate at the MAC layer. It is worth pointing out
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Figure 49: Calculated transmission rates for 5 active nodes scenario when r = 0.5
and r = 1.

that the results presented in this table consider only the scenarios where both the

stability condition and the buffer overflow avoidance condition were satisfied.

Table 6 shows that in all scenarios, α values were significantly lower than β

values. The values of α, that achieved the highest PDR in each scenario, ranged

from 1.6 to 2.1, while the values of β ranged from 3.3 to 7.0. Results verified that as

the number of active nodes scaled up, stable response of traffic flows and high PDR

were achieved with the increase of parameter β (i.e. with the decrease of traffic flow

transmission rates).
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Table 6: Performance evaluations for realistic network conditions using NS2 [14].

No. of Active Packet
α β Nodes Delivery Ratio

1 Mbps 2 Mbps
1.6 3.3 3 0.981 0.999
1.6 4.3 5 0.993 0.999
1.9 6.5 7 0.961 0.986
2.1 7.0 10 0.892 0.951

In addition, the PDR decreased slightly with the increase in the number of active

nodes. The decrease of PDR was attributed to the inadequacy of network resources

(e.g. wireless channel capacity) to accommodate the traffic load injected from a

large number of active nodes. When the MAC transmission rate increased to 2

Mbps, higher PDR values were observed (last column of Table 6) as a result of the

enhanced channel capacity.

5.2.5 Sensitivity of Parameters

As shown above, it is beyond any doubt that the values of parameters α, β

and r should be chosen carefully to ensure stability of traffic flows as well as buffer

overflow avoidance. Results showed that parameters α and β are very sensitive to

the number of active nodes within the sensor network. The understanding of how the

LVCC model behaves in response to changes in the number of active nodes (or other

network aspects e.g. topology, wireless channel conditions etc.) is of fundamental

importance to ensure a correct and generalized use of this model. Sensitivity analysis

can be used to order by importance the strength and relevance of the each varying

factor in determining the variation in the output [93]. In models involving many
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input variables sensitivity analysis is an essential ingredient of model building and

quality assurance. Although sensitivity analysis is left for future work, this section

gives some guidelines on setting parameters r, α and β according to the number of

active nodes, based on the simulation results.

The parameter r can be set equal to 1 in order to preserve convergence to equi-

libria as well as smooth flow rate regulation, and simulation results do not show any

sensitivity to varying factors. However, according to simulation results, the values

of parameters α and β should be adapted by each sending node according to the

total number of active nodes in the network as follows:

α =


1.6, 1 ≤ n ≤ 5;

2.1, 6 ≤ n ≤ 10.

(24)

β =


4.3, 1 ≤ n ≤ 5;

7.0, 6 ≤ n ≤ 10.

(25)

In a realistic WSN, the sink node is aware of the total number of active nodes

within the network. The sink node can piggyback this number on control packets

that are periodically broadcasted within the network. Each node can further spread

this information out over the network by means of control packets. Further study

to allow for the adaptive setting of these parameters is encouraged for future work,

which leads towards a real implementation.

5.2.6 Scalability and Fairness

Taking into consideration all the results presented thus far, the system proved

to be adaptable against changing traffic load and achieved limited scalability by
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sharing buffer capacity of nodes to their active upstream nodes. For example in

Fig. 42, in the presence of one sender (node 5) the stable equilibrium point of the

system given by Eq. 11 was 8.75 Kbytes/T (clusterhead node 1 transmitted at the

same rate). When node 6 became active, each sender obtained 7 Kbytes/T , while

the downstream node 1 (clusterhead) was able to accommodate both senders by

increasing its rate using Eq. 20. When the number of senders scaled up, all senders

could be supported by the system by diminishing the sending rate per node, thus

offering graceful degradation. Fairness was also achieved having the available buffer

capacity of each node equally shared among all activated flows. However, it must

be stressed that as the number of nodes in the network increases, the scalability of

LVCC is stressed. A realistic number of nodes is 20 with around the half of them

being active at any point in time.

5.2.7 Comparative Evaluations

The proposed LVCC approach was compared with the traditional AIMD rate

adaptation mechanism. The values of α, β and r were set to 2.4, 7 and 1 respectively,

while scenarios 1 and 3 were considered, involving 3 and 5 active nodes respectively,

starting at different times as shown in the figures.

As shown in Figs. 50(a) and (b), the proposed LVCC approach achieved smooth

throughput for each active node while maintaining friendliness among competing
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flows. This controlled behavior is attributed to the LV-based calculated transmis-

sion rate evaluation which effectively and efficiently perceives the available network

bandwidth, and fairly shares it among active nodes.

On the other hand, as can be seen in Figs. 50(c) and (d), the AIMD approach

displayed a saw-tooth behavior which represents the probe for available bandwidth.

The oscillations shown in Figs. 50(c) and (d) were attributed to multiplicative rate

decrease after packet loss events. Therefore, the AIMD rate control policy seems

to be ineffective in wireless environments due to the frequent occurrence of packet

loss events. In addition, AIMD seems inefficient for streaming applications since

the saw-tooth rate behavior may violate the QoS requirements of a stream and can

lead to significant variation in streaming media quality. Furthermore, the end-to-

end nature of the AIMD mechanism makes it incapable of operating in error-prone

wireless multi-hop networks and results in reduced responsiveness, increased latency

and high error rates, especially during long periods of congestion. Contrarily, the

LVCC approach operates in a hop-by-hop manner providing fast responsiveness to

changing network conditions.

5.3 Concluding remarks

This chapter evaluated the performance of both nature-inspired approaches un-

der numerous scenarios of network operation. Both approaches proposed were ef-

fective (exhibiting robustness, self-adaptiveness, scalability) and efficient (simple

to implement) solutions for avoiding congestion either by controlling the direction
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of moving packets towards the sink (Flock-CC), or by controlling the amount of

packets injected into the network (LVCC) under different topologies and changing

network and traffic conditions. However, LVCC scalability is maintained efficiently

for small scale networks (up to 20 nodes) with up to a certain number of active flows

(around 10). Further increase of nodes or flows stresses scalability and may lead to

instability.



Chapter 6

Conclusions

In this thesis, the problem of congestion in WSNs is addressed using techniques

from nature. The aim of this study is to prevent or minimize congestion in WSNs by

drawing inspiration from swarm intelligence and mathematical models of population

biology.

Two novel nature-inspired congestion control approaches were proposed namely

the flock-based congestion control (Flock-CC) approach and the Lotka-Volterra con-

gestion control (LVCC) approach. We have first given an introduction to the prob-

lem of congestion in the field of wireless sensor networks as well as a detailed de-

scription of the two main pillars of this thesis: (a) the flocking behavior of birds and

(b) the Lotka-Volterra competition model. Then, we have described both proposed

congestion avoidance approaches, Flock-CC and LVCC, and next, we have presented

a range of simulation tests in which we investigated the behavior and performance

of these approaches. The tests were carried out in network simulator NS2. In what

176



177

follows, we first give an overview of the contributions and findings of this thesis,

then discuss possible future research directions, and finally give a closing statement.

6.1 Contributions and findings of this thesis

Flock-CCmimics the synchronized group behavior of birds flocks and their ability

to avoid obstacles in order to control the motion of packet flocks through a network of

constrained sensor nodes. From the perspective of the emergent flocking behavior,

the basic aim was to guide packets towards the sink whilst avoiding congestion

regions. From the viewpoint of performance controlled WSNs, Flock-CC was aimed

at providing high packet delivery ratio, low end-to-end delay and minimal energy

tax to applications running on top of these networks, in a robust way. Flock-CC

primarily targets real-time, densely-deployed, event-based wireless sensor networks.

The Flock-CC approach was influenced by the bio-swarm model of Couzin [11].

However, the Flock-CC approach differs in two aspects from Couzin’s model: (1)

The bio-swarm model of Couzin was formulated on the metrical (continuous three-

dimensional) space, whereas the Flock-CC model is applied on a two dimensional

topological (discrete) space defined by the graph of nodes, and (2) in Couzin’s model

(as well as in the Reynolds’ model) individuals form flocks and move constantly in

a given finite space without any attraction to a global target (final destination).

On the other hand, in the Flock-CC approach, packets are expected to form flocks

and move towards a global attractor (sink). The latter Flock-CC characteristic

necessitates the existence of a field of attraction towards the sink.
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In Flock-CC, each packet perceives repulsive and attractive forces exhibited by

other packets located on neighboring nodes within the field of view, and decides a

new hosting node on the basis of a desirability function. The desirability of each

potential next hop node is adjusted to account for biased selection of nodes located

closer to the sink. Also, perturbation, which allows exploration, was introduced to

allow packets to pick random routes, and thus to avoid over-flooding popular (due

to their low congestion levels) next hop nodes. The behavioral tendencies involved

in Flock-CC were simulated to study its effectiveness in mimicking the collective

behavior of bird flocks. Performance evaluations showed that Flock-CC was able to:

• alleviate congestion by balancing the offered load through alternative paths to

the sink,

• offer acceptable PDR, above other competing approaches especially in high

load scenarios, fast delivery (small EEDs) of packets to the sink and low energy

tax,

• achieve adaptation to changing network and traffic conditions, robustness

against failing nodes, even in extreme situations, scalability to different net-

work sizes,

• outperform typical conventional congestion-aware and congestion-free routing

approaches in terms of PDR in low, medium and high loads.

LVCC is a rate-based, hop-by-hop congestion control mechanism for small-scale

multimedia streaming applications in WSNs. LVCC was designed on the basis of
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the well known Lotka-Volterra competition model and is aimed at controlling the

traffic flow rate at each sending node. In the context of LVCC, our contributions

are summarized below:

• LVCC preserves the global properties of biological processes such as stability,

self-adaptation, scalability and fairness, that are achieved collectively with-

out explicitly programming them into individual nodes. Analytical evalua-

tions and simulations were performed to understand how the variations of the

model’s parameters influence stability, sensitivity to parameters, scalability

and fairness.

• Control system type simulations in Matlab validated the correctness of ana-

lytical results for plausible scenarios that could not be formally tested.

• Simulations showed that the proposed model achieves stability and smooth

network operation under the analytically proposed conditions. Realistic sce-

narios of network operation and conditions were also simulated for effective

parameter setting.

• Realistic scenarios evaluation suggested certain values for parameters α, β and

r that are able to achieve high packet delivery ratio, low end-to-end delay,

scalability and fairness among competing flows.

• LVCC was found to outperform AIMD-like rate-based congestion control ap-

proaches for WSNs in terms of stability and flow rate smoothness.
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6.2 Future Research Directions

Here we point out some future research directions that are relevant for the work

presented in this thesis. These concern further improvements on both Flock-CC and

LVCC for coping effectively with additional network entities (e.g. multiple sinks,

mobile nodes/sinks), the support of further QoS issues (e.g. multi-class priorities),

and finally the use of the ideas behind Flock-CC and LVCC in other types of man-

made systems.

6.2.1 Flock-CC

Interesting future work for the Flock-CC approach, is to investigate alternative

methods of evaluating the attraction/repulsion forces and the desirability function.

For example, alternative methods for establishing the artificial magnetic field and

the attraction forces towards the pole(s) can be developed. In particular, beyond the

hop distance, a new metric or technique can be devised for sink direction discovery

and measuring the attractiveness to the sink. Also, energy reserves of sensor nodes

can be taken into account when evaluating the desirability function.

Another interesting direction for future research, is to elaborate on the appli-

cability of Flock-CC in the presence of multiple sinks can be investigated. In this

study only one sink was considered in every scenario. However, in large-scale net-

works with a large number of sensor nodes, multiple sink nodes are expected to

be deployed, not only to increase the manageability of the network, but also to

reduce the energy dissipation at each node (packets will not need to ‘travel’ long
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distances to reach the sink). In this context, the presence of multiple magnetic poles

is expected to introduce new considerations during the evaluation of the desirability

function and quite possibly will raise a need to devise criteria for differentiating the

influence of each pole.

Another area of future work is the applicability of Flock-CC in the presence of

one or more mobile sinks. In this study the sink node was always located in a fixed

position. Results confirmed that energy consumption among sensor nodes was not

uniform. In fact, the nearer a sensor node lies with relation to the sink node, the

faster its energy was depleted. Also, in case of sensor node failure or malfunctioning

around a sink node, the network connectivity and coverage may not be guaranteed.

Therefore, mobile sink(s) can be used for balancing energy consumption among

nodes and for finding alternative routes from source nodes to the sink(s). Also,

multiple mobile sinks can be used to alleviate congestion as, for example, if they

are ‘guided’ to move close to the area of an event. However, moving strategies for

mobile sinks need to be developed.

Interesting future work would also be to apply the ideas behind Flock-CC in dif-

ferent kinds of man-made systems. One idea could be to use the set of rules at the

heart of the Flock-CC approach to capture interactions in an urban road transporta-

tion system as for example vehicle-to-environment and vehicle-to-vehicle. Flock-CC

rules can be used for navigating vehicles through congested road networks without

any need for fixed infrastructure or centralized servers. In this context, cars moving

towards a given city can be seen as individuals within a flock and the goal would
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be to ‘guide’ cars form flocks and flow towards the global attractor (city) whilst

trying to avoid congestion regions (congested roads, traffic lights etc). Toward this

direction, quite recently, Google has developed technology for driverless cars [94].

The project team has a test fleet of at least eight, highly capable, vehicles equipped

with numerous sensors in order to gather information from their environment. This

information is processed by the car and in conjunction with stored or internet-based

information are used to control the car’s speed and to maintain its distance from

other vehicles. Other types of systems in which Flock-CC’s mechanisms could be

useful are swarms of robots as well as unmanned aerial vehicle (UAVs) moving to-

wards a given target. In such systems, individuals (e.g. robots, vehicles) operate

in a dynamically changing environment with different kinds of obstacles and are in

need of cooperating with each other in order to ‘survive’ and achieve their goals.

6.2.2 LVCC

For future work, it is planned to investigate if and under what conditions pa-

rameter values can be analytically optimized using conventional techniques, or even

adopt other nature-inspired optimization techniques, such as genetic algorithms to

adapt the tuning parameters on a global scale, over a much longer time period.

Furthermore, due to the application-dependent nature of WSNs, wireless sensor

networks deployed for different applications may require different congestion control

approaches. In addition to the challenges for reliable data transport in WSN (e.g.

packet loss, delay), there exist additional challenges due to the unique requirements
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of the multimedia traffic, such as bounded delay and delay variation as well as min-

imum bandwidth demand. Therefore, a possible area of future work is to modify

the LVCC approach in order to cope with a set of different priority classes (e.g. by

means of unequal traffic rates) corresponding to different kind of traffic flows (i.e.

different species in nature). These priority classes can be treated in a differentiated

way by the congestion control algorithm.

The self-adaptive traffic flow regulation mechanism at the heart of the LVCC

approach can be extended in the direction of transportation engineering. More

specifically, this mechanism can be involved in controlling traffic flow injection into

freeways/highways, i.e. to manage traffic flows on access ramps to freeways in

order to avoid congestion phenomena, and thus delay for motorists. In this way, an

autonomous real-time traffic injection control system could be able to minimize the

overall delay for motorists according to the traffic input load and freeway congestion

situation.

6.3 Closing statement

As shown in this thesis, nature-inspired techniques can be effectively adopted

to handle communication networking problems that necessitate autonomous and

decentralized operation. It is not only communication systems but also other man-

made systems that are getting too complex for human operators to manage, and

thus they should be able to operate autonomously. This means that systems should

be self-organizing and self-adapting to dynamically changing conditions as well as
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self-optimizing, self-protecting and self-healing in the presence of misbehavior, mal-

function or failure. Nature serves as an excellent basis for developing autonomously

evolving systems since the aforementioned self-* properties are intrinsic character-

istics of natural systems.
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