
Chris Panayiotou

 Ruby on Rails is a web application framework
written in Ruby, a dynamically typed
programming language

 The amazing productivity claims of Rails is
the current buzz in the web development
community

 Can only be used for web-based, specifically
HTML-based, applications

 Designed for small to medium CRUD-based
applications

 Cross-platform
 Can use same tools and middleware on Windows,

Linux and OS X
 Easy-install packages for Eclipse (with RADRails

and Ruby editor plugins), MySQL, Apache, and
other Eclipse plugins, eg Subversion

 Ruby is a pure object-oriented programming language with a
super clean syntax that makes programming elegant and fun.
◦ In Ruby, everything is an object

 Ruby is an interpreted scripting language, just like Perl, Python
and PHP

 Ruby successfully combines Smalltalk's conceptual elegance,
Python's ease of use and learning and Perl's pragmatism

 Ruby originated in Japan in 1993 by Yukihiro “matz” Matsumoto,
and has started to become popular worldwide in the past few
years as more English language books and documentation have
become available

 Ruby is a metaprogramming language
◦ Metaprogramming is a means of writing software programs that write or

manipulate other programs thereby making coding faster and more
reliable

 Rails is an open source Ruby framework for
developing database-backed web applications

 Created by David Heinemeier Hansson – DHH Partner,
derived from the “37Signals” project

 The Rails framework was extracted from real-world
web applications
◦ The result is an easy to use and cohesive framework that's

rich in functionality, and at the same time it does its best to
stay out of your way

 All layers in Rails are built to work together so you
Don’t Repeat Yourself and can use a single language
from top to bottom

 Everything in Rails (templates to control flow to
business logic) is written in Ruby
◦ Except for configuration files - YAML

 Metaprogramming techniques use programs to write
programs
◦ Other frameworks use extensive code generation, which

gives users a one-time productivity boost but little else,
and customization scripts let the user add customization
code in only a small number of carefully selected points

◦ Metaprogramming replaces these two techniques and
eliminates their disadvantages

◦ Ruby is one of the best languages for metaprogramming,
and Rails uses this capability well

 Scaffolding
◦ You often create temporary code in the early stages of

development to help get an application up quickly and see
how major components work together

◦ Rails automatically creates much of the scaffolding you'll
need

 Convention over configuration
◦ Most Web development frameworks for .NET or Java force you to

write pages of configuration code
◦ If you follow suggested naming conventions, Rails doesn't need

much configuration. In fact, you can often cut your total
configuration code by a factor of five or more over similar Java
frameworks just by following common conventions
 Naming your data model class with the same name as the

corresponding database table
 ‘id’ as the primary key name

 Rails introduces the Active Record framework, which saves
objects to the database
◦ The Rails version of Active Record discovers the columns in a

database schema and automatically attaches them to your domain
objects using metaprogramming

◦ This approach to wrapping database tables is simple, elegant, and
powerful

 Rails implements the model-view-controller
(MVC) architecture. The MVC design pattern
separates the component parts of an application

• Model encapsulates data that
the application manipulates,
plus domain-specific logic

• View is a rendering of the model
into the user interface

• Controller responds to events
from the interface and causes
actions to be performed on the
model.

• MVC pattern allows rapid
change and evolution of the
user interface and controller
separate from the data model

 Rails embraces test-driven development.
◦ Unit testing: testing individual pieces of code
◦ Functional testing: testing how individual pieces of

code interact
◦ Integration testing: testing the whole system

 Three environments: development, testing,
and production

 Database Support: Oracle, DB2, SQL Server,
MySQL, PostgreSQL, SQLite

 No big corporate backer
 Very few expert Ruby programmers
 Runs slowly (Java ~ 5 times faster but Ruby may be

improved by new VM - YARV)
 Poor editor support and very slow debugger
 No clustering, failover
 No two-phase commit
 Does not support compound primary keys
 Internationalization support is weak
 No off-the-shelf reporting tool

Ruby on Rails
Request Flow

 Uses Convention over Configuration, and Reflection
 Therefore very little configuration compared to

other frameworks
 ActiveRecord configuration can use SQL
 Uses YAML (easy to read) rather than XML

 development:
 adapter: oci
 host: 192.168.0.50/examplesid
 username: exampleuser
 password: examplepass

 Rails will run on many different Web servers
◦ Most of your development will be done using WEBrick, but you'll probably

want to run production code on one of the alternative servers
 Apache, Lighttpd (Lighty),Mongrel

 Development Environment
◦ Windows, Linux and OS X
◦ No IDE needed although there a few available like Eclipse, RadRails

 Installing Ruby for Windows
◦ Download the “One-Click” Ruby Installer from

http://rubyinstaller.rubyforge.org
 Installing Ruby for Mac
◦ It’s already there!

 RubyGems is a package manager that provides a standard format
for distributing Ruby programs and libraries

 Installing Rails
◦ >gem install rails –include-dependencies

http://rubyinstaller.rubyforge.org/

 Controller (DispatchServlet) orchestrates the
application:
◦ Extracts parameters and interacts with the Model through

an ActionController subclass:
 Example: http://localhost/item/delete/100 directs to

ItemController (defined in item_controller.rb) and
passes to the method delete the value 100

◦ Invokes the View providing the rendering of the Model
◦ ActionController and ActionView form the Action Pack: core

requests processing and responses generation

http://localhost/item/delete/100

 View: a combination of templates, partials
and layouts using Ruby code tag libraries
(similar to Java tag libraries):
◦ Allows data display and input, but never handles incoming

data
◦ ActionView module provides templates rendering (HTML or

XML):
 .rxml templates render XML pages, while
 .rhtml templates render HTML pages

◦ writing a view = writing a template (i.e. HTML fragments
are interwoven with Ruby code statements)

◦ Controller instance variables and public methods accessible
from templates (actions communicate data to templates)

 Model: ActiveRecord wrapping framework
◦ ActiveRecord subclass wraps a row in a database

table/view, encapsulates access/domain logic, and acts
as the gatekeeper

◦ Wraps class hierarchies to relational tables through
single table inheritance (a string column ‘TYPE’ is added
to every table)

◦ Wraps classic table relationships (one-to-one, one-to-
many, many-to-many) through declarations in the
model (belongs-to, has-one, has-many, has-and-
belongs-to-many), and also supports: acts_as_tree,
acts_as_list

◦ Differs from other ORM (Object Relational Mapping)
implementations through its “convention over
configuration” principle which implies a sensible set of
defaults

16

 Model Relations
◦ Has_one => One to One relationship
◦ Belongs_to => Many to One relationship (Many)
◦ Has_many => Many to One relationship (One)
◦ Has_and_belongs_to_many =>Many to Many

relationships

 Create the Rails Application
◦ Execute the script that creates a new Web

application project
◦ >Rails projectname
◦ This command executes an already provided Rails

script that creates the entire Web application
directory structure and necessary configuration files

 App> contains the core of the application
◦ /models> Contains the models, which encapsulate application business

logic
◦ /views/layouts> Contains master templates for each controller
◦ /views/controllername> Contains templates for controller actions
◦ /helpers> Contains helpers, which you can write to provide more

functionality to templates
 Config> contains application configuration, plus per-

environment configurability - contains the database.yml file
which provides details of the database to be used with the
application

 Db> contains a snapshot of the database schema and migrations
 Log> application specific logs, contains a log for each

environment
 Public> contains all static files, such as images, javascripts, and

style sheets
 Script> contains Rails utility commands
 Test> contains test fixtures and code
 Vendor> contains add-in modules.

 Need a controller and a view
>ruby script/generate controller Greeting

 Edit app/controllers/greeting_controller.rb
 Add an index method to your controller class

class GreetingController < ApplicationController
 def index
 render :text => "<h1>Hello Rails World!</h1>"
 end
end
◦ Renders the content that will be returned to the browser as the

response body
◦ If you use blank for the name of the action it maps to the index

action
 Start the WEBrick server

>ruby script/server
◦ http://localhost:3000

 Add another method to the controller
 def hello
 end

 Add a template app/views/greeting>hello.rhtml
<html>
 <head>
 <title>Hello Rails World!</title>
 </head>
 <body>
 <h1>Hello from the Rails View!</h1>
 </body>
</html>

 ERb - Embedded Ruby: Embedding the Ruby programming
language into HTML document
◦ An erb file ends with .rhtml file extension.
◦ Similar to ASP, JSP and PHP, requires an interpreter to execute and

replace it with designated HTML code and content
 Making it Dynamic
 <p>Date/Time: <%= Time.now %></p>
 Making it Better by using an instance variable to the

controller
 @time = Time.now.to_s
◦ Reference it in .rhtml <%= @time %>

 Linking Pages using the helper method link_to()
 <p>Time to say <%= link_to "Goodbye!", :action =>
"goodbye" %>

 Books
◦ Agile Web Development with Rails
◦ Programming Ruby

 Web sites
◦ Ruby Language
 http://www.ruby-lang.org/en/

◦ Ruby on Rails
 http://www.rubyonrails.org/

◦ Rails API
 Start the Gem Documentation Server
 Gem_server http://localhost:8808

◦ MVC architectural paradigm
 http://en.wikipedia.org/wiki/Model-view-controller
 http://java.sun.com/blueprints/patterns/MVC-detailed.html

http://www.ruby-lang.org/en/
http://www.rubyonrails.org/
http://en.wikipedia.org/wiki/Model-view-controller
http://java.sun.com/blueprints/patterns/MVC-detailed.html

	Introduction to�Ruby on Rails
	Ruby on Rails
	At First Sight
	What is Ruby?
	What is Rails?�Ruby on Rails or just Rails (RoR)
	Rails Strengths
	Rails Strengths
	Rails Strengths
	Rails Strengths
	Disadvantages
	Ruby on Rails�Request Flow
	Configuration
	Rails Environment and Installing the Software
	MVC the Rails way
	MVC the Rails way
	MVC the Rails way:
	Rails Relationships
	Rails Tutorial
	Rails Application Directory Structure
	Hello Rails!
	Hello Rails!
	Hello Rails!
	Rails Resources

