
Chris Panayiotou 



 Ruby on Rails is a web application framework 
written in Ruby, a dynamically typed 
programming language 

 The amazing productivity claims of Rails is 
the current buzz in the web development 
community 



 Can only be used for web-based, specifically 
HTML-based, applications 

 Designed for small to medium CRUD-based 
applications 

 Cross-platform 
 Can use same tools and middleware on Windows, 

Linux and OS X 
 Easy-install packages for Eclipse (with RADRails 

and Ruby editor plugins), MySQL, Apache, and 
other Eclipse plugins, eg Subversion 



 Ruby is a pure object-oriented programming language with a 
super clean syntax that makes programming elegant and fun.  
◦ In Ruby, everything is an object 

 Ruby is an interpreted scripting language, just like Perl, Python 
and PHP 

 Ruby successfully combines Smalltalk's conceptual elegance, 
Python's ease of use and learning and Perl's pragmatism 

 Ruby originated in Japan in 1993 by Yukihiro “matz” Matsumoto, 
and has started to become popular worldwide in the past few 
years as more English language books and documentation have 
become available 

 Ruby is a metaprogramming language 
◦ Metaprogramming is a means of writing software programs that write or 

manipulate other programs thereby making coding faster and more 
reliable 

 



 Rails is an open source Ruby framework for 
developing database-backed web applications 

 Created by David Heinemeier Hansson – DHH Partner, 
derived from the “37Signals” project 

 The Rails framework was extracted from real-world 
web applications 
◦ The result is an easy to use and cohesive framework that's 

rich in functionality, and at the same time it does its best to 
stay out of your way  

 All layers in Rails are built to work together so you 
Don’t Repeat Yourself and can use a single language 
from top to bottom 

 Everything in Rails (templates to control flow to 
business logic) is written in Ruby 
◦ Except for configuration files - YAML 



 Metaprogramming techniques use programs to write 
programs 
◦ Other frameworks use extensive code generation, which 

gives users a one-time productivity boost but little else, 
and customization scripts let the user add customization 
code in only a small number of carefully selected points 

◦ Metaprogramming replaces these two techniques and 
eliminates their disadvantages  

◦ Ruby is one of the best languages for metaprogramming, 
and Rails uses this capability well 

 Scaffolding 
◦ You often create temporary code in the early stages of 

development to help get an application up quickly and see 
how major components work together 

◦ Rails automatically creates much of the scaffolding you'll 
need 



 Convention over configuration   
◦ Most Web development frameworks for .NET or Java force you to 

write pages of configuration code 
◦ If you follow suggested naming conventions, Rails doesn't need 

much configuration. In fact, you can often cut your total 
configuration code by a factor of five or more over similar Java 
frameworks just by following common conventions 
 Naming your data model class with the same name as the 

corresponding database table 
 ‘id’ as the primary key name 

 Rails introduces the Active Record framework, which saves 
objects to the database  
◦ The Rails version of Active Record discovers the columns in a 

database schema and automatically attaches them to your domain 
objects using metaprogramming  

◦ This approach to wrapping database tables is simple, elegant, and 
powerful 



 Rails implements the model-view-controller 
(MVC) architecture.  The MVC design pattern 
separates the component parts of an application 

• Model encapsulates data that 
the application manipulates, 
plus domain-specific logic 

• View is a rendering of the model 
into the user interface 

• Controller responds to events 
from the interface and causes 
actions to be performed on the 
model. 

• MVC pattern allows rapid 
change and evolution of the 
user interface and controller 
separate from the data model 



 Rails embraces test-driven development.  
◦ Unit testing: testing individual pieces of code 
◦ Functional testing: testing how individual pieces of 

code interact 
◦ Integration testing: testing the whole system 

 Three environments: development, testing, 
and production   

 Database Support: Oracle, DB2, SQL Server, 
MySQL, PostgreSQL, SQLite 
 



 No big corporate backer 
 Very few expert Ruby programmers 
 Runs slowly (Java ~ 5 times faster but Ruby may be 

improved by new VM - YARV) 
 Poor editor support and very slow debugger 
 No clustering, failover 
 No two-phase commit 
 Does not support compound primary keys 
 Internationalization support is weak 
 No off-the-shelf reporting tool 



Ruby on Rails 
Request Flow 



 Uses Convention over Configuration, and Reflection 
 Therefore very little configuration compared to 

other frameworks 
 ActiveRecord configuration can use SQL 
 Uses YAML (easy to read) rather than XML 
  
 development: 
  adapter: oci 
  host: 192.168.0.50/examplesid 
  username: exampleuser 
  password: examplepass 

 



 Rails will run on many different Web servers 
◦ Most of your development will be done using WEBrick, but you'll probably 

want to run production code on one of the alternative servers  
 Apache, Lighttpd (Lighty),Mongrel 

 Development Environment 
◦ Windows, Linux and OS X 
◦ No IDE needed although there a few available like Eclipse, RadRails 

 Installing Ruby for Windows 
◦ Download the “One-Click” Ruby Installer from 

http://rubyinstaller.rubyforge.org 
 Installing Ruby for Mac 
◦ It’s already there! 

 RubyGems is a package manager that provides a standard format 
for distributing Ruby programs and libraries  

 Installing Rails 
◦ >gem install rails –include-dependencies 

http://rubyinstaller.rubyforge.org/


 Controller (DispatchServlet) orchestrates the 
application: 
◦ Extracts parameters and interacts with the Model through 

an ActionController subclass: 
 Example: http://localhost/item/delete/100 directs to 

ItemController (defined in item_controller.rb) and 
passes to the method delete the value 100 

◦ Invokes the View providing the rendering of the Model 
◦ ActionController and ActionView form the Action Pack: core 

requests processing and responses generation 

http://localhost/item/delete/100


 View: a combination of templates, partials 
and layouts using Ruby code tag libraries 
(similar to Java tag libraries): 
◦ Allows data display and input, but never handles incoming 

data 
◦ ActionView module provides templates rendering (HTML or 

XML): 
 .rxml templates render XML pages, while 
 .rhtml templates render HTML pages 

◦ writing a view = writing a template (i.e. HTML fragments 
are interwoven with Ruby code statements) 

◦ Controller instance variables and public methods accessible 
from templates (actions communicate data to templates) 
 



 Model: ActiveRecord wrapping framework 
◦ ActiveRecord subclass wraps a row in a database 

table/view, encapsulates access/domain logic, and acts 
as the gatekeeper 

◦ Wraps class hierarchies to relational tables through 
single table inheritance (a string column ‘TYPE’ is added 
to every table) 

◦ Wraps classic table relationships (one-to-one, one-to-
many, many-to-many) through declarations in the 
model (belongs-to, has-one, has-many, has-and-
belongs-to-many), and also supports: acts_as_tree, 
acts_as_list 

◦ Differs from other ORM (Object Relational Mapping) 
implementations through its “convention over 
configuration” principle which implies a sensible set of 
defaults 

16 



 Model Relations 
◦ Has_one => One to One relationship 
◦ Belongs_to => Many to One relationship (Many) 
◦ Has_many => Many to One relationship (One) 
◦ Has_and_belongs_to_many =>Many to Many 

relationships 



 Create the Rails Application 
◦ Execute the script that creates a new Web 

application project 
◦ >Rails projectname 
◦ This command executes an already provided Rails 

script that creates the entire Web application 
directory structure and necessary configuration files 
 
 



 App> contains the core of the application 
◦ /models> Contains the models, which encapsulate application business 

logic 
◦ /views/layouts> Contains master templates for each controller 
◦ /views/controllername> Contains templates for controller actions 
◦ /helpers> Contains helpers, which you can write to provide more 

functionality to templates 
 Config> contains application configuration, plus per-

environment configurability - contains the database.yml file 
which provides details of the database to be used with the 
application 

 Db> contains a snapshot of the database schema and migrations 
 Log> application specific logs, contains a log for each 

environment 
 Public> contains all static files, such as images, javascripts, and 

style sheets 
 Script> contains Rails utility commands 
 Test> contains test fixtures and code 
 Vendor> contains add-in modules. 



 Need a controller and a view 
>ruby script/generate controller Greeting 

 Edit app/controllers/greeting_controller.rb 
 Add an index method to your controller class 

class GreetingController < ApplicationController 
  def index 
    render :text => "<h1>Hello Rails World!</h1>" 
  end 
end 
◦ Renders the content that will be returned to the browser as the 

response body  
◦ If you use blank for the name of the action it maps to the index 

action 
 Start the WEBrick server 

>ruby script/server 
◦ http://localhost:3000 



 Add another method to the controller   
  def hello 
  end 

 Add a template app/views/greeting>hello.rhtml 
<html> 
  <head> 
    <title>Hello Rails World!</title> 
  </head> 
  <body> 
    <h1>Hello from the Rails View!</h1>   
  </body> 
</html> 



 ERb - Embedded Ruby: Embedding the Ruby programming 
language into HTML document 
◦ An erb file ends with .rhtml file extension. 
◦ Similar to ASP, JSP and PHP, requires an interpreter to execute and 

replace it with designated HTML code and content 
 Making it Dynamic 
 <p>Date/Time: <%= Time.now %></p> 
 Making it Better by using an instance variable to the 

controller 
 @time = Time.now.to_s 
◦ Reference it in .rhtml <%= @time %> 

 Linking Pages using the helper method link_to() 
    <p>Time to say <%= link_to "Goodbye!", :action => 
"goodbye" %> 

 



 Books 
◦ Agile Web Development with Rails  
◦ Programming Ruby 

 Web sites 
◦ Ruby Language 
 http://www.ruby-lang.org/en/ 

◦ Ruby on Rails  
 http://www.rubyonrails.org/ 

◦ Rails API 
 Start the Gem Documentation Server 
 Gem_server  http://localhost:8808 

◦ MVC architectural paradigm 
 http://en.wikipedia.org/wiki/Model-view-controller 
 http://java.sun.com/blueprints/patterns/MVC-detailed.html 

http://www.ruby-lang.org/en/
http://www.rubyonrails.org/
http://en.wikipedia.org/wiki/Model-view-controller
http://java.sun.com/blueprints/patterns/MVC-detailed.html

	Introduction to�Ruby on Rails 
	Ruby on Rails
	At First Sight
	What is Ruby?
	What is Rails?�Ruby on Rails or just Rails (RoR)
	Rails Strengths
	Rails Strengths
	Rails Strengths
	Rails Strengths 
	Disadvantages
	Ruby on Rails�Request Flow
	Configuration
	Rails Environment and Installing the Software
	MVC the Rails way
	MVC the Rails way
	MVC the Rails way:
	Rails Relationships
	Rails Tutorial
	Rails Application Directory Structure
	Hello Rails!
	Hello Rails!
	Hello Rails!
	Rails Resources

