
Chris Panayiotou

 AJAX = Asynchronous JavaScript and XML
 AJAX is not a new programming language - it

is a new way to use existing standards!
 AJAX is the art of exchanging data with a

server, and update parts of a web page
◦ without reloading the whole page

 AJAX is a catchy name for a programming
style made popular in 2005 by Google and
other big web developers

 In plain English, Ajax can be thought of
JavaScript on steroids

 AJAX is a technique for creating fast and dynamic web
pages

 AJAX allows web pages to be updated asynchronously
by exchanging small amounts of data with the server
behind the scenes
◦ possible to update parts of a web page, without reloading

the whole page
◦ Classic web pages, (which do not use AJAX) must reload the

entire page if the content should change.
 Examples of applications using AJAX: Google Maps,

Gmail, Youtube, and Facebook tabs.
 What you should already know to work with AJAX
◦ HTML / XHTML
◦ CSS
◦ JavaScript / DOM

 JavaScript enabled cool things with the web browser to make a
more user-friendly experience such as
◦ Form validation
◦ Quirky popup messages
◦ Cool web tools and more

 However, JavaScript had no way of sending information between
the web browser and the web server
◦ If you wanted to get any information from a database on the server, or

send user information to a server-side script like PHP, you had to make an
HTML form to GET or POST data to the server

◦ The user would then have to click "Submit", wait for the server to respond,
then a new page would load with the results
 Problematic when having to wait for especially slow websites!

 AJAX attempts to remedy this problem by letting your JavaScript
communicate directly with the server, using a special JavaScript
object XMLHttpRequest
◦ With this object, your JavaScript can get information from the server

without having to load a new page!

 AJAX uses a combination of:
◦ XMLHttpRequest object (to exchange data

asynchronously with a server)
◦ JavaScript/DOM (to display/interact with the

information)
◦ CSS (to style the data)
◦ XML (often used as the format for transferring data)

 AJAX applications are browser -and platform-
independent!

AJAX’s basic architecture

How AJAX Works

1. Capture an HTML event that you want to respond to by calling a JavaScript
2. In the JavaScript function

1. Create an XMLHttpRequest object
2. Set the callback function that will handle the server’s response
3. Send the XML request object to the server

3. Get the server’s response and process it through the set callback function
1. The onreadystatechange event is triggered and the set callback function is called
2. Get the server’s response from the created XMLHttpRequest object
3. Update the page using the received information

How AJAX Works

 The keystone of AJAX is the XMLHttpRequest object
◦ All modern browsers support the XMLHttpRequest object (IE5 and IE6 use an

ActiveXObject).
◦ It is used to exchange data with a server behind the scenes

 Thus enabling updating parts of a web page, without reloading the whole page
 Syntax for creating an XMLHttpRequest object:

variable=new XMLHttpRequest();
 For old versions of Internet Explorer (IE5 and IE6) use an ActiveX Object:

variable=new ActiveXObject("Microsoft.XMLHTTP");
 To handle all browsers first check if the browser supports the

XMLHttpRequest object. If it does, create an XMLHttpRequest object, if
not, create an ActiveXObject:
var xmlhttp;
if (window.XMLHttpRequest) {
 // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
} else {
 // code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}

 To send a request to a server, we use the open()
and send() methods of the XMLHttpRequest
object:
xmlhttp.open("GET","ajax_info.txt",true);
xmlhttp.send();

Method Description

open(method,url,async)

Specifies the type of request, the URL, and if the
request should be handled asynchronously or not.

method: the type of request: GET or POST
url: the location of the file on the server
async: true (asynchronous) or false (synchronous)

send(string)
Sends the request off to the server.

string: Only used for POST requests

 GET or POST?
 GET is simpler and faster than POST, and can

be used in most cases
 However, always use POST requests when:
◦ A cached file is not an option (update a file or

database on the server)
◦ Sending a large amount of data to the server (POST

has no size limitations)
◦ Sending user input (which can contain unknown

characters), POST is more robust and secure than
GET

 GET Requests - A simple GET request:
xmlhttp.open("GET","demo_get.asp",true);
xmlhttp.send();

 In the example above, you may get a cached
result. To avoid this, add a unique ID to the URL:
xmlhttp.open("GET","demo_get.asp?t=" + Math.random(),true);
xmlhttp.send();

 If you want to send information with the GET
method, add the information to the URL:
xmlhttp.open("GET","demo_get2.asp?fn=Henry&ln=Ford",true);
xmlhttp.send();

 POST Requests - A simple POST request:
xmlhttp.open("POST","demo_post.asp",true);
xmlhttp.send();

 To POST data like an HTML form, add an HTTP header with
setRequestHeader(). Specify the data to send in the send()
method:
xmlhttp.open("POST","ajax_test.asp",true);
xmlhttp.setRequestHeader("Content-type","application/x-www-form-urlencoded");
xmlhttp.send("fn=Henry&ln=Ford");

Method Description

setRequestHeader(header,value)
Adds HTTP headers to the request.

header: specifies the header name
value: specifies the header value

 The url parameter of the open() method, is an
address to a file on a server:
xmlhttp.open("GET","ajax_test.asp",true);

 The file can be any kind of file, like .txt and
.xml, or server scripting files like .asp and
.php (which can perform actions on the server
before sending the response back)

 Asynchronous - True or False?
 For the XMLHttpRequest object to behave as AJAX, the async

parameter of the open() method has to be set to true:
 Sending asynchronous requests is a huge improvement
◦ Many of the tasks performed on the server are very time consuming
◦ Before AJAX, this operation could cause the application to hang or stop

 With AJAX, the JavaScript does not have to wait for the server
response
◦ Can execute other scripts while waiting for server response
◦ Deals with the response when the response ready

 When using async=true, specify a function to execute when the
response is ready in the onreadystatechange event:
xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {
 document.getElementById("myDiv").innerHTML=xmlhttp.responseText;
 }
}
xmlhttp.open("GET","ajax_info.txt",true);
xmlhttp.send();

 Using async=false is not recommended, but for a
few small requests this can be ok
◦ Remember that the JavaScript will NOT continue to

execute, until the server response is ready
◦ If the server is busy or slow, the application will hang or

stop
 When you use async=false, do NOT write an

onreadystatechange function
◦ Just put the code after the send() statement:
xmlhttp.open("GET","ajax_info.txt",false);
xmlhttp.send();
document.getElementById("myDiv").innerHTML=
 xmlhttp.responseText;

 To get the response from a server, use the
responseText or responseXML property of the
XMLHttpRequest object.

 If the response from the server is not XML, use
the responseText property

 The responseText property returns the response
as a string, and you can use it accordingly:
document.getElementById("myDiv").innerHTML=
 xmlhttp.responseText;

Property Description
responseText get the response data as a string
responseXML get the response data as XML data

 If the response from the server is XML, and
you want to parse it as an XML object, use the
responseXML property

 Request the file cd_catalog.xml and parse the
response:
xmlDoc=xmlhttp.responseXML;
txt="";
x=xmlDoc.getElementsByTagName("ARTIST");
for (i=0;i<x.length;i++) {
 txt=txt + x[i].childNodes[0].nodeValue + "
";
}
document.getElementById("myDiv").innerHTML=txt;

 When a request to a server is sent, we want to
perform some actions based on the response

 The onreadystatechange event is triggered every time
the readyState changes

 The readyState property holds the status of the
XMLHttpRequest
 Property Description

onreadystatechange Stores a function (or the name of a function) to be
called each time the readyState property changes

readyState

Holds the status of the XMLHttpRequest (0 to 4):
0: request not initialized
1: server connection established
2: request received
3: processing request
4: request finished and response is ready

status 200: "OK"
404: Page not found

 In the onreadystatechange event, we specify what
will happen when the server response is ready to
be processed

 When readyState is 4 and status is 200, the
response is ready:
xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {
 document.getElementById("myDiv").innerHTML=
 xmlhttp.responseText;
 }
}

 The onreadystatechange event is triggered four
times, one time for each change in readyState

 When a user types a character in the input field the function
"showHint()" is executed. The function is triggered by the "onkeyup"
event. JavaScript code:
function showHint(str) {
 var xmlhttp;
 if (str.length==0) {
 document.getElementById("txtHint").innerHTML="";
 return;
 }
 if (window.XMLHttpRequest) { // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
 } else { // code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {
 document.getElementById("txtHint").innerHTML=xmlhttp.responseText;
 }
 }
 xmlhttp.open("GET","gethint.asp?q="+str,true);
 xmlhttp.send();
}

 HTML code
 <form action="">
 Name: <input type="text" id="txt1" onkeyup="showHint(this.value)“ />
 </form>
 <p>Suggestions: </p>

 Ajax has a sandbox security model
◦ As a result, your AJAX code (and specifically, the

XMLHttpRequest object) can only make requests to
the same domain on which it's running
◦ That is, if you have AJAX code running on

www.foo.com, it must make requests to scripts and
pages that run on www.foo.com

	Introduction to Ajax
	What is AJAX?
	What is AJAX?
	Why AJAX?
	AJAX is Based on Internet Standards
	How AJAX Works
	How AJAX Works
	AJAX - Create an XMLHttpRequest Object
	AJAX - Send a Request to a Server
	AJAX - Send a Request to a Server
	AJAX - Send a Request to a Server
	AJAX - Send a Request to a Server
	AJAX - Send a Request to a Server
	AJAX - Send a Request to a Server
	AJAX - Send a Request to a Server
	AJAX - Server Response
	AJAX - Server Response
	AJAX - The onreadystatechange Event
	AJAX - The onreadystatechange Event
	Example �The showHint() Function
	A bit About AJAX Security

