
Chris Panayiotou 



 Needed for: 
◦ domain-specific applications 
◦ implementing new generic tools 

 Important components: 
◦ parsing XML documents into XML trees 
◦ navigating through XML trees 
◦ manipulating XML trees 
◦ serializing XML trees as XML documents 

 There are many APIs (standards) for 
manipulating XML 
◦ Examples include SAX, DOM 



 You want to read/write data from/to XML 
files, and you don't want to write an XML 
parser. 

 Applications: 
◦ processing an XML-tagged corpus 
◦ saving configs, prefs, parameters, etc. as XML files 
◦ sharing results with outside users in portable 

format 
 example: typed dependency relations 
◦ alternative to serialization for persistent stores 
 doesn't break with changes to class definition 
 human-readable 



 JAXP = Java API for XML Processing 
 Provides a common interface for creating and using the 

standard SAX, DOM, and XSLT APIs in Java. 
 All JAXP packages are included standard in JDK 1.4+. 

The key packages are: 

 
javax.xml.parsers The main JAXP APIs, which provide a common interface 

for various SAX and DOM parsers. 

org.w3c.dom Defines the Document class (a DOM), as well as classes 
for all of the components of a DOM. 

org.xml.sax Defines the basic SAX APIs. 

javax.xml.transform Defines the XSLT APIs that let you transform XML into 
other forms.  (Not covered today.) 



 javax.xml.parsers defines abstract classes DocumentBuilder (for 
DOM) and SAXParser (for SAX). 
◦ It also defines factory classes DocumentBuilderFactory and 

SAXParserFactory.  By default, these give you the “reference 
implementation” of DocumentBuilder and SAXParser, but they are intended 
to be vendor-neutral factory classes, so that you could swap in a different 
implementation if you preferred. 

 The JDK includes three XML parser implementations from 
Apache: 
◦ Crimson: The original.  Small and fast.  Based on code donated to Apache 

by Sun.  Standard implementation for J2SE 1.4. 
◦ Xerces: More features.  Supports XML Schema.  Based on code donated to 

Apache by IBM. 
◦ Xerces 2: The future.  Standard implementation for J2SE 5.0. 



SAX = Simple API for 
XML 

DOM = Document Object 
Model 

 Java-specific 
 interprets XML as a stream of 

events 
 you supply event-handling 

callbacks 
 SAX parser invokes your 

event-handlers as it parses 
 doesn't build data model in 

memory 
 serial access 
 very fast, lightweight 
 good choice when 
◦ no data model is needed, or 
◦ natural structure for data model 

is list, matrix, etc. 

 W3C standard for representing 
structured documents 

 platform and language neutral 
(not Java-specific!) 

 interprets XML as a tree of 
nodes 

 builds data model in memory 
 enables random access to data 
 therefore good for interactive 

apps 
 more CPU- and memory-

intensive 
 good choice when data model 

has natural tree structure 



 DOM reads the entire XML document into memory 
and stores it as a tree data structure 

 SAX reads the XML document and calls one of your 
methods for each element or block of text that it 
encounters 

 Consequences: 
◦ DOM provides “random access” into the XML document 
◦ SAX provides only sequential access to the XML document 
◦ DOM is slow and requires huge amounts of memory, so it 

cannot be used for large XML documents 
◦ SAX is fast and requires very little memory, so it can be 

used for huge documents (or large numbers of documents) 
 This makes SAX much more popular for web sites 

◦ Some DOM implementations have methods for changing 
the XML document in memory; SAX implementations do not 



 SAX works through callbacks: you call the 
parser, it calls methods that you supply 

Your program 

main(...) 

startDocument(...) 
  

startElement(...) 
 

characters(...) 
 

endElement( ) 
 

endDocument( ) 

parse(...) 

The SAX parser 



 Here’s the standard recipe for starting with SAX: 
 
 
 
 
 
 
 
 
 
 

 (This reflects SAX 1, which you can still use, but SAX 2 prefers 
a new incantation…) 

import javax.xml.parsers.*; 
import org.xml.sax.*; 
import org.xml.sax.helpers.*; 
 
// get a SAXParser object 
SAXParserFactory factory = SAXParserFactory.newInstance(); 
SAXParser saxParser = factory.newSAXParser(); 
 
// invoke parser using your custom content handler 
saxParser.parse(inputStream, myContentHandler); 
saxParser.parse(file, myContentHandler); 
saxParser.parse(url, myContentHandler); 



 In SAX 2, the following usage is preferred: 
 
 
 
 
 
 
 
 

 myContentHandler is class that you should write 

// tell SAX which XML parser you want (here, it’s Crimson) 
System.setProperty("org.xml.sax.driver", 

"org.apache.crimson.parser.XMLReaderImpl"); 
 
// get an XMLReader object 
XMLReader reader = XMLReaderFactory.createXMLReader(); 
 
// tell the XMLReader to use your custom content handler 
reader.setContentHandler(myContentHandler); 
 
// Have the XMLReader parse input from Reader myReader: 
reader.parse(new InputSource(myReader)); 
 



 Easiest route: define a new class which 
extends org.xml.sax.helpers.DefaultHandler. 

 Override event-handling methods from 
DefaultHandler: 
 
 
 
 

startDocument() // receive notice of start of document 
endDocument() // receive notice of end of document 
startElement() // receive notice of start of each element 
endElement()  
 

// receive notice of end of each element 

characters() // receive a chunk of character data 
error() // receive notice of recoverable parser error 

// ...plus more... 



 The SAXParser invokes your callbacks to notify you of events: 
 
 
 
 
 
 
 
 

 For simple usage, ignore namespaceURI and localName, and just use qName 
(the “qualified” name). 

 XML namespaces are described in an appendix, below. 
 startElement() and endElement() events always come in pairs: 
◦ “<foo/>” will generate calls: 

startElement("", "", "foo", null) 
endElement("", "", "foo“) 

startElement(String namespaceURI, // for use w/ namespaces 
      String localName, // for use w/ namespaces 
      String qName,  // "qualified" name -- use this one! 
      Attributes atts) 
 
endElement(String namespaceURI, 
    String localName, 
    String qName) 



 Every call to startElement() includes an 
Attributes object which represents all the XML 
attributes for that element. 

 Methods in the Attributes interface:     

getLength() // return number of attributes 
getIndex(String qName)  // look up attribute's index by qName 
getValue(String qName)  // look up attribute's value by qName 
getValue(int index)  // look up attribute's value by index 

// ... and others … 



 The characters() event handler receives notification 
of character data (i.e. content that is not part of 
an XML element): 
 
 
 
 
 

 May be called multiple times within each block of 
character data—for example, once per line. 

 So, you may want to use calls to characters() to 
accumulate characters in a StringBuffer, and stop 
accumulating at the next call to startElement(). 

public void characters(char[] ch,     // buffer containing chars 
             int start,     // start position in buffer 
             int length)   // num of chars to read 



 The following program is adapted from CodeNotes® 
for XML by Gregory Brill, pages 158-159 

 The program consists of two classes: 
◦ Sample -- This class contains the main method; it 
 Gets a factory to make parsers 
 Gets a parser from the factory 
 Creates a Handler object to handle callbacks from the parser 
 Tells the parser which handler to send its callbacks to 
 Reads and parses the input XML file 

◦ Handler -- This class contains handlers for three kinds of 
callbacks: 
 startElement callbacks, generated when a start tag is seen 
 endElement callbacks, generated when an end tag is seen 
 characters callbacks, generated for the contents of an element 



import javax.xml.parsers.*;   // for both SAX and DOM 
import org.xml.sax.*; 
import org.xml.sax.helpers.*; 
 
public class Sample { 
    public static void main(String args[]) { 
       // Create a parser factory 
       SAXParserFactory factory = SAXParserFactory.newInstance(); 
       // Tell factory that the parser must understand namespaces 
       factory.setNamespaceAware(true); 
       // Make the parser 
        SAXParser saxParser = factory.newSAXParser(); 
        XMLReader parser = saxParser.getXMLReader(); 
       // Create a handler and tell the parser to use it 
        parser.setContentHandler(new Handler()); 
        // Finally, read and parse the document 
        parser.parse("hello.xml"); 
    } 



public class Handler extends DefaultHandler { 
// DefaultHandler is an adapter class that defines these methods and others as do-nothing  
// methods, to be overridden as desired. We will define three very similar methods to  
// handle (1) start tags, (2) contents, and (3) end tags--our methods will just print a line 
 
    // SAX calls this method when it encounters a start tag 
    public void startElement(String namespaceURI,  String localName, String qualifiedName,   
             Attributes attr) throws SAXException { 
        System.out.println("startElement: " + qualifiedName); 
    } 
   // SAX calls this method to pass in character data 
    public void characters(char ch[], int start, int length)  throws SAXException { 
        System.out.println("characters: \"" + new String(ch, start, length) + "\""); 
    } 
    // SAX call this method when it encounters an end tag 
    public void endElement(String nsURI, String lName, String qName)  throws SAXException { 
        System.out.println("Element: /" + qName); 
    } 
} 



 If the file hello.xml contains: 
 
     <?xml version="1.0"?> 
     <display>Hello World!</display> 
 

 Then the output from running java Sample 
will be: 
 
     startElement: display 
     characters: "Hello World!" 
     Element: /display 
 



Hello.xml Result 

<?xml version="1.0"?> 
<display> 
    <i>Hello</i> World! 
</display> 
 
 Notice that the root 

element, <display>, now 
contains a nested 
element <i> and some 
whitespace (including 
newlines) 

 The result will be as 
shown at the right: 
 

 
startElement: display 
characters: ""        // empty String 
characters: " 
"         // new line 
characters: "      "   // spaces   
startElement: i 
characters: "Hello" 
endElement: /i 
characters:  "World!" 
characters: "  
“                             // new line 
endElement: /display 



 A factory is an alternative to constructors 
 To create a SAX parser factory, call this method: 

SAXParserFactory.newInstance() 
◦ This returns an object of type SAXParserFactory 
◦ It may throw a  FactoryConfigurationError 

 You can then say what kind of parser you want: 
◦ public void setNamespaceAware(boolean awareness) 
 Used if you are using namespaces 
 The default is false 

◦ public void setValidating(boolean validating) 
 Used if you want to validate against a DTD 
 The default is false 
 Validation will give an error if you don’t have a DTD 



 Once you have a SAXParserFactory set up you can 
create a parser with: 
  SAXParser saxParser = factory.newSAXParser(); 
  XMLReader parser = saxParser.getXMLReader(); 

 Older implementation may use Parser instead of 
XMLReader 
◦ Parser is SAX1, not SAX2, and is now deprecated 
◦ SAX2 supports namespaces and some new parser 

properties 
 SAXParser is not thread-safe 
◦ To use it in multiple threads, create a separate 

SAXParser for each thread 



 Since the SAX parser will be calling our methods, 
we need to supply these methods 

 In the example these are in a separate class, 
Handler 

 We need to tell the parser where to find the 
methods: 
     parser.setContentHandler(new Handler()); 

 Finally, we call the parser and tell it what file to 
parse: 
     parser.parse("hello.xml"); 

 Everything else will be done in the handler 
methods 



 A callback handler for SAX must implement these four 
interfaces: 
◦ interface ContentHandler 
 This is the most important interface--it handles basic parsing 

callbacks, such as element starts and ends 
◦ interface DTDHandler 
 Handles only notation and unparsed entity declarations 

◦ interface EntityResolver 
 Does customized handling for external entities 

◦ interface ErrorHandler 
 Must be implemented or parsing errors will be ignored! 

 You could implement all these interfaces yourself, but 
that’s a lot of work--it’s easier to use an adapter class 



 As already mentioned the easiest way to create a 
SAX handler is to extend the class DefaultHandler 

 DefaultHandler is in package org.xml.sax.helpers  
 DefaultHandler implements ContentHandler, 

DTDHandler, EntityResolver, and ErrorHandler  
 DefaultHandler is an adapter class--it provides 

empty methods for every method declared in 
each of the four interfaces 

 To use this class, extend it and override the 
methods that are important to your application 
◦ We already covered the most basic methods 
◦ You can find more methods in the methods in the 

ContentHandler and ErrorHandler interfaces 



 Whitespace is a major nuisance 
◦ Whitespace is characters; characters are PCDATA 
◦ If you are validating, the parser will ignore whitespace 

where PCDATA is not allowed by the DTD 
◦ If you are not validating, the parser cannot ignore 

whitespace 
◦ If you ignore whitespace, you lose your indentation 

 To ignore whitespace  
◦ When validating happens automatically 
◦ When not validating use the String function trim() to 

remove whitespace and then check the result to see if it 
is the empty string 



 A nonvalidating parser cannot ignore whitespace, 
because it cannot distinguish it from real data 

 A validating parser can, and does, ignore 
whitespace where character data is not allowed 
◦ For processing XML, this is usually what you want 
◦ However, if you are manipulating and writing out XML, 

discarding whitespace ruins your indentation 
◦ To capture ignorable whitespace, you can override this 

method (defined in DefaultHandler): 
 

public void ignorableWhitespace(char[] ch, int start, int length) 
throws SAXException 

 

 Parameters are the same as those for characters 



 SAX error handling is unusual 
 Most errors are ignored unless you register 

an error handler (org.xml.sax.ErrorHandler) 
◦ Ignored errors can cause bizarre behavior 
◦ Failing to provide an error handler is unwise 

 The ErrorHandler interface has the following 
methods: 
◦ public void fatalError (SAXParseException exception) 

                 throws SAXException  // XML not well structured 
◦ public void error (SAXParseException exception) 

                 throws SAXException  // XML validation error 
◦ public void warning (SAXParseException exception) 

                 throws SAXException  // minor problem 



 If you are extending DefaultHandler, it implements 
ErrorHandler and registers itself 
◦ DefaultHandler’s version of fatalError() throws a SAXException, 

but... 
◦ its error() and warning() methods do nothing!  

 You should override these methods 
 Note that the only kind of exception your override 

methods can throw is a SAXException 
◦ When you override a method, you cannot add exception types 
◦ If you need to throw another kind of exception, say an 

IOException, you can encapsulate it in a SAXException: 
catch (IOException ioException) { 
     throw new SAXException("I/O error: ", ioException) 
} 



 If you are not extending DefaultHandler: 
◦ Create a new class (e.g. MyErrorHandler) that 

implements ErrorHandler 
◦ Create a new object of this class 
◦ Tell your XMLReader object about it by sending 

calling the method setErrorHandler(ErrorHandler 
handler) 

 Example: 
 XMLReader parser = saxParser.getXMLReader(); 
 parser.setErrorHandler(new MyErrorHandler()); 



 An object-based, language-neutral API for XML and HTML 
documents 
◦ allows programs and scripts to build documents, navigate their 

structure, add, modify or delete elements and content 
◦ Provides a foundation for developing querying, filtering, 

transformation, rendering etc. applications on top of DOM 
implementations 

 Based on OO concepts: 
◦ methods – to access or change object’s state) 
◦ interfaces  – declaration of a set of methods  
◦ objects – encapsulation of data and methods 

 Roughly similar to the XSLT/XPath data model 
◦ Tree-like structure implied by the abstract relationships defined 

by the programming interfaces 
 Essentially it allows treating XML documents as trees 

comprised of nodes 
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 This program is adapted from CodeNotes® for XML by Gregory 
Brill, page 128 

import javax.xml.parsers.*; 
import org.w3c.dom.*; 
 
public class SimpleDom { 
    public static void main(String args[]) { 
        try { 
            // Create a DOM parser  
            DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); 
            DocumentBuilder builder = factory.newDocumentBuilder(); 
            // Load an XML file for parsing 
            Document document = builder.parse("hello.xml"); 
            // Find the content of the root element and prints it  
            Element root = document.getDocumentElement(); 
            Node textNode = root.getFirstChild(); 
            System.out.println(textNode.getNodeValue()); 
        } catch (Exception e) { 
            e.printStackTrace(System.out); 
        } 
    } 
} 



 The parse method reads in the entire XML 
document and represents it as a tree in memory 
◦ For a large document, parsing could take a while 
◦ If you want to interact with your program while it is 

parsing, you need to parse in a separate thread 
 Once parsing starts, you cannot interrupt or stop it 
 Do not try to access the parse tree until parsing is done 

 An XML parse tree may require up to ten times as 
much memory as the original XML document 
◦ If you have a lot of tree manipulation to do, DOM is 

much more convenient than SAX 
◦ If you don’t have a lot of tree manipulation to do, 

consider using SAX instead  



 The DOM tree is composed of Node objects 
 Node is an interface 
◦ Some of the more important subinterfaces are 

Element, Attr, and Text 
 An Element node may have children 
 Attr and Text nodes are leaves 
◦ Additional types are Document, 

ProcessingInstruction, Comment, Entity, 
CDATASection and several others 

 Hence, the DOM tree is composed entirely of 
Node objects, but the Node objects can be 
downcast into more specific types as needed 



 The results returned by getNodeName(), 
getNodeValue(), getNodeType() and getAttributes() 
depend on the subtype of the node, as follows 
◦ Tip: You can use switch to easily tell what kind of a node you 

are dealing  
◦ switch(node.getNodeType()) { 

 case Node.ELEMENT_NODE: 
  Element element = (Element)node; ...;  break; 
 case Node.TEXT_NODE: 
  Text text = (Text)node; … break; 
 case Node.ATTRIBUTE_NODE: 
  Attr attr = (Attr)node; …  break; 
 default: … 
} 

Element Text  Attr 

getNodeName() tag name “#text” name of attribute  

getNodeValue() null text contents  value of attribute  

getNodeType() ELEMENT_NODE TEXT_NODE ATTRIBUTE_NODE 

getAttributes() NamedNodeMap null null 



 Tree-walking operations that return a Node: 
◦ getParentNode() 
◦ getFirstChild() 
◦ getNextSibling() 
◦ getPreviousSibling() 
◦ getLastChild() 

 
 Tests that return a boolean: 
◦ hasAttributes() 
◦ hasChildNodes() 
 



 String getTagName() 
◦ Returns the name of the tag  

 boolean hasAttribute(String name) 
◦ Returns true if this Element has the named attribute 

 String getAttribute(String name) 
◦ Returns the (String) value of the named attribute 

 boolean hasAttributes() 
◦ Returns true if this Element has any attributes 
◦ This method is actually inherited from Node 
 Returns false if it is applied to a Node that isn’t an Element  

 NamedNodeMap getAttributes() 
◦ Returns a NamedNodeMap of all the Element’s attributes 
◦ This method is actually inherited from Node 
 Returns null if it is applied to a Node that isn’t an Element 



 The node.getAttributes() method returns a 
NamedNodeMap 
◦ Because NamedNodeMaps are used for other kinds of 

nodes (elsewhere in Java), the contents are treated as 
general Nodes, not specifically as Attrs  

 Some methods of NamedNodeMap are: 
◦ getNamedItem(String name) returns (as a Node) the 

attribute with the given name 
◦ getLength() returns (as an int) the number of Nodes in 

this NamedNodeMap  
◦ item(int index) returns (as a Node) the nth item 
 This operation lets you conveniently step through all the 

nodes in the NamedNodeMap 
 Java does not guarantee the order in which nodes are 

returned  



 Text is a subinterface of CharacterData and 
inherits the following methods (among 
others): 
◦ public String getData() throws DOMException 
 Returns the text contents of this Text node 
◦ public int getLength() 
 Returns the number of Unicode characters in the text 
◦ public String substringData(int offset, int count) 

                      throws DOMException 
 Returns a substring of the text contents 



 String getName()  
◦ Returns the name of this attribute.  

  Element getOwnerElement()  
◦ Returns the Element node this attribute is attached 

to, or null if this attribute is not in use 
  boolean getSpecified()  
◦ Returns true if this attribute was explicitly given a 

value in the original document 
  String getValue()  
◦ Returns the value of the attribute as a String  
 



 The DOM is stored in memory as a tree 
 An easy way to traverse a tree is in preorder 
◦ That is we first visit the root and then traverse each 

subtree, in order 
 

 static void simplePreorderPrint(String indent, Node node) { 
        printNode(indent, node); 
        if(node.hasChildNodes()) { 
            Node child = node.getFirstChild(); 
            while (child != null) { 
                simplePreorderPrint(indent + "  ", child); 
                child = child.getNextSibling(); 
            } 
        } 
    } 
 static void printNode(String indent, Node node) { 
        System.out.print(indent); 
        System.out.print(node.getNodeType() + " "); 
        System.out.print(node.getNodeName() + " "); 
        System.out.print(node.getNodeValue() + " "); 
        System.out.println(node.getAttributes()); 
    }  



Input Output 

<?xml version="1.0"?> 
<novel> 
  <chapter num="1">The Beginning</chapter> 
  <chapter num="2">The Middle</chapter> 
  <chapter num="3">The End</chapter> 
</novel> 
 Things to think about: 
◦ What are the numbers? 
◦ Are the nulls in the right places? 
◦ Is the indentation as expected? 
◦ How could this program be 

improved? 

1 novel null 
  3 #text 
   null 
  1 chapter null  num="1" 
    3 #text The Beginning null 
  3 #text 
   null 
  1 chapter null  num="2" 
    3 #text The Middle null 
  3 #text 
   null 
  1 chapter null  num="3" 
    3 #text The End null 
  3 #text 
 null 

 



 There are some methods that allow you to 
modify the DOM tree, for example: 
◦ setNodeValue(String nodeValue) 
◦ insertBefore(Node newChild, Node refChild) 

 Java provides a large number of these operations 
 These operations are not part of the W3C 

specifications 
 There is no standardized way to write out a DOM 

as an XML document 
◦ It isn’t that hard to write out the XML 
◦ The previous program is a good start on outputting XML 
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