
Chris Panayiotou

 Needed for:
◦ domain-specific applications
◦ implementing new generic tools

 Important components:
◦ parsing XML documents into XML trees
◦ navigating through XML trees
◦ manipulating XML trees
◦ serializing XML trees as XML documents

 There are many APIs (standards) for
manipulating XML
◦ Examples include SAX, DOM

 You want to read/write data from/to XML
files, and you don't want to write an XML
parser.

 Applications:
◦ processing an XML-tagged corpus
◦ saving configs, prefs, parameters, etc. as XML files
◦ sharing results with outside users in portable

format
 example: typed dependency relations
◦ alternative to serialization for persistent stores
 doesn't break with changes to class definition
 human-readable

 JAXP = Java API for XML Processing
 Provides a common interface for creating and using the

standard SAX, DOM, and XSLT APIs in Java.
 All JAXP packages are included standard in JDK 1.4+.

The key packages are:

javax.xml.parsers The main JAXP APIs, which provide a common interface

for various SAX and DOM parsers.

org.w3c.dom Defines the Document class (a DOM), as well as classes
for all of the components of a DOM.

org.xml.sax Defines the basic SAX APIs.

javax.xml.transform Defines the XSLT APIs that let you transform XML into
other forms. (Not covered today.)

 javax.xml.parsers defines abstract classes DocumentBuilder (for
DOM) and SAXParser (for SAX).
◦ It also defines factory classes DocumentBuilderFactory and

SAXParserFactory. By default, these give you the “reference
implementation” of DocumentBuilder and SAXParser, but they are intended
to be vendor-neutral factory classes, so that you could swap in a different
implementation if you preferred.

 The JDK includes three XML parser implementations from
Apache:
◦ Crimson: The original. Small and fast. Based on code donated to Apache

by Sun. Standard implementation for J2SE 1.4.
◦ Xerces: More features. Supports XML Schema. Based on code donated to

Apache by IBM.
◦ Xerces 2: The future. Standard implementation for J2SE 5.0.

SAX = Simple API for
XML

DOM = Document Object
Model

 Java-specific
 interprets XML as a stream of

events
 you supply event-handling

callbacks
 SAX parser invokes your

event-handlers as it parses
 doesn't build data model in

memory
 serial access
 very fast, lightweight
 good choice when
◦ no data model is needed, or
◦ natural structure for data model

is list, matrix, etc.

 W3C standard for representing
structured documents

 platform and language neutral
(not Java-specific!)

 interprets XML as a tree of
nodes

 builds data model in memory
 enables random access to data
 therefore good for interactive

apps
 more CPU- and memory-

intensive
 good choice when data model

has natural tree structure

 DOM reads the entire XML document into memory
and stores it as a tree data structure

 SAX reads the XML document and calls one of your
methods for each element or block of text that it
encounters

 Consequences:
◦ DOM provides “random access” into the XML document
◦ SAX provides only sequential access to the XML document
◦ DOM is slow and requires huge amounts of memory, so it

cannot be used for large XML documents
◦ SAX is fast and requires very little memory, so it can be

used for huge documents (or large numbers of documents)
 This makes SAX much more popular for web sites

◦ Some DOM implementations have methods for changing
the XML document in memory; SAX implementations do not

 SAX works through callbacks: you call the
parser, it calls methods that you supply

Your program

main(...)

startDocument(...)

startElement(...)

characters(...)

endElement()

endDocument()

parse(...)

The SAX parser

 Here’s the standard recipe for starting with SAX:

 (This reflects SAX 1, which you can still use, but SAX 2 prefers
a new incantation…)

import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

// get a SAXParser object
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();

// invoke parser using your custom content handler
saxParser.parse(inputStream, myContentHandler);
saxParser.parse(file, myContentHandler);
saxParser.parse(url, myContentHandler);

 In SAX 2, the following usage is preferred:

 myContentHandler is class that you should write

// tell SAX which XML parser you want (here, it’s Crimson)
System.setProperty("org.xml.sax.driver",

"org.apache.crimson.parser.XMLReaderImpl");

// get an XMLReader object
XMLReader reader = XMLReaderFactory.createXMLReader();

// tell the XMLReader to use your custom content handler
reader.setContentHandler(myContentHandler);

// Have the XMLReader parse input from Reader myReader:
reader.parse(new InputSource(myReader));

 Easiest route: define a new class which
extends org.xml.sax.helpers.DefaultHandler.

 Override event-handling methods from
DefaultHandler:

startDocument() // receive notice of start of document
endDocument() // receive notice of end of document
startElement() // receive notice of start of each element
endElement()

// receive notice of end of each element

characters() // receive a chunk of character data
error() // receive notice of recoverable parser error

// ...plus more...

 The SAXParser invokes your callbacks to notify you of events:

 For simple usage, ignore namespaceURI and localName, and just use qName
(the “qualified” name).

 XML namespaces are described in an appendix, below.
 startElement() and endElement() events always come in pairs:
◦ “<foo/>” will generate calls:

startElement("", "", "foo", null)
endElement("", "", "foo“)

startElement(String namespaceURI, // for use w/ namespaces
 String localName, // for use w/ namespaces
 String qName, // "qualified" name -- use this one!
 Attributes atts)

endElement(String namespaceURI,
 String localName,
 String qName)

 Every call to startElement() includes an
Attributes object which represents all the XML
attributes for that element.

 Methods in the Attributes interface:

getLength() // return number of attributes
getIndex(String qName) // look up attribute's index by qName
getValue(String qName) // look up attribute's value by qName
getValue(int index) // look up attribute's value by index

// ... and others …

 The characters() event handler receives notification
of character data (i.e. content that is not part of
an XML element):

 May be called multiple times within each block of
character data—for example, once per line.

 So, you may want to use calls to characters() to
accumulate characters in a StringBuffer, and stop
accumulating at the next call to startElement().

public void characters(char[] ch, // buffer containing chars
 int start, // start position in buffer
 int length) // num of chars to read

 The following program is adapted from CodeNotes®
for XML by Gregory Brill, pages 158-159

 The program consists of two classes:
◦ Sample -- This class contains the main method; it
 Gets a factory to make parsers
 Gets a parser from the factory
 Creates a Handler object to handle callbacks from the parser
 Tells the parser which handler to send its callbacks to
 Reads and parses the input XML file

◦ Handler -- This class contains handlers for three kinds of
callbacks:
 startElement callbacks, generated when a start tag is seen
 endElement callbacks, generated when an end tag is seen
 characters callbacks, generated for the contents of an element

import javax.xml.parsers.*; // for both SAX and DOM
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class Sample {
 public static void main(String args[]) {
 // Create a parser factory
 SAXParserFactory factory = SAXParserFactory.newInstance();
 // Tell factory that the parser must understand namespaces
 factory.setNamespaceAware(true);
 // Make the parser
 SAXParser saxParser = factory.newSAXParser();
 XMLReader parser = saxParser.getXMLReader();
 // Create a handler and tell the parser to use it
 parser.setContentHandler(new Handler());
 // Finally, read and parse the document
 parser.parse("hello.xml");
 }

public class Handler extends DefaultHandler {
// DefaultHandler is an adapter class that defines these methods and others as do-nothing
// methods, to be overridden as desired. We will define three very similar methods to
// handle (1) start tags, (2) contents, and (3) end tags--our methods will just print a line

 // SAX calls this method when it encounters a start tag
 public void startElement(String namespaceURI, String localName, String qualifiedName,
 Attributes attr) throws SAXException {
 System.out.println("startElement: " + qualifiedName);
 }
 // SAX calls this method to pass in character data
 public void characters(char ch[], int start, int length) throws SAXException {
 System.out.println("characters: \"" + new String(ch, start, length) + "\"");
 }
 // SAX call this method when it encounters an end tag
 public void endElement(String nsURI, String lName, String qName) throws SAXException {
 System.out.println("Element: /" + qName);
 }
}

 If the file hello.xml contains:

 <?xml version="1.0"?>
 <display>Hello World!</display>

 Then the output from running java Sample
will be:

 startElement: display
 characters: "Hello World!"
 Element: /display

Hello.xml Result

<?xml version="1.0"?>
<display>
 <i>Hello</i> World!
</display>

 Notice that the root

element, <display>, now
contains a nested
element <i> and some
whitespace (including
newlines)

 The result will be as
shown at the right:

startElement: display
characters: "" // empty String
characters: "
" // new line
characters: " " // spaces
startElement: i
characters: "Hello"
endElement: /i
characters: "World!"
characters: "
“ // new line
endElement: /display

 A factory is an alternative to constructors
 To create a SAX parser factory, call this method:

SAXParserFactory.newInstance()
◦ This returns an object of type SAXParserFactory
◦ It may throw a FactoryConfigurationError

 You can then say what kind of parser you want:
◦ public void setNamespaceAware(boolean awareness)
 Used if you are using namespaces
 The default is false

◦ public void setValidating(boolean validating)
 Used if you want to validate against a DTD
 The default is false
 Validation will give an error if you don’t have a DTD

 Once you have a SAXParserFactory set up you can
create a parser with:
 SAXParser saxParser = factory.newSAXParser();
 XMLReader parser = saxParser.getXMLReader();

 Older implementation may use Parser instead of
XMLReader
◦ Parser is SAX1, not SAX2, and is now deprecated
◦ SAX2 supports namespaces and some new parser

properties
 SAXParser is not thread-safe
◦ To use it in multiple threads, create a separate

SAXParser for each thread

 Since the SAX parser will be calling our methods,
we need to supply these methods

 In the example these are in a separate class,
Handler

 We need to tell the parser where to find the
methods:
 parser.setContentHandler(new Handler());

 Finally, we call the parser and tell it what file to
parse:
 parser.parse("hello.xml");

 Everything else will be done in the handler
methods

 A callback handler for SAX must implement these four
interfaces:
◦ interface ContentHandler
 This is the most important interface--it handles basic parsing

callbacks, such as element starts and ends
◦ interface DTDHandler
 Handles only notation and unparsed entity declarations

◦ interface EntityResolver
 Does customized handling for external entities

◦ interface ErrorHandler
 Must be implemented or parsing errors will be ignored!

 You could implement all these interfaces yourself, but
that’s a lot of work--it’s easier to use an adapter class

 As already mentioned the easiest way to create a
SAX handler is to extend the class DefaultHandler

 DefaultHandler is in package org.xml.sax.helpers
 DefaultHandler implements ContentHandler,

DTDHandler, EntityResolver, and ErrorHandler
 DefaultHandler is an adapter class--it provides

empty methods for every method declared in
each of the four interfaces

 To use this class, extend it and override the
methods that are important to your application
◦ We already covered the most basic methods
◦ You can find more methods in the methods in the

ContentHandler and ErrorHandler interfaces

 Whitespace is a major nuisance
◦ Whitespace is characters; characters are PCDATA
◦ If you are validating, the parser will ignore whitespace

where PCDATA is not allowed by the DTD
◦ If you are not validating, the parser cannot ignore

whitespace
◦ If you ignore whitespace, you lose your indentation

 To ignore whitespace
◦ When validating happens automatically
◦ When not validating use the String function trim() to

remove whitespace and then check the result to see if it
is the empty string

 A nonvalidating parser cannot ignore whitespace,
because it cannot distinguish it from real data

 A validating parser can, and does, ignore
whitespace where character data is not allowed
◦ For processing XML, this is usually what you want
◦ However, if you are manipulating and writing out XML,

discarding whitespace ruins your indentation
◦ To capture ignorable whitespace, you can override this

method (defined in DefaultHandler):

public void ignorableWhitespace(char[] ch, int start, int length)
throws SAXException

 Parameters are the same as those for characters

 SAX error handling is unusual
 Most errors are ignored unless you register

an error handler (org.xml.sax.ErrorHandler)
◦ Ignored errors can cause bizarre behavior
◦ Failing to provide an error handler is unwise

 The ErrorHandler interface has the following
methods:
◦ public void fatalError (SAXParseException exception)

 throws SAXException // XML not well structured
◦ public void error (SAXParseException exception)

 throws SAXException // XML validation error
◦ public void warning (SAXParseException exception)

 throws SAXException // minor problem

 If you are extending DefaultHandler, it implements
ErrorHandler and registers itself
◦ DefaultHandler’s version of fatalError() throws a SAXException,

but...
◦ its error() and warning() methods do nothing!

 You should override these methods
 Note that the only kind of exception your override

methods can throw is a SAXException
◦ When you override a method, you cannot add exception types
◦ If you need to throw another kind of exception, say an

IOException, you can encapsulate it in a SAXException:
catch (IOException ioException) {
 throw new SAXException("I/O error: ", ioException)
}

 If you are not extending DefaultHandler:
◦ Create a new class (e.g. MyErrorHandler) that

implements ErrorHandler
◦ Create a new object of this class
◦ Tell your XMLReader object about it by sending

calling the method setErrorHandler(ErrorHandler
handler)

 Example:
 XMLReader parser = saxParser.getXMLReader();
 parser.setErrorHandler(new MyErrorHandler());

 An object-based, language-neutral API for XML and HTML
documents
◦ allows programs and scripts to build documents, navigate their

structure, add, modify or delete elements and content
◦ Provides a foundation for developing querying, filtering,

transformation, rendering etc. applications on top of DOM
implementations

 Based on OO concepts:
◦ methods – to access or change object’s state)
◦ interfaces – declaration of a set of methods
◦ objects – encapsulation of data and methods

 Roughly similar to the XSLT/XPath data model
◦ Tree-like structure implied by the abstract relationships defined

by the programming interfaces
 Essentially it allows treating XML documents as trees

comprised of nodes

SDPL 2002 Notes 3.2: Document Object Model 30

 This program is adapted from CodeNotes® for XML by Gregory
Brill, page 128

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class SimpleDom {
 public static void main(String args[]) {
 try {
 // Create a DOM parser
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = factory.newDocumentBuilder();
 // Load an XML file for parsing
 Document document = builder.parse("hello.xml");
 // Find the content of the root element and prints it
 Element root = document.getDocumentElement();
 Node textNode = root.getFirstChild();
 System.out.println(textNode.getNodeValue());
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
 }
}

 The parse method reads in the entire XML
document and represents it as a tree in memory
◦ For a large document, parsing could take a while
◦ If you want to interact with your program while it is

parsing, you need to parse in a separate thread
 Once parsing starts, you cannot interrupt or stop it
 Do not try to access the parse tree until parsing is done

 An XML parse tree may require up to ten times as
much memory as the original XML document
◦ If you have a lot of tree manipulation to do, DOM is

much more convenient than SAX
◦ If you don’t have a lot of tree manipulation to do,

consider using SAX instead

 The DOM tree is composed of Node objects
 Node is an interface
◦ Some of the more important subinterfaces are

Element, Attr, and Text
 An Element node may have children
 Attr and Text nodes are leaves
◦ Additional types are Document,

ProcessingInstruction, Comment, Entity,
CDATASection and several others

 Hence, the DOM tree is composed entirely of
Node objects, but the Node objects can be
downcast into more specific types as needed

 The results returned by getNodeName(),
getNodeValue(), getNodeType() and getAttributes()
depend on the subtype of the node, as follows
◦ Tip: You can use switch to easily tell what kind of a node you

are dealing
◦ switch(node.getNodeType()) {

 case Node.ELEMENT_NODE:
 Element element = (Element)node; ...; break;
 case Node.TEXT_NODE:
 Text text = (Text)node; … break;
 case Node.ATTRIBUTE_NODE:
 Attr attr = (Attr)node; … break;
 default: …
}

Element Text Attr

getNodeName() tag name “#text” name of attribute

getNodeValue() null text contents value of attribute

getNodeType() ELEMENT_NODE TEXT_NODE ATTRIBUTE_NODE

getAttributes() NamedNodeMap null null

 Tree-walking operations that return a Node:
◦ getParentNode()
◦ getFirstChild()
◦ getNextSibling()
◦ getPreviousSibling()
◦ getLastChild()

 Tests that return a boolean:
◦ hasAttributes()
◦ hasChildNodes()

 String getTagName()
◦ Returns the name of the tag

 boolean hasAttribute(String name)
◦ Returns true if this Element has the named attribute

 String getAttribute(String name)
◦ Returns the (String) value of the named attribute

 boolean hasAttributes()
◦ Returns true if this Element has any attributes
◦ This method is actually inherited from Node
 Returns false if it is applied to a Node that isn’t an Element

 NamedNodeMap getAttributes()
◦ Returns a NamedNodeMap of all the Element’s attributes
◦ This method is actually inherited from Node
 Returns null if it is applied to a Node that isn’t an Element

 The node.getAttributes() method returns a
NamedNodeMap
◦ Because NamedNodeMaps are used for other kinds of

nodes (elsewhere in Java), the contents are treated as
general Nodes, not specifically as Attrs

 Some methods of NamedNodeMap are:
◦ getNamedItem(String name) returns (as a Node) the

attribute with the given name
◦ getLength() returns (as an int) the number of Nodes in

this NamedNodeMap
◦ item(int index) returns (as a Node) the nth item
 This operation lets you conveniently step through all the

nodes in the NamedNodeMap
 Java does not guarantee the order in which nodes are

returned

 Text is a subinterface of CharacterData and
inherits the following methods (among
others):
◦ public String getData() throws DOMException
 Returns the text contents of this Text node
◦ public int getLength()
 Returns the number of Unicode characters in the text
◦ public String substringData(int offset, int count)

 throws DOMException
 Returns a substring of the text contents

 String getName()
◦ Returns the name of this attribute.

 Element getOwnerElement()
◦ Returns the Element node this attribute is attached

to, or null if this attribute is not in use
 boolean getSpecified()
◦ Returns true if this attribute was explicitly given a

value in the original document
 String getValue()
◦ Returns the value of the attribute as a String

 The DOM is stored in memory as a tree
 An easy way to traverse a tree is in preorder
◦ That is we first visit the root and then traverse each

subtree, in order

 static void simplePreorderPrint(String indent, Node node) {
 printNode(indent, node);
 if(node.hasChildNodes()) {
 Node child = node.getFirstChild();
 while (child != null) {
 simplePreorderPrint(indent + " ", child);
 child = child.getNextSibling();
 }
 }
 }
 static void printNode(String indent, Node node) {
 System.out.print(indent);
 System.out.print(node.getNodeType() + " ");
 System.out.print(node.getNodeName() + " ");
 System.out.print(node.getNodeValue() + " ");
 System.out.println(node.getAttributes());
 }

Input Output

<?xml version="1.0"?>
<novel>
 <chapter num="1">The Beginning</chapter>
 <chapter num="2">The Middle</chapter>
 <chapter num="3">The End</chapter>
</novel>
 Things to think about:
◦ What are the numbers?
◦ Are the nulls in the right places?
◦ Is the indentation as expected?
◦ How could this program be

improved?

1 novel null
 3 #text
 null
 1 chapter null num="1"
 3 #text The Beginning null
 3 #text
 null
 1 chapter null num="2"
 3 #text The Middle null
 3 #text
 null
 1 chapter null num="3"
 3 #text The End null
 3 #text
 null

 There are some methods that allow you to
modify the DOM tree, for example:
◦ setNodeValue(String nodeValue)
◦ insertBefore(Node newChild, Node refChild)

 Java provides a large number of these operations
 These operations are not part of the W3C

specifications
 There is no standardized way to write out a DOM

as an XML document
◦ It isn’t that hard to write out the XML
◦ The previous program is a good start on outputting XML

	Introduction to XML Programming
	General Purpose XML Programming
	What are XML APIs for?
	Overview of JAXP
	JAXP XML Parsers
	SAX vs. DOM
	SAX vs. DOM
	Callbacks
	Using SAX
	Using SAX 2
	Defining a ContentHandler
	startElement()and endElement()
	SAX Attributes
	SAX characters()
	Simple SAX program
	The Sample class
	The Handler class
	Results
	More results
	Example Notes: Parser factories
	Example Notes: Getting a parser
	Example Notes: Declaring which handler to use
	SAX handlers
	Class DefaultHandler
	Whitespace
	Handling ignorable whitespace
	Error Handling with SAX
	Error Handling with SAX
	Error Handling with SAX
	DOM: What is it?
	A simple DOM program
	Reading in the tree
	Structure of the DOM tree
	Methods of Node objects
	Methods of Node objects
	Methods of Element objects
	NamedNodeMap
	Methods of Text objects
	Methods of Attr objects
	Preorder traversal
	Trying out the program
	Additional DOM methods

