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Abstract

Paxos is a well known algorithm for achieving consensus in distributeidoemaents with uncertain processing
and communication timing. Implementations of its variants have been sfisltgsised in the industry (egGhubby
by Google Autopilot cluster managemeintBing by Microsoft, and many others). This paper addresses the nalle
of the manual coding of complex distributed algorithms, such as Paxwerevihis is an error prone process. Our
approach in ensuring correctimplementation is to use a verified automansthtor to compile a source specification
that has been proven to be itself correct. We use specification of the Biyayithm in theGeneral Timed Automata
(GTA) model, an extension of I/O Automata, as input to an augmented i@nfipr the Input/Output Automata
notation(a.k.a., the IOA compiler) in order to generate executable Java ddueresulting code is interfaced with
MPI for communication needs. We have extended the IOA compiler toostipprersion of the GTA model, which
uses time-passage actions suclv@g, to model the passage of time byime units. A time-based version of Paxos
is used to demonstrate the capabilities of our extension. In this paper argbdethe process to be followed in order
to compile time-based Paxos, or similar algorithms. The utility of our appramsupported by an experimental
evaluation of our Paxos implementation on a collection of workstations. Todkeof our knowledge, our case
study constitutes the first example of a time-dependent distributed algatiiinhas been specified, verified and
implemented in an automated way, using a common formal methodology.

1 Introduction

Reasoning about the behavior of complex distributed syst@mal algorithms is a challenging task. Over the years,
several formal methodologies for specifying distributgdtems have been proposed and associated techniques and
tools have been developed for verifying such systems (@917, 20, 27, 22, 28]). However, the benefits of using
formal methods has not reached its full potential due toéhgaining challenge of implementing such systems; usually
the programmer has to manually map the functionality of tetract specification to detailed programs in order to be
executed on target distributed platforms. This raises tlestipn whether the correctness of the abstract spedificati
is maintained during the coding process. To this respeatesmols have been developed in an attempt to provide
automated simulation or implementation of formally speciftode (e.g., [2, 6, 7, 1, 24]). To the best of our knowledge,
the 10A Toolkit [1] is the only system to date that combinesaaguage with formally specified semantics (IOA
language and checker), automated proof assistants (IGAtietorem prover), simulator (IOA simulat@ydcompiler
(IOAtoJava code generator). A number agynchronouslgorithms, specified and proved correct using the I0A
framework, have been successfully implemented in an autmhveay using the IOA code generator (see [14, 30, 15]);
the generator translates the IOA specification of a giveprialyn to Java code which then can be executed on a
network of workstations, where communication is establisbsing MPI [10]. However, before our work, the 10A
code generator did not support timing issues.

Existing distributed systems can be viewedpastially synchronous systens the sense that some bounds on
processes computation time and messages delays can batedtand be assumed, but cannot be guaranteed to hold at
all times; that is, these bounds might be violated, leadirtgrting failures Moreover, implementations of algorithms
and programs on such systems usually make use of timeoutdénto render some progress of the computation (that
is, to provide some liveness guarantees) and to detect aoenpdailures. Being able to specify, prove correct and
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automatically implement such algorithms on a real disteHusystem using a common formal methodology is the
focus of this work.

We have extended the I0AtoJava code generator (or simplyd@#ypiler) to handle actions modeling passage of
time. More specifically, we have extended the I0A compilacl{iding the IOA syntax checker and IOA composer)
to support a version of the General Timed Automata (GTA) rhoddimed 1/0O Automaton model introduced by
Lynch and Vaandrager [26]. To demonstrate the functiopafithis extension, we used a timed specification of Paxos
algorithm [21] as an input to the augmented compiler. The @i#del provides a systematic way of describing the
timing behaviors of partially synchronous distributedteyss subject to timing failures. The model (and variatiohs o
it) can be used for the study of the performance and faudtrsémice analysis (i.e., the liveness) of practical distetu
systems under stabilization conditions (see for exammentbrk in [8]). Lynch and Shvartsman [25] produced a
GTA-based specification of a timed version of the Paxos élguar they proved its correctness (safety) and performed
a latency analysis conditioned on certain timing and fairgsumptions. The proof presented in [25] was checked to be
correct using the interactive IOAtoLR theorem prover by \&frd Immorlica in [18] (see also [31]). The specification
we used to produce an automated implementation of Paxog asirextended version of the IOA compiler was based
on the one in [25].

The rest of the paper is organized as follows. Section 2 éwssthe /0O Automata and GTA models as well as
the IOA notation and compiler. Also the Paxos algorithm g&dssed. In Section 3 we present an in-depth analysis of
the procedure for compiling and executing Paxos. Experialeasults obtained by implementing Paxos on a network
of workstations are presented in Section 4. We conclude éticBe5.

2 Background

In this section we provide the necessary background redjuirthe remainder sections.

2.1 1/0O Automata and the GTA Models

The 1/0 Automata framework was introduced by Lynch and €util[27]. A detailed description of this model can
be obtained there and in [23, Chapter 8]. An I/O Automatonlabeled state machine in which a set of transitions
connects the actions with the states. It entails a set adss{aot necessarily finite) with a nonempty subset of start
states, a transition relation, and a setacfions These actions are classified iaput, outputandinternal. The
utilization of input and output actions enables the commaitidn of an automaton with its environment. Input actions
are controlled by the external environment, whereas iateand output transitions are controlled by the automaton.
Actions are given in a precondition-effect style. An actisrsaid to beenabledif its preconditions are satisfied.
Input actions are always enabled. A transition (also caletep) is given in the form ¢s,s’) wheres, s’ are states
andx an action. 1/0 Automata support the operation of (paratteinpositionwhere automata can be combined to
form a larger, multifunctional automaton representing mplicated distributed system. The 1/O Automata model is
nondeterministisince in any given state any number of actions may be enahtbthare are no restrictions on when
an enabled action should be performed.

The GTA model of Lynch and Vaandrager [26] (see also [23, @ap3]) is a variant of the I/O Automata
model that enables the modeling of timing restrictions. sehestrictions can be encoded directly into the states and
transitions of the automaton. In addition to input, outpodl énternal actions, a GTA usdisne-passagections to
model the passage of time. In particular, an acti¢t) of type time-passage specifies the passage of timetinye-
units,t € RT. Like internal and output actions, time-passage actioasatso controlled by the automaton. Unlike
I/O automata, GTAs do not havaskscomponents. Hence, a GTA is composed of four componeintdg signature
which contains the input, output, internal and time-passagions, i{) a set of statesji() a set of initial states, and
(iv) the state-transition relation (steps). The GTA model sugpthe composition of automata similarly to the I/O
automaton model. Particularly, a composition of (compeajils TA automata yields a GTA automaton.

For the purposes of this work, we considefree versionof GTA [25] which is similar to the concept of Clock
GTA as introduced by De Prisco [8]. In particular, if an ausdom A is a GTA, then the free version &f (denoted by
free(A) in [25]) is a variant ofA that behaves likel, except that it relaxes time constraints by allowing any amo
of time to pass in situations wherespecifies that a particular amount of time should pass. Tiables our extended
version of the IOA compiler to handle situations in which géxact time constraints are not met by the program (e.g.,
due to unexpected processing and communication delays).



2.2 The IOA Language and the IOA Compiler

The IOA notation is a language used to describe 1/0 Autonaaid can be used both as a formal specification language
and a programming language [11]. States are described byndla@s of the values of variables and transitions in
precondition-effect style, instead of state-actionestaples. Preconditions and parameters of the transitiost imold
whenever this action is executed. The I0A language suppaitsnatic and operational descriptions of programing
implementations. The language inherits the nondetertigmsature of the /O Automata model. The 10A notation is
supported by the 10A Toolkit [1] via a sequence of tools, saslihe checker, the simulator, the theorem prover, and
also the compiler. The compiler translates IOA code intaXade.

It was proven that a restricted set of source IOA specifioat[80] can be compiled to executable Java code while
preserving thesafetyproperties of the source specification. To name few suchictishs, specifications must be
presented in a node-channel form (discussed next), andisptons must be input delay insensitive. As noted in [14]
and [30], a challenging problem (which remains open) is abémthe code generator to also provide some kind of
livenesguarantees.

Let us now turn our attention to Paxos. To be suitable for dtatipn, the Paxos specification must be in the node-
channel form. Meaning, the algorithm will have two compasertirst, modeling algorithm code being executed
on each network location (@lgorithm automato)y such as ballot preparation, voting, and reaching the ams
decision. Second, modeling communication channelslf@nnel automagabetween different network locations.
During the specification phase such channels will be alistoat with specific safety properties (ex., lossy, reliable
secure, etc.). For the moment let us assume that a nodealhapresentation of Paxos exists.

Unfolded below is a high level description of the procedeguired for the compilation and execution of Paxos. A
detailed, algorithm-independent, step-by-step desoriff the compilation procedure can be found in [14]. Wetstar
with the syntactically correct IOA specification of Paxosgdribed in detail in the next section) in the node-channel
form, which can be verified using the 1Qzhecker

Next step is to replace the abstract communication chanitlelaxspecific implementation. In our case commu-
nication is implemented using the Message Passing Inte(fd®I) [10], which is supported by the IOA compiler.
The MPI channel is modeled aschannel automatothat is a composition oc§endMediatorand ReceiveMediator
automata. These automata provide the linking to the MPVedifbraries and an appearance of interfacing with the
abstract channel. All communication between nodes in Pexo®deled as point-to-point connections. Note that
the use of MPI with the Paxos specification does not affecsétiety properties of the specification. Preserving the
liveness properties, as mentioned above, remains an opderae. However, our experiments do suggest that under
the scenarios considered, the use of MPI does not fault éreswof Paxos.

Before the specification is fed to the compiler, additional@tations must be given to resolve nondeterminism.
The nondeterminism, inherent from the I0OA model, is reswllog requiring the programmer to writesgehedule A
schedule is a function of the state of the local node thatspibke next action to execute at the node. That is, the
schedule function selects the next enabled transition #sae/éhe values of its parameters and operates the effects of
that transition. In format, a schedule is written at the 1@l in an auxiliary non-determinism resolution language
(NDR) consisting of imperative programming constructsiksinto those used in 10A effects clauses. Therefore, we
developed a (non-trivial) schedule appropriate for Paxoighvis contained in Figure 10.

The following steps are independent of input specificatibhe composite hode automataes described as the
composition of the algorithm automaton with the channelimted automata. Aomposeexpands this composition
into a new, equivalent IOA program in primitive where eachagai of the automaton is explicitly instantiated. The
resultingautomatonis annotated with the schedule that describes sequencergfutations per each node. The au-
tomaton along with its schedule is the final input progranhtsdompiler. Theomposite node automatangmented
with a schedule is now ready for compilation. All the nodesha system differ in parameterization and input. A
common information can be provided to the nodes through tben@aton parameters just before the execution of the
system. The rank of each notPIrank, described as a unique non-negative integer, is providedBly Another
operator supported by MPI is thdPlIsizewhich records the number of nodes in the system. The compéleslates
each scheduled node automaton into its own Java prograabkutd run on the target host.

2.3 The Paxos Algorithm

Reachingconsensuss a fundamental problem in distributed systems. The canseproblem addresses the situation
in which there is a set ofi processes; each process can propose a value, but in ordirefgystem to reach a



consensus state, every process must decide on the samelagladicular three conditions must hold: @jreement

all (correct) processes agree on the same valueVdlijity, the agreed value was among the ones proposed by the
processes. (CJermination eventually each (correct) process decides. The first tmditions aresafetyconditions,

that is, they must hold at all times. The third one lvanessondition and it can only be met under certain constraints
(e.g., it is well known that consensus cannot be solved inralpasynchronous systems in the presence of a single
process crash failure [9]). Distributed consensus has &eensively studied under various system and failure nzpdel
see e.g., [23,4].

Paxos is an algorithm designed to solve the consensus probtevas presented by Lamport in 1990 and was
published in 1998 [21]. A considerable advantage of thisuteopalgorithm is that it tolerates processes crashes (and
recoveries), message loss, duplication and reorderingefisas/timing failures. Paxos is guaranteed to work safely
(that is, it satisfies agreement and validity) regardlegsrotess, channel and timing failures. When the distributed
system stabilizes (that is, there are no failures and a ihajofrthe processes are not crashed, for a long period of
time), termination is also achieved [8].

Description of Paxos. In brief, Paxos works as follows: a leader starts balloisstto associate a value to each
ballot, and tries to collect enough approval for each batiaise the value of that ballot as the decision value. The
leader bases its choice of a value to associate with a bailthe information returned by a quorum of processes
Once the value is associated with the ballot, the leades taecollect approval from a quorum of processes: if it
succeeds, the ballot’s value becomes the final consensisaiecalue. In general, several leaders may operate at
the same time and may interfere with each other’'s work. Heweawnder a stable state only one leader operates and
ensures that a ballot completes. We now outline the maingshafsPaxos.

(1) The leader starts a new ballot and informs the others ahout it

(2) A process that learns about the new ballot abstains from arieeballot for which it has not voted for. In
response, a process replies to the leader with the value dfatot for which it last voted for.

(3) Once the leader receives responses from a quorum, it chaasdse for the ballot that is based on the received
values and announces that value to others.

(4) A process that learns about a new value may vote for the b#libhas not already abstained. If the process
votes, then it informs the leader and others about its vote.

(5) The leader decides on the ballot’s value once it receivesages from a quorum with a vote for that value. In
case that the leader has failed, a separate leader eleetidoesis used to elect a new one. Timeouts are used to
determine which processes are operational, and among thesme with the highest id is elected as the leader.
After the election, the new leader starts a new ballot.

(6) Timeouts are also used for the leader to decide when it sletattinew ballots (that is, there is a limit on how
long it takes for a given ballot to be accepted by a quorum otgsses).

Based on the above description, there are two timing-depgncbmponents: the leader-election service that
determines when a new election should be triggered, and gicbamism that determines when a leader should trigger
a new ballot.

Specification and Correctness of Paxos. A manuscript by Lynch and Shvartsman [25] provides a fornmasen-
tation of the Paxos algorithm. The presentation include®ae@l Timed Automata specification of the algorithm,
a correctness proof (safety) and a performance analysis. c@irectness proof, which ensures the agreement and
validity properties, was done by hand and it is based on a mgp an abstract state machine representing a non-
distributed version of the algorithm. The performance gsialproves latency bounds, conditioned on certain timing
and failure assumptions.

In [18, 31] using a time-free version of the Paxos specificatf [25] (essentially the last two timing-dependent
phases were not considered), and using the IOA2LSL traosl#bol of the 10A toolkit, the safety of Paxos was
mechanically checked. More precisely, it has been shownetlery possible externally observable outcome of the
Paxos algorithm is also an externally outcome of a genemdaxmsus specification. That is, a forward simulation
relation from the Paxos automaton to the consensus automate defined. Furthermore, the automata and forward

1Quorums are sets of processes such that each quorum has @&@ai@rsection with any other quorum. Majorities are splecases of
quorums.



simulation conjecture were translated into a readable foyine Larch Prover [12] using an automated translation by
the IOA2LSL Tool of the IOA toolkit.

It is worth mentioning that Musial [29] has also translatedeasion of the Paxos specification of [25] to Java
code. The communication medium used was Java Sockets wih(in€tead of MPI) but the translation was done in a
manual manner (as opposed to the automated translatioe @by the IOA Toolkit). It is also worth mentioning that
work is underway in enabling the IOA compiler to also use Jswekets and TCP [16].

In [5] a deconstruction of (untimed) Paxos into two main edidtons, register and leader, is presented. The even-
tual register abstraction encapsulates the safety piepat Paxos whereas the eventual leader election abstnacti
encapsulates its liveness. The I0OA Paxos specificatiorepted in this paper (see next section) makes a similar de-
construction of (timed) Paxos: safety is encapsulated Haxas Process automaton and liveness via a Ballot Trigger
automaton (which includes a leader election module).

3 Implementation of the Paxos Algorithm
3.1 Extending the IOA Compiler

In order to implement Paxos, we had to extend the IOA tootk#titpport timing issues. In particular, we had to enable
the checker, composer and compiler to support the freentasfahe GTA model (discussed in Section 2.1). Recall
that GTA, besides the action types input, output and inteshBDA, also requires a fourth action type, that of time-
passage (that specifies the passage of time). Introdudimgélv action type was a non-trivial task which involved
making several changes and adjustments to various paite ehiecker, composer and compiler code.

In addition, for the successful implementation of the tib@sed Paxos we implemented a set of operators and data
types. Each IOA data type is implemented by a hand-codedclass. A library of such classes for the standard IOA
data types is included in the compiler. Each IOA data type (8et[]] ) and operator (e.gSet[] — Nat) is matched
with its Java implementation class using a data type rgg[80], which we extended in this work. Examples of
operators that we have developed and included in the contpitipport the implementation of Paxos are (their usage
is shown in later sections)naxElement, maxBallot, getprocid, getsegno, setBalltassdead, ifProposed,existVal,
valProposed, notnil, internalDecideOp, timePsg, ifmajdvotedBallot The Java code for some of the operators and
data types are depicted in the Appendix.

Recall that in [30] it was shown that the IOA compiler pressrthe safety properties of the source IOA code (the
specification of the algorithm to be implemented). As thessgbroperties are not affected by timing issues, it follows
that the Java code generated by our extended version of thgileo for Paxos preserves the safety properties of the
source GTA specification. As already mentioned, presersorge liveness guarantees in an automated manner is an
open research question [14, 30].

Although in this work we have focused on Paxos, we believe dlia extended version of the IOA compiler
(including checker and composer) can be used for the autmhraplementation of other timing-dependent distributed
algorithms where their computational progress reliesmedtiuts, and which adhere to the aforementioned restrection
imposed by the IOA compiler.

3.2 Procedure

The compilation steps of the time-based Paxos specificatioias outlined in Section 2.2, where instead of using the
IOA compiler we used our developed extended version (that@us the free variant of the GTA model).

3.2.1 Paxos Specification.

Our Paxos specification is based on the one given in [25],tth#d to be expressed in the IOA notation suitable for
compilation. In addition we had to develop several auxliaperators and data structures. The specification includes
two automata: th&axosProcesandBallotTrigger. The former implements the first four main phases of Paxos as
outlined in Section 2.3 whilst the two last (timing-depentjgphases are implemented by the latter. Note that for
simplicity of presentation we used majorities instead abrgms. We present the specification of each automaton
along with the new operators and data structures we havéopede Each automaton specification was syntactically
checked using our updated version of the IOA checker.



Signature
Input:
init ( const MPIrank:Int, vinit:Int)
fail ( const MPIrank:Int)
newBallot( const MPIrank:Int)
RECEIVE(m:Message, const MPIrank:Int,u:Int)
Output:
decide( const MPIrank: Int, vDecide:Int)
SEND(m:Message , const MPlrank:Int ,u:lnt)
assignVal( const MPIrank:Int,
bAssignVal:Ballot, vAssignVal:Int)
makeBallot( const MPIrank: Int,bMakeBallot:Ballot)
States
mode:ModeType : = idle
proposed:Array[int,Set[Int]]: =constant({})
failed:Bool : = false
ballots:Set[Ballot]: =}
val:Array[Int,Array[Ballot,Null[Int]]] : =
constant(constant(nil))
voted:Array[Int,Array[Int,Set[Ballot]]] : =
constant(constant({}))

abstained:Array[Int,Array[Int,Set[Ballot]]] : =

constant(constant({}))

doMakeBallot:Array[Int,Bool]: =constant(false)
succeeded:Array[Int,Set[Ballot]]: =constant({})
done:Array[Int,Bool] : = constant(false)
neighbours:Set[Int] : ={}
tempnghbrs:Array[Ballot,Set[Int]] : = constant({})
rcvBallots:Set[Ballot] : ={

sendVote:Bool : = false

readyAssign:Bool : = false

ballotsucceeded:Ballot : = setBallot(-1,-1)
queueOut:Map[Link,Seq[Message]]
queueln:Map[Link,Seq[Message]]

Inks:Set[Link] : ={

Internal:

abstain ( const MPIrank:Int, BAbstain:Set[Ballot])

vote ( const MPIrank:Int, bVote:Ballot)

internalDecide( const MPIlrank:Int,
binternDecide:Ballot)

valueDecision( const MPIrank:Int, You:lnt,
LatestVal:Int, ballot:Ballot)

gossip( const MPIlrank:Int)

TimePassage

v(T)

segqNo:Int : =0
lastProposedBallot:Ballot :
lastvotedvalue:Int : =-1
lastValue:Array[Ballot,Set[Last]]
leader:Int : =-1
assignvalue:Int : =-1
tempLast:Last

tempVal:Int

tempballot:Ballot
tempbalDecide:Ballot
nodes:Set[Int]

countVote:Int : =0
balvalsucc:Int : =-1
Clock:Real : =0
nextGossipTime:Real : =0
period:Real

T:Real

mProposed:Int : = -1
mBallots:Ballot : = setBallot(-1,-1)
mvalint : = -1

mVoted:Ballot : = setBallot(-1,-1)
mAbstained:Set[Ballot] : ={

= setBallot(-1,-1)

Figure 1:PaxosProcess(i): Signature and State variables

PaxosProcess Automaton. Figure 1 shows the signature and the state variables d?dkesProcess(iqutomaton.
The analysis of the new data types and operators followdsrstttion. Figure 2 shows the transitions of actimits

newBallotandmakeBallot

input init(i,vinit)
eff
if —failed then
if (mode=idle) then
mode := active;
Clock : = clock;
proposed][i] : = proposed][i] U {vinit};
for k:nt in nodes-{i} do
queueOut[[i,K]] : = queueOut[[i,k]] =
sProposed([PROPOSED,[i,k],vInit]);
od;
mProposed: =vInit;
fi; fi;

input newBallot(i)
eff
if —failed then
if mode= active then
doMakeBallot[i] : = true;
fi; fi;

output makeBallot(i,MakeBallot)

pre —failed;

mode=active;

doMakeBallot[i];

(getprocid(maxBallot(ballots)) <
getprocid(MakeBallot)) \

((getsegno(maxBallot(ballots)) <
getseqno(MakeBallot)));

getprocid(MakeBallot) =i

eff

segqNo : = segNo + 1;

ballots : = insert(MakeBallot, ballots);

lastProposedBallot : = MakeBallot;

doMakeBallot[i] : = false;

for kint in nodes-{i} do
queueOut[i,k]] : = queueOut[[i,k]] =

sBallot([BALLOT,[i,k],MakeBallot]);

od;

rcvBallots : ={

rcvBallots : = insert(MakeBallot, rcvBallots);

mBallots: =MakeBallot;

Figure 2:PaxosProcess(i): Transitions of actions init, newBallot, makeBallot

Theinit action proposes and records the submitted value. It alsogelsathe mode to active and sends the value
vProposedo the other processes. ThewBallotinput action notifies th&axosProcess(ifo originate a new ballot.
The makeBallotaction is triggered once a request for a new ballot has arilrethis action a new sequence number
that is bigger than any previously known sequence numbefésted, and then the leader sends the new ballbhe
new ballot identifier is a two field record of the sequence nemamnd the identifier of the new ballot’s originator. At
this point no value is associated with the ballot. ThaxBallotoperator that is imported in thmakeBallotaction,
identifies and returns the largest ballot that has been ssa@so far. In case a process has crashedaithexction is
executed (variablgailed is set to true). It is important to highlight that only a leageocess can start a new ballot.



internal abstain(i,BalAbstain)
pre
mode=active;
—failed;
getsegno(maxBallot(BalAbstain)) <
getsegno(maxBallot(ballots)) Y
getprocid(maxBallot(BalAbstain)) <
getprocid(maxBallot(ballots));
(voted[i][i] U abstained][i][i])
eff
abstained][i][i] : = abstained[i][i]
for k:nt in nodes-{i} do
queueOut[[i,k]] : = queueOut[[i,k]] =
sAbstain([ABSTAIN,[i,k],BalAbstain,
getprocid(maxBallot(BalAbstain))]);

N BalAbstain  ={};

U BalAbstain;

od;

for j:Ballot in BalAbstain do
rcvBallots : = delete(j,rcvBallots);

od;

mAbstained : = BalAbstain;

internal valueDecision(i, u,latestVal,ballot)
pre modeAdle;
head(queueln[[i,u]])
[u,i],latestVal,ballot]);
eff
queueln[fi,u]] : = tail(queueln[[i,ul]);
tempnghbrs[ballot]: =insert(u,tempnghbrs[ballot]);
if —(ballot € abstained]i][i]) then
if ((size(tempnghbrs[ballot])) <
(div(size(neighbours),2))) then
if (lastValue(lastValue[ballot],latestVal)) then
for kiLast in lastValue[ballot] do
if getvalue(k) =atestVal then

=slLatestValue([LATESTVAL,

lastValue[ballot] : = delete(k,
lastValue[ballot]);

tempLast : = setLast(getnodeNum(k)+1,
getvalue(k));

lastValue[ballot] : = insert(tempLast,

lastValue[ballot]);
fi

od;

else
tempLast: =setlLast(1,latestVal);
lastValue[ballot]: = insert(tempLast,

lastValue[ballot));
fi

else

tempVval: =0;

for kiLast in lastValue[ballot] do
if getnodeNum(k) >tempVal then
tempVal : = getnodeNum(k);
assignvalue : = getvalue(k);
fi

od;

if assignvalue =(-1) then
assignvalue : = chooseRandom(proposed[i]);
fi

readyAssign : = true;

fi; fi;

output assignVal (i,balAssignVal,valAssignVal)
pre

—failed;

mode=active;

readyAssign;

balAssignVal € ballots;

getprocid(balAssignVal) =i

val[i][balAssignVal] =nil;

ifProposed(proposed,valAssignVal);

(allessdead(ballots,balAssignVal,abstained][i],nodes Y%

existval(val,valAssignVal,abstained[i],ballots,node s))
eff

val[i][balAssignVal]: —embed(valAssignVal);

for kint in nodes-{i} do

queueOut[[i,K]] : = queueOut[[i,k]] =
sValue([VALUE,[i,k],balAssignVal,valAssignVal]);

od;

readyAssign: =false;

mVal: =valAssignVal;

Figure 3:PaxosProcess(i): Transitions of actions abstain, valueDecision asig@al

Figure 3 contains the transitions of acti@isstain, valueDecisioandassignVal The PaxosProcess(Rutomaton
uses thebstainaction to abstain from all the ballots of a d&t This is allowed when the known identifier of a ballot
is larger than any other ballot iB, and provided that it has not already voted for any of theotslbf the setB in
an earlier state. After the initiation of a ballot processahue for the ballot has to be chosen. The internal action
ValueDecisioris used to choose a value for the ballofThe specified transition is being executed only by the leade
All processes have to send the value of the latest ballottkiegt have voted for (if voted) to the leader. When the
leader receives the values from a majority of the processd®wbses a the value for ballbt The leader ignores all
values equal te-1 (indicating that the sender has not voted for any ballot. yEtie prevailed value will be assigned

to ballotb.

PaxosProcess(ilises the internal actioassignValugo assign the value to ballotb. The possibility to assign
a valuev to a ballot is based on an important consistency check withllemballots. SpecificallyPaxosProcess(i)
checks whetheb is a known ballot and thatis the originator of ballob. So far, no value has yet been assigned, to
as far ag knows. But since is the process that originally started babpt is the one that has the ability to assign the
valuew to b. Valuev must be known to be the initial value of a process. Besidéspaller ballots either must have
the valuev, or are known as “dead”. The specified transition uses theatpsifProposed, allessdead, existwahd
dead TheifProposedoperator examines whether valués one of the values that had been proposed by processes.
The allessdeadperator checks if all the ballots that are smaller thame dead. Alsoexistvalchecks ifv has been
assigned to all the smaller non-dead ballots. Once the Vasebeen assigned to the ballot, the leader notifies the

other processes about the new value.

Figure 4 depicts the transitions of actionste internalDecideanddecide For the system to reach a consensus
state, processes have to accept the value of the ballot bygvibie ballot. PaxossProcess(inay vote for a ballot
if it is known that a value has been assigned,tand ifi has not yet abstained froin The responsibility of action
vote(i, b)is for process to vote for balloth and to inform the environment about its participation, bydieg a Vote



internal vote(i,balVote) internal internalDecide(i,ballnternDecide)

pre pre
mode=active; —failed;
—failed; mode=active;
valproposed( ballots,balVote); internalDecideOp(nodes,balinternDecide,voted[i])
notnil(val,balVote); eff
—(balVote € abstained]i]i]); succeeded]i]: = succeeded][i] U {balinternDecide};
—(balVote € voted[i][i]); i f (val[getprocid(ballnternDecide)]
eff [ballnternDecide] #nil)  then

voted[i][i]: =voted][i][i] U {balVote}; balvalsucc:  =val[getprocid(ballnternDecide)]

for kint in nodes-{i} do [balinternDecide].val fi;

queueOut[[i,K]] : = queueOut[[i,k]] F sVote([ ballotsucceeded: =ballnternDecide;

VOTE,[i,k],balVote,getprocid(balVote)]);

countVote: =countVote+1; output decide(i, valDecide)

od; pre

sendVote: =false; —failed;

rcvBallots: =delete(balVote,rcvBallots); —donel[i];

lastvotedvalue: =val[getprocid(balVote)] mode = active;

[balVote].val; ballotsucceeded € succeeded][i];
mVoted: =balVote embed(valDecide) = val[getprocid(ballotsucceeded)]
[ballotsucceeded];
eff
donefi] : = true;

Figure 4:PaxosProcess(i): Transitions of actions vote, internalDecide and decid

message. This action consists of the operatalgroposedandnotnil; valproposedthecks whether balldthas been
proposed by a process, whereasrbinil operator examines if a value has been giveh to

Once itis known that a majority of processes have approvedatiotb with valuev, PaxosProcess(inay decide
that the system has reached consensus by executing theainéetioninternalDecide(i,b) This action, using the
internalDecideOpperator, checks whether a majority of processes have tehiep

Finally, PaxosProcess(&nnounces the decision to the external environment witldéloede(i)action. The SEND
and RECEIVE actions are used to propagate information anpoogesses reaching consensus. The information
includes the proposed and sets of ballots, and the valuegartd abstained maps. Figure 6 presents the transitions of
actions SEND and RECEIVE.

For the best manipulation of messages, we created two dypaelata structuregueueOutindqueuelnin which
we record the out and in bound messages respectively. long8END(m,i,u) process sends the message that is at
the top of queueOut to receiver Once the message is sent, it is removed from the queue. &¢s@an decide and
terminate when it sends all the voted messages that exgstaneOut

In RECEIVE(m,i,u)the received messages are stored in the queue named gfmutirther utilization. Paxos
restricts the communications among processes so as ontyrtiamp information to be sent, thus sending periodically
gossip messages at intervalpef-iod. This message restriction is achieved throughvfi§ andgossip(i)actions of
the PaxosProcess(@utomaton described in Figure 5.

timePassageVv(T) eff
pre —failed; for k:nt in nodes-{i} do
isEmptyQue(queueOut); queueOut[[i,K]] : = queueOut[[i,k]] =
eff Clock : = Clock + T; sState([[i,k],mProposed,mBallots,
mVal,mVoted,mAbstained]);
internal gossip(i) od;
pre —failed; nextGossipTime : = nextGossipTime + period,;

Clock > nextGossipTime;

Figure 5:PaxosProcess(i): v(T) and gossip.

In particular, thev(T) action models the passage of time. Tleckvariable (initialized to zero) is increased By
units, T being a predefined quantity and specifies the (worst-case)rieeded for all the abovementioned transitions
to take place; as we explain later, bdthand period are system-dependent and therefore these parameters enust b
computed based on timing properties of the target deploypiatiorm.

BallotTrigger Automaton. TheBallotTriggerautomaton is the one to specify how a new leader is elected/had
a leader generates a new ballot. That is, this automatoreisrik to specify the main timing issues of time-based
Paxos. ThdallotTrigger(i) signature and state variables are presented in Figure dreRggpresents the transitions of
BallotTrigger(i).

TheBallotTrigger(i) automaton handles the event of the ballot voting timeoubkmA's. If a ballot voting does not
complete within a predefined time interval, it is terminalgchaving the leader initiate a new ballot voting. (Assume



[o]

utput SEND (m,i,u)

pre —failed;

e

mode= active;
queueOut[fi, u]] # @
m =head(queueOut([i,u]]);

ff

if tag(m) =sVote then
countVote: =countVote-1

fi;

if m =head(queueOut][[i,u]])
queueOut[[i,u]] :

fi

then
= tail(queueOut[[i,u]]);

input RECEIVE(m,i,u)

e

if —failed

queueln[fi,u]] :

ff

then

if mode= active A (tag(m) =sAbstain

Vtag(m) =sProposed Vtag(m) =sBallot

Vtag(m) =sState Vtag(m) =sLatestValue)
queueln[[i,u]] : = queueln[[i,u]]

then
F m;

if (queueln([i, u]]
tag(head(queueln[[i,ul]))

7z A

= sProposed A

(head(queueln[[i,
u]])).sProposed.valueProposed # -1 then
proposed[u]: = insert((head(queueln(]i,

u]])).sProposed.valueProposed,proposed[u]);
queueln[[i,u]] : = tail(queueln[[i,ul]);
fi;

if (queueln([i,u]] AH) A

tag(head(queueln(]i,u]])) = sBallot A
getprocid((head(queueln(]i,
u]])).sBallot.ballotSend) #A-1) then

ballots: = insert((head(queueln][i,

u]])).sBallot.ballotSend, ballots);

if (getseqno((head(queueln[[i,
u]])).sBallot.ballotSend) >seqNo )
seqNo: =getseqno((head(queueln([i,
u]])).sBallot.ballotSend);

then

fi;

rcvBallots: = insert((head(queueln[[i,
u]])).sBallot.ballotSend,rcvBallots);

queueOut][i,u]]: = queueOut([i,u]] =
sLatestValue([LATESTVAL,][i,u],
lastvotedvalue,
(head(queueln[[i, u]])).sBallot.ballotSend]);

= tail(queueln[[i,u]]);
fi;

if (queueln[fi,u]] #{{ A
tag(head(queueln([[i, u]])) = sValue A
(head(queueln[[i,u]])).sValue.value #A-1)

val[u][(head(queueln([[i,u]])).sValue.ballot]:
embed((head(queueln[[i,u]])).sValue.value);

val[i][(head(queueln[[i,u]])).sValue.ballot]:
embed((head(queueln([[i,u]])).sValue.value);

queueln[[i,u]] : = tail(queueln[[i,u]]);

fi;

Vtag(m) =sValue
Vvtag(m) =sVote

then

if (queueln[[i, u]]

7z A

tag(head(queueln[[i, ul])) = sVote A
getprocid((head(queueln([[i,
u]])).sVote.ballot) #-1) then

voted[i][u]: =voted[i][u] U
(head(queueln[[i, u]])).sVote.ballot};
queueln[[i,u]] : = tail(queueln[[i,ul]);
fi;

if (queueln[fi, u]] <) A
tag(head(queueln[[i, ul])) = sAbstain
—((head(queueln[[i,u]])).sAbstain.BAbstain
abstained[i][u]: =abstained][i][u] U

(head(queueln([[i, u]])).sAbstain.BAbstain;
queueln[[i,u]] : = tail(queueln[[i,u]]);

fi;

if —(queueln[[i, ul] ={ A
tag(head(queueln([i, ul])) = sState
if (head(queueln[[i,u]])).sState.proposed
proposed[u]: = insert((head(queueln[[i,
u]])).sState.proposed,proposed[u]);

if getprocid((head(queueln([i,
u]])).sState.ballots) A-1)
ballots: = insert((head(queueln([]i,
u]])).sState.ballots, ballots);
if ( getsegno((head(queueln[[i,
u]])).sState.ballots) >seqNo )
seqNo: =getseqno((head(queueln[[i,
u]])).sState.ballots);
fi;
rcvBallots: = insert((head(queueln([i,
u]])).sState.ballots,rcvBallots);
queueOut([[i,u]] : = queueOut[[i,u]]
sLatestValue([LATESTVAL,[i,u],lastvotedvalue,
(head(queueln[[i, u]])).sState.ballots]);
fi;

then

the

if (head(queueln([i,u]])).sState.val
val[u][(head(queueln[[i,u]])).sState.ballots]:
embed((head(queueln[[i,u]])).sState.val);
val[i][(head(queueln[[i,u]])).sState.ballots]:
embed((head(queueln[[i,u]])).sState.val);
fi;

#-1)

if getprocid((head(queueln([i,
u]])).sState.voted) # (-1)
voted[i][u]: =voted[i][u] U

{(head(queueln[[i, u]])).sState.voted}

fi;

then

if —((head(queueln([i,
u]])).sState.abstained =
abstained][i][u]: =abstained][i][u]
U (head(queueln[[i, u]])).sState.abstained,;
fi;
queueln[fi,u]] :
fi;

then

= tail(queueln[fi,u]]);

fi;

then

n

[

A

={}) then

#-1) then

Figure 6: PaxosProcess(i): Transitions of actions SENDRIBGEIVE



Signature

Input:

init( const MPIrank: IntvInit: Int)

fail( const MPIrank: Int)

decide( const MPIrank: Int,vDecide:Int)
assignVal( const MPIrank: Int,

bAssignVal:Ballot,vAssignVal:Int)

RECEIVE(m:Message, const MPIrank: Int, u:lnt)

States
mode:Mode : = idle
suspected:Set[Int] :
timeout:Array[Int,Real]
nextBallotTime:Real : =-1
nextSendTime:Array[Int,Real]

Output:
newBallot( const MPIrank: Int)
sendAlive( const MPIrank:Int,u:Int)

SEND(m:Message, const MPIrank: Int,u:Int)

Internal :
nodeTimeout(

TimePassage
v(T)

delay:Real

period:Real

T:Real

nodes:Set[Int]

done:Bool : = false
queueOut:Mapl[Link, Seg[Message]]

const MPIrank:Int,u:Int)

leader:Int : =-1 queueln:Map[Link, Seq[Message]]
Clock:Real : =0
failed: Bool : = false
Figure 7:: BallotTrigger(i): Signature and State variables
Transitions if —failed then
if mode=active then
input RECEIVE(m,i,u) nextBallotTime: =Clock+delay;
eff fi; fi;
if —failed then
if mode= active A tag(m) =sAlive then input decide(i,v)
queueln([i,u]] : = queueln([i,u]] = m; eff if —failed then
if head(queueln([i,u]]) = sAlive([ALIVE,[u,i]]) then if mode=active then
queueln[[i,u]] : = tail(queueln[[i,u]]); done: =true;
timeout[u]: = Clock+delay; nextBallotTime: =1;
if u € suspected then fi
nextSendTime[u] : = Clock; fi;
suspected : = suspected - {u};
if u>leader then output newBallot(i)
leader: =u; pre —failed;
fi; fi; mode=active;
if uAeader then Clock >nextBallotTime A —(nextBallotTime =-1));
nextBallotTime : = -1 —done;
fi; fi; fi; fi; eff nextBallotTime: =Clock+delay;
input init(i,v) timePassagev(T)
eff pre —failed;
if —failed then (Clock+T) <(nextBallotTime) V nextBallotTime  =(-1);
if (mode=idle) then timePsg(Clock,T, timeout);
mode := active; timePsg(Clock, T,nextSendTime);
Clock : = clock;
leader : = maxElement(nodes); eff Clock: =Clock+T;
for k:nt in (nodes - {i}) do
nextSendTime[k] : = Clock; input fail(i)
timeout[k] : = Clock+delay; eff mode:=failed;
od;
if i=leader then
nextBallotTime : = Clock; output sendAlive(i,u)
fi; fi; fi; pre —failed;
mode= active;
internal nodeTimeout(i,u) — (u € suspected);
pre —failed; nextSendTime[u] < (Clock +T);
mode=active; eff
Clock > timeout[u] A —(timeoutu] =(-1)); queueOut[[i,u]l: =queueOut][[i,u]] = sAlive([ALIVE,][i,ul]);
eff nextSendTime[u]: = Clock + delay;
suspected: =suspected U {u};
timeoutlu]: =1, output SEND (m,i,u)
nextSendTime[u]: =1, pre —failed;
if leader =u then mode= active;
leader : = maxElement((nodes-suspected)); queueOut[fi, u]] # )
fi m =head(queueOut][i,u]]);
if i=leader A i<u A —done then eff
nextBallotTime : = Clock; if m =head(queueOut[[i,u]]) then

fi

input assignVval(i,b, v)
eff

queueOut[fi,u]] :
fi

= tail(queueOut[fi,u]]);

Figure 8:BallotTrigger(i): Transitions
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thati is the current leader.) Particularly, the leader measheetme starting from the execution of actinewBallot(i)
and checks whether tliecide(*,i)action is executed within the predefined time period. If tkecaition has not been
completed and is still the leader, then theewBallot(i) action is triggered for the initiation of a new ballot voting
The nextBallotTimevariable determines the time when the leader should craeaevdoallot, whilst thenextSendTime
defines the time that the acknowledgment message will be sent

Another responsibility of th®allotTrigger automaton is to execute a failure detection mechanism iaerdodt a
new leader to be elected, when the current one seems to teshed: In particular, the automaton implements process
crash detection by having the processes interchanginge"aihessages at regular time intervals. When a process
does not receive the alive message of proeessthin a predetermined time interval, thénnsertsu into a set of
“suspected” processes (this is implemented bynibe Timeout(i,uiction). ThesendAlive(i,ulction allows process
i to send an alive message to procesater the passage of time and wheiis not a suspected process. The receipt
of alive messages is implemented usingrdgm/Alive(i,u)action. So, when processeceives a message from process
u, the timeout variable({lock + delay) is renewed for process The variablelelay is system-dependent and hence,
as withT', its value was computed based on empirical performanceureragnts of our deployment platform (more
details are provided in Section 4). Due to the fact that thstesy is partially synchronized (and hence, it exhibits
timing failures) it is possible thatmight not receive:’s alive message within the predetermined period and place
in the suspected set, althouglis in fact still operational. However, wheneceives the delayed message, it removes
u from the suspected set. When the leader is included in thd saspected processes of some process, a new leader
election operation is triggered.

TheBallotTrigger(i) automaton contains the input actidng anddecidefor the processes to reach consensus. As
an effect of thanit action, the automaton’s state toggles from idle to actiud,the current timing value is assigned to
the Clock value of the automaton. Initially, each processisigned as a leader. However, when pro¢esseives an
alive message from procesghat has greatek, then: grants its leadership te. In the end, after correct processes
exchange alive messages, the leader is the one with theshigheThe input actiordecide(i,u)is activated when
consensus is achieved. Consequently,dbeidevariable is toggled to true, and the valud (coding infinity) is
assigned toextBallotTime It is important to mention that the actiaecide(i,u)of the PaxosProcess(ijiutomaton
activates the corresponding action of tfRallotTrigger automaton when the two automata are composed (the two
automata have been specified in such a way that@rgosition compatiblg3]).

The passage of time is specified via @) action. TheClock variable is increased by’ units, T' being a
predefined quantity and specifies the (worst-case) timeatkfd all the above mentioned transitions to take place.
Finally, the actiorfail(i) specifies the crash of proceis@he process state changes from active to failed, and hence n
further actions can be triggered fran

3.2.2 Obtaining the PaxosNode Automaton and Resolving Noeterminism.

As mentioned in Section 2.2 after the description of theesyshto I0A language the programmer must combine the
algorithm automaton with auxiliary, channel automata. @beeloped automaton named PaxosNodeCom (Figure 9),
composes the algorithm automata (PaxosProcess and BajtptT) with the mediator automata responsible for the
establishment of the communication (via MPI) among praeges$heSendMediatoautomaton consists of the actions
Isend, respsendandresptest while the ReceiveMediatoronsists of the actionprobe, resplprobe, receiveand
respreceive(which specify standard MPI constructs). More on these atedautomata can be found in [14, 30]. The
PaxosNodeCom automaton is fed to the composer which gesdte PaxosNode automaton (it includes all states
and transitions of the composed automata).

automaton PaxosNode(MPIrank:Int,MPIsize:Int) MPIrank,j);
components SM[j: Int]: SendMediator(Message, Int,
P: PaxosProcess(MPIrank,MPlsize); MPIrank, j)

B:BallotTrigger(MPIrank,MPIsize);
RM[j: Int]: ReceiveMediator(Message, Int,

Figure 9:PaxosNodeCom: Composition Automaton

After the composition, and before compilation, we includesichedule, presented in Figure 10, to resolve non-
determinism. The schedule consists of the operatorajv andvotedBallot The first checks whether a majority of
processes have approved a proposed ballot, whereas #vepladirator returns the approved ballot.

Finally, the scheduleBaxosNodeautomaton (which includes the schedule) was fed to our epdarsion of the
IOA compiler (which can handle time-passage action typesiaciudes the developed operators and data structures)
and we obtained the Paxos.java file which was then compitedhiclassfile (a JVM executable).
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schedule
states

links:Set[Link],
Ink:Link,
newBallot:Ballot,
tmpBallots:Set[Ballot]:
tempValint: =1,
temprcvBallot:Ballot,
setTemp:Set[Ballot]:
flag:Int: =0

=
=

do
fire input init(MPIrank,vallnit);
while(P.done[MPIrank]  #rue
—(B.failed) A B.mode=active)
links:  =P.Inks;
while (—isEmpty(links)
p.failed =false) do
Ink : = chooseRandom(links);
links : = delete(Ink, links);
if —P.failed A P.mode=active
B.Clock >B.nextBallotTime
A —B.done then
fire output newBallot(MPIrank);
if P.doMakeBallot[MPIrank] then
newBallot: =setBallot(P.seqNo+1, MPIrank);
fire output makeBallot(MPIrank, newBallot);
setTemp: =((P.ballots-{maxBallot(P.ballots)}) -
P.abstained[MPIrank][MPIrank]) -
P.voted[MPIrank][MPIrank];
if setTemp # {} then
fire internal abstain(Ink.i,setTemp);
fi; fi; fi;
setTemp : = ((P.ballots-{maxBallot(P.ballots)}) -
P.abstained[MPIrank][MPIrank]) -
P.voted[MPIrank][MPIrank];
if (setTemp #}) then
fire internal abstain(Ink.i,setTemp);
if flag =0 then
if P.queueOutlnk] 4} then
fire output SEND(head(P.queueOut[Ink]),MPIrank,Ink.u);
elseif B.queueOutink] 4} then
fire output SEND(head(B.queueOut[Ink]),MPIrank,Ink.u);
flag: =1,
fi
else if flag =1 then
if B.queueOut[ink] #} then
fire output SEND(head(B.queueOut[Ink]),MPIrank,Ink.u);
elseif P.queueOut[Ink] # {} then
fire output SEND(head(P.queueOut[Ink]),MPIrank,Ink.u);

A P.failed
do

=false A

A P.done[MPIrank] #Arue A

A B.mode=active A
A —(B.nextBallotTime =(-1))

fi;

flag: =0;

fi; fi;

if SM[Ink.u].status =idle A SM[Ink.u].toSend #} then

fire output Isend(head(SM[Ink.u].toSend),MPIrank,Ink.u);

fi

if SMIInk.u].status =idle A SMJInk.u].handles A} then
fire output test(head(SM[Ink.u].handles),MPIrank,Ink.u);

fi

if RM[Ink.u].status =dle A RM[Ink.u].ready =false then
fire output Iprobe(MPIrank, Ink.u); fi;

if RM[Ink.u].status =idle A RM[Ink.u].ready =true then

fire output receive(MPIrank, Ink.u);
if RM[Ink.u].toRecv # {} then
fire output RECEIVE(head(RM[Ink.u].toRecv), MPIrank,

fi;

Ink.u);

fi
if P.queueln[[Ink.i,Ink.u]]
A B.mode=active

A tag(head(P.queueln[[Ink.i,ink.u]]))
then

fire internal valueDecision(Ink.i,Ink.u,(head(

P.queueln[[Ink.i,Ink.u]])).sLatestValue.latestvalue ,

(head(P.queueln[[Ink.i,Ink.u]])).sLatestValue.ballo t);
fi
if P.mode=active A B.mode=active
A P.val[MPIrank][P.lastProposedBallot]
A ifProposed(P.proposed,P.assignvalue)
A (allessdead(P.ballots,P.lastProposedBallot,
P.abstained[MPIrank],P.quorum) Vv existval(P.val,
P.assignvalue,P.abstained[MPIrank],P.ballots,P.quor
then

tempVal: =P.assignvalue;

fire output assignVal(MPIrank,P.lastProposedBallot,

tempVal);

#} A P.mode=active

=slLatestValue

A P.readyAssign =true

=nil

fi

if PuocvBallots A} then

temprcvBallot: =chooseRandom(P.rcvBallots);

if notnil(P.val,temprcvBallot) A B.mode=active A
P.mode=active A —(P.failed) A valproposed(
P.ballots,temprcvBallot) A —(temprcvBallot S
(P.abstained[MPIrank])[MPIrank]) A —(temprcvBallot
€(P.voted[MPIrank])[MPIrank]) then

fire internal vote(MPIrank, temprcvBallot);

fi; fi;

if ifqguorumv(P.voted[MPIrank],P.quorum) A
P.mode=active AB.mode=active AP.balvalsucc =(-1) then

fire internal internalDecide(MPIrank,
votedBallot(P.voted[MPIrank], P.quorum));

fi

if P.ballotsucceeded € P.succeeded[MPIrank] A

P.balvalsucc  #4-1) A P.countVote =0 A P.mode=active

A B.mode=active A embed(P.balvalsucc) =
P.val[MPIrank][P.ballotsucceeded] then
fire output decide(MPIrank, P.balvalsucc);

fi

if B.mode= active A P.mode=active
A —Ink.u € B.suspected

A B.nextSendTime[Ink.u] <B.Clock
fire output sendAlive(Ink.i,Ink.u);

fi

if B.mode=active A P.mode=active
A B.Clock >B.timeout[Ink.u]

A —(B.timeout[Ink.u] =(-1))

then

then

fire internal nodeTimeout(Ink.i,Ink.u);

fi

if (—P.failed A iISEmptyQue(P.queueOut))

Vv (—B.failed A (B.Clock+B.T  <B.nextBallotTime

V' B.nextBallotTime =1)

A timePsg(B.Clock,B.T,B.timeout)

A timePsg(B.Clock,B.T,B.nextSendTime))
A P.mode=active = A B.mode=active

f

ire timePassage v(P.T);

then

fi

if (—(P.failed) A P.Clock > P.nextGossipTime) then
fire internal gossip(MPIrank);

fi

od; od;

Figure 10:Paxos Schedule
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4 Experimentation

To demonstrate the functionality of the augmented compiterhave run the derived Java code (which implements
Paxos) on a network of workstations and obtained some erpatal data.

Platform and Preparation. Our experimentation platform consists of a cluster of 1alacachines. Each machine
is powered by an Intel Pentium V 1.5 GHz CPU and is running kifikedora Core v5 OS).

As aforementioned in the previous section, the time-rdlgterameterd’, delay, andperiod used abstractly in
the specification are system-dependent. In particllilés,the (worst-case) time needed for a node to perform a certai
sequence of actions (as specified in the previous sectitig.time may vary on different platforms. Parametelay
includes the (worst-case) time for a message round-trijal lpomputation and other Java-related delays. Cleaity, th
depends on the implementation platform. Parameteiod may be thought as programmer-defined, in the sense that
it is up to the programmer to decide on how often the nodesldlgmssip. Of course, this decision also depends on
the deployment platform, as the period should depend on #dssage round-trip time, the network topology, and the
system load.

Therefore, in order to identify sensible values for theseupeters for our deployment platform, we performed
some initial experiments with simple executions of the ¢aaling into consideration the system’s ping times and the
performance analysis presented in [25]. From this premsing phase the following values (insec} were finally
chosenI = 22, delay = 8822, andperiod = 24.

Scenarios and Results. It is noteworthy that Paxos is capable of dealing with snralhsient failures which are
concealed by the use of majority voting. MPI is not fault talg and when nodes fail the system can suffer a failure
as a whole — due to resource depletion. Removing this limitds subject of future work where the MPI mediator
automata can be replaced with Java mediator automata (ass@®in [16]) that allow more dynamic behaviors.

Despite the above note, a practical evaluation of our auiically generated code is still meaningful: first, it
demonstrates that indeed the generated code is execigabdad that the resulting program behaves as expected, and
finally that we obtain a reasonable performance. To this engnesent three scenarios.

The first scenario aims to identify the average executior imd number of sent messages for achieving consensus
on a single ballot voting, while the number of participamisreases gradually from 2 to 17. The objective of the second
scenario is to test the resilience of Paxos to message lasse BIPI is not fault-tolerant, we introduce code on the
sender side that randomly chooses messages to be dropjed thef MP1 send primitive is invoked. Scenarios 2A
and 2B drop 10% and 20% of messages respectively. The thérthgo seeks to measure the performance of our
Paxos implementation in the presence of leader crasheartioydar, in this scenario we simulate the leader crash (by
setting the status of the leader as failed in the schedutskpind hence we force the algorithm to initiate the leader
election and new ballot mechanisms.

Each scenario was run 10 times and thus each plot point depietaverage of the runs. Figures 11(a) to 11(d)
illustrate the average execution time and sent messagesctegly for each scenario. The first scenario is used as
baseline against the other two scenarios.

The experimental data in Figures 11(a) and 11(b) demopstaatexpected, that Paxos is able to cope well with
message omission. The difference in message count in Figbg is negligible between the scenarios, which is to
be expected, since non-leader node message loss is arddiyizke use of majority voting, whereas, leader message
loss contributes only to a few additional messages; it do@sgver, contribute to timeouts and hence the increased
operation latency as depicted in Figure 11(a).

The timing in Figure 11(c) predictably favors the case whHenleader is stable. It is important to point out that
the performance in scenarios 1 and 3 is parallel where tfierélifce reflects the timeout until a new leader election is
triggered. We also observe a linear decay in performancleeasumber of nodes increases, which is to be expected.
However, we do not expect this behavior to last indefinitebpecially when the network becomes saturated.

5 Conclusions

In this paper we have described our experience in speciffgompiling and running a time-based version of the
popular Paxos consensus algorithm. In particular, by ugi®TA specification of Paxos (which was proved to be
correct in [25] and machine-checked in [18, 31]) and by editegy the IOA checker, composer and compiler (of the
IOA Toolkit) in supporting a variant of the GTA framework, lnave managed to develop an automated implementation
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of time-based Paxos. To the best of our knowledge, our wanktitates the first example of a time-dependent complex
distributed algorithm that has been specified, verified amg@lémented in an automated way, using a common formal
methodology (IOA in our case).

Several future research directions emanate from our woirst, it would be interesting to assess the efficiency
of the automated implementation produced by the compilere ®ay is to compare our implementation of Paxos
with the one of Musial [29] which was done in a manual way. Heeveat this point such a comparison would not
be fair, as the implementation of Musial uses Java SocketsT&®P, and not MPI for communication. This brings
us to a second future objective. Currently the compilernstéd to static participation and use in LANs due to the
use of MPI. The compiler design is general enough to enaklele of other communication paradigms. In [16] an
alternative communication paradigm is suggested (JavkeSowith TCP) that enables the automated implementation
of algorithms that have dynamic participation (nodes may ¢gmd leave the computation at any time). Ongoing work
is attempting to incorporate this alternative paradigro {jatur version of) the IOA compiler.

The TIOA framework (an extension of the IOA framework) maddistributed systems with timing constraints
as collections of interacting state machines, called Tilnedt/Output Automata (an extension of Input/Output Au-
tomata) [19]. This framework can be considered more getiegial GTA, since a state in TIOA not only can be changed
by discrete transitions but also by trajectories. A trajects a (continuous or discontinuous) function that ddmsi
the evolution of the state variables over intervals of tifieerefore, it seems that TIOA can be used to specify a wider
family of time-based algorithms (and not just the ones thairtcomputational progress depends on timeouts — like
Paxos). A TIOA toolkit is underway [24] which currently ineles a TIOA checker, a theorem prover and a TIOA
simulator with limited functionality. A very challengingsearch direction is to develop a TIOA code generator. Our
work can be considered an important step towards that direct

Acknowledgments. We would like to thank Panayiotis Mavrommatis for severaphe discussions.
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Appendix

Java Code for Some Operators and Data Structures

The Java code for the ifProposed and ifmajv operators.

public

static BoolSort ifProposed(ArraySort proposed, In

BoolSort b= BoolSort.False();

Enumeration allkeys= proposed.enumindices();

while(allkeys.hasMoreElements()){
IndexSeq key=(IndexSeq)allkeys.nextElement();
SetSort set=(SetSort)proposed.elementAt(key);
Iterator i = set.getSet().iterator();

while(i.hasNext()) {

IntSort val=(IntSort)i.next();

if(val.value==value.value){
return BoolSort.True();

}
}

return

}

}

b;

static public BoolSort ifmajv(ArraySort votedBallots,Se
int majority=0;
majority=(nodes.size() / 2) + 1 ;
MsetSort allVotedBallots =MsetSort.empty();
Enumeration allkeysl= votedBallots.enumindices();

while(allkeys1.hasMoreElements()){
IndexSeq key=(IndexSeq)allkeysl.nextElement();
SetSort set= (SetSort)votedBallots.elementAt(key);

}

if (!SetSort.isEmpty(set).booleanValue()){
Iterator i = set.getSet().iterator();
while(i.hasNext()) {

BallotSort templnt=(BallotSort)i.next();

tSort value){

tSort nodes){

allVotedBallots = allVotedBallots.insert(templint);

}

if (IMsetSort.isEmpty(allVotedBallots).booleanValue(
Iterator j= allVotedBallots.map.keySet().iterator();
while(j.hasNext()) {

}
}

ADT element = (ADT)j.next();
if (allVotedBallots.count(element) >=majority)
return BoolSort.True();

return BoolSort.False();

}

A part from the BallotSort data type Java code:

package ioa.runtime.adt;

import
import
import
import
import
import
import
import
import

ioa.simulator.Entity;
ioa.util.logger.lOACategory;
ioa.util.sexp. *;
java.lang.Integer;
java.lang.Math;
java.util.lterator;
java.math.Biginteger;
java.util. HashSet;
java.util.Set;
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public class BallotSort extends ComparableADT
implements java.io.Serializable, MPINode {

private static IOACategory cat =
IOACategory.getinstance (BallotSort.class.getName()) ;
protected int seqno;
protected int procid,;
protected int Bid;
/IConstructors

protected BallotSort( int seqno,int procid) {
this.seqno = seqno;
this.procid=procid;
if(segno!=-1 && procid!=-1)
this.Bid=ioa.runtime.adt.Check.concatenate(
IntSort.lit(segno),IntSort.lit(procid)).intValue();
else this.Bid=-1;

}
protected BallotSort() { }

| **
* Return the seqno and procid of <code>this</code>.
*/
public static IntSort getseqno(BallotSort b){
return new IntSort(b.seqno);}

int seqno(){return seqno;}

public static IntSort getprocid(BallotSort b) {
return new IntSort(b.procid);}

int procid(){return procid;}
public int Bid(){return Bid;}

public static BallotSort setBallot(IntSort segno, IntSor t procid ){
return new BallotSort (segno.value,procid.value);

}

public static Object maxBallot(SetSort set) {

if (set.size() == 0)
return new BallotSort(-1,-1);

Iterator i = set.getSet().iterator();
BallotSort maxElement = (BallotSort)i.next();
while(i.hasNext()) {
BallotSort element = (BallotSort)i.next();
if (element.seqno() > maxElement.segno()) {
maxElement = element;

else if (element.seqno() == maxElement.seqno()){
if(element.procid()>maxElement.procid())
maxElement = element;

}
}
return maxElement;

}
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