
On the Automated Implementation of Time-based Paxos
Using the IOA Compiler∗

Chryssis Georgiou† Procopis Hadjiprocopiou‡ Peter M. Musial§

Abstract

Paxos is a well known algorithm for achieving consensus in distributed environments with uncertain processing
and communication timing. Implementations of its variants have been successfully used in the industry (eg.,Chubby
by Google,Autopilot cluster managementin Bing by Microsoft, and many others). This paper addresses the challenge
of the manual coding of complex distributed algorithms, such as Paxos, where this is an error prone process. Our
approach in ensuring correct implementation is to use a verified automatedtranslator to compile a source specification
that has been proven to be itself correct. We use specification of the Paxos algorithm in theGeneral Timed Automata
(GTA) model, an extension of I/O Automata, as input to an augmented compiler for the Input/Output Automata
notation(a.k.a., the IOA compiler) in order to generate executable Java code.The resulting code is interfaced with
MPI for communication needs. We have extended the IOA compiler to support a version of the GTA model, which
uses time-passage actions such asν(t), to model the passage of time byt time units. A time-based version of Paxos
is used to demonstrate the capabilities of our extension. In this paper we describe the process to be followed in order
to compile time-based Paxos, or similar algorithms. The utility of our approach is supported by an experimental
evaluation of our Paxos implementation on a collection of workstations. To thebest of our knowledge, our case
study constitutes the first example of a time-dependent distributed algorithmthat has been specified, verified and
implemented in an automated way, using a common formal methodology.

1 Introduction

Reasoning about the behavior of complex distributed systems and algorithms is a challenging task. Over the years,
several formal methodologies for specifying distributed systems have been proposed and associated techniques and
tools have been developed for verifying such systems (e.g.,[3, 17, 20, 27, 22, 28]). However, the benefits of using
formal methods has not reached its full potential due to the remaining challenge of implementing such systems; usually
the programmer has to manually map the functionality of the abstract specification to detailed programs in order to be
executed on target distributed platforms. This raises the question whether the correctness of the abstract specification
is maintained during the coding process. To this respect, some tools have been developed in an attempt to provide
automated simulation or implementation of formally specified code (e.g., [2, 6, 7, 1, 24]). To the best of our knowledge,
the IOA Toolkit [1] is the only system to date that combines a language with formally specified semantics (IOA
language and checker), automated proof assistants (IOAtoLR theorem prover), simulator (IOA simulator)andcompiler
(IOAtoJava code generator). A number ofasynchronousalgorithms, specified and proved correct using the IOA
framework, have been successfully implemented in an automated way using the IOA code generator (see [14, 30, 15]);
the generator translates the IOA specification of a given algorithm to Java code which then can be executed on a
network of workstations, where communication is established using MPI [10]. However, before our work, the IOA
code generator did not support timing issues.

Existing distributed systems can be viewed aspartially synchronous systemsin the sense that some bounds on
processes computation time and messages delays can be estimated and be assumed, but cannot be guaranteed to hold at
all times; that is, these bounds might be violated, leading to timing failures. Moreover, implementations of algorithms
and programs on such systems usually make use of timeouts in order to render some progress of the computation (that
is, to provide some liveness guarantees) and to detect component failures. Being able to specify, prove correct and

∗This work is supported in part by research funds from the University of Cyprus and the University of Puerto Rico Rio Piedras.
†Department of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus. Email:chryssis@cs.ucy.ac.cy
‡Department of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus. Email:cs02cp2@cs.ucy.ac.cy
§Department of Computer Science, University of Puerto Rico RioPiedras, USA. Email:peter.musial@uprrp.edu

1

automatically implement such algorithms on a real distributed system using a common formal methodology is the
focus of this work.

We have extended the IOAtoJava code generator (or simply IOAcompiler) to handle actions modeling passage of
time. More specifically, we have extended the IOA compiler (including the IOA syntax checker and IOA composer)
to support a version of the General Timed Automata (GTA) model, a timed I/O Automaton model introduced by
Lynch and Vaandrager [26]. To demonstrate the functionality of this extension, we used a timed specification of Paxos
algorithm [21] as an input to the augmented compiler. The GTAmodel provides a systematic way of describing the
timing behaviors of partially synchronous distributed systems subject to timing failures. The model (and variations of
it) can be used for the study of the performance and fault-tolerance analysis (i.e., the liveness) of practical distributed
systems under stabilization conditions (see for example the work in [8]). Lynch and Shvartsman [25] produced a
GTA-based specification of a timed version of the Paxos algorithm, they proved its correctness (safety) and performed
a latency analysis conditioned on certain timing and failure assumptions. The proof presented in [25] was checked to be
correct using the interactive IOAtoLR theorem prover by Winand Immorlica in [18] (see also [31]). The specification
we used to produce an automated implementation of Paxos using our extended version of the IOA compiler was based
on the one in [25].

The rest of the paper is organized as follows. Section 2 overviews the I/O Automata and GTA models as well as
the IOA notation and compiler. Also the Paxos algorithm is discussed. In Section 3 we present an in-depth analysis of
the procedure for compiling and executing Paxos. Experimental results obtained by implementing Paxos on a network
of workstations are presented in Section 4. We conclude in Section 5.

2 Background

In this section we provide the necessary background required in the remainder sections.

2.1 I/O Automata and the GTA Models

The I/O Automata framework was introduced by Lynch and Tuttle in [27]. A detailed description of this model can
be obtained there and in [23, Chapter 8]. An I/O Automaton is alabeled state machine in which a set of transitions
connects the actions with the states. It entails a set of states (not necessarily finite) with a nonempty subset of start
states, a transition relation, and a set ofactions. These actions are classified asinput, output and internal. The
utilization of input and output actions enables the communication of an automaton with its environment. Input actions
are controlled by the external environment, whereas internal and output transitions are controlled by the automaton.
Actions are given in a precondition-effect style. An actionis said to beenabledif its preconditions are satisfied.
Input actions are always enabled. A transition (also calleda step) is given in the form (s,π,s’) wheres, s′ are states
andπ an action. I/O Automata support the operation of (parallel)compositionwhere automata can be combined to
form a larger, multifunctional automaton representing a complicated distributed system. The I/O Automata model is
nondeterministicsince in any given state any number of actions may be enabled and there are no restrictions on when
an enabled action should be performed.

The GTA model of Lynch and Vaandrager [26] (see also [23, Chapter 23]) is a variant of the I/O Automata
model that enables the modeling of timing restrictions. These restrictions can be encoded directly into the states and
transitions of the automaton. In addition to input, output and internal actions, a GTA usestime-passageactions to
model the passage of time. In particular, an actionν(t) of type time-passage specifies the passage of time byt time-
units, t ∈ ℜ+. Like internal and output actions, time-passage actions are also controlled by the automaton. Unlike
I/O automata, GTAs do not havetaskscomponents. Hence, a GTA is composed of four components: (i) the signature
which contains the input, output, internal and time-passage actions, (ii) a set of states, (iii) a set of initial states, and
(iv) the state-transition relation (steps). The GTA model supports the composition of automata similarly to the I/O
automaton model. Particularly, a composition of (compatible) GTA automata yields a GTA automaton.

For the purposes of this work, we consider afree versionof GTA [25] which is similar to the concept of Clock
GTA as introduced by De Prisco [8]. In particular, if an automatonA is a GTA, then the free version ofA (denoted by
free(A) in [25]) is a variant ofA that behaves likeA, except that it relaxes time constraints by allowing any amount
of time to pass in situations whereA specifies that a particular amount of time should pass. This enables our extended
version of the IOA compiler to handle situations in which theexact time constraints are not met by the program (e.g.,
due to unexpected processing and communication delays).

2

2.2 The IOA Language and the IOA Compiler

The IOA notation is a language used to describe I/O Automata,and can be used both as a formal specification language
and a programming language [11]. States are described by themeans of the values of variables and transitions in
precondition-effect style, instead of state-action-state triples. Preconditions and parameters of the transition must hold
whenever this action is executed. The IOA language supportsaxiomatic and operational descriptions of programing
implementations. The language inherits the nondeterministic nature of the I/O Automata model. The IOA notation is
supported by the IOA Toolkit [1] via a sequence of tools, suchas the checker, the simulator, the theorem prover, and
also the compiler. The compiler translates IOA code into Java code.

It was proven that a restricted set of source IOA specifications [30] can be compiled to executable Java code while
preserving thesafetyproperties of the source specification. To name few such restrictions, specifications must be
presented in a node-channel form (discussed next), and specifications must be input delay insensitive. As noted in [14]
and [30], a challenging problem (which remains open) is to enable the code generator to also provide some kind of
livenessguarantees.

Let us now turn our attention to Paxos. To be suitable for compilation, the Paxos specification must be in the node-
channel form. Meaning, the algorithm will have two components: First, modeling algorithm code being executed
on each network location (oralgorithm automaton), such as ballot preparation, voting, and reaching the consensus
decision. Second, modeling communication channels (orchannel automata) between different network locations.
During the specification phase such channels will be abstract, but with specific safety properties (ex., lossy, reliable,
secure, etc.). For the moment let us assume that a node-channel representation of Paxos exists.

Unfolded below is a high level description of the procedure required for the compilation and execution of Paxos. A
detailed, algorithm-independent, step-by-step description of the compilation procedure can be found in [14]. We start
with the syntactically correct IOA specification of Paxos (described in detail in the next section) in the node-channel
form, which can be verified using the IOAchecker.

Next step is to replace the abstract communication channel with a specific implementation. In our case commu-
nication is implemented using the Message Passing Interface (MPI) [10], which is supported by the IOA compiler.
The MPI channel is modeled as achannel automatonthat is a composition ofSendMediatorandReceiveMediator
automata. These automata provide the linking to the MPI native libraries and an appearance of interfacing with the
abstract channel. All communication between nodes in Paxosis modeled as point-to-point connections. Note that
the use of MPI with the Paxos specification does not affect thesafety properties of the specification. Preserving the
liveness properties, as mentioned above, remains an open challenge. However, our experiments do suggest that under
the scenarios considered, the use of MPI does not fault executions of Paxos.

Before the specification is fed to the compiler, additional annotations must be given to resolve nondeterminism.
The nondeterminism, inherent from the IOA model, is resolved by requiring the programmer to write aschedule. A
schedule is a function of the state of the local node that picks the next action to execute at the node. That is, the
schedule function selects the next enabled transition as well as the values of its parameters and operates the effects of
that transition. In format, a schedule is written at the IOA level in an auxiliary non-determinism resolution language
(NDR) consisting of imperative programming constructs similar to those used in IOA effects clauses. Therefore, we
developed a (non-trivial) schedule appropriate for Paxos which is contained in Figure 10.

The following steps are independent of input specification.The composite node automatonis described as the
composition of the algorithm automaton with the channel mediator automata. Acomposerexpands this composition
into a new, equivalent IOA program in primitive where each piece of the automaton is explicitly instantiated. The
resultingautomatonis annotated with the schedule that describes sequence of computations per each node. The au-
tomaton along with its schedule is the final input program to the compiler. Thecomposite node automatonaugmented
with a schedule is now ready for compilation. All the nodes inthe system differ in parameterization and input. A
common information can be provided to the nodes through the automaton parameters just before the execution of the
system. The rank of each nodeMPIrank, described as a unique non-negative integer, is provided byMPI. Another
operator supported by MPI is theMPIsizewhich records the number of nodes in the system. The compilertranslates
each scheduled node automaton into its own Java program suitable to run on the target host.

2.3 The Paxos Algorithm

Reachingconsensusis a fundamental problem in distributed systems. The consensus problem addresses the situation
in which there is a set ofn processes; each process can propose a value, but in order forthe system to reach a

3

consensus state, every process must decide on the same value. In particular three conditions must hold: (a)Agreement,
all (correct) processes agree on the same value. (b)Validity, the agreed value was among the ones proposed by the
processes. (c)Termination, eventually each (correct) process decides. The first two conditions aresafetyconditions,
that is, they must hold at all times. The third one is alivenesscondition and it can only be met under certain constraints
(e.g., it is well known that consensus cannot be solved in a purely asynchronous systems in the presence of a single
process crash failure [9]). Distributed consensus has beenextensively studied under various system and failure models,
see e.g., [23, 4].

Paxos is an algorithm designed to solve the consensus problem. It was presented by Lamport in 1990 and was
published in 1998 [21]. A considerable advantage of this popular algorithm is that it tolerates processes crashes (and
recoveries), message loss, duplication and reordering as well as timing failures. Paxos is guaranteed to work safely
(that is, it satisfies agreement and validity) regardless ofprocess, channel and timing failures. When the distributed
system stabilizes (that is, there are no failures and a majority of the processes are not crashed, for a long period of
time), termination is also achieved [8].

Description of Paxos. In brief, Paxos works as follows: a leader starts ballots, tries to associate a value to each
ballot, and tries to collect enough approval for each ballotto use the value of that ballot as the decision value. The
leader bases its choice of a value to associate with a ballot on the information returned by a quorum of processes1.
Once the value is associated with the ballot, the leader tries to collect approval from a quorum of processes: if it
succeeds, the ballot’s value becomes the final consensus decision value. In general, several leaders may operate at
the same time and may interfere with each other’s work. However, under a stable state only one leader operates and
ensures that a ballot completes. We now outline the main phases of Paxos.

(1) The leader starts a new ballot and informs the others about it.

(2) A process that learns about the new ballot abstains from any earlier ballot for which it has not voted for. In
response, a process replies to the leader with the value of the ballot for which it last voted for.

(3) Once the leader receives responses from a quorum, it choosesa value for the ballot that is based on the received
values and announces that value to others.

(4) A process that learns about a new value may vote for the ballot, if it has not already abstained. If the process
votes, then it informs the leader and others about its vote.

(5) The leader decides on the ballot’s value once it receives messages from a quorum with a vote for that value. In
case that the leader has failed, a separate leader election service is used to elect a new one. Timeouts are used to
determine which processes are operational, and among these, the one with the highest id is elected as the leader.
After the election, the new leader starts a new ballot.

(6) Timeouts are also used for the leader to decide when it shouldstart new ballots (that is, there is a limit on how
long it takes for a given ballot to be accepted by a quorum of processes).

Based on the above description, there are two timing-dependent components: the leader-election service that
determines when a new election should be triggered, and the mechanism that determines when a leader should trigger
a new ballot.

Specification and Correctness of Paxos.A manuscript by Lynch and Shvartsman [25] provides a formal presen-
tation of the Paxos algorithm. The presentation includes a General Timed Automata specification of the algorithm,
a correctness proof (safety) and a performance analysis. The correctness proof, which ensures the agreement and
validity properties, was done by hand and it is based on a mapping to an abstract state machine representing a non-
distributed version of the algorithm. The performance analysis proves latency bounds, conditioned on certain timing
and failure assumptions.

In [18, 31] using a time-free version of the Paxos specification of [25] (essentially the last two timing-dependent
phases were not considered), and using the IOA2LSL translation tool of the IOA toolkit, the safety of Paxos was
mechanically checked. More precisely, it has been shown that every possible externally observable outcome of the
Paxos algorithm is also an externally outcome of a general consensus specification. That is, a forward simulation
relation from the Paxos automaton to the consensus automaton was defined. Furthermore, the automata and forward

1Quorums are sets of processes such that each quorum has a pairwise intersection with any other quorum. Majorities are special cases of
quorums.

4

simulation conjecture were translated into a readable formby the Larch Prover [12] using an automated translation by
the IOA2LSL Tool of the IOA toolkit.

It is worth mentioning that Musial [29] has also translated aversion of the Paxos specification of [25] to Java
code. The communication medium used was Java Sockets with TCP (instead of MPI) but the translation was done in a
manual manner (as opposed to the automated translation offered by the IOA Toolkit). It is also worth mentioning that
work is underway in enabling the IOA compiler to also use JavaSockets and TCP [16].

In [5] a deconstruction of (untimed) Paxos into two main abstractions, register and leader, is presented. The even-
tual register abstraction encapsulates the safety properties of Paxos whereas the eventual leader election abstraction
encapsulates its liveness. The IOA Paxos specification presented in this paper (see next section) makes a similar de-
construction of (timed) Paxos: safety is encapsulated via aPaxos Process automaton and liveness via a Ballot Trigger
automaton (which includes a leader election module).

3 Implementation of the Paxos Algorithm

3.1 Extending the IOA Compiler

In order to implement Paxos, we had to extend the IOA toolkit to support timing issues. In particular, we had to enable
the checker, composer and compiler to support the free variant of the GTA model (discussed in Section 2.1). Recall
that GTA, besides the action types input, output and internal of IOA, also requires a fourth action type, that of time-
passage (that specifies the passage of time). Introducing this new action type was a non-trivial task which involved
making several changes and adjustments to various parts of the checker, composer and compiler code.

In addition, for the successful implementation of the time-based Paxos we implemented a set of operators and data
types. Each IOA data type is implemented by a hand-coded Javaclass. A library of such classes for the standard IOA
data types is included in the compiler. Each IOA data type (e.g.,Set[]) and operator (e.g.,Set[] → Nat) is matched
with its Java implementation class using a data type registry [30], which we extended in this work. Examples of
operators that we have developed and included in the compiler to support the implementation of Paxos are (their usage
is shown in later sections):maxElement, maxBallot, getprocid, getseqno, setBallot, allessdead, ifProposed,existVal,
valProposed, notnil, internalDecideOp, timePsg, ifmajvandvotedBallot. The Java code for some of the operators and
data types are depicted in the Appendix.

Recall that in [30] it was shown that the IOA compiler preserves the safety properties of the source IOA code (the
specification of the algorithm to be implemented). As the safety properties are not affected by timing issues, it follows
that the Java code generated by our extended version of the compiler for Paxos preserves the safety properties of the
source GTA specification. As already mentioned, preservingsome liveness guarantees in an automated manner is an
open research question [14, 30].

Although in this work we have focused on Paxos, we believe that our extended version of the IOA compiler
(including checker and composer) can be used for the automated implementation of other timing-dependent distributed
algorithms where their computational progress relies on timeouts, and which adhere to the aforementioned restrictions
imposed by the IOA compiler.

3.2 Procedure

The compilation steps of the time-based Paxos specificationare as outlined in Section 2.2, where instead of using the
IOA compiler we used our developed extended version (that supports the free variant of the GTA model).

3.2.1 Paxos Specification.

Our Paxos specification is based on the one given in [25], but it had to be expressed in the IOA notation suitable for
compilation. In addition we had to develop several auxiliary operators and data structures. The specification includes
two automata: thePaxosProcessandBallotTrigger. The former implements the first four main phases of Paxos as
outlined in Section 2.3 whilst the two last (timing-dependent) phases are implemented by the latter. Note that for
simplicity of presentation we used majorities instead of quorums. We present the specification of each automaton
along with the new operators and data structures we have developed. Each automaton specification was syntactically
checked using our updated version of the IOA checker.

5

Signa tu re
Input :
init (cons t MPIrank:Int, vInit:Int)
fail (cons t MPIrank:Int)
newBallot(cons t MPIrank:Int)
RECEIVE(m:Message, cons t MPIrank:Int,u:Int)

Output :
decide(cons t MPIrank: Int, vDecide:Int)
SEND(m:Message , cons t MPIrank:Int ,u:Int)
assignVal(cons t MPIrank:Int,

bAssignVal:Ballot, vAssignVal:Int)
makeBallot(cons t MPIrank: Int,bMakeBallot:Ballot)

I n t e r n a l :
abstain (cons t MPIrank:Int, BAbstain:Set[Ballot])
vote (cons t MPIrank:Int, bVote:Ballot)
internalDecide(cons t MPIrank:Int,

bInternDecide:Ballot)
valueDecision(cons t MPIrank:Int, You:Int,

LatestVal:Int, ballot:Ballot)
gossip(cons t MPIrank:Int)

TimePassage:
v(T)

S t a t e s:
mode:ModeType : = idle
proposed:Array[Int,Set[Int]]: =constant({})
failed:Bool : = false
ballots:Set[Ballot]: ={}
val:Array[Int,Array[Ballot,Null[Int]]] : =

constant(constant(nil))
voted:Array[Int,Array[Int,Set[Ballot]]] : =

constant(constant({}))
abstained:Array[Int,Array[Int,Set[Ballot]]] : =

constant(constant({}))
doMakeBallot:Array[Int,Bool]: =constant(false)
succeeded:Array[Int,Set[Ballot]]: =constant({})
done:Array[Int,Bool] : = constant(false)
neighbours:Set[Int] : = {}
tempnghbrs:Array[Ballot,Set[Int]] : = constant({})
rcvBallots:Set[Ballot] : = {}
sendVote:Bool : = false
readyAssign:Bool : = false
ballotsucceeded:Ballot : = setBallot(-1,-1)
queueOut:Map[Link,Seq[Message]]
queueIn:Map[Link,Seq[Message]]
lnks:Set[Link] : = {}

seqNo:Int : = 0
lastProposedBallot:Ballot : = setBallot(-1,-1)
lastvotedvalue:Int : = -1
lastValue:Array[Ballot,Set[Last]]
leader:Int : = -1
assignvalue:Int : = -1
tempLast:Last
tempVal:Int
tempballot:Ballot
tempbalDecide:Ballot
nodes:Set[Int]
countVote:Int : = 0
balvalsucc:Int : = -1
Clock:Real : = 0
nextGossipTime:Real : = 0
period:Real
T:Real
mProposed:Int : = -1
mBallots:Ballot : = setBallot(-1,-1)
mVal:Int : = -1
mVoted:Ballot : = setBallot(-1,-1)
mAbstained:Set[Ballot] : = {}

Figure 1:PaxosProcess(i): Signature and State variables

PaxosProcess Automaton. Figure 1 shows the signature and the state variables of thePaxosProcess(i)automaton.
The analysis of the new data types and operators follows in this section. Figure 2 shows the transitions of actionsinit,
newBallotandmakeBallot.

i npu t init(i,vInit)
e f f

i f ¬failed then
i f (mode=idle) then
mode := active;
Clock : = clock;
proposed[i] : = proposed[i] ∪ {vInit};
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] : = queueOut[[i,k]] ⊢

sProposed([PROPOSED,[i,k],vInit]);
od;
mProposed: =vInit;

f i ; f i ;

i npu t newBallot(i)
e f f

i f ¬failed then
i f mode= active then
doMakeBallot[i] : = true;

f i ; f i ;

output makeBallot(i,MakeBallot)
pre ¬failed;
mode=active;
doMakeBallot[i];
(getprocid(maxBallot(ballots)) <

getprocid(MakeBallot)) ∨
((getseqno(maxBallot(ballots)) <

getseqno(MakeBallot)));
getprocid(MakeBallot) = i;

e f f
seqNo : = seqNo + 1;
ballots : = insert(MakeBallot, ballots);
lastProposedBallot : = MakeBallot;
doMakeBallot[i] : = false;
f o r k:Int i n nodes-{i} do

queueOut[[i,k]] : = queueOut[[i,k]] ⊢
sBallot([BALLOT,[i,k],MakeBallot]);

od;
rcvBallots : = {};
rcvBallots : = insert(MakeBallot, rcvBallots);
mBallots: =MakeBallot;

Figure 2:PaxosProcess(i): Transitions of actions init, newBallot, makeBallot

The init action proposes and records the submitted value. It also changes the mode to active and sends the value
vProposedto the other processes. ThenewBallotinput action notifies thePaxosProcess(i)to originate a new ballot.
ThemakeBallotaction is triggered once a request for a new ballot has arrived. In this action a new sequence number
that is bigger than any previously known sequence number is selected, and then the leader sends the new ballotb. The
new ballot identifier is a two field record of the sequence number and the identifier of the new ballot’s originator. At
this point no value is associated with the ballot. ThemaxBallotoperator that is imported in themakeBallotaction,
identifies and returns the largest ballot that has been witnessed so far. In case a process has crashed, thefail action is
executed (variablefailed is set to true). It is important to highlight that only a leader process can start a new ballot.

6

i n t e r n a l abstain(i,BalAbstain)
pre

mode=active;
¬failed;
getseqno(maxBallot(BalAbstain)) <

getseqno(maxBallot(ballots)) ∨
getprocid(maxBallot(BalAbstain)) <

getprocid(maxBallot(ballots));
(voted[i][i] ∪ abstained[i][i]) ∩ BalAbstain ={};

e f f
abstained[i][i] : = abstained[i][i] ∪ BalAbstain;
f o r k:Int i n nodes-{i} do

queueOut[[i,k]] : = queueOut[[i,k]] ⊢
sAbstain([ABSTAIN,[i,k],BalAbstain,
getprocid(maxBallot(BalAbstain))]);

od;
f o r j:Ballot i n BalAbstain do

rcvBallots : = delete(j,rcvBallots);
od;
mAbstained : = BalAbstain;

i n t e r n a l valueDecision(i, u,latestVal,ballot)
pre mode6=idle;

head(queueIn[[i,u]]) =sLatestValue([LATESTVAL,
[u,i],latestVal,ballot]);

e f f
queueIn[[i,u]] : = tail(queueIn[[i,u]]);
tempnghbrs[ballot]: =insert(u,tempnghbrs[ballot]);
i f ¬(ballot ∈ abstained[i][i]) then

i f ((size(tempnghbrs[ballot])) <

(div(size(neighbours),2))) then
i f (lastValue(lastValue[ballot],latestVal)) then
fo r k:Last i n lastValue[ballot] do

i f getvalue(k) =latestVal then
lastValue[ballot] : = delete(k,

lastValue[ballot]);
tempLast : = setLast(getnodeNum(k)+1,

getvalue(k));
lastValue[ballot] : = insert(tempLast,
lastValue[ballot]);

f i

od;
e l s e
tempLast: =setLast(1,latestVal);
lastValue[ballot]: = insert(tempLast,

lastValue[ballot]);
f i

e l s e
tempVal: =0;
f o r k:Last i n lastValue[ballot] do

i f getnodeNum(k) >tempVal then
tempVal : = getnodeNum(k);
assignvalue : = getvalue(k);

f i
od;
i f assignvalue =(-1) then
assignvalue : = chooseRandom(proposed[i]);

f i
readyAssign : = true;

f i ; f i ;

output assignVal (i,balAssignVal,valAssignVal)
pre
¬failed;
mode=active;
readyAssign;
balAssignVal ∈ ballots;
getprocid(balAssignVal) =i;
val[i][balAssignVal] =nil;
ifProposed(proposed,valAssignVal);
(allessdead(ballots,balAssignVal,abstained[i],nodes)∨
existval(val,valAssignVal,abstained[i],ballots,node s))

e f f
val[i][balAssignVal]: =embed(valAssignVal);
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] : = queueOut[[i,k]] ⊢

sValue([VALUE,[i,k],balAssignVal,valAssignVal]);
od;
readyAssign: =false;
mVal: =valAssignVal;

Figure 3:PaxosProcess(i): Transitions of actions abstain, valueDecision and assignVal

Figure 3 contains the transitions of actionsabstain, valueDecisionandassignVal. ThePaxosProcess(i)automaton
uses theabstainaction to abstain from all the ballots of a setB. This is allowed when the known identifier of a ballot
is larger than any other ballot inB, and provided that it has not already voted for any of the ballots of the setB in
an earlier state. After the initiation of a ballot process, avalue for the ballot has to be chosen. The internal action
ValueDecisionis used to choose a value for the ballotb. The specified transition is being executed only by the leader.
All processes have to send the value of the latest ballot thatthey have voted for (if voted) to the leader. When the
leader receives the values from a majority of the processes it chooses a the value for ballotb. The leader ignores all
values equal to−1 (indicating that the sender has not voted for any ballot yet). The prevailed value will be assigned
to ballotb.

PaxosProcess(i)uses the internal actionassignValueto assign the valuev to ballot b. The possibility to assign
a valuev to a ballot is based on an important consistency check with smaller ballots. Specifically,PaxosProcess(i)
checks whetherb is a known ballot and thati is the originator of ballotb. So far, no value has yet been assigned tob,
as far asi knows. But sincei is the process that originally started ballotb, i is the one that has the ability to assign the
valuev to b. Valuev must be known to be the initial value of a process. Besides, all smaller ballots either must have
the valuev, or are known as “dead”. The specified transition uses the operatorsifProposed, allessdead, existvaland
dead. The ifProposedoperator examines whether valuev is one of the values that had been proposed by processes.
Theallessdeadoperator checks if all the ballots that are smaller thanb are dead. Also,existvalchecks ifv has been
assigned to all the smaller non-dead ballots. Once the valuehas been assigned to the ballot, the leader notifies the
other processes about the new value.

Figure 4 depicts the transitions of actionsvote, internalDecideanddecide. For the system to reach a consensus
state, processes have to accept the value of the ballot by voting the ballot.PaxossProcess(i)may vote for a ballotb
if it is known that a value has been assigned tob, and if i has not yet abstained fromb. The responsibility of action
vote(i, b)is for processi to vote for ballotb and to inform the environment about its participation, by sending a Vote

7

i n t e r n a l vote(i,balVote)
pre

mode=active;
¬failed;
valproposed(ballots,balVote);
notnil(val,balVote);
¬(balVote ∈ abstained[i][i]);
¬(balVote ∈ voted[i][i]);

e f f
voted[i][i]: =voted[i][i] ∪ {balVote};
f o r k:Int i n nodes-{i} do
queueOut[[i,k]] : = queueOut[[i,k]] ⊢ sVote([
VOTE,[i,k],balVote,getprocid(balVote)]);
countVote: =countVote+1;

od;
sendVote: =false;
rcvBallots: =delete(balVote,rcvBallots);
lastvotedvalue: =val[getprocid(balVote)]

[balVote].val;
mVoted: =balVote

i n t e r n a l internalDecide(i,balInternDecide)
pre

¬failed;
mode=active;
internalDecideOp(nodes,balInternDecide,voted[i])

e f f
succeeded[i]: = succeeded[i] ∪ {balInternDecide};
i f (val[getprocid(balInternDecide)]

[balInternDecide] 6=nil) then
balvalsucc: =val[getprocid(balInternDecide)]

[balInternDecide].val f i ;
ballotsucceeded: =balInternDecide;

output decide(i, valDecide)
pre

¬failed;
¬done[i];
mode = active;
ballotsucceeded ∈ succeeded[i];
embed(valDecide) = val[getprocid(ballotsucceeded)]

[ballotsucceeded];
e f f

done[i] : = true;

Figure 4:PaxosProcess(i): Transitions of actions vote, internalDecide and decide

message. This action consists of the operatorsvalproposedandnotnil; valproposedchecks whether ballotb has been
proposed by a process, whereas thenotnil operator examines if a value has been given tob.

Once it is known that a majority of processes have approved the ballotb with valuev, PaxosProcess(i)may decide
that the system has reached consensus by executing the internal actioninternalDecide(i,b). This action, using the
internalDecideOpoperator, checks whether a majority of processes have acceptedb.

Finally, PaxosProcess(i)announces the decision to the external environment with thedecide(i)action. The SEND
and RECEIVE actions are used to propagate information amongprocesses reaching consensus. The information
includes the proposed and sets of ballots, and the value, voted and abstained maps. Figure 6 presents the transitions of
actions SEND and RECEIVE.

For the best manipulation of messages, we created two queue-type data structuresqueueOutandqueueIn, in which
we record the out and in bound messages respectively. In action SEND(m,i,u), processi sends the message that is at
the top of queueOut to receiveru. Once the message is sent, it is removed from the queue. A process can decide and
terminate when it sends all the voted messages that exist inqueueOut.

In RECEIVE(m,i,u), the received messages are stored in the queue named queueInfor further utilization. Paxos
restricts the communications among processes so as only important information to be sent, thus sending periodically
gossip messages at interval ofperiod. This message restriction is achieved through thev(T) andgossip(i)actions of
thePaxosProcess(i)automaton described in Figure 5.

t imePassage v(T)
pre ¬failed;

isEmptyQue(queueOut);
e f f Clock : = Clock + T;

i n t e r n a l gossip(i)
pre ¬failed;

Clock ≥ nextGossipTime;

e f f
f o r k:Int i n nodes-{i} do

queueOut[[i,k]] : = queueOut[[i,k]] ⊢
sState([[i,k],mProposed,mBallots,
mVal,mVoted,mAbstained]);

od;
nextGossipTime : = nextGossipTime + period;

Figure 5:PaxosProcess(i): v(T) and gossip.

In particular, thev(T)action models the passage of time. TheClockvariable (initialized to zero) is increased byT

units,T being a predefined quantity and specifies the (worst-case) time needed for all the abovementioned transitions
to take place; as we explain later, bothT andperiod are system-dependent and therefore these parameters must be
computed based on timing properties of the target deployment platform.

BallotTrigger Automaton. TheBallotTriggerautomaton is the one to specify how a new leader is elected andwhen
a leader generates a new ballot. That is, this automaton is the one to specify the main timing issues of time-based
Paxos. TheBallotTrigger(i)signature and state variables are presented in Figure 7. Figure 8 presents the transitions of
BallotTrigger(i).

TheBallotTrigger(i)automaton handles the event of the ballot voting timeout as follows. If a ballot voting does not
complete within a predefined time interval, it is terminatedby having the leader initiate a new ballot voting. (Assume

8

output SEND (m,i,u)
pre ¬failed;

mode= active;
queueOut[[i, u]] 6= ({});
m =head(queueOut[[i,u]]);

e f f
i f tag(m) =sVote then

countVote: =countVote-1
f i ;

i f m =head(queueOut[[i,u]]) then
queueOut[[i,u]] : = tail(queueOut[[i,u]]);

f i

i npu t RECEIVE(m,i,u)
e f f
i f ¬failed then

i f mode= active ∧ (tag(m) =sAbstain ∨tag(m) =sValue
∨tag(m) =sProposed ∨tag(m) =sBallot ∨tag(m) =sVote
∨tag(m) =sState ∨tag(m) =sLatestValue) then

queueIn[[i,u]] : = queueIn[[i,u]] ⊢ m;

i f (queueIn[[i, u]] 6= {}) ∧
tag(head(queueIn[[i,u]])) = sProposed ∧
(head(queueIn[[i,
u]])).sProposed.valueProposed 6= -1 then

proposed[u]: = insert((head(queueIn[[i,
u]])).sProposed.valueProposed,proposed[u]);
queueIn[[i,u]] : = tail(queueIn[[i,u]]);

f i ;

i f (queueIn[[i,u]] 6={}) ∧
tag(head(queueIn[[i,u]])) = sBallot ∧
getprocid((head(queueIn[[i,
u]])).sBallot.ballotSend) 6=(-1) then

ballots: = insert((head(queueIn[[i,
u]])).sBallot.ballotSend, ballots);

i f (getseqno((head(queueIn[[i,
u]])).sBallot.ballotSend) ≥seqNo) then

seqNo: =getseqno((head(queueIn[[i,
u]])).sBallot.ballotSend);

f i ;
rcvBallots: = insert((head(queueIn[[i,

u]])).sBallot.ballotSend,rcvBallots);
queueOut[[i,u]]: = queueOut[[i,u]] ⊢

sLatestValue([LATESTVAL,[i,u],
lastvotedvalue,
(head(queueIn[[i, u]])).sBallot.ballotSend]);

queueIn[[i,u]] : = tail(queueIn[[i,u]]);
f i ;

i f (queueIn[[i,u]] 6= {}) ∧
tag(head(queueIn[[i, u]])) = sValue ∧
(head(queueIn[[i,u]])).sValue.value 6=(-1) then

val[u][(head(queueIn[[i,u]])).sValue.ballot]: =

embed((head(queueIn[[i,u]])).sValue.value);
val[i][(head(queueIn[[i,u]])).sValue.ballot]: =

embed((head(queueIn[[i,u]])).sValue.value);
queueIn[[i,u]] : = tail(queueIn[[i,u]]);

f i ;

i f (queueIn[[i, u]] 6= {}) ∧
tag(head(queueIn[[i, u]])) = sVote ∧
getprocid((head(queueIn[[i,

u]])).sVote.ballot) 6=(-1) then
voted[i][u]: =voted[i][u] ∪

(head(queueIn[[i, u]])).sVote.ballot};
queueIn[[i,u]] : = tail(queueIn[[i,u]]);

f i ;

i f (queueIn[[i, u]] 6= {}) ∧
tag(head(queueIn[[i, u]])) = sAbstain ∧
¬((head(queueIn[[i,u]])).sAbstain.BAbstain ={}) then
abstained[i][u]: =abstained[i][u] ∪

(head(queueIn[[i, u]])).sAbstain.BAbstain;
queueIn[[i,u]] : = tail(queueIn[[i,u]]);

f i ;

i f ¬(queueIn[[i, u]] = {}) ∧
tag(head(queueIn[[i, u]])) = sState then

i f (head(queueIn[[i,u]])).sState.proposed 6=(-1) then
proposed[u]: = insert((head(queueIn[[i,

u]])).sState.proposed,proposed[u]);
f i ;

i f getprocid((head(queueIn[[i,
u]])).sState.ballots) 6=(-1) then

ballots: = insert((head(queueIn[[i,
u]])).sState.ballots, ballots);

i f (getseqno((head(queueIn[[i,
u]])).sState.ballots) ≥seqNo) then

seqNo: =getseqno((head(queueIn[[i,
u]])).sState.ballots);

f i ;
rcvBallots: = insert((head(queueIn[[i,

u]])).sState.ballots,rcvBallots);
queueOut[[i,u]] : = queueOut[[i,u]] ⊢
sLatestValue([LATESTVAL,[i,u],lastvotedvalue,
(head(queueIn[[i, u]])).sState.ballots]);

f i ;

i f (head(queueIn[[i,u]])).sState.val 6=(-1) then
val[u][(head(queueIn[[i,u]])).sState.ballots]: =

embed((head(queueIn[[i,u]])).sState.val);
val[i][(head(queueIn[[i,u]])).sState.ballots]: =

embed((head(queueIn[[i,u]])).sState.val);
f i ;

i f getprocid((head(queueIn[[i,
u]])).sState.voted) 6= (-1) then
voted[i][u]: =voted[i][u] ∪
{(head(queueIn[[i, u]])).sState.voted}

f i ;

i f ¬((head(queueIn[[i,
u]])).sState.abstained = {}) then

abstained[i][u]: =abstained[i][u]
∪ (head(queueIn[[i, u]])).sState.abstained;

f i ;
queueIn[[i,u]] : = tail(queueIn[[i,u]]);

f i ;

f i ;
f i ;

Figure 6: PaxosProcess(i): Transitions of actions SEND andRECEIVE

9

Signa tu re
Input :
init(cons t MPIrank: Int,vInit: Int)
fail(cons t MPIrank: Int)
decide(cons t MPIrank: Int,vDecide:Int)
assignVal(cons t MPIrank: Int,

bAssignVal:Ballot,vAssignVal:Int)
RECEIVE(m:Message, cons t MPIrank: Int, u:Int)

Output :
newBallot(cons t MPIrank: Int)
sendAlive(cons t MPIrank:Int,u:Int)
SEND(m:Message, cons t MPIrank: Int,u:Int)

I n t e r n a l :
nodeTimeout(cons t MPIrank:Int,u:Int)

TimePassage:
v(T)

S t a t e s
mode:Mode : = idle
suspected:Set[Int] : = {}
timeout:Array[Int,Real]
nextBallotTime:Real : = -1
nextSendTime:Array[Int,Real]
leader:Int : = -1
Clock:Real : = 0
failed: Bool : = false

delay:Real
period:Real
T:Real
nodes:Set[Int]
done:Bool : = false
queueOut:Map[Link, Seq[Message]]
queueIn:Map[Link, Seq[Message]]

Figure 7:: BallotTrigger(i): Signature and State variables

Transitions

i npu t RECEIVE(m,i,u)
e f f

i f ¬failed then
i f mode= active ∧ tag(m) =sAlive then
queueIn[[i,u]] : = queueIn[[i,u]] ⊢ m;
i f head(queueIn[[i,u]]) = sAlive([ALIVE,[u,i]]) then
queueIn[[i,u]] : = tail(queueIn[[i,u]]);
timeout[u]: = Clock+delay;
i f u ∈ suspected then
nextSendTime[u] : = Clock;
suspected : = suspected - {u};
i f u>leader then
leader: =u;

f i ; f i ;
i f u6=leader then
nextBallotTime : = -1;

f i ; f i ; f i ; f i ;

i npu t init(i,v)
e f f

i f ¬failed then
i f (mode=idle) then
mode := active;
Clock : = clock;
leader : = maxElement(nodes);
f o r k:Int i n (nodes - {i}) do
nextSendTime[k] : = Clock;
timeout[k] : = Clock+delay;

od;
i f i =leader then
nextBallotTime : = Clock;

f i ; f i ; f i ;

i n t e r n a l nodeTimeout(i,u)
pre ¬failed;

mode=active;
Clock ≥ timeout[u] ∧ ¬(timeout[u] =(-1));

e f f
suspected: =suspected ∪ {u};
timeout[u]: =-1;
nextSendTime[u]: =-1;
i f leader =u then
leader : = maxElement((nodes-suspected));

f i
i f i =leader ∧ i <u ∧ ¬done then
nextBallotTime : = Clock;

f i

i npu t assignVal(i,b, v)
e f f

i f ¬failed then
i f mode=active then
nextBallotTime: =Clock+delay;

f i ; f i ;

i npu t decide(i,v)
e f f i f ¬failed then

i f mode=active then
done: =true;
nextBallotTime: =-1;

f i
f i ;

output newBallot(i)
pre ¬failed;

mode=active;
Clock ≥nextBallotTime ∧ ¬(nextBallotTime =(-1));
¬done;

e f f nextBallotTime: =Clock+delay;

t imePassage v(T)
pre ¬failed;

(Clock+T) ≤(nextBallotTime) ∨ nextBallotTime =(-1);
timePsg(Clock,T, timeout);
timePsg(Clock,T,nextSendTime);

e f f Clock: =Clock+T;

i npu t fail(i)
e f f mode:=failed;

output sendAlive(i,u)
pre ¬failed;

mode= active;
¬ (u ∈ suspected);
nextSendTime[u] ≤ (Clock +T);

e f f
queueOut[[i,u]]: =queueOut[[i,u]] ⊢ sAlive([ALIVE,[i,u]]);
nextSendTime[u]: = Clock + delay;

output SEND (m,i,u)
pre ¬failed;

mode= active;
queueOut[[i, u]] 6= ({});
m =head(queueOut[[i,u]]);

e f f
i f m =head(queueOut[[i,u]]) then
queueOut[[i,u]] : = tail(queueOut[[i,u]]);

f i

Figure 8:BallotTrigger(i): Transitions

10

thati is the current leader.) Particularly, the leader measures the time starting from the execution of actionnewBallot(i)
and checks whether thedecide(*,i)action is executed within the predefined time period. If the execution has not been
completed andi is still the leader, then thenewBallot(i)action is triggered for the initiation of a new ballot voting.
The nextBallotTimevariable determines the time when the leader should create anew ballot, whilst thenextSendTime
defines the time that the acknowledgment message will be sent.

Another responsibility of theBallotTrigger automaton is to execute a failure detection mechanism in order for a
new leader to be elected, when the current one seems to have crashed. In particular, the automaton implements process
crash detection by having the processes interchanging “alive” messages at regular time intervals. When a processi

does not receive the alive message of processu within a predetermined time interval, theni insertsu into a set of
“suspected” processes (this is implemented by thenodeTimeout(i,u)action). ThesendAlive(i,u)action allows process
i to send an alive message to processu after the passage of time and whenu is not a suspected process. The receipt
of alive messages is implemented using therecvAlive(i,u)action. So, when processi receives a message from process
u, the timeout variable (Clock + delay) is renewed for processu. The variabledelay is system-dependent and hence,
as withT , its value was computed based on empirical performance measurements of our deployment platform (more
details are provided in Section 4). Due to the fact that the system is partially synchronized (and hence, it exhibits
timing failures) it is possible thati might not receiveu’s alive message within the predetermined period and placeu

in the suspected set, althoughu is in fact still operational. However, wheni receives the delayed message, it removes
u from the suspected set. When the leader is included in the set of suspected processes of some process, a new leader
election operation is triggered.

TheBallotTrigger(i)automaton contains the input actionsinit anddecidefor the processes to reach consensus. As
an effect of theinit action, the automaton’s state toggles from idle to active, and the current timing value is assigned to
the Clock value of the automaton. Initially, each process isassigned as a leader. However, when processi receives an
alive message from processu that has greaterid, theni grants its leadership tou. In the end, after correct processes
exchange alive messages, the leader is the one with the highest id. The input actiondecide(i,u)is activated when
consensus is achieved. Consequently, thedecidevariable is toggled to true, and the value−1 (coding infinity) is
assigned tonextBallotTime. It is important to mention that the actiondecide(i,u)of the PaxosProcess(i)automaton
activates the corresponding action of theBallotTrigger automaton when the two automata are composed (the two
automata have been specified in such a way that arecomposition compatible[23]).

The passage of time is specified via thev(T) action. TheClock variable is increased byT units, T being a
predefined quantity and specifies the (worst-case) time needed for all the above mentioned transitions to take place.
Finally, the actionfail(i) specifies the crash of processi (the process state changes from active to failed, and hence no
further actions can be triggered fromi).

3.2.2 Obtaining the PaxosNode Automaton and Resolving Nondeterminism.

As mentioned in Section 2.2 after the description of the system into IOA language the programmer must combine the
algorithm automaton with auxiliary, channel automata. Thedeveloped automaton named PaxosNodeCom (Figure 9),
composes the algorithm automata (PaxosProcess and BallotTrigger) with the mediator automata responsible for the
establishment of the communication (via MPI) among processes. TheSendMediatorautomaton consists of the actions
Isend, respIsendand resp test, while theReceiveMediatorconsists of the actionsIprobe, respIprobe, receiveand
resp receive(which specify standard MPI constructs). More on these mediator automata can be found in [14, 30]. The
PaxosNodeCom automaton is fed to the composer which generates the PaxosNode automaton (it includes all states
and transitions of the composed automata).

automaton PaxosNode(MPIrank:Int,MPIsize:Int)
components
P: PaxosProcess(MPIrank,MPIsize);
B:BallotTrigger(MPIrank,MPIsize);
RM[j: Int]: ReceiveMediator(Message, Int,

MPIrank,j);
SM[j: Int]: SendMediator(Message, Int,

MPIrank, j)

Figure 9:PaxosNodeCom: Composition Automaton

After the composition, and before compilation, we includeda schedule, presented in Figure 10, to resolve non-
determinism. The schedule consists of the operatorsifmajv andvotedBallot. The first checks whether a majority of
processes have approved a proposed ballot, whereas the latter operator returns the approved ballot.

Finally, the scheduledPaxosNodeautomaton (which includes the schedule) was fed to our updated version of the
IOA compiler (which can handle time-passage action types and includes the developed operators and data structures)
and we obtained the Paxos.java file which was then compiled into aclassfile (a JVM executable).

11

schedu le
s t a t e s

links:Set[Link],
lnk:Link,
newBallot:Ballot,
tmpBallots:Set[Ballot]: ={},
tempVal:Int: =-1,
temprcvBallot:Ballot,
setTemp:Set[Ballot]: ={},
flag:Int: =0

do
f i r e input init(MPIrank,valInit);
whi le (P.done[MPIrank] 6=true ∧ P.failed =false ∧
¬(B.failed) ∧ B.mode=active) do

links: =P.lnks;
whi le (¬isEmpty(links) ∧ P.done[MPIrank] 6=true ∧

P.failed =false) do
lnk : = chooseRandom(links);
links : = delete(lnk, links);
i f ¬P.failed ∧ P.mode=active ∧ B.mode=active ∧

B.Clock ≥B.nextBallotTime ∧ ¬(B.nextBallotTime =(-1))
∧ ¬B.done then

f i r e output newBallot(MPIrank);
i f P.doMakeBallot[MPIrank] then
newBallot: =setBallot(P.seqNo+1, MPIrank);
f i r e output makeBallot(MPIrank, newBallot);
setTemp: =((P.ballots-{maxBallot(P.ballots)}) -

P.abstained[MPIrank][MPIrank]) -
P.voted[MPIrank][MPIrank];

i f setTemp 6= {} then
f i r e i n t e r n a l abstain(lnk.i,setTemp);

f i ; f i ; f i ;
setTemp : = ((P.ballots-{maxBallot(P.ballots)}) -

P.abstained[MPIrank][MPIrank]) -
P.voted[MPIrank][MPIrank];

i f (setTemp 6={}) then
f i r e i n t e r n a l abstain(lnk.i,setTemp); f i ;

i f flag =0 then
i f P.queueOut[lnk] 6={} then

f i r e output SEND(head(P.queueOut[lnk]),MPIrank,lnk.u);
e l s e i f B.queueOut[lnk] 6={} then

f i r e output SEND(head(B.queueOut[lnk]),MPIrank,lnk.u);
flag: =1;

f i
e l s e i f flag =1 then

i f B.queueOut[lnk] 6={} then
f i r e output SEND(head(B.queueOut[lnk]),MPIrank,lnk.u);

e l s e i f P.queueOut[lnk] 6= {} then
f i r e output SEND(head(P.queueOut[lnk]),MPIrank,lnk.u);
flag: =0;

f i ; f i ;
i f SM[lnk.u].status =idle ∧ SM[lnk.u].toSend 6={} then

f i r e output Isend(head(SM[lnk.u].toSend),MPIrank,lnk.u);
f i
i f SM[lnk.u].status =idle ∧ SM[lnk.u].handles 6={} then

f i r e output test(head(SM[lnk.u].handles),MPIrank,lnk.u);
f i
i f RM[lnk.u].status =idle ∧ RM[lnk.u].ready =false then

f i r e output Iprobe(MPIrank, lnk.u); f i ;
i f RM[lnk.u].status =idle ∧ RM[lnk.u].ready =true then

f i r e output receive(MPIrank, lnk.u); f i ;
i f RM[lnk.u].toRecv 6= {} then

f i r e output RECEIVE(head(RM[lnk.u].toRecv), MPIrank,

lnk.u);
f i
i f P.queueIn[[lnk.i,lnk.u]] 6={} ∧ P.mode=active
∧ B.mode=active
∧ tag(head(P.queueIn[[lnk.i,lnk.u]])) =sLatestValue

then
f i r e i n t e r n a l valueDecision(lnk.i,lnk.u,(head(
P.queueIn[[lnk.i,lnk.u]])).sLatestValue.latestvalue ,
(head(P.queueIn[[lnk.i,lnk.u]])).sLatestValue.ballo t);

f i
i f P.mode=active ∧ B.mode=active ∧ P.readyAssign =true
∧ P.val[MPIrank][P.lastProposedBallot] =nil
∧ ifProposed(P.proposed,P.assignvalue)
∧ (allessdead(P.ballots,P.lastProposedBallot,
P.abstained[MPIrank],P.quorum) ∨ existval(P.val,
P.assignvalue,P.abstained[MPIrank],P.ballots,P.quor um))

then
tempVal: =P.assignvalue;
f i r e output assignVal(MPIrank,P.lastProposedBallot,

tempVal);
f i
i f P.rcvBallots 6={} then
temprcvBallot: =chooseRandom(P.rcvBallots);
i f notnil(P.val,temprcvBallot) ∧ B.mode=active ∧
P.mode=active ∧ ¬(P.failed) ∧ valproposed(
P.ballots,temprcvBallot) ∧ ¬(temprcvBallot ∈
(P.abstained[MPIrank])[MPIrank]) ∧ ¬(temprcvBallot
∈(P.voted[MPIrank])[MPIrank]) then

f i r e i n t e r n a l vote(MPIrank, temprcvBallot);
f i ; f i ;
i f ifquorumv(P.voted[MPIrank],P.quorum) ∧

P.mode=active ∧B.mode=active ∧P.balvalsucc =(-1) then
f i r e i n t e r n a l internalDecide(MPIrank,

votedBallot(P.voted[MPIrank], P.quorum));
f i
i f P.ballotsucceeded ∈ P.succeeded[MPIrank] ∧
P.balvalsucc 6=(-1) ∧ P.countVote =0 ∧ P.mode=active
∧ B.mode=active ∧ embed(P.balvalsucc) =

P.val[MPIrank][P.ballotsucceeded] then
f i r e output decide(MPIrank, P.balvalsucc);

f i
i f B.mode= active ∧ P.mode=active
∧ ¬lnk.u ∈ B.suspected
∧ B.nextSendTime[lnk.u] ≤B.Clock then
f i r e output sendAlive(lnk.i,lnk.u);

f i
i f B.mode=active ∧ P.mode=active
∧ B.Clock ≥B.timeout[lnk.u]
∧ ¬(B.timeout[lnk.u] =(-1)) then
f i r e i n t e r n a l nodeTimeout(lnk.i,lnk.u);

f i
i f (¬P.failed ∧ isEmptyQue(P.queueOut))
∨ (¬B.failed ∧ (B.Clock+B.T ≤B.nextBallotTime
∨ B.nextBallotTime =-1)
∧ timePsg(B.Clock,B.T,B.timeout)
∧ timePsg(B.Clock,B.T,B.nextSendTime))
∧ P.mode=active ∧ B.mode=active then
f i r e t imePassage v(P.T);

f i
i f (¬(P.failed) ∧ P.Clock ≥ P.nextGossipTime) then

f i r e i n t e r n a l gossip(MPIrank);
f i

od; od; od;

Figure 10:Paxos Schedule

12

4 Experimentation

To demonstrate the functionality of the augmented compiler, we have run the derived Java code (which implements
Paxos) on a network of workstations and obtained some experimental data.

Platform and Preparation. Our experimentation platform consists of a cluster of 17 local machines. Each machine
is powered by an Intel Pentium V 1.5 GHz CPU and is running Linux (Fedora Core v5 OS).

As aforementioned in the previous section, the time-related parametersT , delay, andperiod used abstractly in
the specification are system-dependent. In particular,T is the (worst-case) time needed for a node to perform a certain
sequence of actions (as specified in the previous section). This time may vary on different platforms. Parameterdelay

includes the (worst-case) time for a message round-trip, local computation and other Java-related delays. Clearly, this
depends on the implementation platform. Parameterperiod may be thought as programmer-defined, in the sense that
it is up to the programmer to decide on how often the nodes should gossip. Of course, this decision also depends on
the deployment platform, as the period should depend on the message round-trip time, the network topology, and the
system load.

Therefore, in order to identify sensible values for these parameters for our deployment platform, we performed
some initial experiments with simple executions of the code, taking into consideration the system’s ping times and the
performance analysis presented in [25]. From this preprocessing phase the following values (inmsecs) were finally
chosen:T = 22, delay = 8822, andperiod = 24.

Scenarios and Results. It is noteworthy that Paxos is capable of dealing with small transient failures which are
concealed by the use of majority voting. MPI is not fault tolerant and when nodes fail the system can suffer a failure
as a whole – due to resource depletion. Removing this limitation is subject of future work where the MPI mediator
automata can be replaced with Java mediator automata (as proposed in [16]) that allow more dynamic behaviors.

Despite the above note, a practical evaluation of our automatically generated code is still meaningful: first, it
demonstrates that indeed the generated code is executable,second that the resulting program behaves as expected, and
finally that we obtain a reasonable performance. To this end we present three scenarios.

The first scenario aims to identify the average execution time and number of sent messages for achieving consensus
on a single ballot voting, while the number of participants increases gradually from 2 to 17. The objective of the second
scenario is to test the resilience of Paxos to message loss. Since MPI is not fault-tolerant, we introduce code on the
sender side that randomly chooses messages to be dropped before the MPI send primitive is invoked. Scenarios 2A
and 2B drop 10% and 20% of messages respectively. The third scenario seeks to measure the performance of our
Paxos implementation in the presence of leader crashes. In particular, in this scenario we simulate the leader crash (by
setting the status of the leader as failed in the schedule block) and hence we force the algorithm to initiate the leader
election and new ballot mechanisms.

Each scenario was run 10 times and thus each plot point depicts the average of the runs. Figures 11(a) to 11(d)
illustrate the average execution time and sent messages respectively for each scenario. The first scenario is used as
baseline against the other two scenarios.

The experimental data in Figures 11(a) and 11(b) demonstrate, as expected, that Paxos is able to cope well with
message omission. The difference in message count in Figure11(b) is negligible between the scenarios, which is to
be expected, since non-leader node message loss is amortized by the use of majority voting, whereas, leader message
loss contributes only to a few additional messages; it does,however, contribute to timeouts and hence the increased
operation latency as depicted in Figure 11(a).

The timing in Figure 11(c) predictably favors the case when the leader is stable. It is important to point out that
the performance in scenarios 1 and 3 is parallel where the difference reflects the timeout until a new leader election is
triggered. We also observe a linear decay in performance as the number of nodes increases, which is to be expected.
However, we do not expect this behavior to last indefinitely,especially when the network becomes saturated.

5 Conclusions

In this paper we have described our experience in specifying, compiling and running a time-based version of the
popular Paxos consensus algorithm. In particular, by usinga GTA specification of Paxos (which was proved to be
correct in [25] and machine-checked in [18, 31]) and by extending the IOA checker, composer and compiler (of the
IOA Toolkit) in supporting a variant of the GTA framework, wehave managed to develop an automated implementation

13

(a)

(b)

(c)

(d)

Figure 11:Experimental results: (a) Avg. execution time for scenarios 1, 2A, & 2B,(b) Avg. number of sent messages for scenarios
1, 2A, & 2B, (c) Avg. execution time for scenarios 1 & 3, and (d) Ave. ofsent messages for scenarios 1 & 3.

14

of time-based Paxos. To the best of our knowledge, our work constitutes the first example of a time-dependent complex
distributed algorithm that has been specified, verified and implemented in an automated way, using a common formal
methodology (IOA in our case).

Several future research directions emanate from our work. First, it would be interesting to assess the efficiency
of the automated implementation produced by the compiler. One way is to compare our implementation of Paxos
with the one of Musial [29] which was done in a manual way. However, at this point such a comparison would not
be fair, as the implementation of Musial uses Java Sockets and TCP, and not MPI for communication. This brings
us to a second future objective. Currently the compiler is limited to static participation and use in LANs due to the
use of MPI. The compiler design is general enough to enable the use of other communication paradigms. In [16] an
alternative communication paradigm is suggested (Java Sockets with TCP) that enables the automated implementation
of algorithms that have dynamic participation (nodes may join and leave the computation at any time). Ongoing work
is attempting to incorporate this alternative paradigm into (our version of) the IOA compiler.

The TIOA framework (an extension of the IOA framework) models distributed systems with timing constraints
as collections of interacting state machines, called TimedInput/Output Automata (an extension of Input/Output Au-
tomata) [19]. This framework can be considered more generalthan GTA, since a state in TIOA not only can be changed
by discrete transitions but also by trajectories. A trajectory is a (continuous or discontinuous) function that describes
the evolution of the state variables over intervals of time.Therefore, it seems that TIOA can be used to specify a wider
family of time-based algorithms (and not just the ones that their computational progress depends on timeouts – like
Paxos). A TIOA toolkit is underway [24] which currently includes a TIOA checker, a theorem prover and a TIOA
simulator with limited functionality. A very challenging research direction is to develop a TIOA code generator. Our
work can be considered an important step towards that direction.

Acknowledgments. We would like to thank Panayiotis Mavrommatis for several helpful discussions.

References

[1] IOA language and toolset. URL:http://theory.lcs.mit.edu/tds/ioa/ .

[2] INMOS Ltd: occam Programming Manual, 1984.

[3] R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science, 126:183–235, 1994.

[4] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley-
Interscience, 2nd edition, 2004.

[5] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Deconstructing Paxos.SIGACT News, 34(1):47-67, 2003.

[6] R. Cleaveland, J. N. Gada, P. M. Lewis, S. A. Smolka, O. Sokolsky, and S. Zhang. The Concurrency Factory:
Practical tools for specification, simulation, verification and implementation of concurrent systems. InDIMACS
Workshop, pages 75–89, 1994.

[7] R. Cleaveland, J. Parrow, and B. U. Steffen. The concurrency workbench: A semantics-based tool for the
verification of concurrent systems.ACM TOPLAS, 15(1), 1993.

[8] R. De Prisco. Revisiting the Paxos Algorithm. Master’s thesis, Laboratory for Computer Science, Massachusetts
Institute of Technology, 1997. Also as TR: MIT-LCS-TR-717.

[9] M. Fisher, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty process.Journal
of the ACM, 32:374–382, 1985.

[10] M. P. I. Forum. MPI: A message-passing interface standard. International Journal of Supercomputer Applica-
tions, 8(3/4), 1994.

[11] S. Garland, N. Lynch, J. Tauber, and M. Vaziri. IOA user guide and reference manual. Technical Report
MIT/LCS/TR-961, July 2004. URL:http://theory.lcs.mit.edu/tds/ioa/manual.ps .

[12] S. J. Garland and J. V. Guttag. A guide to LP, the Larch Prover. Research Report 82, Digital Systems Research
Center, 1991.

15

[13] Ch. Georgiou, P. Hadjiprocopiou, and P.M. Musial. On the automated implementation of time-based Paxos us-
ing the IOA compiler. Technical Report, 2010. URL:http://www.cs.ucy.ac.cy/ ˜ chryssis/pubs/
tpaxos.pdf .

[14] Ch. Georgiou, N. Lynch, P. Mavrommatis, and J. A. Tauber. Automated implementation of complex distributed
algorithms specified in the IOA language.Journal of Software Tools for Technology Transfer, 11(2):153–171,
2009.

[15] Ch. Georgiou, P. Mavrommatis, and J. A. Tauber. Implementing asynchronous distributed systems using the IOA
toolkit. Technical Report MIT/LCS/TR-966, 2004.

[16] Ch. Georgiou, P. M. Musial, A. A. Shvartsman, and E. L. Sonderegger. An abstract channel specification and
an algorithm implementing it using Java sockets. InProceedings of the 7th IEEE International Symposium on
Network Computing and Applications (NCA 2008), pages 211–219, 2008.

[17] C. Hoare.Communicating Sequential Processes. Prentice-Hall International, UK, 1985.

[18] N. Immorlica and T. Win. A Case Study: Proving Paxos withthe IOA Toolkit. Manuscript, 2002.

[19] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.The Theory of Timed I/O Automata(Synthesis Lectures in
Computer Science). Morgan & Claypool Publishers, 2006.

[20] L. Lamport. The temporal logic of actions.ACM Transactions on Programming Languages and Systems,
16(3):872–923, May 1994.

[21] L. Lamport. The part-time parliament.ACM Transactions on Computer Systems, 16(2):133–169, 1998.

[22] K. Larsen and P. Pettersson. Uppaal in a nutshell.Journal of Software Tools for Technology Transfer, 1(1/2):134–
152, 1997.

[23] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[24] N. Lynch, L. Michel, and A. Shvartsman. Tempo: A toolkitfor the timed Input/Output automata formalism.
In Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications,
Networks, and Systems (SIMUTools 2008), 2008.

[25] N. Lynch and A. Shvartsman. Paxos made even simpler (andformal). Manuscript, 2002.

[26] N. Lynch and F. Vaandrager. Forward and backward simulations – Part II: Timing-based systems.Information
and Computation, 128(1):1–25, 1996.

[27] N. Lynch and M. Tuttle. An introduction to Input/OutputAutomata.CWI-Quarterly, 2(3):219–246, 1989.

[28] R. Milner. Communication and Concurrency. Prentice-Hall International, UK, 1989.

[29] P. M. Musial.From High Level Specification to Executable Code: Specification, Refinement, and Implementation
of a Survivable and Consistent Data Service for Dynamic Networks. PhD thesis, Dept. of Computer Science and
Engineering, University of Connecticut, 2007.

[30] J. A. Tauber. Verifiable Compilation of I/O Automata without Global Synchronization. PhD thesis, Dept. of
Electrical Engineering and Computer Science, M.I.T., 2005.

[31] T. N. Win. Theorem-proving distributed algorithms with dynamic analysis. Master’s thesis, Dept. of Electrical
Engineering and Computer Science, M.I.T., 2003.

16

Appendix
Java Code for Some Operators and Data Structures
The Java code for the ifProposed and ifmajv operators.

public static BoolSort ifProposed(ArraySort proposed, In tSort value){
BoolSort b= BoolSort.False();
Enumeration allkeys= proposed.enumIndices();
while(allkeys.hasMoreElements()){

IndexSeq key=(IndexSeq)allkeys.nextElement();
SetSort set=(SetSort)proposed.elementAt(key);
Iterator i = set.getSet().iterator();

while(i.hasNext()) {
IntSort val=(IntSort)i.next();

if(val.value==value.value){
return BoolSort.True();

}
}

}
return b;

}

static public BoolSort ifmajv(ArraySort votedBallots,Se tSort nodes){
int majority=0;
majority=(nodes.size() / 2) + 1 ;
MsetSort allVotedBallots =MsetSort.empty();
Enumeration allkeys1= votedBallots.enumIndices();

while(allkeys1.hasMoreElements()){
IndexSeq key=(IndexSeq)allkeys1.nextElement();
SetSort set= (SetSort)votedBallots.elementAt(key);
if (!SetSort.isEmpty(set).booleanValue()){

Iterator i = set.getSet().iterator();
while(i.hasNext()) {

BallotSort tempInt=(BallotSort)i.next();

allVotedBallots = allVotedBallots.insert(tempInt);
}

}
}

if (!MsetSort.isEmpty(allVotedBallots).booleanValue()){
Iterator j= allVotedBallots.map.keySet().iterator();
while(j.hasNext()) {

ADT element = (ADT)j.next();
if (allVotedBallots.count(element) >=majority)

return BoolSort.True();
}

}

return BoolSort.False();

}

A part from the BallotSort data type Java code:

package ioa.runtime.adt;
import ioa.simulator.Entity;
import ioa.util.logger.IOACategory;
import ioa.util.sexp. * ;
import java.lang.Integer;
import java.lang.Math;
import java.util.Iterator;
import java.math.BigInteger;
import java.util.HashSet;
import java.util.Set;

17

public class BallotSort extends ComparableADT
implements java.io.Serializable, MPINode {

private static IOACategory cat =
IOACategory.getInstance (BallotSort.class.getName()) ;

protected int seqno;
protected int procid;
protected int Bid;
//Constructors

protected BallotSort(int seqno,int procid) {
this.seqno = seqno;

this.procid=procid;
if(seqno!=-1 && procid!=-1)

this.Bid=ioa.runtime.adt.Check.concatenate(
IntSort.lit(seqno),IntSort.lit(procid)).intValue();

else this.Bid=-1;
}
protected BallotSort() { }

/ **
* Return the seqno and procid of <code>this</code>.

* /
public static IntSort getseqno(BallotSort b){

return new IntSort(b.seqno);}

int seqno(){return seqno;}

public static IntSort getprocid(BallotSort b) {
return new IntSort(b.procid);}

int procid(){return procid;}

public int Bid(){return Bid;}

public static BallotSort setBallot(IntSort seqno, IntSor t procid){
return new BallotSort (seqno.value,procid.value);

}

public static Object maxBallot(SetSort set) {

if (set.size() == 0)
return new BallotSort(-1,-1);

Iterator i = set.getSet().iterator();
BallotSort maxElement = (BallotSort)i.next();
while(i.hasNext()) {

BallotSort element = (BallotSort)i.next();
if (element.seqno() > maxElement.seqno()) {

maxElement = element;

}
else if (element.seqno() == maxElement.seqno()){

if(element.procid()>maxElement.procid())
maxElement = element;

}
}
return maxElement;

}

18

