ROBUST DISTRIBUTED COOPERATION

IN THE PRESENCE OF QUANTIFIED ADVERSITY

Chryssis Georgiou, Ph.D.

University of Connecticut, 2003

The ability to cooperatively perform a collection of tasksai distributed setting is key to
solving a broad range of computation problems ranging fristriduted search to distributed
simulation and multi-agent collaboratio®o-All, an abstraction of such cooperative activity,
is the problem of using processors to cooperatively performindependent and idempotent
tasks in the presence of adversity. The-All problem can be used to identifying the trade-
offs between efficiency and fault-tolerance in distributedperative computing. Solutions for
Do-All may yield insight leading to efficient and fault-tolerang@iithms for distributed co-
operation. Although significant research was dedicateduidygg Do-All, prior work offers
only a partial understanding of this problem. In particulahile prior work shows how to
achieve fault-tolerance in the presence of adversity, ésdwot adequately teach how the ad-
verse environment affects the efficiencyfad-All solutions. This thesis substantially increases
this understanding. One of the contributions includesifaibensitive upper and lower bounds
for Do-All in certain models of computation, that show how failuregctfthe efficiency of
Do-All solutions. The upper/lower bounds are given as functions, pfand f, the number
of failures caused by the adverse environment. Anotheritomion of the thesis is the def-
inition and analysis of théerative Do-All problem, that models the repetitive usel2d-All

algorithms, such as found in typical algorithm simulations

Chryssis Georgiou——University of Connecticut, 2003

This thesis also studies the distributed cooperation probin partitionable networks,
where partitions may interfere with the progress of the catapon. Group communication
services are used to develop robust algorithms for thigngstt Moreover, it is shown that it
is possible to obtain optimally-competitive schedulingagithms in partitionable networks by
proving upper and lower bound results. These results demabagprecisely how partitions
affect the efficiency of computation.

Overall, the thesis is substantially contributing to thedgt of the trade-offs between ef-

ficiency and fault-tolerance in cooperative computing anddvancing the state-of-the-art in

principles of robust distributed computing.

ROBUST DISTRIBUTED COOPERATION

IN THE PRESENCE OF QUANTIFIED ADVERSITY

Chryssis Georgiou

M.S., Computer Science & Engineering, University of Conioet, 2002
B.S., Mathematics, University of Cyprus, 1998

A Dissertation
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
at the
University of Connecticut

2003

Copyright by

Chryssis Georgiou

2003

APPROVAL PAGE

Doctor of Philosophy Dissertation

ROBUST DISTRIBUTED COOPERATION

IN THE PRESENCE OF QUANTIFIED ADVERSITY

Presented by

Chryssis Georgiou, M.S., B.S.

Major Advisor

Alex A. Shvartsman

Associate Advisor

Nancy A. Lynch

Associate Advisor

Alexander Russell

University of Connecticut

2003

ACKNOWLEDGEMENTS

This dissertation would have been impossible without theoeragement, guidance and
support of the three members of my committee.

| am deeply indebted to my advisor and mentor, Alex Shvantsrfa giving me the op-
portunity to pursue doctoral studies at the University oh@&cticut. His continuous support
and advice brought these studies to a successful compldtiiank him for his critical and
pertinent criticism on my work that helped me grow both asseaecher and as a person.
His incessant desire for excellence has positively infladrtbe presentation and organization
of this dissertation. | thank him for the time he invested om and the financial support he
provided me over the years of my graduate studies.

My gratitude to Alexander Russell is indefinable. He has gdiag significant role in my
graduate education and my growth as a researcher in the fitidaretical computer science.
My interaction and collaboration with him helped me to ac&my knowledge and under-
standing on how to apply mathematical reasoning in compmdience. | thank him for the
time he dedicated to me and the mathematical tools he edricleewith.

| am particularly grateful to Nancy Lynch, first, for agregito be on my advisory com-
mittee, and second, for giving me the opportunity to prepants of my work at the MIT TDS
seminar. Her feedback along with the comments of the othenlmaes of her group at MIT
have significantly improved the quality of my work.

During my graduate studies at UConn | had the opportunitydltalsorate on research

projects with Dariusz Kowalski, Antonio Fernandez andeP&fusial. | am thankful for the

knowledge and experience | obtained through these woridmtfaborations. | would also like
to express my gratitude to Lester Lipsky, Thomas PetersFaggne Santos Jr. for valuable
discussions on course-related projects. My thanks to Diolis and Kishori Konwar for
our collaboration in teaching the Algorithms and Complexiiass in the Fall of 2001. | am
also thankful to all the officemates | had at UConn during nudigts, especially to Cecilia
Bastarrica, Peter Musial, and Mariam Momenzadeh.

| am obliged to Marios Mavronicolas for his guidance and ee\during my undergradu-
ate studies at the University of Cyprus and for encouragimegtanpursue doctoral studies in
theoretical computer science.

Finally, | would like to thank my family. My parents, Georgi@and Michaela Georgiou,
for sacrificing their personal lives for me. They have begupsuting and encouraging me to
realize my dreams since the day they brought me to this whhdorother, Demetris Georgiou,
for always believing in me and supporting all my decisionsy fMncé and soon my-wife-to-
be, Agni Stylianou, for everything. There is no way | can nuieaghe many ways she has
unconditionally supported me over the years it took me toplete my studies. She has been

my strength and joy. | dedicate this dissertation to all im@mbers of my family.

CREDITS

This dissertation incorporates research results appearitne following publications:

[48, 49]

[47]

[51]

[53, 54]

[52]

This is a joint work with A. Russell and A. Shvartsmg#8] will appear inDistributed
Computing A preliminary version [49] appears in the Proceeding®&8C’01 This
work corresponds to Sections 4.1-4.3, 5.1, 6.1 and partectiéhs 3.1-3.4 of the dis-

sertation.

This paper is a joint work with D. Kowalski and A. Shvartan. It appears in the Pro-

ceedings oDISC’03. It corresponds to Section 5.2.

This paper is a joint work with A. Russell and A. Shvartsm It appears in the Proceed-

ings of OPODIS’02 It corresponds to Section 6.2 and parts of Section 3.4.

This is a joint work with A. Shvartsman. [53] appearghe Journal of Discrete Algo-
rithms 2003. A preliminary version [54] appears in the ProceesliofSIROCCO’00

This work corresponds to Section 7.1 and parts of Sectidi8 3.

This paper is a joint work with A. Russell and A. Shvargsm It appears in the Proceed-

ings of STOC’03 It corresponds to Section 7.2 and parts of Sections 3.2-3.3

TABLE OF CONTENTS

Chapter 1: Introduction

1.1 Motivation for thisresearch.
1.2 Background
1.3 PriorWork.
1.4 Summary of Contributions
1.5 Document Structure. L

Chapter 2: Related Work
2.1 Do-Allin Message-PassingModels
2.2 Write-All in Shared-Memory Models.
2.3 Do-All Under the Assumption of Perfect Knowledge
2.4 Omni-Do in Partitionable Networks
2.5 Group Communication Services.
2.6 Cooperative Collect.
27 CONSENSUS. ot et

2.8 Web-Based Computing.

Chapter 3: Models of Computation and the Do-All Problem
3.1 General Setting and Definitions
3.2 Modelsof Adversity.
3.21 FailureTypes.
3.2.2 Adversarial Models. o

3.3 TheDo-All Problem.

Vi

3.4 Measures of Efficiency o

Chapter 4: Perfect Knowledge: Do-All with Crashes
4.1 Do-All Upper Bounds with Perfect Knowledge
4.2 Do-AllLowerBounds.

4.3 lterative Do-All

Chapter 5: Message-Passing: Do-All with Crashes
5.1 Failure-Sensitive Bounds with Reliable Multicast.
5.1.1 Description of Algorithm AN
5.1.2 Analysis of Work Complexity.
5.1.3 Analysis of Message Complexity
5.1.4 Analysis of Message-Passing Iterative Do-All
5.2 Failure-Sensitive Bounds without Reliable Multicast
5,21 TheGossipProblem.
5.2.2 Combinatorial Tools
5.2.3 TheGossip Algorithm

5.2.4 The Do-All Algorithm basedonGossip.

Chapter 6: Shared-Memory: Write-All with Crashes
6.1 Failure-Sensitive Bounds. L oL
6.1.1 Description of AlgorithmW.
6.1.2 Complexity Analysis
6.1.3 Iterative Write-All and Parallel Algorithm Simulatis

6.2 Failure-Sensitive Bounds for Controlled Memory AccEssicurrency

Vii

57

58

62

68

72

72

73

74

76

76

77

78

80

89

104

126

127

127

128

130

131

6.2.1
6.2.2

6.2.3

Chapter 7:

Description of Algorithm KMS
Complexity Analysis

Iterative Write-All and Parallel Algorithm Simulatis

Omni-Do in Partitionable Networks

7.1 Worst Case Analysisof Omni-Da

7.1.1

7.1.2

7.1.3

7.1.4

7.1.5

Input/Output Automata.
A Group Communication Service
View-Graphs
Algorithm AX e

Analysis of Algorithm AX.

7.2 Competitive AnalysisofOmni-Do

7.2.1
7.2.2
7.2.3

7.2.4

Chapter 8:

Bibliography

Preliminaries oo
Description of Algorithm RS
Analysis of Algorithm RS. L.

Lower Bounds.

Conclusions and Future Work

viii

145

146

147

147

149

156

162

174

175

180

180

184

188

194

LIST OF FIGURES

Oracle-based algorithm. 58
Algorithm Gossir. Code for processar. 90
A phase of epoch of algorithm DoALL.. Code for processar. 105
Classification of a phageof epoch?; executiort is implied. 112
Example ofaview-graph L 151
Algorithm AX. 158
Anexample of g12,n)-DAG. Lo 177

Chapter 1

Introduction

This thesis studies the impact of the adverse environmeheefficiency of distributed

cooperative computing.

1.1 Motivation for this research

The ability to cooperatively perform a collection of tasksai distributed setting is key to
solving a broad range of computation problems ranging friatniduted search (e.g., SETI[74])
to distributed simulation (e.g., [25]) and multi-agentlabbration (e.g., [2, 108]). Therefore,
cooperative computing has drawn a lot of attention from #search community in the last
two decades and substantial research was dedicated ttigawieg) how processors can coop-
erate effectively in order to exploit parallelism in a systeonsisting of multiple processing
elements.

Distributed systems consisting of hundreds and thousahdsooessing units (e.g., mul-
tiprocessor machines, clusters of workstations, wide-aetworks) are widely used. In such

systems it is possible that the set of processing elememitable to the computation and

their ability to communicate may dynamically change dueddyrbations in the computation
medium. Such changes may degrade the efficiency of algaittesigned to solve computa-
tional problems on these multiprocessing systems, ancecagsrithms to produce incorrect
results.

Therefore, there is a corresponding need for the developoferificient and dependable
algorithms that are able to cope with unpredictable chaimgi® computation medium caused
by component failures or delays. Algorithms need to be béitbient and fault-tolerant. We
call such algorithmsobust However, developing robust algorithms for distributedmpera-
tion is inherently difficult sincdault-toleranceis achieved byntroducing redundancywhile
efficiencyis achieved byliminating redundancy

To study aspects of the trade-off between efficiency and-faldrance in cooperative com-
puting and to obtain insight into developing robust aldoris for distributed cooperation, past
research (e.g., [33, 68, 17, 44, 28]) has focused on studigamgbstract problem of performing

a set of tasks in a decentralized setting, known afxe\/l problem.

Do-All: p processors must cooperatively perforntasks in the presence of adversity.

In the Do-All problem, the tasks are assumed to be similar, independdrittampotent.
By the similarity of the tasks we mean that the task execatmmsume equal or comparable
resources. By the independence of the tasks we mean thairtipdation of any task does not
affect any other task. By the idempotence of the tasks we rinedireach task can be executed
multiple times or concurrently and produce the same finailtes

Several high-level computational problems can be abstlaotterms of théo-All prob-
lem. For example, in image processing [112] and computgatiga [42], a significant amount

of data processing (e.g., operations on large data stes;taomputing complicated partial and

ordinary differential equations) is required, especiallyisualization (achieving graphical vi-
sual realism of real world objects) [89, 101]. When the dataet computed can be decomposed
into smaller independent “chunks”, a usual approach isdad-imalance the chunks among the
different processing units of a parallel machine (or a elusf machines) [101, 58]. The data
chunks can be abstracted Bs-All tasks and the processing units can be abstractdobas
All processors. In databases [36], when querying a large ted§adata space, it is often
desirable to use multiple machines to search differentrdscof the database in an attempt to
decrease the search time [1]. In fluid dynamics, researciedy the behavior of fluids in dif-
ferent settings by running simulations that involve sajurumerically complicated differential
equations over large data spaces. Again, when the data acd@cbenposed into smaller inde-
pendent chunks, the chunks are assigned on different madépsing units to achieve faster
and reliable computation [55, 65]. Another example can ladoin Cryptography. In partic-
ular, in breaking cryptographic schemes. The goal is tockeand find a user’s private key.
A key may be a string of 128 bits, meaning that there Hfé different strings that a user
could choose as his private key. Among the various techgiguailable, the most frequently
used is exhaustive search where multiple processing wrtls simultaneously for the key,
each unit searching different sets of bit permutations J1Béch set of bit permutation can be
abstracted as Ro-All task and each processing unit can be abstractedasAll processor.
In general, any problem that involves performing a numbesiroflar independent calculations
can be abstracted in terms of tBe@-All problem.

As we will see in Section 1.3 and more extensively in Chapt@ridr research offers only
a partial understanding of thRo-All problem. Specifically, there is a partial understanding

on how the adverse environment (e.g., failures) affectetfi@ency ofDo-All solutions, and

more generally, how it affects cooperative computing — djiaation of adversity does not
figure prominently in complexity results. This is rathermising, especially since research
conducted for other fundamental problems of distributedmating, for example theonsensus
problem (a set of processors must agree on a common valuSgeséien 2.7), always focused
on how adversity affects the efficiency and doability of tihelgbem.
The underlying theme that we address in this thesis is
Understanding precisely how the adverse environmenttaffec

the efficiency of cooperative computing.

1.2 Background

The Do-All problem and variations of this problem have been studiedviarigty of set-
tings, e.g., inshared-memorynodels [68, 86, 59, 7], imessage-passingodels [33, 28, 22,
44] and inpartitionable network$32, 83].

In message-passing models, processors communicate bgrgiag messages while in
shared-memory models processors communicate by readimgaind writing to shared mem-
ory. In shared-memory models, tiizo-All problem is known as th&/rite-All problem —
given a zero-valued array of elements ang processors, write valug into each array loca-
tion— and it was introduced by Kanellakis and Shvartsman [67¢ flin difference between
the Do-All problem in message-passing models andAfige-All problem in shared-memory
models is that irDo-All the tasks may be supplied to the processors from some elxternae,
while in Write-All the tasks are stored in shared-memory accessible to akgsors. In par-
ticular, each location of th&Vrite-All input array may be associated with a task, and when

a processor writes the valdeinto a specific location of the input array, this implies thzd

processor has performed the associated task. In the carfitiuig thesis we abstract away from
the source and the nature of the tasks and we Peafll andWrite-All as the same problem.
However, when we studfpo-All in shared-memory models, we refer explicitlyWdrite-All .

Do-All has also been studied in the setting of processor groupgtitigreable networks,
i.e., when the topology of the network may dynamically cledge to changes in the commu-
nication medium [32, 83]. In this setting, the goal is toimélthe resources of every component
of the system during the entire computation. We call thibfgm Omni-Do— a set ofn tasks
must be performed by processors in a distributed system, where each processst learn
all results— and it was introduced by Dolev, Segala and Shvartsman [32].

Do-All has been also studied under the assumptiopesfect knowledgg68], where
message-passing and shared-memory issues are abstraatedyathe assumption of ara-
cle that performs the load-balancing computation on behalfiefirocessors.

Finally, Write-All algorithms have been used in developing simulations afriifree al-
gorithms on failure-prone processors, e.g., [72, 104, 8p, Bhis is done by iteratively using
a Write-All algorithm to simulate the steps of failure-free processorfailure-prone proces-
sors. In this thesis we abstract this iterative us®ofAll algorithms as the-iterative Do-All
problem —usingp processors, solve instances ofi-task Do-All with the added restriction
that every task of théh instance must be completed before any task ofithel)st instance
is begun (Ther-iterative Write-All andr-iterative Omni-Doproblems are defined similarly.)

The efficiency of algorithmic solutions tBo-All is usually assessed in terms wbrk,
time andcommunicatiorcomplexity, depending on the specific model of computatidfork
is defined either as the total number of computational stegentby all available processors

during the computation (known asvailable processor stepintroduced by Kanellakis and

Shvartsman [67]) or as the total number of otadgk-orienteccomputational steps taken by the
processors (introduced by Dwork, Halpern, and Waarts [38Pomputational step taken by a
processor is said to be task-oriented, if during that stegpthcessor performs@o-All task.
We refer to the first variation of work agork and we denoting it bys. We refer to the second
variation of work astask-oriented worlkand we denote it by}. In synchronous systems,
time is defined as the total number of parallel steps requgethe computation to terminate.
In asynchronous systems, time is defined as the total nunfdéne-units required for the
computation to terminate, where a time-unit is usually d=fim terms of the clock-ticks of a
global clock (that may or may not be accessible to processGmsmmunication complexity or
message complexity defined as the total number of point-to-point messageiscsgimg the
computation. We denote it hy/.

A trivial lower bound on work forDo-All is £2(n), since each task has to be performed at
least once. A trivial solution t®o-All can be obtained by having each processor obliviously
perform each of the tasks. This solution has wo(n - p) and requires no communication.
To this respect, @o-All algorithm is considereefficientif it achieves work substantially
better than the oblivious algorithm. In particular, we dagttaDo-All algorithm isoptimalif
it can achieve worlO(n), polylogarithmically efficientf it can achieve workO(n log@® n)

andpolynomially efficientf it can achieve workO(n!*¢), for somes € (0, 1).

1.3 Prior Work

In this section we overview related research. An extensieeature review is given in

Chapter 2.

Synchronous message-passing algorithms sologAll with processocrasheqa faulty
processor stops all activities and does not perform anpdurictions) have been provided by
Dwork, Halpern and Waarts [33], by De Prisco, Mayer and Y&],[and by Galil, Mayer and
Yung [44]. (The analysis in [33] uses thask-oriented workneasure that allows processors
to idle whereas the analyses in [28] and [44] usewloek measure where idling processors
are charged.) These algorithms use point-to-point masgaid tolerate up tp — 1 proces-
sor crashes. The algorithm by Gadit al. [44] (the best among these algorithms) has work
S = O(n + fp) and message complexity/ = O(fp° + pmin{f + 1,logp}), wheref is
number of crashegf < p) and0 < e < 1. These deterministic algorithms rely on single coor-
dinators or checkpointing strategies for sharing the kedgé about the progress of a compu-
tation. Such strategies are subject to the lower bourfd(ef+ (f + 1)p) on work [28]. Chle-
bus, De Prisco and Shvartsman [17] developed an algorithdgeri#hm AN — that beats this
lower bound by using a strategy involving multiple coordara. It has workS = O(log f(n+
plog p/loglog p)) and message complexify = O(n+plogp/loglogp+pf), f < p. How-
ever algorithm AN usesgeliable multicast[60], which is a strong assumption: if a processor
crashes while multicasting a message, then either all aoltyfprocessors deliver the message
or none do. Some local area networks (LANS) might approxéntlais assumption, but in gen-
eral it is too costly (or impossible) to provide in many tymdglistributed systems. Chlebus,
Gasieniec, Kowalski and Shvartsman [19] pursued an appriteat uses point-to-point mes-
saging and avoids the use of coordinators and checkpoiatidgieveloped an algorithm with
the combined work and message complexity)gh. + p'-77), for all f < p. Observe that the
work bound is close to the quadratic bound obtained by thiwiobk algorithm (where each

processor performs all tasks). All of the above give riseht fbllowing question regarding

synchronous message-passing-All algorithms with processor crashes: “Can we develop al-
gorithms that obtain better work and message complexity tha existing ones and that use
only point-to-point messaging?”. This thesis gives a pgsinswer to this question.

Chlebus, De Prisco and Shvartsman [17] developed a megsagag solution foDo-

All — Algorithm AR — that can tolerate processor crashesragtarts(a faulty processor may
resume computation). Like algorithm AN, algorithm AR usebable multicast. It remains
an open problem whether it is possible to develop efficierssage-passing algorithms that
solve Do-All for processor crashes and restarts, without the assumgiti@tiable multicast.

It is also worth mentioning that prior work did not considbe iterative Do-All problem in
message-passing systems. We define and steditive Do-All in this thesis.

In shared-memory model§Vrite-All has been studied in synchronous systems under pro-
cessor crashes (e.g., [67, 66, 68]), in synchronous systades processor crashes and restarts
(e.g., [15, 68]) and in asynchronous systems (e.g., [8558768, 7, 18]). Also, Kanellakis,
Michailidis and Shvartsman [66], considered thé&ite-All problem for crash-prone proces-
sors in a synchronous shared-memory model wherend®ory access concurrenogeds to
be controlled. The write (resp. read) concurrency is meagkas the “redundant” write (resp.
read) memory accesses: consider a step of a parallel cotimputenerex processors concur-
rently write to the same memory location the same value. These writes are redundant,
since a single write should suffice. Hence, the write comnay for this step is: — 1. Read
concurrency is measured in a similar manner.

Write-All algorithms can be used iteratively to simulate parallebadgms formulated for
synchronous failure-free processors on failure-proneqssors (e.g., [72, 104, 68]). It was

shown that the execution of a singleprocessor step op failure-prone processors does not

exceed the work complexity of solvingrasize instance ofVrite-All usingp failure-prone
processors. By iteratively using algorithm W ([67]), Kdakls and Shvartsman [68] gave
the first upper bound foiterative Write-All under processor crashes. In a similar manner, by
iteratively using algorithm KMS ([66]), Kanellakis, Michigis and Shvartsman [66] gave the
first upper bound foiterative Write-All under processor crashes in the shared-memory model
where memory access concurrency needs to be controlled.oWehmat the bounds [68, 66]
on iterative Write-All do not adequately demonstrate how the work complexity dégpen the
number of failuresf.

Prior lower/upper bound results f&o-All in message-passing and shared-memory mod-
els do not teach adequately how the work complexity dependseonumber of failures. That
is, work was typically given as a function afandp, but it was either not elucidated hofv
impacts work, or, wherf was a part of the equation, it was primarily due to the natdira o
specific algorithm, and not due to the inherent propertigh@Do-All problem. For example,
the work of the best known synchronous shared-memory #hgor{algorithm W) is given as
a function ofrn. andp (S = O(n + plognlogp/loglogp)) [67]. The work of the best syn-
chronous shared-memory algorithm with controlled memamgeas concurrency (algorithm
KMS) is also given only as a function efandp (S = O(n + plog? nlog? p/ log log n)) [66].
This is also the case with the best known asynchronous shaeetbry algorithm (algorithm
AWT, S = O(np®), Ve > 0) [7]. Similarly, the best known lower bound for shared-meyno
models § = 2(n + plogp)) [71] and the best known lower bound applicable to message-
passing modelsy = 2(n + plogp/loglog p)) [15] do not involvef. The work of message-

passing algorithms, e.g., [28, 44], typicatlpesinclude f, but this is due to the use of single

10

coordinators (see discussion above), which means thgtdoordinator failures the work nec-
essarily includes an additive terfir p. Two message-passing algorithms (algorithms AN and
AR) use multiple coordinators [17] to avoid this inefficigrend include a term in the bound
on work that depends dog f, but this term is due to the use of multiple coordinators ¢leen

it is due to the nature of the specific algorithms) and not duthe inherent properties of the
Do-All problem. Obtainindailure-sensitivdower/upper bounds fabo-All that demonstrate
precisely how failures affedDo-All efficiency, is important in identifying the trade-offs be-
tween efficiency and fault-tolerance in cooperative conmgut As mentioned before, this is
the main focus of this thesis.

In partitionable networks, the first solution f@mni-Do given by Dolev, Segala and
Shvartsman [32], considers the case of gré@gmentations changes in the communica-
tion medium may partition (fragment) the network into seveonnected components, called
groups No group merges are considered. They developed a worlkeetfialgorithm, called
AF, that uses a group communication service [95] to proviéenfmership and communication
services to the processors. Algorithm AF has wsrk O(n+n- f), wheref is the total num-
ber of new groups created due to fragmentations minus onexXtmple, if a group fragments
into k£ new groups,f = k — 1). We note that in [32] the message complexity of algorithm AF
was not analyzed since obtaining message efficiency wasneobbthe goals in that paper.
However, given the full details of the algorithm it is notfditilt to observe that the message
complexity of AF is at least quadratic. For the case of fufynamic changes (including frag-
mentations and merges), in the same paper, Delal. showed that the termination time of
any on-lineOmni-Do algorithm is greater than the termination time of an ofeli@mni-Do

algorithm by a factor greater thar/12. They also developed an efficient scheduling strategy

11

for minimizing the execution redundancy showing that itasgible to schedul@(né) tasks
with at most one common task for any two processors.

Malewicz, Russell and Shvartsman [83, 84] extended thedsdimg strategy of Dolewet
al. [32]. They introduced the notion dfwastethat measures the worst-case redundant work
performed byk groups (or processors) when started in isolation and ménged single group
at some later time. They adequately investigate the casevateand they show that the work
redundancy increases gracefully as the number of tasksrpeetl in isolation increases.

Thus prior work regarding th@mni-Doproblem established reasonably tight (in the length
of the processor schedule) results fairglemerge, illustrated the fact that on-line algorithms
subject to diverging reconfiguration patterns incur lin@ap) overhead relative to an off-line
algorithm, and showed an upper bound for an algorithm usinggcommunication services
for a limited pattern of network reconfigurations (fragnagiuns). In this thesis we substan-
tially increase the understanding of solviggnni-Do and we demonstrate precisely how the

changes in the network topology affect the efficiencyDohni-Do algorithms.

1.4 Summary of Contributions

This dissertation substantially advances the undersigndin how the adverse environ-
ment affects the efficiency of distributed cooperative catafions. One of the contributions
includes upper and lower bounds f@o-All in certain models of computation, that are given
not only as a function of the number of task@nd the number of participating processprs
but also as a function of the number of failurésaused by the adverse environment during the
computation. Another contribution of the thesis is the defin and analysis of théerative

Do-All problem, that models the repetitive uselad-All algorithms. This thesis also studies

12

the distributed cooperation problem in partitionable reks, where partitions may interfere
with the progress of the computation. Group communicatiervises are used to develop
robust algorithms for this settings. Moreover, it is showattit is possible to obtain optimally-

competitive scheduling algorithms in partitionable nategdoy proving upper and lower bound
results. These results demonstrate precisely how paditiffect the efficiency of computation.
Overall, the dissertation is substantially contributinghe study of the trade-offs between ef-
ficiency and fault-tolerance in cooperative computing anddvancing the state-of-the-art in
principles of robust distributed computing.

We now overview the technical accomplishments detailedaterlchapters of the the-
sis. The thesis presenf3o-All lower bounds on work for synchronous crash-prone pro-
cessors that capture the dependence of work not only and p, but also onf, the num-
ber of crashes, for the enire range pf(1 < f < p). Specifically we show that work
S = 2(n + plogp/log(p/f))* is required to solveDo-All when f < p/logp, and work
S = 2(n + plog p/loglog p) is required whery > p/logn. This gives the first non-trivial
lower bound orDo-All work for a moderate number of crashgs< p/ log p). For the model
of computation where processors are able to make perfattiatancing decisions locally (the
perfect knowledge assumption), matching upper boundsieea.gAnother contribution of the
thesis is the definition and analysis of théterative Do-All problem that models the repetitive
use ofDo-All algorithms such as found in algorithm simulations. Ouuf&ilsensitive analysis
enables us to derive tight bounds feiterative Do-All work, that are stronger than thefold
work complexity of a singlé>o-All. Our approach that models perfect load-balancing allows

for the analysis of specific algorithms to be divided into fwasts: (i) the analysis of the cost

It is understood that whefi = 0, thenz:/ log(y/f) = 0, for anyx # 0 andy # 0.

13

of tolerating failures while assuming “free” load-balamgi and (ii) the analysis of the cost of
implementing load-balancing.

We demonstrate the utility and generality of the above aggitdoy improving the anal-
ysis of three known efficient algorithms: (a) We derive a newl aomplete failure sensitiv-
ity analysis of the best known algorithm for the synchronehared-memory model (algo-
rithm W [67]). Specifically we show that algorithm W solves tWrite-All problem under
processors crashes with wok = O(n + lognlogp/log(p/f)) when f < plogp, and
work S = O(n + lognlogp/loglogp) when f > plogp, f being the number of crashes.
(b) We improve the analysis of the work and message compléxitan efficient synchronous
message-passing algorithm (algorithm AN [17]). We showt tidgorithm AN solves the
Do-All problem under processor crashes with wétk= O(log f(n + plogp/log(p/f)))
and message cost/ = O(n + plogp/log(p/f) + pf) when f < p/logp and, S =
O(log f(n+ plogp/loglogp)) andM = O(n + plogp/loglogp + pf) whenf > p/log p.
(c) We derive a new and complete failure sensitivity analgsi the work of the best known al-
gorithm for the synchronous shared-memory model where temany access concurrency
needs to be controlled (algorithm KMS [66]). Specificallye whow that algorithm KMS
achieves workS = O(n + plog?nlog?®p/log(p/f)) when f < p/logp, and workS =
O(n + plog® nlog? p/loglog p) when f > p/logp. For each of the three algorithms, sub-
stantial improvement in the analysis is recorded, esggdia a moderate number of failures
(f < p/logp). Finally, by iteratively using algorithms W, KMS, and AN duising our new
approach to their failure-sensitive analyses, we obtghtér upper bounds for thierative
Write-All problem in shared-memory systems, and the first non-triyigler bound analysis

of the iterative Do-All problem in message-passing systems.

14

Another contribution of the thesis is the development ofwa rebust algorithm fop syn-
chronous processors that solves e-All problem withn tasks in the presence of up fo
crashes f < p) with work complexity.S = O(n + pmin{f + 1,log® p}) and message com-
plexity M = O(fp® + pmin{f + 1,logp}), for anye > 0. This result improves the work
complexity S = O(n + fp) of the algorithm of Galilet al. [44] mentioned in the previous
section, while obtaining the same message complexity.stt mhproves on the algorithm of
Chlebuset al. [19], also mentioned in the previous section, that Bas O(n + p'7") and
M = O(p~""). Unlike algorithm AN [17] that has comparable work comptgxieven using
our new failure-sensitive analysis) but uses reliable izast, the new algorithm uses simple
point-to-point messaging. The algorithm uses an approaicsharing knowledge among pro-
cessors that is less authoritarian than the use of cooadghand checkpointing (as used in
previously developed algorithms in the same setting).ebubtit uses an approach where pro-
cessors share information using a new gossip algorithmremie point-to-point messaging
is constrained by means of a communication graph that rept®a certain subset of edges
in a complete communication network. The processors degltae to send a gossip mes-
sage based on sets of permutations with special combiabpodperties that we show to exist.
This gossip algorithm tolerates up to— 1 processor crashes and it runs@log? p) time
and send®)(p'*+¢) messages, for any > 0. This result substantially improves on the mes-
sage complexity/ = O(p'™") of the previously best known gossip algorithm of Chlebus and
Kowalski [21], while obtaining the same asymptotic time gbexity.

The thesis also substantially contributes to the studyeCimni-Do problem in partition-
able networks, where algorithms must deal with groups afgseors that become disconnected

and reconnected during the computation. We present a ralgithm, called algorithm AX,

15

that solves th@©mni-Doproblem for asynchronous processors under group fragtiamgaand
merges. Algorithm AX uses a group communication service${85] with certain properties
to provide membership and communication services to thepgrof processors. We argue that
these properties are basic and are provided by several gommunication systems and spec-
ifications [23]. It also uses a coordinator-based approachoid-balancing the tasks within
each group of processors. To analyze the algorithm we intedew-graphghat are directed
acyclic graphs used to represent the partially-ordered emolution history witnessed by the
processors (the group changes that processors undergumy dinei computation). We believe
that view-graphs have the potential of serving as a geneoafar studying cooperative com-
puting with group communication services. We show that itlgm AX solves theOmni-Do
problem forn tasks,p processors and any pattern of group fragmentations andeseigh
task-orientedvork W < min{nf, +n,np} and message complexity’ < 4(nf, +n+pfm),
wheref, denotes the number of new groups created due to fragmergatialf,,, the number
of new groups created due to merges. This extends the worloleivDSegala and Shvartas-
man [32], mentioned in the previous section. In additiogogthm AX has better message
complexity (subquadratic in) than the algorithm of Doleet al. (at least quadratic in) and
the same asymptotic task-oriented work complexity, undeug fragmentations.

An Omni-Doalgorithm and its efficiency can only be partially understtirough its worst
case work analysis. This is because the resulting worstzassd might depend on unusual or
extreme patterns of group reconfigurations where all algms perform poorly. In such cases,
worst case work may not be the best way to compare the efficifralgorithms. Hence, in or-

der to understand better the practical implications ofgrenfng work in partitionable settings,

16

we initiate the study of th©mni-Do problem as an on-line problem and we pursoenpeti-
tive analysig105]. Specifically, we study a simple randomized algoritiealled algorithm RS,
where each processor (or group) determines the next taskplete by randomly selecting
the task from the set of tasks this group does not know to beplied. We compare the ex-
pected task-oriented work of this algorithm to the taslewtéd work of an “off-line” algorithm
that has full knowledge of the future changes in the comnatitin medium. We consider ar-
bitrary patterns of network reconfigurations (including hot limited to fragmentations and
merges). We describe a notion a@dmputation widthwhich associates a natural number with
a history of changes in the communication medium, and shaw iyoper and lower bounds
on competitiveness in terms of this quantity. Specificallg, show that algorithm RS obtains
the competitive ratid1 + cw/e), wherecw is the computation width; we also show that this
ratio is tight. We note thatw captures precisely the effect of network reconfiguratiomshe

efficiency of the computation.

1.5 Document Structure

The rest of the thesis is organized as follows. In Chapter Zuveey prior and related
work. In Chapter 3 we formally define the models of computatitne Do-All problem and
its variations, and the measures of efficiency we use to atelo-All algorithms. In Chap-
ter 4 we present matching failure-sensitive upper and ldweinds on work foiDo-All and
iterative Do-All. We consider the model with synchronous crash-prone psocgghat are
assisted by an “oracle” for load-balancing and terminatienisions (assumption of perfect

knowledge). In Chapter 5 we present failure-sensitive deum work and messages for the

17

Do-All problem for synchronous message-passing processors forengshes. We first con-
sider a message-passing model where reliable multicagaikable (Section 5.1) and then we
consider a message-passing model without reliable msiti&ection 5.2). In Chapter 6 we
present failure-sensitive bounds on work for té&ite-All problem for synchronous crash-
prone processors, first in a shared-memory model where theonyeaccess concurrency does
not need to be controlled (Section 6.1), and then in a sharmdory model where the memory
access concurrency must be controlled (Section 6.2). €nhd@ptonsiders th©mni-Do prob-
lem in partitionable networks. We first analyze algorithmidutions toOmni-Doin terms of
worst case work (Section 7.1), and then we analyze the wo@mfi-Do algorithms in terms
of competitive analysis (Section 7.2). We conclude in Caaptwith a discussion of future

research directions.

Chapter 2

Related Work

In this chapter we overview results f@o-All in several models of computation. We
also give an overview ofroup communication serviceand two problems that are related
to Do-All, the cooperative collecandconsensuproblems. We conclude this section with a

discussion onveb-based computing

2.1 Do-Allin Message-Passing Models

Dwork, Halpern and Waarts were the first to consiberAll in message-passing systems
[33]. They developed several deterministic algorithms sledved the problem for synchronous
crash-prone processors. To evaluate the performanceiotgerithms, they used the “total
number of tasks performed” work complexity measure (tasénved work), denoted by
and the “total number of messages sent” message complerigune, denoted by/. They
also used theffort complexity measure, defined as the suniiéfand M. This measure of
efficiency makes sense for algorithms for which the work aedsage complexities are similar,

which was the case for the algorithms in [33]. One algorithspnted in [33], called protocol

18

19

B has effortO(n+p,/p), with work contributing the cosD(n+p) and the message complexity
contributing the cost (p,/p) toward the effort. The running time of the algorithni$n + p).
The algorithm uses synchrony to detect processor crashmegaygs of timeouts. The algorithm
operates as follows. Thetasks are divided into chunks and each chunk is divided imte s
chunks. Processors checkpoint their progress by muliicatite completion information to
subsets of processors after performing a subchunk, andidasting to all processors after
completing chunks of work. Another algorithm, called peuibC has effortO(n + plog p). It
has optimal workV = O(n + p), message complexity/ = O(plogp) and timeO(p?(n +
p)2"*P). This shows that reducing the message complexity may casigeificant increase in
time. The last algorithm presented in [33], called prota@obbtains work optimality and it is
designed for maximurapeed-ugthe ratio between the parallel time over the sequentia)im
which is achieved with a more aggressive check-pointingtegy, thus trading-off time for
messages. The message complexity is quadratiédnthe fault-free case, and in the presence
of f < p crashes the message complexity degraded(tfp?). Finally, the authors in [33]
demonstrate how each of their algorithms can be used toroohstficient algorithms for the
Byzantine agreement problem (see Section 2.7 for morelgletai

De Prisco, Mayer and Yung [28] provided an algorithmic solufor Do-All considering
the same setting as Dwoegk al., (synchrony, processor crashes) but using the “availafgle p
cessor steps” work complexity measure, denoted bipe Priscoet al. use a “lexicographic”
criterion: first evaluate an algorithm according to its &laie processor steps and then accord-
ing to its message complexity. This approach makes sense @gtnization of work is more
important than optimization of communication. They prasgmleterministic algorithm that

hasS = O(n+ (f 4+ 1)p) andM = O((f + 1)p). The algorithm operates as follows. At each

20

step all the processors have a consistent (over)estiméte skt of all the available processors
(using checkpoints). One processor is designated to beotirglioator. The coordinator allo-
cates the undone tasks according to a certain load balandm@nd waits for notifications of
the tasks which have been performed. The coordinator ckange time. To avoid a quadratic
upper bound foiS, substantial processor slackness is assumed (n). We note thatf ap-
pears in the equations mainly because of the use of the cabodiapproach. The authors also
develop a lower bound & = 2(n + (f + 1)p) for any algorithm using the stage-checkpoint
strategy, this bound being quadraticpiior f comparable withp.

Galil, Mayer and Yung [44], while working in the context of Bgntine agreement (see
Section 2.7) assuming synchronous crash-prone proceskmsloped an efficient algorithm
that has the same work bound as De Pristal. [28] (S = O(n + (f + 1)p)) but has better
message complexitydl = O(fp® + min{f + 1,log p}p), for anye > 0. The improvement
on the message complexity is mainly due to the improvemetiteotheckpoint strategy used
in [28] by replacing the “rotating coordinator” approachthwvivhat they called the “rotating
tree” (diffusion tre¢ approach.

Chlebus, De Prisco and Shvartsman [17] developed the omlywkrefficient deterministic
algorithm, that solve®o-All in the synchronous model under processor crashes andsestar
Their algorithm, called AR, uses an algorithmic techniciuat is based on an aggressive co-
ordination paradigm by which multiple coordinators may kéve as the result of failures:
when the failures of coordinators disrupt the progress efdtmputation, the number of co-
ordinators is increased (doubled); when the failures ecadsingle coordinator is chosen.
Algorithm AR has workS = O((n + plogp + f) - min{log p,log f}) and message com-

plexity M = O(n + plogp + fp), wheref is the number of processor crashes and restarts.

21

En routeto the solution for restartable processors, the authorsepted another algorithm,
called AN, which is designed to solN2o-All for synchronous processors prone to crashes (no
restarts). Algorithm AN has work = O((n+plogp/loglogp)log f) and message complex-
ity M = O(n+plogp/loglogp -+ fp), wheref is the number of processor crashes. Observe
that algorithm AN has better work than the algorithms in [28H [44] whenn, p and f are
comparable. However, algorithms AN and AR assume reliahléicast [60] (if a processor
fails while multicasting a message, then either all nortygorocessors deliver the message or
none do), whereas prior solutions use simple point-totpoiessaging. In Section 5.1 we give
a more detailed description of algorithm AN and we develdjufe-sensitive bounds on the
work and message complexities that demonstrate precissWyphocessor crashes affect the
efficiency of the algorithm.

Chlebus and Kowalski [20] studied tti@o-All problem for synchronous crash-prone pro-
cessors with reliable multicast undewaakly-adaptive linearly boundextiversary: the adver-
sary selecty < c-p (0 < ¢ < 1) crash-prone processors prior to the start of the computatio
then any of these processors may crash at any time duringothputation. They designed
a randomized algorithm with expected combined work conigleend message complexity
S+ M =0(n+p(l+log*p—1log*(p/n))). They also showed that the performance of their
randomized algorithm is better than that of any determmlgorithm in the same setting,
where workS = 2(plog p/ log log p) has to be performed.

Chlebus, Kowalski and Lingas [22] studid2b-All in the setting of broadcast networks
where processors communicate over a multiple access didbhesynchronized by a global
clock. If exactly one processor broadcasts at a time, themissage is delivered to all proces-

sors. If more than one processor broadcasts tdision occurs and no message is delivered.

22

The authors provide randomized and deterministic solatisith and without collision detec-
tion, and for various size-bounded adversaries.

Chlebus, Gasieniec, Kowalski and Shvartsman [19] devel@deterministic algorithm
that solvesDo-All for synchronous crash-prone processors with combined adkmessage
complexity S + M = O(n + p*7"). This is the first algorithm that achieves subquadratic in
p combinedS and M for the Do-All problem for synchronous crash-prone processors. They
present another deterministic algorithm that has woek O(n + plog? p) againstf-bounded
adversaries such that- f = 2(p®) for a constant < « < 1. They also show how to achieve
S+M = O(n+plog? p) against a linearly-bounded adversary by carrying out conication
on an underlying constant-degree network.

Recently, Kowalski and Shvartsman [75] considered@oeAll problem in asynchronous
message-passing systems. Recall thatDbeAll problem can be solved without any com-
munication with workS = ©@(np) by an oblivious algorithm where each processor performs
all tasks. The authors observe that it is not possible toimistzbquadratic (im) work when
the message delay is substantial, e.gd = ©(n). Therefore, they pursueraessage-delay-
sensitiveapproach: The upper bounds on work and communication age gis functions of,

n, andd, the upper bound on message delays, however algorithmsbarowledge ofl and
they cannot rely on the existence of an upper bound.orhe authors present two families of
asynchronous algorithms achieving, for the first time, silojatic work as long a = o(n).
The first, is a family of deterministic algorithms paramited by a positive integey and a
list of ¢ permutations on the séj] = {1,...,q}, where2 < ¢ < p < n. Itis shown that
for any constant > 0 there is a constant such that the corresponding algorithm has work

S = O(np® + pd[n/d)f) and message complexity = O(p-S). The algorithms in this family

23

are modeled after an algorithm of Anderson and Woll [7] (s Bection), and use a list gf
permutations is a similar way. The second family, is a farafldeterministic and randomized
algorithms, parametrized by a list ppermutations on the s@i]. The randomized algorithms
have expected worl§ = O(nlogp + pdlog(2 + n/d)) and expected message complexity
M = O(nplogp + p*dlog(2 + n/d)). It is shown that there exists a deterministic list of
schedules such that the deterministic algorithm has Woek O(n logp + pdlog(2 + n/d))
and message complexity/ = O(nplogp + p*dlog(2 + n/d)). The authors also present
the first delay-sensitive lower bound fBo-All in this setting, that helps explain the behav-
ior of the their algorithms. Specifically, they show that atgterministic (resp. randomized)
algorithm with p asynchronous processors andasks has work (resp. expected work) of

2(n + pdlogy, 1 n).

2.2 Write-All in Shared-Memory Models

Kanellakis and Shvartsman were the first to considerée-All problem [67]. They
developed the best known deterministic synchronous algoricalled W, that solve®Vrite-
All under processor crashes with wétk= O(n+plognlog p/loglog p) [67]. The algorithm
uses binary trees of depth(log n) for estimating the number of operational processors, the
number of completed tasks (elements of the input array g fialuel) and for balancing the
loads of the operational processors. In particular, theetds of the input array are associated
with the leaves of a binary tree of dept(log n), called theprogress tree The processors
are initially distributed to the leaves of the progress tnere each of them performs a task
and writesl to the corresponding tree location. Then the processorsrga the tree bottom-

up recording the progress that it made. This gives an (uestémate of the number of done

24

tasks. The processors also traverse, bottom-up, a treeptf 6€log p), called theprocessor
enumeration tre¢o estimate the number of operational processors. Usingabestimated
values, the processors traverse the progress tree topativthey reach to a leaf of the tree.
This evenly distributes the operational processors ontione tasks. The processors perform
the task associated with the leaf they reached, and thears&the progress tree up to the
root to record the new progress. This is repeated until alsare performed. Observe that
the bound on work for algorithm W does not inclufiethe number of processor crashes. In
Section 6.1 we give a more detailed description of algorithhand we present our failure-
sensitive analysis of its work complexity.

Kedem, Palem, and Spirakis [72] performed an average cadgsenof algorithm W [67]
consideringrandom processor crashes (each processor may crash with a fixedhirob
ity). They showed that algorithm W can solve thérite-All problem with expected time
O(log plogn) and expected work)((p + n)logn). This shows that algorithm W performs
well under random failures. In the same paper, Kedral. developed a simple algorithm,
called algorithm PS, which is a trivial modification of theastjhtforward pointer-doubling al-
gorithm (PS is short for pointer shortcutting). The alduritimproves on the expected time of
algorithm W while it obtains the same expected work compyexspecifically, algorithm PS
solves theWrite-All problem under random failures with expected ti@@og n) and expected
work O(n logn).

Kanellakis, Michailidis and Shvartsman [66] developed gedeinistic synchronous algo-
rithm, algorithm KMS (called algorithrfwgpfg W in [66]) that solvesWrite-All under proces-
sor crashes while controlling the read and write memory secencurrency. The algorithm

uses the same data structures as algorithm W to record theepsoof the computation and

25

to perform load balancing, and it uses two additional datacgires to control the memory
access concurrency: (gjocessor priority treesre used to determine which processors are
allowed to read or write each shared location that has to besaed concurrently by more
than one processor, and (bloadcast arraysare used to disseminate values among readers
and writers. The write concurrency, denotedmeasures the redundant write memory ac-
cesses as follows: Consider a step of a synchronous pacatabutation, where a particu-
lar location is written byx < p processors. Them — 1 of these writes are “redundant”,
because a single write should suffice. Hence, the write comcy for this step isc — 1.
The read concurrency, denoted is measured in a similar manner. Algorithm KMS has
work S = O(n + plog? nlog? p/loglogn), write concurrencys < f and read concurrency

p < flogn, f being the number of crashes. Observe that although the bamthe read and
write concurrencies are given as a functionfothe bound on work is not given as a function
of f. In Section 6.2 we give a more detailed description of athariKMS and we present a
failure-sensitive analysis of its work complexity.

Algorithm V [15] is a variation of algorithm W that solvad/rite-All with synchronous
restartable crash-prone processors. As in algorithm Witheessors use binary trees of depth
O(log n) to perform load balancing. Restarted processors join thgpatation at a pre-defined
phase. Algorithm V requires work = O(n + plog®n + flogn), where f is the number
of processor crashes and restarts. Observe that gimam be arbitrarily large, the work of
algorithm V might not be bounded by a functionofindp.

Anderson and Woll [7] developed the best deterministic esganous algorithm foWWrite-
All. We call this algorithmAW™. Algorithm AW™ has workS = O(np®), for arbitrary

0 < ¢ < 1. The algorithm uses gary tree, callegprogresstree to load balance processors

26

to tasks (array elements) and a listpf< p permutations ofg], used in conjunction with
processor identifiers to let the processors know in whatrddgaverse each of thesubtrees
of each interior node in the progress tree. The work comgleldoes not account for the time
required for these permutations to be computed; it is asdutmet they are known before
the execution of the algorithm. The authors of [7] provideoastruction (exponential in
processing time) of permutations needed by their algoriti@rooteet al. [59] introduced a
different approach that does not use permutation lists @ndeénno pre-processing is needed

to construct such lists. They present an algorithm that hak § = O(np'°e(":)) where

& = niesr. The authors argue that their algorithm performs bettem #i& ™ under practical
circumstances wherg < n, e.g., whem = p?. Another practical algorithm, that does not
require a precomputed set of permutations is algorithm Xeldped by Buss, Kanellakis,
Radge and Shvartsman [15]. Algorithm X is a special casegafrathm AW™, whereq = 2
and it has workS = O(np®??). Algorithm X can also be used to solve tiite-All problem
for synchronous processors prone to crashes and restagswark S = O(np®5?).

Recently, Malewicz [82] developed a deterministic asyonbus algorithm for thé/Vrite-
All problem that has worl = O(n + p*logn). This is the first asynchronoud/rite-All
algorithm that has optimal work for a nontrivial number obpessorsy{ < (n/logn)'/*), as
opposed to all previously known deterministic algorithinattrequire as much as(n) work
whenp = nl'/¢, for any fixedc > 1. The algorithm operates amllision detection: each pro-
cessor has a collection of intervals of the input array agchiively selects an interval to work
on. The processor proceeds from one edge of the intervaldativa other edge, executing the
tasks associated with the cells in the interval. When psmrss‘collide”, meaning that they are

allocated to the same input element, they exchange apatepnformation and schedule their

27

future work accordingly. The algorithm uses Test-And-8structions to detect collisions, as
opposed to the previous algorithms that used only atomicMédte instructions.

Kedem, Palem, Raghunathan and Spirakis [71] showed thatrasi-free execution of an
algorithm designed to sol/rite-All deterministically fom = p with crash-prone processors
requires timef2(logn) and work{2(nlogn). Martel and Subramonian [86] extended these
lower bounds for randomized algorithms. Specifically thegveed that the lower bound on
expected time and expected work on randomized algorithmdMate-All is 2(logn) and
2(nlogn), forn = p, respectively (these lower bounds apply to both synchrewoash-prone
and asynchronous processors). Martel, Park, and Subram{8b] developed a randomized
asynchronous algorithm fdW/rite-All that matches the above lower bound on the expected
work for randomized algorithms. Their algorithm proceeds@lows: the locations of the
input array are viewed as leaves of a binary tree that &(log n) deep (this is similar to the
progress tree of algorithm X [15]). Initially all tree noda® unmarked. Each processor selects
a tree node at random. If the nodés a leaf node or if its children are marked, then nods
also marked. This is repeated until the root is marked.

Write-All algorithms can be usdtkrativelyto simulate parallel algorithms formulated for
synchronous failure-free processors (see the works of idedkalem, and Spirakis [72], Ke-
dem, Palem, Raghunathan, and Spirakis [71], Martel, Pantt, Subramonian [85], Martel,
Subramonian, and Park [87], and Shvartsman [104]). It was/stthat the execution of a sin-
gle n-processor step op failure-prone processors does not exceed the complexiploing
an-size instance oWrite-All usingp failure-prone processors. This commonly requires that
(¢) the individual processor steps are made idempotent (sigerhay have to be performed

multiple times due to failures or asynchrony), and {tidta linear in the number of processors

28

auxiliary memory is made available (to be used as a “scragthpnd to store intermediate
results). While the former can be solved with the help of alwmated tool, e.g., a compiler,
the latter requires sophisticated solutions because ofliffieulty of (re)using the auxiliary
memory due to “late writers” (i.e., processors that are show that unknowingly write stale
values to memory). Examples of randomized solutions adoirgghese problems include the
works of Aumann and Rabin [9] , and Kedem, Palem, Rabin, argh&®sathan [70]. Another
important aspect of algorithm simulations is the use of amagtic approach, where the com-
putation may proceed for several steps assuming that kfl tesigned to active processors are
successfully completed. Such approach was used by KeddemPRaghunathan and Spi-
rakis in [71]. In some deterministic models optimal simigas are possible (as demonstrated
by Shvartsman in [104]), however randomized solutions ate 8 achieve (expected) opti-
mality for broader ranges of models and algorithms. An exarapa practical implementation

is discussed by Dasgupta, Kedem and Rabin in [25].

2.3 Do-All Under the Assumption of Perfect Knowledge

Kanellakis and Shvartsman [68] showed tBatAll can be solved using unit-time memory
shapshots (equivalently assuming perfect knowledge —edee/pfor synchronous crash-prone
processors with worls = O(n + plogp/loglogp) for f < p < n (f is the number of
processor crashes). They showed that this bound is tighgivityg a matching lower bound.
The authors also presented a matching lower and upper bounaik for Do-All assuming
synchronous crash-prone and restartable processors. olimel lisS = ©(n + plogp) for

p < n and anyf, the number of processor crashes and restarts. This résulhalds for the

29

model of perfect knowledge with asynchronous processdisreva crash and restart event can
be modeled as a delay.

The above bounds hold under the assumption that procesaoread all memory in con-
stant time (memory snapshots). However, it is not difficalsée that the memory snapshot
assumption in shared-memory is equivalent to the assumpfiperfect knowledge, where a
deterministic omniscient oracle provides load-balan@ng termination to the processors in
constant time (information that can be obtained also inteorigime in the memory snapshots
model). Hence any result provided in the “memory snapshaidetti holds trivially in the

“perfect knowledge model”.

2.4 Omni-Do in Partitionable Networks

Omni-Do was introduced and studied by Dolev, Segala and Shvartsm{@R]. They
present the following results, under the assumption ghat n. (a) For the case of dynamic
group changes, including fragmentations and merges, tay that the termination time of
any on-line task assignment algorithm is greater than thmit&tion time of an off-line task
assignment algorithm (that has the knowledge of the dynamoap changes pattern) by a
factor greater tham/12. (b) They present a load balancing algorithm, called AF suhtes
the Omni-Do problem with group fragmentations (no merges) and undeassemption that
all processors belong initially to a single group, with watk= O(n + f - n), f < n being
the fragmentation-numbeof the computation. (The fragmentation-number of a fragsagm
is the number of new groups created due to this fragmentations one. The fragmentation-
number of the computation is the sum of all fragmentatiombers of all the fragmentations

occurred in the computation.) The basic idea of algorithmigifhe following: each processor

30

performs undone tasks according to a certain load balamaleguntil it learns the results of
all tasks. The algorithm uses a group communication setgideandle group memberships
and communication within groups (see Section 2.5). Theasttlid not measure the message
complexity of algorithm AF, however it is not difficult to sekat M is at least quadratic.
(c) They develop an effective scheduling strategy for mining thetask execution redundancy
(see below) between any two processors that merge durirgpthputation. More specifically,
they show that if initially all processors work in isolatioten the task redundancy incurred
when the communication is first established between any t@oegsors is bounded lyas
long as no processor has executed more théam'/3) tasks. The task execution redundancy
is defined as follows. Consider two processoersnd j, that at some point of the computation
merge. LetT; be the set of task identifiers of the tasks that procesperformed before the
merge and lef; be the set of task identifiers of the tasks that procesperformed before the
merge. LetR; = T; N T;. Then the task execution redundancy of this merg&js (Hence,

if processors; and j performed different tasks before they merge, then the taskution
redundancy is zero.) We note that all the results in [32] warewn for the asynchronous
timing model.

Malewicz, Russell, and Shvartsman in [83, 84] introducexrtbtion ofk-wastethat mea-
sures the redundant task-oriented work performed Qyoups (or processors) when they start
in isolation and then merge into a single group. Howevel; tidy adequately investigate the
case of thepairwise wastd2-waste) until thdirst merge This is the case when from a pool of
p processors, any two processors merge into one group haeifigrmeda andb (a,b < n)

tasks respectively. The authors first show a lower bound owise waste of2(a?/n) (when

31

n > a > bandn = p). Then they present an asymptotically optimal randomizsustruc-
tion as well as a near-asymptotically-optimal determiaisbnstruction using elements from

design theory [63].

2.5 Group Communication Services

Group communication services (GCS) [95] provide membprahid communication ser-
vices to the group of processors. GCSs have been establisheffbctive building blocks for
constructing fault-tolerant distributed applicationfie®e services enable the application com-
ponents at different processors to operate collectively@®up, using the service to multicast
messages. The basis of a group communication servicgrisup membership servic&ach
processor, at each time, has a unigiexof the membership of the group. The view includes
a list of the processors that are members of the group. Viewmschange and may become
different at different processors. There is a substantraunt of research dealing with speci-
fication and implementation of GCSs. Some GCS implememsit#we Isis [14], Transis [30],
Totem [91], Newtop [37], Relacs [10], Horus [110], ConsuB8]&nd Ensemble [61]. Some
GCS specifications are presented in [97, 11, 38, 31, 24, §2 A0extended study on speci-
fications of GCS can be found at [23]. Examples of recent wedidg with primary groups
are [27, 77]. An example of an application using a GCS for loadncing is by Fekete, Khazan
and Lynch [73]. Babaoglet al.[12] study systematic support for partition awareness dase
on group communication services in a wide range of appticagireas, including applications
that require load balancing. To evaluate the effectivenégartitionable GCSs, Sussman and
Marzulo [107] proposed a measurghion precipitated by a simple partition-aware applica-

tion.

32

2.6 Cooperative Collect

Omni-Do has an analogous counterpart in the shared-memory modebroputation,
called thecollect problem, introduced by Shavit [103] and studied by Saksyishad Woll
in [100]. There are processors each with a shared register. The goal is to hatregro-
cessors learn (collect) all the register values. Companas asynchronous, with the adversary
controlling timing of the processors. A trivial solution tisis problem is to have all proces-
sors reading ap registers. Saks, Shavit and Woll recognized the opposttioitimproving the
efficiency of shared-memory algorithms by finding a way fosgassors to cooperate during
their collects [100]. They developed a randomized algorjttvhich they analyzed in a model
where a time unit is the minimal interval in the executionta# talgorithm during which each
processor executes at least one step (known abithstepmodel). The goal is to minimize
the number of big-steps.

Ajtai, Aspnes, Dwork and Waarts [3] showed that the problem be solved determin-
istically with work S = O(p3/ 2log p), by adapting the algorithm of Anderson and Woll
(AWT) [7]. The authors assume single-writer, multi-readerstgs, each of siz@(plog p)
bits. The authors point out that for the asynchrontste-All problem, usually some sort
of multi-writer registers are assumed, each of €i{éog p) bits. Then, the authors argue that
for a model that provides multi-writer registers, the caagige collect would be equivalent to
the Write-All problem: given a//rite-All algorithm, if each of the writes to the registers is
replaced by a read, and the value read is propagated alohghsitcertification that the par-
ticular register was accessed, then when each processon#ées, it knows that each register
was accessed along with each register’s value. The authgirgy this observation, show that

the algorithm of Anderson and Woll [7] can be modified to sdive collect problem using

33

single-writer, multi-reader registers, by choosing “apgprate” set of permutations dp| that
they show to exist.

Aspnes and Hurwood [8] developed a randomized algorithnttfercooperative collect
problem that has worl§ = O(n log®n) with high probability. The idea of the algorithm is
that each processor keeps reading randomly selectedemrsgidiowever, before a processor
attempts to read a register, it “leaves a note” saying wheigegoing. This is necessary to
prevent situations where the adversary chooses a spedigtaeand delay each processor
that attempts to read that register (it is not difficult to sest this leads to quadratic work).
The authors show that the processors, using the notes lethiey processors, can detect such
traps with high probability and hence avoid quadratic woithvinigh probability. The work
achieved by this algorithm is very close to the lower boun®64 log n), shown in [100].

Although the algorithmic techniques when dealing with tbéect problem are different,
the goal of having all processors to learn a set of valuesmdagi to the goal of having all

processor to learn the results of a set of task®imni-Do.

2.7 Consensus

Consensuss the abstract problem of havingprocessors to agree on a common value.
This problem is one of the fundamental problems of distedutomputing, and solutions to
this problems are used as building blocks in various disteith applications. Dwork, Halpern
and Waarts [33] showed that algorithmic solutiondDo-All can be used to provide efficient

solutions to consensus. Also, De Prisco, Mayer and Yung, [@8} Galil, Mayer and Yung

34

showed that algorithmic solutions to consensus can be wsedlte Do-All. The consen-
sus problem has been studied in various models of computatid we present an overview,

focusing mainly on work that is related to our research.

The Coordinated Attack Problem

The coordinated attackproblem is a fundamental problem of reaching consensus in
message-passing systems, where messages may be lost. itttheedaced by Gray [57] in
the context of distributed databases. Abstractly, theeesaweral generals that want to agree
on an attack time, and that communicate using messengersafbe lost. Gray [57] proved
that this problem is impossible to be solved determinifitida the absence of reliable com-
munication, even if the system is synchronous. Due to thigssibility result, the randomized
version of the coordinator attach problem has been cor&idagreement is reached with high
probability. Unlike the deterministic version, the randeed coordinated attack problem can

be solved (in synchronous systems). See, for example,.[111]

Byzantine Agreement and its Connection to Do-All

When processors are subject to processor failures (rdthardommunication failures),
consensus is better known Bgzantine agreemenByzantine agreement was introduced by
Lamport, Shostak and Pease [76] in which consensus was fmedun terms oByzantine
generalsprone toByzantinefailures (faulty processors may exhibit totally unconisied be-
havior [76]): as in the coordinated attack problem, the gaeavant to agree on a time to carry
out an attack, but in this case, they do not worry about losismegers, but about the traitorous
behavior by some general. Alternatively, the problem isnfidiated, for both crash and Byzan-

tine failures, as followsp processors, a subset of which may be faulty, must agree olua va

35

broadcast by a distinguished processor calleds#raleror thegeneralin such a way that all
non-faulty processors decide the same value, and when tiezajdés non-faulty, they decide
on the value the general sent. The number of faulty processdrounded in advance, by a
fixed numberf.

For the synchronous message-passing model with Byzantimeegsor failures, Pease,
Shostak and Lamport [94, 76] presented upper and lower soofR}f + 1 for the number of
processors required for Byzantine agreement. Moses andd¥82], Berman and Garay [13]
and Garay and Moses [46] have produgéd- 1 round Byzantine agreement algorithms (in
each round, each processor can send messages to otherspre@e®d receive the messages
sent by other processors in the same round) with polynoraraheunication (number of point-
to-point messages sent). Fischer and Lynch [40] showe®BYmdntine agreement cannot be
solved in fewer tharf 4 1 rounds.

Byzantine agreement was also studied in the synchronousagesassing model under
processor crashes. In [80] two deterministic algorithmes @resented that solve Byzantine
agreement (each using a different techniquej in 1 rounds and wittO((f + 1)p?) message
complexity, wherep is the number of processors afidche number of processor crashes. For
the same model, Dwork and Moses [35] showed that Byzantireeatent cannot be solved in
fewer thanf + 1 rounds (like in the case of Byzantine failures).

Dwork, Halpren and Waarts [33], while working in the contextthe Do-All problem
assuming synchronous crash-prone processors (see S2dtjpneveloped an algorithm that
can use @o-All algorithm as a building block to solve the Byzantine agresnpeoblem for
synchronous crash-prone processors. Their algorithmeprdxin two stages: first the general

broadcasts its value to processors with = 1,..., f + 1. Then thesef + 1 processors use

36

one of theDo-All algorithms (Protocol#3, C or D [33]) to perform the “work” of informing
processord, ... p about the general’s value. Hence, performin@@All task here means
sending a message containing the general’s value. Igiidllprocessors have the initial value
0 as the general’s value (the general of course has it own ealim@tial value). When a proces-
sor receives a message about a value for the general diffeoemits current value, it adopts
the new value. Finally, at a predetermined time by which thdeulying Do-All algorithm
is guaranteed to have terminated, each processor decidesamrent value for the general.
Using protocolC as theDo-All algorithm the authors solve the Byzantine agreement pnoble
for synchronous crash-prone processor®{@?) time and withO(p + f log f) message com-
plexity. When they use protoc@ they obtain a Byzantine agreement solutionCdf) time
andO(p + f+/f) message complexity. Observe that wheand f are comparable, the sec-
ond solution has the same asymptotic time complexity aslgwithms presented in [80] and
substantially better message complexity. This shows@teAll solutions can yield efficient
solutions to the Byzantine agreement problem (and to theerus problem in general).
Galil, Mayer and Yung [44] developed an algorithm that selByzantine agreement for
synchronous crash-prone processors that uses a linearenaiimessages(p)) and super-
linear time O(p'*¢)). They also improved the message complexity offfleAll algorithm of
De Priscoet al.[28] (see Section 2.1). This algorithm relies on two agresrtike protocols:
(a) the check-point protocol that processors use to agrebeoset of operational processors,
and (b) the synchronization protocol that processors usggtee on the time that the next
check-point protocol will begin. Given the full details dfet protocols, it is not difficult to
observe that these protocols solve multiple instances efByrantine agreement problem.

This shows that efficient solutions to consensus can leaffi¢eeat solutions taDo-All .

37

FLP Impossibility Result

One of the fundamental impossibility results in the thedrdistributed computing is the
FLP result which states that consensus cannot be solvegricta®nous models, even if there
is guaranteed to be no more than one processor failure. Megisply, every asynchronous
consensus algorithm has the possibility of nontermingtioat is, a non-faulty processor might
never decide on a value and the algorithm runs indefinitelygn with only one faulty proces-
sor. This result was shown by Fischer, Lynch and Patersais (tte name FLP) in [41] for the
asynchronous message-passing model and it was later egtemthe read/write asynchronous
shared-memory model by Loui and Abu-Amara [78]. Since thipassibility result has prac-
tical implications for distributed applications in whicgraement is required, a lot of research
has been done in solving consensus in asynchrony eithehlizg®n randomized correctness
or by weakening the problem (e.g-Agreement, approximate agreement) or strengthening the
model (e.g. assuming read-modify-write or compare-andpsshared memory, using failure
detectors, introducing some timing conditions — partiaiyrony). For such solutions we

refer the reader to [34, 16, 80].

The research performed on consensus in the models thatfalléiwtolerant solutions teach
that the maximum number of processor failures needs to heded in upper/lower bounds
and impossibility results. This contributes to the underding of the impact that failures have
on the efficiency and dependability of algorithms and in tidgimg the trade-offs between
fault-tolerance and efficiency for solving distributed lpleams (such a®o-All). This research
motivated in part the research in this thesis: show faikeasitive upper/lower bounds for the

Do-All problem.

38

2.8 Web-Based Computing

In recent years, the web has become the computing platforahaite for a variety of
computational problems that cannot be handled efficienglyhle traditional fixed-size col-
lection of machines (such as clusters of workstations ottiptatessor machines). This has
given rise to the study ofveb-based computinVBC) [99]: A large number of processing
elements cooperate in computing a large number of indepénidsks. A usual WBC com-
putation proceeds as follows: Interested “volunteersisteg with a specific web-site. Then,
each registered volunteer visits the web-site occasipmalteceive a task to compute. Once
the volunteer performs the task, it returns the results fifttahtask. The computation continues
in this manner.

Possibly the most popular web-based project is SETI@ho#le FETI stands for “Search
of Extra-Terrestrial Intelligence”. The project, initet at University of California at Berkeley,
was the first attempt to use large-scale distributed comgut perform a search for radio
signals possibly coming from extraterrestrial civilizats. It soon became obvious that great
amount of computer power would be necessary to get the job:dbe universe is potentially
infinite, and the parameters of a possible alien signal akmawn. The SETI team counts
on using thousands of home personal computers that are io of the time, especially
when their owners are at work or are asleep. People, caneegisthe project’s web-site
(http://setiathome.ssl.berkeley.edu), and make theinprder available to the project, when
they are not using it.

Several web-based projects similar to SETI@home are irtexie. For example, the
RSA@home project [96]. The project is involved in finding thiéme factors of large in-

tegers. The problem of factoring integers has drawn coradidie attention due to the RSA

39

cryptographic scheme [98], since the security of RSA depeipin the difficulty of factoring
large numbers. Another example is the AIDS@home projedt [FBrough the “donation”
of large computing power, scientists and researchers haiaeal system to model the evolu-
tion of drug resistance and design anti-HIV drugs necedssdiight AIDS. More examples of
web-based projects can be found at http://www.intel.cone/c
As we demonstrate later on (see Section 4.3), complexityteegbtained folDo-All in the

model of perfect knowledge can yield insight about the beumd task execution redundancy
in settings where a server repeatedly allocates tasks Itoegirone processors (as in web-
based computing). This follows from the observation thatdracle assumed in the model of
perfect knowledge can be used to abstract the server thash& load-balancing decisions

in web-based computing.

Chapter 3

Models of Computation and the Do-All Problem

In this chapter we define the models of computation,BbeAll problem and the efficiency

measures we use to evalu@le-All algorithms.
3.1 General Setting and Definitions

Distributed setting: We consider a distributed system consistingygfrocessors; each pro-
cessor has a unique identifien) from the setP = [p] = {1,2,...,p}. We assume thatis
fixed and is known to all processors.

Each processor’s activity is governed by a local clock. Wthenprocessor clocks are
assumed to be globally synchronized, our distributedrgeis synchronousand we say that
the processors are synchronous. In this case, processdtiegtare structured in terms of
synchronoussteps(constant units of time). When the processors take stepdbiitaay rela-
tive speeds, our distributed settingasynchronousand we say that the processors are asyn-

chronous.

40

41

Tasks: We define aaskto be any computation that can be performed by a single psocés
constant time. The tasks are assumed teifyglar, independentandidempotent By the sim-
ilarity of the tasks we mean that the task executions conseopal or comparable resources.
By the independence of the tasks we mean that the tasks caetted in any order, that is,
the execution of a task is independent of the execution ofbditlye other tasks. By the idem-
potence of the tasks we mean that executing a task many tint#sraconcurrently has the
same effect as executing the task once. We definesthdt of a task to be the outcome of the
task execution. Each task has a unique identifiev) from the setZ’ = [n] = {1,2,...,n}.
We assume that is fixed and known to all processors.

We also consider sequences of task-§gt<s, ..., 7., where eacly;, for1 < i < r, is
a set ofn tasks and the execution of any taskZinmust be delayed until all tasks if;_; are
performed. This models the situation where the executioheftasks inZ; depends on the
execution of the tasks iff;_1, for 2 < 7 < r. However we assume that the tasks within each
7; are independent, similar and idempotent and that they anerkito all processors. We also
assume that each task, 1 < ¢ < r, has a uniquaiDb. For example, each task i may

have ariD fromthe se{(i — 1)n +1,(i — 1)n + 2,...,in}.

Communication: In message-passing models, processors communicate hingenessages.
Unless otherwise stated (see partitionable networks Belthve underlying communication
network is assumed to be fully connected, that is, any peards? can send messages to any
other processor if?. We also assume that messages are neither lost nor coringraasit.

In partitionable networks, the processors may be pargtioimto groups of communicating
processors. We assume that communication within groupigdle but communication across

groups is not possible. Partitions may change over time.

42

In synchronous message-passing systems we assume thagmeksivery has fixed
known latency. Specifically, within a step, a processor @rdsmessages to other proces-
sors and receive messages from other processors sent tthé previous step (if any). In
asynchronous systems, we assume no bounds on the messagpey diiency.

In shared-memory models, processors communicate by gg&dim and writing to shared-
memory locations. We assume that it takes a unit of time faioagssor to read or write to a
memory cell, according to its local clock. We consider syndobus shared-memory systems
where the reads and writes can be concurrent. When two or processors simultaneously
write to the same memory cell, eitheommonor arbitrary concurrent write discipline is ob-
served. This follows the conventions established for theallh Random Access Machine
(PRAM) [43]: for the common writes it is assumed that all valuesceorently written to a
memory location are the same, and for the arbitrary writés @issumed that the concurrent

writes to the memory location are arbitrarily ordered.

The assumption of perfect knowledge:In Chapter 4 we consider computations where the
processors, instead of communicating with each other, aomoate with some deterministic
omniscientoracle, call it oracleQ, to obtain information regarding the status of the computa-
tion. In particular, the oracle informs the processors Whethe computation is completed and
if not, what task to perform next. We assume that the oradatfopas perfect load-balancing,
that is, the live processors are only allocated to unperariasks, and all such tasks are
allocated a balanced number of live processors. We alson@sthat a processor can obtain
load-balancing and termination information from the oeanlO(1) time and that it can consult

the oracle only once per local clock-tick.

43

The assumption of perfect knowledge (or the oracle assom)psibstracts away any con-
cerns about communication that normally dominate specifgssage-passing and shared-
memory models. This allows for the most general results t@ediablished and it enables
us to use these results in the context of specific models bgratahding how the information
provided by an oracle is simulated in specific algorithmssoflany lower bound developed
under the assumption of perfect knowledge, applies equatlijto message-passing or shared-

memory models.

3.2 Models of Adversity

In this section we present the models of adversity. We firssgmt the failure types and

then we introduce the notion of an adversary and presenifigpgdversarial models.

3.2.1 Failure Types

We consider the following failure types.

Processor stop-failures/crashe§102]): We considercrashfailures, where a processor may
crash at any moment during the computation and once crastieds not restart. For message-
passing models we assume that messages sent to crasheskpro@e lost and no messages
are sent by crashed processors. For shared-memory modatswume that no reads and writes
are performed by crashed processors. We also assume tlaspoo crashes do not corrupt
the contents of the shared-memory or make the shared-menamgessible. Following [102],
we define dail-stopfailure to be a crash failure that can be detected. In symchu® settings,
crash failures can be detected (by timeouts) and hence insaitings the two terms have the

same meaning.

44

Regroupings/partitionable networks(applicable only to message-passing systems): We con-
siderpartitionable networksvhere dynamic changes to the network topology partitiorptioe
cessors into non-overlappirgroupsof communicating processors (processors do not crash).
We represent each processor grgugs a pairg.id, g.set), whereg.id is the unique identifier

of g andg.set is the set of processor identifiers that constitute the meshie of the group.

To reduce notation clutter, for this point on, given a groamedg we useg to stand forg.set
(e.g., if two, possibly distinct, groupsandg’ have identical membership, we express this by
g = ¢'). We refer to a transition from one partition to another esgaouping We also consider
special types of regroupings: when a single group parstioto a collection of new groups,
we call this afragmentation When a collection of groups merge and form a new group that

contains all the processors of the merging groups, we dalbtmerge

3.2.2 Adversarial Models

The concept of thadversaryis useful for obtaining lower bound results for specific prob
lems. An event caused by the adversary, e.g., a processtr, @naa computation may nega-

tively affect the efficiency of the computation. We consitieo adversary types

(a) omniscient and on-linethe adversary has complete knowledge of the computatiatn th

it is affecting, and it makes instant dynamic decisions om teaffect the computation.

(b) oblivious and off-line the adversary determines the sequence of events it wilecau
before the start of the computation and without having amyiori knowledge on how

the computation will be affected under this sequence.

45

Note that the distinction between the two adversary typesilig useful when considering
randomized algorithms, where the knowledge or not of thdaam“coin tosses” may be signif-
icant. For deterministic algorithms the two adversary $ypee essentially the same, since the
adversary knows exactly, before the beginning of the coatjmut, how a specific deterministic
algorithm would be affected by a specific event caused bydkeraary.

Consider an adversary and an algorithnm\ that solves a specific problem under adversary
A. We denote by (A, .A) the set of all executions of algorithrafor adversaryA. Let¢ be an
execution in€(A, . A). We denote by| 4 the set of events caused byin ¢ and we refer to it
as theadversarial patterrof £. For an adversarial pattegi4 of an executiorg, we denote by
l€].4]] theweightof £| 4. The value ofi|£| 4| depends on the specific adversatyconsidered
(e.g., if adversaryd causes processor crashes, théhy|| is the number of crashes caused by
the adversary; if the adversary causes fragmentations, ||| is the number of new groups
created due to the fragmentations). Unless otherwisedstate assume that the processors
have knowledge neither @f 4 nor of any bounds of¢| 4]|.

We now present the adversaries we consider in the thesis.rsWgifesent the adversaries

that cause processor failures and then we present the adesrthat cause regroupings.

Adversaries Causing Processor Failures

We consider only one adversary that causes processorefillm particular, we consider

an adversary that causes processor crashes.

Adversary Ag: We denote by4s an omniscient and on-line adversary that can cause proces-
sor crashes (but not restarts). Consider an algorithtihat solves a problem under adversary

Ag. Let¢ be an execution i€ (A, Ag). Then, the adversarial pattegihy is a set of triples

46

(crash PID, t), where crash is the event caused by the adversanyis the identifier of the
processor that crashes, anid the time of the execution (according to some externalkchmt
available to the processors) in which the adversary forecedgssorriD to crash. Note that
any adversarial pattern contains at most one triptagh pPID,) for anyPID, i.e., if processor
PID crashes, time during which it crashes is uniguely defined.

For an adversarial patteg, we define||£| 4, || to be the number of processors that crash.
For the purpose of the thesis we consider only executfondere ||£| 44| < p, that is we
require that the adversary leaves at least one processmtiopal in the entire course of the

computation to ensure computational progress.

Adversaries Causing Regroupings

We consider three adversaries that cause regroupings. rfherie is an omniscient and
on-line adversary that can cause only fragmentations andebond one is an omniscient and
on-line adversary that can cause fragmentations and memjas third one is an oblivious
and off-line adversary that can cause arbitrary regrowirihis adversary is assumed to be
oblivious and off-line because later in the thesis we carsidndomized algorithms under this
adversary, as opposed to the first two adversaries where mgiden deterministic algorithms

(this is also the case for adversafly).

Adversary Ar: We denote by4 an omniscient and on-line adversary that can cause only
group fragmentations (no merges). Consider an execytiohan algorithmA that solves a
specific problem undedr, i.e.,£ € E(A, Ar). For the purpose of this thesis we consider only

executions where initially all processors belong sirgglegroup.

47

When adversary i forces groupy to fragment into groupss, g2, - . . , g» We require that
@) Usepy 9i = 9. and (0)vi,j sit. 1 < 4,j < kandi # j, g; N g; = 0. We say that the
fragmentation-numbeof this fragmentation i&. Note that: new groups are created due to this
fragmentation. Syntactically, we present such fragmamtatin the adversarial pattefi 4,
as the triple(fragmentationg, {g1,92,--.,9x}). Consequently, we represent an adversarial
patterné| 4, of an executiorg as a set of such triples and we define the fragmentation-numbe
fr(&la,) = ||€|l 4z to be the sum of the fragmentation-numbers of all the fragatems in
€|, In other words f, (£| 4,) is the total number of new groups created due to the fragmen-
tations in¢| 4,.. By convention, when a group is regrouped in such a way tHatrits a new

group with the same participants, we view this as a fragntienta

Adversary Ary: We denote byd), an omniscient and on-line adversary that can can cause
fragmentationsand merges. Consider an executigérof an algorithmA that solves a specific
problem undetd pyy, i.e.,& € E(A, Apar). As for adversaryd ., we consider only executions
where initially all processors belong in a single group.

When adversaryl gy, forces groupg, go, . . . , g¢ to merge and form a group we require
thatg = Uie[é] gi, and we say that themerge-numbenpf this merge isl (note that a merge
results to the creation of only one new group). Syntaciicalle present such a merge in
the adversarial patteré| 4,.,, as the triple(merge{g1,¢92,...,9¢},g). Fragmentations are
presented as for adversad. Therefore, we represent an adversarial patt¢m,.,, of an
executioné as a set of “fragmentation” and “merge” triples, and we defireemerge-number
fm (&l gy,) to be the sum of all merge-numbers of all merges|in,.,,. Then,||{| ., Il =
fr(&lapy) + fm(€lap,,). Inother words||é| 4., || is the total number of new groups created,

due to the fragmentations and merges|ia,.,, -

48

Observe that adversa@r,, is more powerful thad p, and thatt (A, Ar) C E(A, Arnr)
for an algorithmA that solves a specific problem. Also note that since we censdly
executionst where all processors initially belong in a single group (&modn the convention
mentioned in the description of adversady- regarding a group being formed by a group with

the same members), we have thiats| a,.,,) > fm (€l Az)-

Adversary Aqgr: We denote bydsr an oblivious and off-line adversary that can cause ar-
bitrary regroupings. Consider an algorithinthat solves a specific problem under adversary
Aqr. The adversary determines a sequence of regroupings pribetstart of an execution
and it can not change this sequence once the execution has.b®¢e refer to such a pre-
determined sequence of regroupings asmputation template

Adversary Aqr is restricted in determining only computations templatest tan be ex-
pressed as the following labeled directed acyclic graphGPA' = (V, E), which we call
(p)-DAG (p is the number of participating processors): each verteresponds to a group
of processors and a directed edge is placed from greup groupgs if go is created by a
regrouping involvingg;. Each vertex of the DAG is labeled with the group of processor
associated with that vertex. To this respect, the DAG is amed with a labeling func-
tion~ : V — 21\ {0} (i.e., v(v) is the set ofrIDs of the processors that belong in the
group corresponding to verte®y. The functiony satisfies the following two conditions: (a)
2] = Us indegree(u)—o7(v), and (b) there is a functiop : £ — 2P\ {0} so that for
eachv € V with indegree(v) > 0, y(v) = U(uyv)€E¢((u,v)), and for eachv € V with
outdegree(v) > 0, v(v) = U(uu)eE(p((v,u)). Here(] denotes disjoint union. Note that the

above definition allows foseveralinitial groups (no more thap).

49

Given a(p)-DAG, we say that two vertices (groups) anelependentf there is no direct
path connecting one to the other. Then, for a computatiompleEmC’, we define thecompu-
tation width ofC, cw(C') to be the maximum number of independent groups reachalolegal
directed paths) in thé)-DAG, that represent§’, from any vertex. This discussion is revisited
in Section 7.2.1 where we give a formal definitionasf (C') using elements from set-theory
and graph-theory.

Consider a problem of a specific size and all algorithms tbatesthis problem using
the same number of processors, under adverdary. The same computation template can
be applied to all these algorithms, however, the resultixecation might be different, de-
pending on the steps that each algorithm takes in the pres#rbis computation template.
Let C be a computation template determined by the adversary agdole the resulting ex-
ecution of an algorithm under this computation templateteNbat the execution might ter-
minate (meaning that the specific problem is solved) befreegroupings specified by the
computation template take place (since the adversary dateknow a priori how the algo-
rithm would behave under this sequence of regroupings).refbie, if (p)-DAG represents
the computation templat€, then the adversarial patteéh,,,, is represented by a subgraph
of (p)-DAG. Furthermore, the weight df| 4., is the computation width of this subgraph.
Hence,||{| 4., || < cw(C). For the purpose of this thesis, when considering algosthnder
adversaryAcqg, failure-sensitivity is measured in terms of the propertié the computation

templates. However, the efficiency of algorithms is measbesed on the resulting executions.

50

3.3 TheDo-All Problem

We now define the abstract problem of havingrocessors cooperatively perfomrtasks

in the presence of adversity.

Definition 3.1 Do-All: Given a setl” of n tasks, perform all tasks usingprocessors, under

adversaryA.

We let Do-All 4(n,p, f) stand for theDo-All problem forn tasks,p processors and ad-
versary.A constrained to adversarial patterns of weight less or etguAl We considerDo-
All 4(n,p, f) to be solved when all tasks are completed and at least one operational processor
knows about it. We leDo-All ﬁ(n,p, f) stand for theDo-All 4(n, p, f) problem when the pro-
cessors are assisted by ora€ldas discussed in paragraplssumption of perfect knowledge
in Section 3.1).

In the shared-memory model tli2o-All problem is known as th&Vrite-All problem.
The main difference is that iDo-All the tasks may be supplied to the processors from some
external sources, while ilVrite-All the tasks are stored in shared-memory accessible to all
processors. In the context of this thesis we abstract away fine sources and the nature of the
tasks and we tredDo-All and Write-All as the same problem in that regard. However, when
we studyDo-All in shared-memory models, we will be referring to tWéite-All problem,

defined formally as follows:

Definition 3.2 Write-All . Given a zero-valued shared arrayroElements, write the valug

into each array location usingprocessors, under adversaty

51

We note that eachDo-All task” is associated with each location of the input arrayewh
a processor sets the value of a certain location of the ingat do 1, this implies that the
processor has performed the associated task.

We let Write-All 4(n, p, f) stand for theWrite-All problem for a shared array of el-
ements (or ofn tasks),p processors and adversady constrained to adversarial patterns of
weight less or equal tg. We considetWrite-All 4(n, p, f) to be solved, when the value of
each of then array elements is set tio(meaning that all tasks are performed) and at least one
operational processor knows about it.

Do-All algorithms have been used in developsigiulationsof failure-free algorithms on
failure prone processors [72, 104, 68]. This is done by titexly using aDo-All algorithm
to simulate the steps of the failure-free “virtual” processors op failure-prone “physical”
processors (here the usual case is that the number of phpsaaessors does not exceed
the number of virtual processors, i.e.,< n). We abstract this idea as tlierative Do-All

problem:

Definition 3.3 r-lterative Do-All. Given any sequence, ..., 7, of r sets ofn tasks, perform

all r - n tasks using processors by doing one set at a time, under adverdary

We let r-Do-All 4(n,p,) stand for theiterative Do-All problem forr sets ofn tasks,
p processors and adversady constrained to adversarial patterns of weight less or efgual
f. We consider-Do-All o(n,p, f) to be solved, when all - n tasks are completed and at
least one operational processor knows about it. We-Rb-All fZ(n,p, f) stand for the"-Do-
All 4(n,p, f) problem when processors are assisted by orécleThe r-lterative Write-All

problem is defined similarly and it is denotedra®Vrite-All o(n, p, f).

52

When solvingDo-All in partitionable networks, our goal is to utilize the resms of every
group of the system during the entire computation. This ifosdwo reasons: (a) a client, at
any point of the computation, may request for a result oflafrasn a certain group. This might
be the only group that the client can communicate with. Heweewould like all groups to be
able to provide the results of all tasks, and (b) if differgraups happen to perform different
tasks and a regrouping merges these two groups, then moneutational progress can be
achieved with less computation waste. Hence, we would likeomponents to be computing
in anticipation of regroupings.

Therefore, in partitionable networks, each processor teistomputing until it learns the

results of all tasks. We call this variation Bb-All, Omni-Do.

Definition 3.4 Omni-Do. Given a setl” of n tasks anh message-passing processors, each

processor must learn the result of all tasks, under adwes$ar

We let Omni-Doy(n, p, f) stand for theOmni-Do problem forn tasks,p processors and
adversaryA constrained to adversarial patterns of weight less or emuAl (For adversary
Acr we consider computation templates with computation widgslor equal tof.) We
considerOmni-Doy(n, p, f) to be solved when all operational processors know the seelilt

all n tasks.

Finally, we assume that the number of procesgdssno more than the number of tasks
(p < n). StudyingDo-All in the case op > n is not as interesting. This is so for two reasons:
(1) the most interesting challenge is to consider the ggttivhere maximum parallelism can be

extracted for the case when each processor can initiallg haleast one distinct task to work

53

on, (2) additionally, for the simulation results the mogenasting case is when the number of

simulating processors does not exceed the number of siedutaibcessors.

3.4 Measures of Efficiency

We now define the complexity measures that will determineetfieiency of algorithms.

Work complexity. We first define the notion affork. We are considering two versions of the
definition of work. The first definition of work, denoted I8 is based on thavailable pro-
cessor stepmeasure, introduced by Kanellakis and Shvartsman in [67&. Second definition
of work, denoted by, is based on thaumber of tasks performedeasure, introduced by
Dwork, Halpern and Waatrts in [33]. We note that the seconditiefn is meaningful only for
task-performing algorithms, while the first one is more gahe

We assume that it takes a unit of time for a processor to paréounit of work, according
to its local clock. LetA be an algorithm that solves a problem of sizevith p processors
under adversaryl. For an executiog € £(A,.A) denote bysS;(¢) the number of processors
completing a unit of work at timeé of the execution, according to some external clock not
available to the processors (for synchronous computatitresexternal clock is assumed to

run in synchrony with the processors’ local clocks).

Definition 3.5 (available processor steps owork) Let A be an algorithm that solves a prob-
lem of sizen with p processors under adversad. If execution¢ € E£(A,.A), where
II€|4]l < f, solves the problem by time(£) (according to the external clock), then tverk

complexityS of algorithmA is:

(§)

S: S n7 Y = N SZ
A(n,p, f) EEE(NA), [IEall<f ; ©

54

Note that in Definition 3.5 the idling processors consume ia afrwork per idling step
even though they do not contribute to the computation.

Let A be a task-performing algorithm that solves a problem withsks ang processors
under adversaryl. For an executio € £(A, .A) denote by;(¢) the number of processors
completing a task-oriented unit of work (a task-oriented ahwork is a unit of work that is
spent in performing a task) at timeof the execution, according to some external clock not
available to the processors (for synchronous computatitiesexternal clock is assumed to

run in synchrony with the processors’ local clocks).

Definition 3.6 (number of tasks performed ortask-oriented work) Let A be a task-
performing algorithm that solves a problem witttasks ang processors under adversasdy
If executioné € £(A,.A), where||£|4]| < f, solves the problem by time(¢) (according to

the external clock), then thtask-oriented work complexify’ of algorithmA is:
(&)

W =Wun,p, f) = max W;
AP)= e B s Z; ©

Note that in Definition 3.6 the idling processors are not ghdrfor work (since we count
only task-oriented units of work).

Observe from the above definitions that therk measure is more “conservative” than the
task-oriented workneasure. Given an algorithrh that solvesDo-All under adversaryd
thenW(n,p, f) = O(Sa(n,p, f)), sinceSa(n,p, f) counts the idle/wait steps, which are
not included inW4(n,p, f). The equalityWW 4(n,p, f) = Sa(n,p, f) can be achieved, for
example, by algorithms that perform at least one task duaingfixed time period. Also note
that Definitions 3.5 and 3.6 do not depend on the specificseafaifyet model of computation,
e.g., whether it is message-passing or shared-memory. Yesanting algorithmic solutions

or lower/upper bounds, we explicitly state which work meass assumed.

55

Message complexityThe efficiency of message-passing algorithms is additiprhlaracter-
ized in terms of theimessage complexitet A be an algorithm that solves a problem of size
n with p processors under adversady For an executio € £(A,.A) denote byM; () the
number of point-to-point messages sent at tinod the execution, according to some exter-
nal clock not available to the processors (for synchronaumspritations, the external clock is

assumed to run in synchrony with the processors’ local &pck

Definition 3.7 (message complexity)let A be an algorithm that solves a problem of size
with p processors under adversady If execution{ € E£(A,.A), where|¢| 4] < f, solves
the problem by time-(£) (according to the external clock), then timessage complexity/ of

algorithmA is:
7(8)
M = Mu(n,p, f) = max M;
AP)= e B s Z} ©

Note that when processors communicate using broadcastsilticasts, each broacast /

multicast is counted as the number of point-to-point mess&mm the sender to each receiver.

Read and write memory access concurrencyln synchronous shared-memasystems, we
are also interested in studying the read and write memorgsacconcurrency ofVrite-All
algorithms. Consider a step of a synchronous parallel ceettipn, where a particular location
is written byx < p processors. Then— 1 of these writes are potentially “redundant”, because
a single write suffices. The following read and write conenay measures, introduced by
Kanellakis, Michailidis, and Shvartsman in [66], assesswlorst case number of redundant

read and write memory accesses.

56

Definition 3.8 (read and write concurrency) Let A be a synchronous shared-memory algo-
rithm that solves a problem of sizewith p processors under adversady Consider an ex-
ecution{ € £(A,A) with |€]4]] < f that solves the problem by time(§). If at time

(1 <i<7(8)), pi(€) processors complete reads fraf{(¢) distinct shared memory locations
andp (§) processors complete writes#¢) () distinct locations, then we define:

(i) the read concurrency of A as:

~(©)
p=paln,p, f)= max {Z(Iﬁ(é) —n;(§)) }

- cee(rA) —

(i) the write concurrencyw of A as:

7(€)
w=wa(n,p, f) = max {Z(pzw(&) —n'(§)) }

- es(AA) P

Chapter 4

Perfect Knowledge: Do-All with Crashes

In this chapter we considesynchronousrash-prone processors under the assumption of
perfect knowledge, where an oracle provides terminatiahlaad-balancing information to
the processors (see paragraph “The assumption of perfeetlétige” in Section 3.1). The
assumption of perfect knowledge abstracts away commiumicahd scheduling issues and al-
lows us to focus on the effects of processor failures on thieiexicy of Do-All. We present a
completeanalysis ofDo-All fZS(n, p, f) andr-Do-All S{S(n, p,) work complexity that demon-
strates precisely how failures affect efficiency. In patc, we provide matching upper and
lower failure-sensitive bounds on work that are given agtions ofn, p and f, the num-
ber of processor crashes, for the entire rangg.ofhis also establishes the first non-trivial
lower bound forDo-All for moderate number of failureg (< p/log p). In later sections, we
demonstrate the utility and generality of the results waiobtinder the assumption of perfect
knowledge by improving the analysis of three efficient aipons: Algorithm AN [17] that
solvesDo-All in the message-passing model assuming reliable multisast§ection 5.1), al-

gorithm W [67], the best known algorithm that solW&ite-All in the shared-memory model

57

58

(see Section 6.1), and algorithm KMS [66] that solWste-All with controlled memory ac-

cess concurrency (see Section 6.2). By iteratively usiagdlalgorithms we also give improved
failure-sensitive upper bounds faerative Do-All in the corresponding models. Finally, our
results under the perfect knowledge assumption yield limisidpout the bounds on task exe-
cution redundancy incurred when a central authority requihatallocates tasks to crash-prone

processors (see Section 4.3).

4.1 Do-All Upper Bounds with Perfect Knowledge

To study the upper bounds f@o-All we give an oracle-based algorithm in Figure 1.
The algorithm uses oract® that performs the termination and load-balancing comjmrtain
behalf of the processors. In particular, during each syorabuis iteration of an execution of
the algorithm, the oracl® makes available to each processtwo values:Oracle-complete
a Boolean which takes the valweie if and only if all tasks are complete at the beginning
of this iteration, andOracle-taski), a natural number fronn|, whose value is a task iden-
tifier. Oracle-taskis a function from processor identifiers to task identifievith the prop-
erty that processors are only allocated to undone tasksthatall such tasks are allocated
a balanced number of processors. For example, if procesgors , i, € [p] are alive and
tasksji, ..., j¢ € [n] are undone at the beginning of a given iteration of the aligorj then

Oracle-taskis) = ji, wheret = (s — 1 mod ¢) + 1.

for each processor PID = 1..p begin
while not Oracle-complete
perform task withtID = Oracle-taskP1D)

end

Figure 1: Oracle-based algorithm.

59

We begin with a result shown by Kanellakis and Shvartsmah [68is result was orig-
inally shown for theWrite-All problem with memory snapshots (processors can access the
entire shared-memory in constant time). It is not difficaltsee that this result is trivially

applicable to théo-All problem with perfect knowledge (this is discussed in Secid).

Lemma 4.1 [68] The Do-AIIﬂS(n,p, f) problem can be solved with < p using work

S=0(n+p log p .
loglog p

Note that Lemma 4.1 does not show how, if at all, work depemdg. Ve now present an

upper bound considering moderate number of crashes £/ log p).

Lemma4.2 The Do-AIIfZS(n,p, f) problem can be solved witf < p/log p using work

S:O<n+plog%p).

Proof: For an iteration of the algorithm in Figure 1, l&tf denote the number of processor
crashes in this iteration./f can be different for each iteration, though the sum of these f
all iterations cannot exceefl) We setb = b(p, f) = %, and we defines(n, p, f) to be the
work required to solvédo-All S{S(n,p, f). Our goal is to show that for all, p and f, the work

S(u,p, f)is no more thari6p + u +p10g% (min(u, p)), whereu < n denotes the number of

undone tasks. The proof proceeds by induction.on

Base CaseObserve that when < 16, S(u,p, f) < 16p < 16p + u + plogy(min(u, p)), for

all pandf.

Inductive HypothesisAssume that we have proved the theorem fouatt @ (& < n) and all

pandf.

Inductive StepConsideru = @. We investigate two cases:

60
Case 1 p < 4 (in particular,min(a,p) = p). In this case each processor is assigned to a
unique task, hence

N < . _ B
S(a,p, f) _p+0§rga}>éf5(u p+Afip—Af, f—Af)
Asp—Af >0,u4—p+ Af < @ and, by the induction hypothesis,
1 < - N
S(a,p, f) <p+ max [16(19 Af)+(a—p+Af)

+ (p — Af)logy—af,f—ap (min(i— p+ Af, p— Af)}
Now,b(p — Af, f — Af) > b(p, f), and

logy(p, py(min(a —p + Af,p — Af) <logy,, ry(p — Af),
so that

S(i,p, f) < 16p + i + plogyy, sy p = 16p + 1 + plogy, 5 (min(a, p)),
as desired.

Case 2p > « (in particular,min(u, p) = @). In this case, by assumption we have
1 < i, p— A —A
S(u,p,f)_erOSrga}géfS(vu,p [f=Af),

wherey = (4, p, Af) is the ratio of the number of the remaining tasksit® < v < 1).

Let¢o = Af/p < f/p < 1, the fraction of processors which fail during this iteratidhen
D)2 <7y < 20¢. (To see this, observe that

op_ _ ¢p/[p/0]

op/lp/a] — ¢p
[p/i]a o ST 4 T
Letp = ct, c > 1. Then
_ ¢cu pci c
T Taa =" 1aga LCJ¢
Now observe that < &

o <2 and1/2 <

Tl
desired) Then,

< 1,Ve > 1, and hencep/2 < v < 2¢, as

S(a,p, f) < p+¢e%?;§p} S(vya, (1 = o)p, f — op).

61

As~u < 1, we may apply the induction hypothesis:

S(ap, f)<p+ max [16(1 - 9)p+7i+ (1 - @)plogy (min(yi, (1 -~ 6)p))].
»€[0,f/p]

whereb’ = b(p — ¢p, f — ¢p). As above)’ > b(p, f) andmin(vyi, (1 — ¢)p)) < v, so that

S(i,p, f) <p+ max |16(1 - @)p+~a+ (1 - ¢)plo a)l.
(@p, f) <p (pe[oﬁp][(1 = @)+t + (1= ¢)plogyp,p) (v)}

To complete the proof, it suffices to show that fora@le [0, f/p],

15p + plogy, 1) @t — (1 — @)plogy(p, py (Vi) > 16(1 — ¢)p — a(1 — 7).
Upper boundingl6(1 — ¢)p — a(1 — ~) with 16(1 — ¢)p and dividing through by, it is
sufficient to show that

15 + logy(, 7y @ — (1 — @) logyp,) (70) > 16(1 — ¢),

or, equivalently,
10gy(p,) & — (1 =) logy, 1) (v) > 1 — 166.

We now focus on the left hand side of the above equation:

10gyp,) @ — (1 = &) |Logyp,) 7 + 1080, p) @] = Plogy) @+ (1 — @) logy py 7

Sincef < m = %, for any > 16 we have thatzﬁf > 2. Observe that,

dlogy) i+ (1 — @) logy 1y v = (1=) logyy, 7"
sinceu > p/f > p/2f. (Note that ifa < p/f, then all tasks are completed in this iteration.)
Recall thaty~! > (2¢)~! and¢ < f/p. Therefore,

(1= @) logyp)7 " = (1= @) logyy, 1) (20) " > 1 — 169,

Evidently,
S=0 (n +p +plog§(min(n,p)) =0 (n +plog§ p) ,

as desired. O

We now give our failure-sensitive upper-bound result.

62

Theorem 4.3 The Do-AIISS(n,p, f) problem can be solved using work

log p > p
S=0(n+p—————) whenf < — and
(Plog(p/ 1) T = iogp

1
S=0(n+p OEP WhenL<f<p.
log log p logp

Proof: This follows from Lemmas 4.1 and 4.2. O

4.2 Do-All Lower Bounds

We now develop the lower bounds fﬁlo-Allﬁs(n,p, f); these bounds match the upper
bounds presented in Section 4.1. Note that the results snstiition hold also for th®o-
All 4, (n,p, f) problem (without the oracle).

The following mathematical facts (from [67]) are used in pheofs.

Fact4.1If ay,a9,...,a, (m > 1) is a sorted list of nonnegative integers, then for jall

(1 <j <m)we have <1 - %) S < a

Fact4.2 Givenn € N, k € R, suchthath - x > 1, k < %, ando € N such thato <

logzifl) — 1, then the following inequality holds:.... [|n- k] - k] ... k] > 0.
N——

o times

Proof: To show the result it suffices to show that, after dropping fbmar and strengthening

3=

the inequality:(|...[|n- k] k] ... k|- k) —1>0,orthat|...[|n - k] -K]... K| >
—_— —_—
o—1 times o—1 times

Applying this transformation forr — 1 more steps, we see that it suffices to show

that n > H%,Jr - +...+%, or, using geometric progression summation, that >

KO

()71 (e)
(k—1)—1 :
() — ()

We observe that —yo+l
> ey o

63

for k < 1, thus it is enough to show that> (x~1)7*+1. After taking logarithms of both

sides of the inequalitypg n > (o +1) log(x~1), and so it suffices to have < loé?iﬁl) —1.0

We now define a specific adversarial strategy of advergarysed to derive our lower
bounds. LetA be an iterative algorithm that solves tbe-All problem. Letp; be the number
of processors remaining at the end of iHeiteration of an execution ok and letu; denote
the number of tasks that remain to be done at the end of erati Initially, po = p and
ug = n. The adversarial strategy is defined assuming the samal initmber of tasks and
processors, that iy = ng. The strategy of the adversary is defined for each iteratidheo
algorithm. Based on a variable defined in the interva(0,1/2), the adversary determines
which processors will be allowed to work and which will bepgied in a given iteration. We

call this adversarial strategy.

Adversarial strategy -

lterationl: The adversary chooses = |rkug] tasks with the least number of processors
assigned to them. This can be done since the adversary isacemii it knows all
the actions to be performed by (as well as any advice provided by the oracle). The

adversary then crashes the processors assigned to thesdftany.

Iterationi: Amongu;_; tasks remaining after the iteratién- 1, the adversary choosas =
| ku;—1] tasks with the least number of processors assigned to thdnosrashes these

processors.

Termination The adversary continues for as longas> 1. As soon as; = 1, the adversary

allows all remaining processors to perform the single raingitask, and\ terminates.

We now study the adversarial strategfyand derive lower bound results.

64

Remark 4.1 Relationship between and«: If « is chosen so that - n < 1 then by the adver-
sarial strategy|, an algorithm solvingDo-All may be able to solve it in a constant number of
iterations (namely two) with work)(p). This is because; = |kug| < kn < 1. Henceforth

we considelk to be such that - n > 1.

Lemma 4.4 For adversarial strategy, if at iteration: the number of remaining tasksis_; >

1, then
@u;=1...[|n" K| -k]... k], and
—_—

. i times

(b) p; > (1 = &)’ po.

Proof: Part (a) is immediate from the definition &f. To express the number of surviving
processorp; for part (b), we use Fact 4.1 with the following definitions:

Letm = w;_1, and letaq, ..., a,, be the quantities of processors assigned to each task,
sorted in ascending order. Lef, also include the quantity of any un-assigned processors,
i.e., a; is the least number of processors assigned to a tasls the next least quantity of
processors, etc. (In other words, < as < ... < a,,.) Letj = u;. Thus the adversary
stops exactlyzg‘:1 a; processors. At the beginning of iterationthe number of processors

pi-1 = >~ a;, therefore, the number of surviving processers= >-i" . | a;.

Uj

Using Fact4.1, we haye > (1—)pi—1, and after substituting fai; = |ku;—1 | we have

i—1

RU;—1 .
pi > (1 - LTZH) pi-1 > (1= K)pim1 > (1 = k)" po,
i

as desired. O

Lemma 4.5 Given any algorithm solving th@o-AIlﬁs(p,p, f) problem ¢ = n), the adver-

sarial strategyl will cause the algorithm to cycle through at Ie@oég{% — 1 iterations.

65

Proof: Let T be the earliest iteration when the last task is performed.u¥éeFact 4.2 witlyr

the largest integer such that< log p/log(k~1) — 1. Thenu, = [...||p- &) - & ... k] > 0,
—_— ———

o times

log p

and sor must be greater thambecause:, = 0. Thus,r > —1>o0. O
log(k—1)

Lemma 4.6 Given any algorithmA that solves theDo-AIIfZS(p,p, f) problem p = n) with

. . 1
f < p, the adversarial strated@y with x = % causes worls = 2 | p 98D
ogp log log p

Proof: We first assume that > 4 (we aim to establish an asymptotic result, and this elinaimat
uninteresting cases). Sinee= 1/logp, we have thak € (0,1/2) whenp > 4. From
Lemma 4.4(a) and Lemma 4.5 we see thlawill cause algorithmA to iterate at least =
(logp/loglogp) — 1 times. Now observe that the work must be at least 7, wherep,

is the number of surviving processors affeterminates. From Lemma 4.4(b) we have that

pr > (1= K)"po = (1 — 555)"p- Therefore,

log p log p

1 loglogp 1 loglog p
Pr = P <1 - logp) > p (1 - 1ng>
1 logp _ P
p <1 - (logp>.(loglogp)) = pP- loglogp”

Let £, denote the actual number of crashes caused by the adversary,f, = p — p, <

Y

< p. Hence2l when using this specifie does not exceed the

— p — p
p—p+ loglogp ~— loglogp

allowed number of crashes. Now, the work cause@by:.

p log p log p
=Qp.-7) =N — . -1 =9 .
§ =27 ((p log 10gp> <1og log p)> (plog 10gp>

This completes the proof. O

Corollary 4.7 Given any algorithm\ that solves th@o-AIlﬂs(n,p, f) problem p < n) there

. . 1
exists an adversarial strategy that causes wo#k (2 <n +p o8P > i
log log p

66

Proof: Note thatS = {2(n) because all tasks must be performed. From Lemma 4.6 we know
that Do-All fZS(p, p, f) requiresf2(plog p/loglogp) work. Given that work is nondecreas-
ing in n (as follows from Definition 3.5) we obtain the desired resiyitcombining the two

bounds. O

Observe that Lemma 4.6 and Corollary 4.7, by themselvesptishow how work depends

on f. We now give lower bounds considering moderate number shesf < p/log p).

Lemma 4.8 Given any algorithmA that solves theDo-AIIﬁs(p,p, f) problem p = n),

the adversarial strategdf with (v~ !)log(xk~!) = % and f < £ causes workS =

P <plog§ p) .

Proof: We assume thai > 4 (we aim to establish an asymptotic result, and this elinsimat

uninteresting cases). Frofa—!)log(k™!) = p“}gp, f < ik5 andp > 4 we see that
log(k~!) > 4. This implies thatx € (0,1/2). Hence, from Lemma 4.5 we have tit
will cause algorithmA to iterate at least = (log p/ log(x~!)) — 1 times.

Now observe that the work must be at least 7, wherep.- is the number of surviving proces-

sors afterA terminates. Recall from Lemma 4.4(b) that> (1 —)" po. Therefore,

logp 1
pr = p(1—r) > p(l—rK)eet=
> 1— 10;?521) > 1— logp
= p(’i) Z P K- Tog(k—1)
_ _ f
- p<1 - (log(lfz*))logp) - p<1 - (Plogp)logp)

= p— I
Let f- denote the actual number of crashes caused by the adversary.f- = p — p, <

p— (p— f) = f. Hencel when using this specifie does not exceed the allowed number of

crashes [< p/log p).

67

plogp

Recall that(x) log(k~!) = 22, therefore(x~!) = 6 <+> Thus,

log(21EE)

wict-o o () o (7)o o)

Then, noting thap, > p— f > p — p/logp = O(p) and thatx - p > 1 (see Remark 4.1), we

assess the work caused byl as follows:

log p) log p
S=0p;, 71)=2(p- ———— | =1 R S .
(pr-7) <p log(k~1) <p plog(plc}gp)

Now recall thatp/f > logp. Hence, for anyp > 4 we have thatp/f > 2 and that

log((plogp)/f) = log(p/f) + loglog p = O(log(p/ f)). From the above,

_ log p _
S=0 (p—l—plog(p)) o) <plog§p) .

f

This completes the proof. O

Corollary 4.9 Given any algorithmA that solves theDo-AIIf?lS(n,p, f) problem p <

n), there exists an adversarial strategy that causes ﬁ crashes, and worls =

P <n—|—plog§p) .

Proof: Note thatS = (2(n) because all tasks must be performed. From Lemma 4.8 we
know thatDo-AIIfZS(p,p, f) requires2(p log§ p) work, for f < p/logp. Given that work is

nondecreasing in we obtain the desired result by combining the two bounds. O

We now give our failure-sensitive lower-bound result.

Theorem 4.10 Given any algorithn\ that solves théo-All E{S(n, p,) problem there exists

an adversarial strategy that causes work

log p) p
S=02(n+p—————) whenf < — and
(log(p/f) 7= toup

1
S=02|n+p o8P WhenL<f<p.
loglog p log p

68

Proof: For the range of failureg < p/ log p, per Corollary 4.9, the work i€ (n + plog,, s p).
From Corollary 4.9 we also obtain the fact that whén= p/log p then work must be

2 (n + plogp/loglog p). Note that this is the worst case work for afiysee Corollary 4.7).

Therefore, for the range/ logp < f < p, the adversary establishes this worst case work using

the initial p/ log p failures. O

4.3 |terative Do-All

Do-All algorithms have been used in developing simulations afraifree algorithms on
failure-prone processors. This is done by iteratively ggifdo-All algorithm to simulate the
steps of the failure-free processors. We studyititrative Do-All problems to understand the
complexity implications of iterative use &o-All algorithms.

In studying simulations, Bo-All 4, (n,p, f) solution abstracts the setting wherghysical
crash-prone processors simulat@irtual processors, such that each tasinong then tasks
in Do-All represents a single step of the virtual processdheiterative Do-All then models
the simulation of multiple steps of the virtual processors.

In principle r-Do-All 4,(n,p, f) can be solved by running an algorithm fdbo-
All 4, (n,p, f) for r iterations. For example;-Do-AIIfZS(n,p, f) can be solved by running
the oracle-based algorithm in Figure 1 foiterations. If the work of &o0-All solution is.S,
then the work of the -iterative Do-All is at mostr - S. However we show that it is possible
to obtain a finer result that takes into account the dimingmiumber of failures “available” to
the adversary. We refer to eablo-All iteration as aound of r-Do-All 44 (n,p, f).

For the model of perfect knowledge we obtain the followinidufe-sensitive upper bound

on work.

69

Theorem 4.11 Ther-Do-All E?‘S(n,p, f) problem can be solved using work

S:O(%(n+p—@gL>>mMmeJiﬂam

log(pr/f) logp
1
S=0(r (n+p—22)) whenZ" < 1 <p.
loglogp logp

Proof: Let r; denote thei’* round of the iterativeDo-All. Let p; be the number of active
processors at the beginningqfand f; be the number of crashes during Note thatp; = p,

wherer is the first round of--Do-All ﬁs(n, p, f) and thatp; < p. We consider two cases:

Case 1 f > lg’gp. Consider a round;. From Theorem 4.3 we see that the work for this

round isO (n + pilog,, ¥, pZ-) when f; < p;/logp; andO (n + p; log p;/ loglog p;) other-

wise. However in this case, we can haglje= © (p/ log p) for all r; without “running out” of

1
S1=0|r- n+pﬂ .
log log p

Case 2 f < {&-. First observe that any reasonable adversarial strategydwaat Kkill
gp

processors. Thus,

more thatp;/log p; processors in round;, since it would not cause more work than
O(n + p;logp;/loglogp;) (which is achieved wherf; > p;/logp;). Therefore, we con-
sider f; < p;/ log p; for all roundsr;. Hence, the work in every round (per Theorem 4.3) is
O (n+ pilogpi/log(pi/ fi)) = O (n + plogp/log(p/ fi))-
Let S(n,p, f) be this one-round upper bound. As= > f;, an upper bound om-Do-
All S)‘S(n,p, f) can be given by maximizing , S(n, p;, f;) over all such adversarial patterns.
As S(-,-,-) is monotone irp, we may assume that = p for the purposes of the upper bound.
We show that this maximum is attainedfat= f, = ... = f,.. For simplicity, treatf; as a con-
tinuous parameter and consider the factor in the singledeuork expression (given above)
that depends off; : ¢/ log(%), wherec is the constant hidden by th@(-) notation.

0

The first derivative overf; is ar. <c/10g <?)> = ¢/fi(logp —log f;)?, and its second

70

derivative isﬁa—fi? <c/log <?>> = 2¢/f2(logp — log fi)® — ¢/ f2(logp — log f;)*. Observe
that the second derivative is negative in the domain corsidgassuming > 16). Hence the
first derivative is decreasing (witfy). In this case, given any twg;, f; wheref; > f;, the
adversarial pattern obtained by replacifigvith f; —e andf; by f;+e (Wheree < (f;— f;)/2)

results in increased work. This implies that the sum mayaahiwhen allf;s are equal, specifi-

cally whenf; = f/r.

As the above upper bound on the sdi) S(n, p;, f;) is valid overall f; in this range, it holds
in particular for the choices made by the adversary whichtpoafscourse, cause an integer

number of faults in each round. Therefore,

wolr (o)

The result then follows by combining the two cases. O

We now show a matching lower bound.

Theorem 4.12 Given any algorithm that solves theDo—AIIf?lS(n,p, f) problem, there exists

an adversarial strategy that causes work

S:Q(r- (n—i—pbi)) whenf < 2 and
log(pr/ f)

(pr/f logp’
1
S=01r- n—l—pﬂ whenﬂ<f<p.
log log p log p

Proof: Consider two cases:

Casel f > Ifgp. In this case the adversary may crastog p processors in every round

of r-Do-All E{S(n, p, f). Note that for this adversary?(p) processors remain alive during
the first[r/2] rounds. Per Theorem 4.10 this resultsin2] - 2 (n + plogp/loglogp) =

Q2 (Nr + prlog p/loglog p) work.

71

Case 2 f < Ifgp. In this case the adversary ideally would crg&h- processors in every

round. It can do that in the case wherdivides f. If this is not the case, then the adversary
crasheq f/r| processors im4 rounds and f/r| in rp rounds in such a way that= r4 +
rg. Again considering the first half of the rounds and appealndheorem 4.10 results in
afn (Nr + prlog,, p) lower bound for work. Note that we consider only the case #her

r < f; otherwise the work is trivially2(r N).

The result then follows by combining the two cases. O

Application of iterative Do-All: The bounds we obtained f@o-All and jterative Do-All
under the assumption of perfect knowledge, yield insigluiuaithe bounds on task execution
redundancy in settings where a server repeatedly allotagkdo processors (e.g., SETI [74]).
Consider the setting where a central server repeatedlgatle tasks to crash-prone pro-
cessors. When a processor completes a task, it reportottiie server. If a server detects
processor failures, it must re-allocate the tasks to othecgssors. Processor crashes might
cause some tasks to be executed more than once. Our redaltsedbfor synchronou®o-
All f?\s(n, p,) andr-Do-All gs(n,p, f) are relevant to the bounds on task execution redun-
dancy in such a setting. When the server allocatsinilar, independent and idempotent tasks

to p synchronous, crash-prone processors, then, per Theorévend 4.10, the total num-

ber of task executions i® (n +plogl((;7%) whenf < £, and® (n +plog’1gogp> when

10’; 5 < f < p. Similarly, if the server allocates “waves” of n tasks (so that a task-wave is

completed before the next is begun)ytaynchronous, crash-prone processors, then per The-

orems 4.11 and 4.12, the total number of task executiois Gs- <n +pbglg’p%>> when

pr logp pr
[< 1g5 @ando (r. <n+ploglogp)) when= < f <p.

Chapter 5

Message-Passing: Do-All with Crashes

We present failure-sensitive bounds on work and messag#sefbo-All 4, (n,p, f) prob-
lem with synchronous message-passing processors, fontine eange off (1 < f < p). In
Section 5.1 we assume that reliable multicast [60] is alkEl&if a processor crashes while
multicasting a message, then either all targeted proceseoeive the message or none do),
whereas in Section 5.2 we assume that only traditional giolpbint messaging is available

(multicast is not reliable).

5.1 Failure-Sensitive Bounds with Reliable Multicast

In this section we give a new, failure-sensitive, analy$algorithm AN [17] and establish
new complexity results for the iterativeo-All in the message-passing model. We achieve this
by separately assessing the cost of tolerating failuregtandost of achieving perfect knowl-
edge (that is, perfect load-balancing). The first analysiderrived from the results obtained
under the assumption of perfect knowledge. The latter iszvelbrfrom the structure of the

algorithm.

72

73

Algorithm AN presented by Chlebust al. [17] uses a multiple-coordinator approach to
solve Do-All 44 (n,p, f) on crash-prone synchronous message-passing procegsersnj.
The model assumes that messages incur a known bounded ddlthaareliable multicast [60]
is available (when a processor multicasts a message toectoli of processors, either all

messages are delivered to non-faulty processors or no gessaee delivered).

5.1.1 Description of Algorithm AN

We now give a brief description of the algorithm, but to avaidomplete restatement,
we refer the reader to [17]. Algorithm AN proceeds ifoap which is iterated until all the
tasks are executed. A single iteration of the loop is callptiase A phase consists of three
consecutivestages Each stage consists of three steps. In each stage pracassdhe first step
to receive messages sent in the previous stage, the seemtb sierform local computation,
and the third step to send messages. A processor cardadinatoror aworker. A phase
may have multiple coordinators. The number of processatsassume the coordinator role is
determined by thenartingale principle if none of the expected coordinators survive through
the entire phase, then the number of coordinators for theptaase is doubled. If at least one
coordinator survives in a given phase, then in the next ptiege is only one coordinator. A
phase that is completed with at least one coordinator adivealledattended otherwise it is
calledunattended

Processors become coordinators and balance their loaolslangrto each processotiscal
view. A local view contains the set of ids of the processors asdumbe alive. The local view
is partitioned intdayers The first layer contains one processor id, the second twatids!"

contains2’~ ! ids.

74

Given a phase, in the first stage, the processors performkaata®rding to the load-
balancing rule derived from their local views and report tmenpletion of the task to the
coordinators of that phase (determined by their local vjewsthe second stage, the coordi-
nators gather the reports, they update the knowledge ofdhe thsks and they multicast this
information to the processors that are assumed to be alivehel last stage, the processors
receive the information sent by the coordinators and uptth&ie knowledge of done tasks and
their local views. Given the full details of the algorithrjs not difficult to see that the com-
bination of coordinators and local views allows the prooes$o obtain the information that
would be available from the oract@ in the algorithm in Figure 1 of Section 4.1.

It is shown in [17] that the work of algorithm AN iS = O((n + plog p/ log log p) log f)
and its message complexityAdd = O(n + plog p/loglogp + fp), forp < n.

In the rest of this section we present the new analysis of watkmessage complexity of

algorithm AN. Throughout we assume that the algorithm atness is shown as in [17].

5.1.2 Analysis of Work Complexity

To assess the worK, we consider separately all the attended phases and alh#ieended
phases of the execution. L&f be the part o5 spent during all the attended phases &pde

the part ofS spent during all the unattended phases. Hence we $iaves, + S,,.

Lemma5.1 [17] In any execution of algorithm AN withf < p we have S, =

O (n+ppfks) ands, = O (S, log /).

We now give the new analysis of algorithm AN.

Lemma5.2 In any execution of algorithm AN withf < 1o§p we have S, =

O (n +plog§ p).

75

Proof: Given a phaseé of an execution of algorithm AN, we defing to be the number of
live processors and; to be the number of undone tasks at the beginning of the phase p
andug = n). Letaq, as, ... a,, denote all the attended phases of this executigrig the last
phase of the execution).

Observe that for ally;, 1 < i < 7 — 1 it holds that (Q)ua, > uq, ,, @and (D)py; > pa,. ;-
This follows from the construction of algorithm AN: Sincegdec; is attended, there is at
least one coordinator, calldt alive in phasey;; c executes one task. Hence, at least one task
is executed and consequently at least one task is remowad:fro The number of processors
can only decrease, since we do not allow restarts.

In [17], Section 3.2, it is shown that if at the beginning ofagha;, the processors have
consistent information on the number of surviving proces$q,,) and the number of remain-
ing tasks (), then the operational processors will have consisteotmétion onp,,,, and
uq,;,, atthe beginning of phase ;. And since the processors have consistent information
at ag, that means that at the beginning of every attended phassutiiving processors have
consistent view of the system. Hence, the processors indgttephases can perform perfect
load balancing, as in the case where the processors areeddsjsthe oracle?, in the oracle
model. Therefore, focusing only on the attended phasesgssuiming that in the worst case
no progress is made in unattended phases), we obtain thediessult by induction on the

size of undone tasks, as in the proof of Lemma 4.2. O

Theorem 5.3 In any execution of algorithm AN we have work

log p >> p
S=0/|lo n+p——-—-— whenf < ——, and
(gf< Plog(p/7) ! log p

1
S=0(logf|n+p 08P WhenL<f<p.
loglogp logp

76

Proof: This follows from Lemmas 5.1 and 5.2, and the fact that S, + S,,. O

5.1.3 Analysis of Message Complexity

To assess the message compleRifywe consider separately all the attended phases and all
the unattended phases of the execution. Ugtbe the number of messages sent during all the
attended phases aid, the number of messages sent during all the unattended plrésese

we haveM = M, + M,,.

Lemma 5.4 [17] In any execution of algorithm AN witlf < p we haveM, = O(S,) and

Theorem 5.5 In any execution of algorithm AN we have

M=0 (n+pk’i+fp> whenf < 2 and
log(p/f) log p

1
M=0(n+p °eP + fp whenL<f<p.
log log p logp

Proof: It follows from Lemmas 5.1, 5.2 and 5.4, and the fact that= M, + M,,. O

5.1.4 Analysis of Message-Passing Iterative Do-All

We now consider the message-passing, synchron@s-All 4 (n, p, f) problem.

Theorem 5.6 The r-Do-All 44 (n, p, f) problem can be solved on synchronous crash-prone

message-passing processors wfien ; ngp with

c-o{em(() (vongtat) - rongl))

and when% < f < pwith

I I
S=0|(r-log i “ln+p o8P andM =O(r-(n+p o8P +fp]).
r 10g logp log log P

77

Proof: The iterativeDo-All can be solved by running algorithm AN erinstances of size

in sequence. We call this algorithm AN*. To analyze the efficiy of AN* we use the same
approach as in the proof of Theorem 4.11. In the current gbmte base our work complexity
arguments on the result of Theorem 5.3, and we base our neessatplexity arguments on

the result of Theorem 5.5. O

5.2 Failure-Sensitive Bounds without Reliable Multicast

In this section we present a new efficient synchronous mesgsasgsing algorithm fobo-
All 44(n,p, f). The new algorithm has work complexity comparable to athami AN [17],
however it uses simple point-to-point messaging. Thisrilym achieves better work com-
plexity than the algorithm of Galiét al. [44] (the previously best known algorithm not relying
on reliable multicast) while obtaining the same asymptatizssage complexity. The new algo-
rithm does not use coordinator-based or checkpointing<agategies to implement informa-
tion sharing among processors (as the previously mentialgedithms do). Instead, it uses an
approach where processors share information using a galgsipthm we developed to solve
the gossip problem in synchronous message-passing systiémmocessor crashes. Our gos-
sip algorithm achieves better message complexity thanrthéqusly best known algorithm of
Chlebus and Kowalski [21], while obtaining the same asyitiptone complexity. The point-
to-point messaging is constrained by means of a commuaitgtaph that represents a certain
subset of the edges in a complete communication network.eBsors send messages based on
permutations with certain properties that we show to eXi.first define the gossip problem
and relevant measures of efficiency (Section 5.2.1). We phesent combinatorial tools that

we use in the analysis of our gossip algorithm (Section 5.ZTRen we present and analyze

78

our gossip algorithm (Section 5.2.3). Finally we presert analyze ourDo-All algorithm

(Section 5.2.4).

5.2.1 The Gossip Problem

The Gossipproblem is considered one of the fundamental problems inilolised com-
puting and it is normally stated as follows: each processsrandistinct piece of information,
called arumor and the goal is for each processor to learn all rumors. In etting, where we
consider processor crashes, it might not always be podsitiarn the rumor of a processor
that crashed, since all the processors that have learnedrtiar of that processor might have
also crashed in the course of the computation. Hence, wedasresvariation of the traditional
gossip problem. We require that every non-faulty procetesms the following about each
processow: either the rumor ob or thatv has crashed. It is important to note that we do not
require for the non-faulty processors to reach agreeméatpiocessor crashes then some of
the non-faulty processors may get to learn its rumor whiler may only learn that it has
crashed.

Formally, we define th&ossipproblem with crash-prone processors, as follows:

Definition 5.1 TheGossipproblem: Given a set aof processors, where initially each processor
has a distinct piece of information, calledwmor, the goal is for each processor to learn all

the rumors in the presence of processor crashes. The faljpgdanditions must be satisfied:

(1) Correctness: (a) All non-faulty processors learn theaors of all non-faulty processors,
(b) For every failed processart, non-faulty processow either knows that has failed,

or w knowswv’s rumor.

(2) Termination: Every non-faulty processor terminateitotocol.

79

We let Gossipa, (p, f) stand for theGossipproblem forp processors (angd rumors) and
adversary4g constrained to adversarial patterns of weight less or equal

We now define the measures of efficiency we use in studyingadhmlexity of theGossip
problem. We measure the efficiency oGassipalgorithm in terms of itdime complexityand
message complexitfime complexity is measured as the number of parallel g by the
processors until th&ossipproblem issolved The Gossipproblem is said to be solved at step
T, if 7 is the first step where the correctness condition is satisfieldat least one (non-faulty)

processor terminates its protocol. More formally:

Definition 5.2 (time complexity) Let A be an algorithm that solves a problem wijtiproces-
sors under adversand. If execution{ € £(A, A), where||£| 4] < f, solves the problem by
time 7(£), then thetime complexityl” of algorithmA is:

T=Tal f) = g 325 2 T O

The message complexity is defined as in Definition 3.7 wheresitte of the problem ig:
it is measured as the total number of point-to-point messagat by the processors until the
problem is solved. As before, when a processor communicafag a multicast, its cost is the
total number of point-to-point messages.

The previously best deterministic solution for tB@ssipproblem in the message passing
model under adversaryls is due to Chlebus and Kowalski [21]. Their algorithm Has=
O(log? p) time complexity and\/ = O(p*7") message complexity. As we will see, our gossip
algorithm substantially improves on the message complexkitheir algorithm while obtaining

the same asymptotic time complexity.

80

5.2.2 Combinatorial Tools

We now develop tools used to control the message complekduragossip algorithm.

5.2.2.1 Communication Graphs

We first describeeommunication graphs— conceptual data structures that constrain com-
munication patterns.

Informally speaking, the computation begins with a comroatibn graph that contains
all nodes, where each node represents a processor. Ea@sgwaccan send a message to
any other processar thatv considers to be non-faulty and that is a neighbov atcording
to the communication graph. As processors crash, meanaightides are “removed” from
the graph, the neighborhood of the non-faulty processoasigds dynamically such that the
graph induced by the remaining nodes guarantees “prognessnimunication”: progress in
communication according to a graph is achieved if there i@t one “good” connected
component, which evolves suitably with time and satisfiesfthlowing properties: (i) the
component contains “sufficiently many” nodes so that ctillety they have learned “suitably
many” rumors, (i) it has “sufficiently small” diameter scattinformation can be shared among
the nodes of the component without “undue delay”, and (i) et of nodes of each successive
good component is a subset of the set of nodes of the prevama gmponent.

We use the following terminology and notation. &t= (V, E) be a (undirected) graph,
with V' the set of nodes (representing procesgéfs—= p) andE the set of edges (representing
communication links). For a subgragh, of G induced byQ (Q C V'), we defineNg(Q) to
be the subset of consisting of all the nodes i@ and their neighbors 6. The maximum

node degree of grapfi is denoted byA.

81

Let Gy, be the subgraph aff induced by the set¥; of nodes. Each sdt; corresponds
to the set of processors that haven't crashed by sté@ given execution. Hencdg 1 C V;
(since processor do not restart). Also, edéh > p — f, since no more thayi < p processors
may crash in a given execution. L@&t, denote a component 6ty, where@; C V;.

Chlebuset al. [19] formulated the notion of a “good” compone@ity, of a subgraptGy;
of graphG by setting@; = P(V;), whereP is a function that satisfies a certain property called

propertyR.:

Definition 5.3 ([19]) GraphG satisfies ROPERTY R(p, f) if there is a functionP, which
assigns subgrapR(R) C G to each subgrapl® C G of size at leasp — f, such that the

following hold:

R.1: P(R) CR. R.3 : The diameter ofP(R) is at mosB30log p + 1.

R.2: |P(R)| > |R|/7. R.A4: If Ry C RythenP(Ry) C P(Ry).

Let L(p, Ap) denote the family of constructive regular graphgafodes and degref,
that have good expansion properties. Such graphs werd@irted by Lubotzky, Phillips and
Sarnak [79]. These graphs are defined and can be constracteddh numbep’ of the form
q(¢®> — 1)/2, whereq is a prime integer congruent fomodulo4. The node degred can be
any number such thaky — 1 is a prime congruent tb modulo4 and a quadratic nonresidue
modulog. It follows, from the properties of the distribution of priammumbers (see e.g. [26]),
that A, can be selected to be a constant independeptanidg such thap’ = ¢(¢> — 1)/2 =
O(p). Since for eaclp there is a numbep’ = ©(p), we let each processor simulaf¥1)
nodes, and we henceforth assume thét as required so that(p, Ag) can be constructed.
In [19] the authors extended the result of Upfal [109], whovged that there is a functioR’

such that ifR is a subgraph of.(p) of size at least}, - p then subgrapt®'(R) of R has size at

82

least| R| /6 and diameter at mo8b log p. (These constants in the case of linear-size subgraphs
can be improved, see [5].) L&t* be thek-th power of graplG, that is,G* = (V, E'), where
the edgdu,v) € E’ if and only if there is a path betweenandv in G of length at mosk.

The authors in [19] proved the following lemma.

Lemma 5.7 ([19]) For everyf < p there exists a positive integgisuch that grapiL(p)’ has

)210g,Y Ao)

PROPERTYR(p, f). Moreover, the maximum degrek of graphL(p)’ is O((ﬁ

for some absolute constamtwhich for Ay = 74 could be taken equal to = 27/5.
However, the above property is too strong for our purposeagmdied to the communica-
tion analysis of our gossip algorithm does not yield the @esiesult. Therefore, we define a

weaker property that yields the desired results with oulyais

Definition 5.4 GraphG = (V, E) has theCompact Chain Propert¢’CP(p, f,¢), if:
l. The maximum degree @f is at most(p%})”a,
Il. For a given sequence, D ... D Vi (V = Vj), where|Vi| > p — f, there is a sequence
Q1 D...DQrsuchthatforevery=1,...,k:
(@ Q: C Vi,
(b) |Qi| = |Vil/7, and

(c) the diameter ofy(, is at most31 log p.
We now prove existence of graphs satisfyiig’P for some parameters.

Lemma 5.8 Forp>2, every f<p, and constant>0, there is a grapliz of O(p) nodes satis-

fying property CCP(p, f,¢).

Proof: Notice that forp — f < |/p?, the complete grapl, satisfies property’CP(p, f,¢),

for every constant > 0. The same holds i — f > p/4, by applying Lemma 5.7 and setting

83

Qi = P(G;) (in this caseA is constant). For the remainder of the proof we assume that

VPE<p—f<p/
Fix f ande > 0. Our candidate for grap&' is a graphL(p, A), where we take the smallest

possibleA > 9+ (-25)'*

. (By properties of graphs, we can findA = O(1+ (ﬁ)lﬁ)).
Let \ = 2¢/A — 1 be the bound for the absolute value of the second eigenvdlgeaph
L(p, A) (see [79]). Alon and Chung [4] showed that for everyBet V', the number of edges

in the subgraph induced by (denoted by:(R)) can be bounded as follows:

dm—égﬁqsgo—%bmw W

For a given graph induced by such that,/p® < |R| < p/4 and a subsef) C R, we denote
by Sg.r the family of setsS' O @ such thatS is a maximal (in the sense of inclusion) subset
of R such that no node it$ has more tham% neighbors outside of in graphG. We
call a subgraph induced by a simple expanderif for every S’ C S of size at mostS|/2,
|Ns(S")| > 4]5'|/3. We assume thad is a simple expander that has size less 7.

Claint Forp > 2, if \/p* < |R| < p/4 then for every subsef € S, S is of size|R|/7 and
a subgraph induced b¥ is a simple expander. Hence a diameter of the subgraph idduce
S is at mosti log p.

We prove the Claim. Consider ayc S. First we show thatS| > |R|/7. Suppose to the
contrary, thatS| < |R|/7. By applying inequality (1) and settingg > 9 and\ = 2v/A — 1,

we obtain that
Alp—1|S)* AlS
e(V\S) < (% Ly 2|p|(P—|5|)
Alp—18]) A(p—!S!)@+A(p—!SD@
2 2 D 3 p
Ap—1S) Ap—Is)|s| _Ap—1s) Ap—F)Is|
2 6 P 2 6 p

IN

84

This contradicts the definition &f, since from the definition of it follows that the number of

edges having one end fand other end outside &f, is at most%}')'s‘, and consequently

Ap—18l) AIR|IS| _ Alp—1S) Ap-12)|s|

>
e(VAS) 2 —— dp 2 6 D

Next we show that for everg’ C S of size at mostS|/2, we have|Ng(S")| > 4|5’|/3.

By definition of S, the total number of edges incident to nodes'iis at least.S’|A (1 — ‘2—@').

On the other hand, using inequality (1) we obtain
A-1S12 A |57
N« Z 121 N o "
o(8) < =, +5(1 =S

Thus the number of edges having one end’imnd other end outside &f is at least

/ |R| / / IRl AP A 1S\ | o
S i I > Py - =1 (=1
S0 =5) —els) > 18180 -5 =5 = S(1- IS
R+ |9 1
> |SA - 1—| -
> |5 < 2p \/A+1>
> |S'|1A/3.

Since every node itNg(S’) \ S’ has at most\ neighbors inS’, it follows that| Ns(S”) \
S > MTAB = |S’|/3. Consequentlys is a simple expander. We show that the diameter
of S is at most2 loggp < 4logp. Consider two nodes,w € S. By the simple-expansion
property, the numbewslogg/gp(v) (and aIsoNSlogg/Qp(w)) of nodes of distanch)g% p fromov
(and also fromw) in the graph induced by is greater tham/2. Consequently\/slogg/gp(v) N
N glog, 20 (w) # 0, and then the shortest path betweeandw is of length at mos2 log% p <
4log p. This completes the proof of the Claim.

We now show how to construct a sequeidgeD ... O @, having a sequencg; O ... D
Vi, so that propertyCCP(p, f, <) is satisfied. We proceed inductively: we apply the Claim to
the setR = V. and defing);, to be a set fronSVkvg,. If we have defined se&p,, for1 < i <k,

we apply the Claim to the sét = V;_; and defineQ);_; to be a set irSy,_, ¢, including set

85

Q;. The inductive proof shows that tligs are well defined and that graphsatisfies property
CCP(p, f,e). More precisely, the following invariant holds after canstion of set();:

(@ Q: CViandQ; 2 ... 2 Qx,

(b) Qi = [Vil/7,

(c) the diameter oti(, is at most31 log p,

(d) every node inQ; has at mosﬁg—i‘;‘ neighbors outside ap; in graphG.
We show that fori > 1 the setQ);_; is well defined and satisfies the invariant. Foe k it
follows directly from the Claim. Consider < ¢ < k. From property (d) in invariant after
steps it follows that if we apply the Claim to the sét = V;_; then@); is included in some
S € Sy,_,,0,- Consequently the definition @p;_; is correct. By the thesis of the Claim

applied to suchRk and.S we obtain properties (b) and (c) of invariant after stepl. Properties

(a) and (d) follow directly from the definition ap;_. O

5.2.2.2 Sets of Permutations

We now deal withsets of permutationthat satisfycertain properties These permutations
are used by the processors in the gossip algorithm to dexidbat subset of processors they
send their rumor in each step of a given execution. ConsiaegitoupsS; of all permutations
on set{1,...,t}, with the composition operation, and identitye; (¢ is a positive integer).
For permutationt = (7 (1),...,n(¢)) in S, we say thatr(:) is ad-left-to-right maximum
(d-Irm in short), if there are less thahprevious elements in of value greater than(i), i.e.,
{m(G) : m(5) > m(@i) A g <i}| < d.

Let T and¥, T C ¥, be two sets containing permutations fréin For everys in S, let
oo Y denote the set of permutatiga o 7 : 7 € T}. For given permutation, let (d)-LRM ()
denote the number @fleft-to-right maxima int. Now we define the notion aurfeit (We will

show thatsurfeit relates to the redundant activity in our algorithms, i.eyerdone” activity,

86

or literally “surfeit”.) For a givenY and permutatior € Sy, let (d, |Y])-Surf(Y, o) be equal
to > cv(d)-LRM(c7! o 7). We then define théd, q)-surfeit of set¥ as (d, q)-Surf(¥) =
max{(d, q)-Surf(Y,o) : T C U A |Y| =g Ao € S}

We obtain the following results fqw, ¢)-surfeit.

Lemma 5.9 Let T be a set of; random permutations on st, ... t}. For every fixed pos-
itive integerd, the probability that(d, ¢)-Surf(Y,e;) > tInt + 10gdIn(t + p) is at most

e~ [tInt+9qdHy i p]In(9/e)

Proof: First observe, that foi > ¢/e the thesis is obvious. In the rest of the proof we assume
d<tfe.

First we describe the way of generating random permutafibis is done by induction on
the number of elemenis< ¢ that are permuted. When= 1, there is only one permutation and
this permutation is random. Suppose we can generate randomufation ofi — 1 different
elements, we show how to permutelements. First we choose randomly one element from
thei elements and put it as the last element in the permutationin@yction we generate a
random permutation from the remaining- 1 elements and we put these elements as the first
i — 1 elements in the permutation. Simple induction proof shdves every permutation of
1 elements has equal probability, since it is a concatenatidwo independent and random
events.

It follows that the random set of permutatidihcan be selected by applying the above rule
times, independently. LeX (,%), fori = 1,...,t, be the random value such th&{r, i) = 1
if 7(2) is ad-Irmin 7, and X (7,) = 0 otherwise.

Claim Using the above method of generating random permutationameshow that ifr

is a random permutation, theki(r,i) = 1 with probability min{d/i, 1}, independently of

87

other valuesX (r, j), for j > i. More preciselyPr[X(r,i) = 1[\;., X(7,j) = q;] =
min{d/i, 1}, for any 0-1 sequencg 1, ..., a;.

This is because (i) might be ad-Irm if during the (¢t — ¢ — 1)th step of the generation of
« we selected randomly one of thlegreatest remaining elements (there ate d remaining
elements in this step of generationj ¥ d, then by definitionr(7) is ad-Irm with probability
one). Hence the Claim is proved.

First notice that for every € YT and everyi = 1,...,d, w(i) isd-lrm. Second, observe that

E[Yrer Sigi X(m,9)] = qd-35_ 401 L+ = qd(H,—H,). We use Chernoff bound (see [6])

b ZYJ ~ E[Z YJ} 1+0)| < ((14’672)Hb>]}2[2j B < ¢ EIX; Y3 (1+4b) In ££2)
J J

whereY; are independent random 0-1 variables &nel 0 is any constant, to prove the lemma.

We use Chernoff bound and derive the following (for sgme t):

! ! tInt+9qdH,
Pr!"z > X(wi)>t lnt—|—9qut+p]:Pr[Z > X(w,i)>qd(Hy, — 7) P -

d(Hy — H,
eYi=d+1 eYi=d+1 q (t d)
tlnt+9qut+ tlnt+9qut+
< o WH) =g,y I gty

< ef[t Int+9qdHy4p)In(9/e)

tln t+9qut+p

SINCEe = atm, — 1)

> 1 (the condition for using Chernoff bound of this type).

From the above and the fact tHat: < H; < In< + 1, we obtain that

t t
Pr[z 3" X(r,i) > tlnt + 10gd In(t +p)} < Pr[z 3 X(m,i) > tlnt+ 9qut+p]
TeY i=1 7eY i=d+1
< ef[t Int+9qdH;1p]In(9/e))

This completes the proof of the lemma. O
Theorem 5.10For a random set ofp permutations ¥ from S;, the event

“for every positive integerd andq < p, (d, q)-Surf(¥) > tlnt + 10gd In(t + p)”

holds with probability at mogt—1n(9/¢*)

88

Proof: Observe that forl > t/e the result is straightforward. In the rest of the proof we
assume thad < t/e.

First notice, that ifY is a random set of permutation, then for arbitrary permaitati
o on set{l,...,t}, seto~! o T is also a random set of permutation, since composition
with a permutation is a bijective operation on setsqgopermutations. Consequently, by
Lemma 5.9,(d, q)-Surf(Y,0) > tlnt + 10¢dIn(t + p) holds with probability at most
o—[tInt+9gdHy 1] In(9/e)
Hence the probability that a random deof p permutation satisfiegl, ¢)-Surf(¥) > tInt +

10gd In(t + p) is at most

" (p>) e—[tlnt+9qut+p} In(9/e) < etlnt—l—qln(ep/q)—[tlnt-‘,-quHtﬂ,] In(9/e)
q

e~ [tInt+8qdHi1) In(9/e2))

IN

It follows, that the probability of event:

“for every d andg, (d, ¢)-Surf(¥) > tInt + 10gd In(t + p)”,

is at most
[t/e]—-1 »p
Z Z —[tInt+8qdH4p) In(9/e?) Z ZO <e —tIntIn(9/e?) ’
=[t/e] =1
forp > 1 andt > 3. O

Using the probabilistic method [6] we obtain the followiresuilt.

Corollary 5.11 There is a set gf permutationsl from S; such that, for every positive integers

dandq < p, (d,q)-Surf(¥) < tlnt + 10gd In(t + p).

The efficiency of our gossip algorithm relies on the existentthe permutations in the

thesis of the corollary (however the algorithm is correctdoy permutations).

89
5.2.3 The Gossip Algorithm

Our new gossiping algorithm, calleddSsir, improves on the algorithm of [21]. The
improvement is obtained by using the better properties ofraanication graphs described in
Lemma 5.8, the set of permutations with certain propertiated in Corollary 5.11, and by
using many epochs instead of the two epochs in [21] (in [2&} tefer to epochs as phases).
Moreover, the communication graphs we consider have dyaipichanging degree, as op-
posed to [21] that they consider graphs with fixed degree.chaienges motivating our tech-
nigues are: (i) how to assure low communication during eegrych, and (ii) how to switch

between epochs without a “huge complexity hit”.

5.2.3.1 Description of Algorithm Gossir

Suppose constarit < ¢ < 1/3 is given. The algorithm proceeds in a loop that is re-
peated until each non-faulty processolearns either the rumor of every processoor that
w has failed. A single iteration of the loop is called emoch The algorithm terminates after
[1/€] — 1 epochs. Each of the fir§t /e] — 2 epochs consists af log? p phaseswhereq is
such thatwlog? p is the smallest integer that is larger thatil log? p. Each phase is divided
into two stages the updatestage, and theommunicatiorstage. In the update stage proces-
sors update their local knowledge regarding other proecg'ssamor (known/unknown) and
condition (failed/operational) and in the communicatitege processors exchange their local
knowledge (more momentarily). We say that processbeard about processaw if either
v knows the rumor ofw or it knows thatw has failed. Epoch1/c] — 1 is the terminating
epoch where each processor sends a message to all the predbss it haven't heard about,

requesting their rumor.

90

Iterating epochs Terminating epoch ([1/e] — 1)
for¢=1to[1/¢] —2do update stage;
if BUSY is emptythen if status = col | ect or then
setstatustoi dl e; send(ACTIVE, BUSY, RUMORS cal |) to
NEIGHB= {v : v € ACTIVE A v € Ng,}; each processor WAITING;
repeata log? p times receivemessages;
update stage; send{ ACTIVE, BUSY, RUMORS, r epl y) to
communication stage; each processor iIRNSWER,;
receivemessages;
update RUMORS

Figure 2: Algorithm Gssir. Code for processar.

The pseudocode of the algorithm is given in Figure 2 (we assummere needed, that
everyif-then has an implicitelseclause containing the necessary number of no-ops to match

the length of the code in thi@en clause).

Local knowledge and messagesnitially each processar has itsrumor, and permutationr,,
from a set¥ of permutations ofp], such thatl satisfies the thesis of Corollary 5.11. Moreover,
each processaris associated with the variabdéatus,,. Initially status, =col | ect or (and
we say thav is a collector), meaning thathas not heard from all processors yet. Ontears
from all other processors, thatatus, is setto nf or ner (and we say that is an informer),
meaning that now will inform the other processors of its status and knowledé#en pro-
cessom learns that all non-faulty processaisalso havestatus,, = i nf or mer then at the
beginning of the next epochiatus, becomes dl e (and we say that idles), meaning that
idles until termination, but it might send responses to ragss (see call-messages below).
Each processor maintains several lists and sets. We nowiliegice lists maintained by

processow:

e List ACTIVE,: it contains the pids of the processors thatonsiders to be non-faulty.

Initially, list ACTIVE,, contains allp pids.

91

e List BUSY,: it contains the pids of the processors thatonsider as collectors. Initially

list BUSY, contains all pidspermuted according ta,,.

e List WAITING,: it contains the pids of the processors thatid not hear from. Initially

list WAITING,, contains all pids except from, permuted according ta.,.

e List RUMORS,: it contains pairs of the form{w,rumor,) or (w,Ll). The pair
(w, rumor,,) denotes the fact that processoknows processow’s rumor and the pair
(w, L) means that does not knoww’s rumor, but it knows thatv has failed. Initially

list RUMORS, contains the paitv, rumor,).

A processor can send a message to any other processor, butetothe message complexity,
in some cases (see communication stage) we require prosesstommunicate according to
a conceptual communication gragh, ¢ < [1/e] — 2, that satisfies propert¢’CP(p,p —
p'~, ¢) (see Definition 5.4 and Lemma 5.8). When processsends a message to another
processoiv, m contains listACTIVE,, BUSY,, RUMORS,, and the variableype. Whentype =
cal | , processor requires an answer from processoand we refer to such message aab:
messageWhentype = r epl y, no answer is required—this message is sent as a response to
a call-message.

We now present the sets maintained by processor

e SetANSWER,:. it contains the pids of the processors thateceived a call-message.

Initially set ANSWER, is empty.

e SetCALLING,: it contains the pids of the processors thatill send a call-message.

Initially CALLING,, is empty.

e Set NEIGHB,: it contains the pids of the processors that area@Tive, and that

according to the communication gragly, for a given epocly, are neighbors of

92

(NEIGHB, = {w : w € ACTIVE, A w € Ng,(v)}). Initially, NEIGHB,, contains all

neighbors ofv (all nodes inNg, (v)).

Communication stage. In this stage the processors communicate in an attempt &inobt

information from other processors. This stage contfons sub-stages

e First sub-stage: every processdhat is either a collector or an informer (i.etatus, #
i dl e) sends messag&CTIVE,, BUSY,, RUMORS,, cal |) to every processor in

CALLING,,. The idle processors do not send any messages in this gyé-sta

e Second sub-stage: all processors (collectors, informmaaddiing) collect the informa-
tion sent to by the other processors in the previous sulest&gpecifically, processor
v collects listsacTIVE,,, BUSY,, andRUMORS,, of every processow that received a

call-message from andinsertsw in SetANSWER,,.

e Third sub-stage: every processor (regardless of its $tadgponds to each processor
that received a call-message from. Specifically, processmnds messag@cTIVE,,

BUSY,, RUMORS,, r epl y) to the processors inNSWER, and emptieANSWER,.

e Fourth sub-stage: the processors receive the respondesrtodll-messages.

Update stage.In this stage each processonpdates its local knowledge based on the messages
it received in thdast communication stagéf status, =i dl e, thenv idles. We now present
the sixupdate rules and their processing. Note that the rules are not disjouttwe apply
them in the order from (rl) to (r6):
(rl) UpdatingBUsY,, or RUMORS,: For every processow in CALLING, (i) if v is an in-
former, it removeso from BUSY,, (ii) if v is a collector ancRUMORS,, was included

in one of the messages thateceived, then adds the paifw, rumor,,) in RUMORS,

(r2)

(r3)

(r4)

(r5)

(r6)

93

and, (iii) if v is a collector buRUMORS,, was not included in one of the messages that

received, them adds the paifw, L) in RUMORS,.

UpdatingRUMORS, andwAITING,,: For every processap in [p], (i) if (w,rumory,) is
not in RUMORS, andwv learns the rumor ofv from some other processor that received
a message from, thenadds(w, rumor,,) in RUMORS,, (ii) if both (w, rumor,,) and
(w, L) are iINRUMORS,, thenv removes(w, L) from RUMORS,, and (iii) if either of
(w, rumory,) or (w, L) is in RUMORS, andw is in WAITING ,,, thenv removesw from

WAITING .

UpdatingBusy,,: For every processar in BUSY,, if v receives a message from proces-

sorv’ so thatw is not inBUSY,,, thenv removesw from BUSY,,.

UpdatingACTIVE, andNEIGHB,: For every processap in ACTIVE,, (i) if w is not in
NEIGHB, andv received a message from processoso thatw is not inACTIVE,,, then
v removesw from ACTIVE,, (ii) if w is in NEIGHB, andv did not receive a message
from w, thenv removesw from ACTIVE,, andNEIGHB,,, and (iii) if w is in CALLING,,

andwv did not receive a message fram thenv removesw from ACTIVE,,.

Changing status: If the size ROMORS, is equal tg andv is a collector, them becomes

an informer.

UpdatingCALLING,,: Processow emptiesCALLING,, and (i) if v is a collector then it
updates setALLING, to contain the firsp“*1) pids of listWAITING,, (or all pids of
WAITING,, if SizeofwAITING,,) < p(+1)) and all pids of seNEIGHB,, and (ii) if v is
an informer then it updates SeALLING,, to contain the firsp(‘+1)< pids of listBusY,,

(or all pids ofsusy,, if sizeofsusy,) < p“*1)2) and all pids of SeNEIGHB,.

94

Terminating epoch. Epoch[1/c] — 1 is the last epoch of the algorithm. In this epoch, each
processow updates its local information based on the messages ivegtai the last commu-
nication stage of epochl /] — 2. If after this update processoris still a collector, then it
sends a call-message to every processor thatigimiNG ,, (containing pids of the processors
whose rumor does not know or processors that failed). Then every processeives the
call-messages sent by the other processors. Next, evarggaar that received a call-message
sends its local knowledge to the sender. Finally each psocesupdatesRUMORS, based on

any received information.

5.2.3.2 Correctness of AlgorithmGossir

We show that algorithm Gssir solves theGossipa, (p, f) problem correctly, meaning
that by the end of epochl /<] — 1 each non-faulty processor has heard about all gtherl
processors. First we show that no non-faulty processomieved from a processor’s list of

active processors.

Lemma 5.12 In any execution of algorithm GssIr, if processors andw are non-faulty by

the end of any epoch< [1/¢] — 1, thenw is in ACTIVE,, and vice-versa.

Proof: Consider processorsandw that are non-faulty by the end of epoéh< [1/¢] — 1.
We show thatw is in ACTIVE,,. The proof of the inverse is done similarly. The proof pratee
by induction on the number of epochs.

Initially all processors (includingv) are inACTIVE,. Consider phase of epochl (for
simplicity assume that is not the last phase of epoth By the update rule, a processoris
removed fromACTIVE, if v is not idle and (a) during the communication stage of phkaseis

not inNEIGHB,, andv received a message from a process@o thatw is not inACTIVE,,, (b)

95

during the communication stage of phasev is in NEIGHB,, andv did not receive a message
from w, or (c) v sent a call-message to in the communication stage of phasef epochl
andv did not receive a response framin the same stage.

Case (c) is not possible: Sinee is non-faulty in all phases of epoch1, w receives
the call-message from in the communication stage of phaseand addsv in ANSWER,,.
Then, processotw sends a response toin the same stage. Heneedoes not removey
from ACTIVE,. Case (b) is also not possible: Sineds non-faulty andw is in NEIGHB,,, by
the properties of the communication gra@gh, v is in NEIGHB,, as well (and since is hon-
faulty). From the description of the first sub-stage of thengwinication stage, $tatus,, #

i dl e, w sends a message to its neighbors, includindf status,, =i dl e, thenw will not
send a message toin the first sub-stage, but it will send a reply 46 call-message in the
third sub-stage. Therefore, by the end of the communicatiage,v has received a message
from w and hence it does not remowefrom ACTIVE,. Neither case (a) is possible: This
follows inductively, using points (b) and (c): no procesadli remove w from its set of active
processors in a phase prioré¢@nd hence» does not receive a message from any processor
so thatw is Not INACTIVE .

Now, assuming thatv is in ACTIVE,, by the end of epocli — 1, we show thatw is still
in ACTIVE,, by the end of epocl. Sincew is in ACTIVE, by the end of epocli — 1, w is in
ACTIVE, at the beginning of the first phase of epdchtJsing similar arguments as in the base
case of the induction and from the inductive hypothesiglibivs thatw is in ACTIVE,, by the
end of the first phase of epoé¢hInductively it follows thatw is in ACTIVE,, by the end of the

last phase of epoch as desired. O

96

Next we show if a non-faulty processar has not heard from all processors yet then no

non-faulty processor removesw from its list of busy processors.

Lemma 5.13 In any execution of algorithm Gssir and any epocli < [1/e] — 1, if proces-
sorsv andw are non-faulty by the end of epoé¢handstatus,, = col | ect or, thenw is in

BUSY,,.

Proof: Consider processotsandw that are non-faulty by the end of epo€h: [1/¢] —1 and
status,, = col | ect or . The proof proceeds by induction on the number of epochs.

Initially all processorsw have statuscol | ect or and w is in BUSY, (CALLING,\
NEIGHB, is empty). Consider phaseof epochl. By the update rule, a processeris re-
moved fromBusy,, if (a) at the beginning of the update stage of phaseis an informer and
w IS iN CALLING,, or (b) during the communication stage of phase receives a message
from a processor’ so thatw is not inBUSY,,.

Case (a) is not possible: Sinees an informer andv is in CALLING,, at the beginning
of the update stage of phasethis means that in the communication stage of phasel,
processom was already an informer and it sent a call-message.tdn this casew would
receive this message and it would become an informer duhiagupdate stage of phase
This violates the assumption of the lemma. Case (b) is alspagsible: Forv not being in
BUSY,, it means that either (i) in some phase< s, processon’ became an informer and
sent a call-message tg or (ii) during the communication stage of a pha%e< s, v’ received
a message from a procesadr so thatw was not insusy,,». Case (i) implies that in phase
s’ + 1, processorw becomes an informer which violates the assumption of thenanmJsing

inductively case (i) it follows that case (ii) is not possildither.

97

Now, assuming that by the end of epoch 1, w is in BUSY,, we would like to show that
by the end of epoch, w is still in BUSY,. Sincew is in BUSY, by the end of epoch — 1, w
is in BUSY,, at the beginning of the first phase of epathUsing similar arguments as in the
base case of the induction and from the inductive hypothid@lows thatw is in BUSY,, by
the end of the first phase of epo€hinductively it follows thatw is in BUSY,, by the end of the

last phase of epoch as desired. O

We now show that each processor’s list of rumors is updateectty.

Lemma 5.14 In any execution of algorithm Gssir and any epocli< [1/¢]—1,
(i) if processorsy andw are non-faulty by the end of epoé¢randw is not INnWAITING ,,, then
(w, rumor,) is in RUMORS,, and (ii) if processomw is non-faulty by the end of epodhand

(w, L) is in RUMORS,, thenw is not iINACTIVE,,.

Proof: We first prove part (i) of the lemma. Consider processoasdw that are non-faulty
by the end of epoch and thatw is not inwAITING,,. The proof proceeds by induction on the
number of epochs.

Initially w is in WAITING,, and RUMORS, contains only the paifv, rumor,). Consider
phases of epochl. By the update rule, processaris removed fromwAITING,, if during
the update stage of phase either (w, rumor,,) or (w, L) is in RUMORS,. In order for
(w, rumor,,) to be iINnRUMORS, by phases one of the following must be true: (a) Proces-
sorv sent a call-message to processoin the communication stage of phase- 1 andv
received a response from, (b) During the communication stage of phase 1 processow
received a message from processaso that(w, rumor,,) IS in RUMORS,/.

Case (a) is possible, sinaeis non-faulty. In case (b), in order for process6to know the

rumor ofw it must either learned it (bfrom w or (b’) from some other processof in a phase

98

s’ < s — 1. Case (B shows trivially that case (b) is possible. For cas®é) tb be possible,
it must be the case that eithe learned the rumor of from w or some other node”’ in a
phases” < s’. Using case (B inductively, it follows that case (B is possible, and thus, case
(b) is possible. Hence, if by the end of epdchw is not INWAITING ,,, then(w, rumor,,) is in
RUMORS,.

Now assuming that part (i) of the lemma holds by the end of le@goe 1, we would like
to show that it also holds by the end of epachThis follows from the inductive hypothesis
and the fact that no processor identifier is ever addedAmING,, and no pair of the form
(w, rumor,,) is removed fronRUMORS,.

The proof of part (i) of the lemma is analogous to the proopait (i). The key argument
is that the pair(w, L) is added inRUMORS, if w does not respond to a call-message sent
by v which in this casew is removed fromacTIVE, (if w was not removed fromCTIVE,

earlier). O

Finally we show the correctness of algorithno&sir.

Theorem 5.15 By the end of epochil/e| — 1 of any execution of algorithm Gssir, every

non-faulty processow either knows the rumor of processoror it knows thatw has failed.

Proof: Consider a processerthat is non-faulty by the end of epogh/<| — 1. In the update
stage of epoch1/e| — 1 processow updates it local knowledge based on the knowledge it
had in the previous epochs and the new information it obtbineghe communication stage of
the last phase of epodh /e| — 2. Lemmas 5.12, 5.13, and 5.14 guarantee that this knowledge

does not contain false information.

99

If after this last update, processoiis still a collector, meaning that did not hear from
all processors yet, according to the description of therilyn, processop will send a call-
message to the processors whose pid is stiNAmTING ,, (by Lemma 5.14 and the update rule,
it follows that listwAITING,, contains all processors thatlid not hear from yet). Then all non-
faulty processors receive the call-message ©find then they respond to Thenwv receives
these responses. Finallyupdates lisRUMORS, accordingly: if a processar responded to
v's call-message (meaning thatnow learns the rumor ofv), thenv adds(w, rumor,,) in
RUMORS,. If w did not respond te’s call-message, andv, rumor,,) iS not iNRUMORS, (it
is possible for processarto learn the rumor ofv from some other processof that learned
the rumor ofw before processaw failed), thenv knows thatw has failed and addgv, 1) in
RUMORS,.

Hence the last update that each non-faulty processmrforms onRUMORS, maintains
the validity that the list had from the previous epochs (gnteged by the above three lemmas).
Moreover, the size oRUMORS, becomes equal tp andv either knows the rumor of each

processotw, or it knows that has failed, as desired. O

Note from the above that the correctness of algorithas&ir does not depend on whether
the set of permutation$ satisfy the conditions of Corollary 5.11. The algorithm ésrect for

any set of permutations @|.

5.2.3.3 Analysis of AlgorithmGossIr

Consider some séty, |V;| > p'~*, of processors that are not idle at the beginning of

epoch? and do not fail by the end of epo¢hLet @, C V; be such thatQ,| > |V,|/7 and the

100

diameter of the subgraph induced @y is at most31log p. @, exists because of Lemma 5.8
applied to graplti, and sef/; (chains have sizg).

For any processor, let CALL, = CALLING,\ NEIGHB,. Recall that the size ofALL
is equal top!“*e (or less if listWAITING, or BUSY, is shorter thap“t1)) and the size
of NEIGHB is at mostp(*1)s. We refer to the call-messages sent to the processors whose
pids are inCALL asprogress-messageff processomw sends a progress-message to processor
w, it will remove w from list WAITING,, (or BUSY,) by the end of current stage. Lét=
(311ogp + 1)p“+Ye. Note thatd > (31logp + 1) - |CALL].

We begin the analysis of the gossip algorithm by proving andoan the number of

progress-messages sent under certain conditions.

Lemma 5.16 The total number of progress-messages sent by processgydriom the begin-
ning of epoch? until the first processor i), will have its listwAITING (or list BUSY) empty,

is at most(d, |Q|)-Surf().

Proof: Fix @, and consider some permutationc .S, that satisfies the following property:
“Consideri < j < p. Letr; (;) be the time step in epochwhere some processor @,
hears about (i) (c(j)) the first ime among the processors@q. Thenr; < 7;." (We note
that it is not difficult to see that for a giveRd, we can always findr € S, that satisfies the
above property.) We consider only the sub¥etC ¥ containing permutations of indexes
from set@,. To show the lemma we prove that the number of messages sembbgssors
from @, is at most(d, | Y|)-Surf(Y, o) < (d,|Q|)-Surf(¥). Suppose that processorc @,
sends a progress-message to processotit follows from the diameter of), and the size

of setCALL in epoch/, that none of processar € @, had sent a progress-messageuto

101

before31 log p phases, and consequently position of proceasior permutationr,, is at most
d — |cALL| < d — p(*+1)e greater than position afi in permutationr, .

For each processar € @y, let P, contain all pairs(v,:) such thatv sends a progress-
message to processoy (i) by itself during the epocli. We construct functiork from the set
Uveg, Po to the set of alld-Irm of seto~! o ¥ and show that is one-to-one function. We
run the construction independently for each processer@,. If =, (k) is the first processor
in the permutationr, to whomuv sends a progress-message at the beginning of ehoahset
h(v,k) = 1. Suppose thatv,i) € P, and we have defined functionfor all elements from
P, less than(v, i) in the lexicographic order. We defirigv, i) as the firstj < i such that
(071 om,)(j) is ad-Irm not assigned yet by to any element irP,.

Claim: For every(v,i) € P,, h(v,1) is well defined.

We prove the Claim. For the first element i) function h is well defined. For the first
d elements inP, it is also easy to show that is well defined, since the firgt elements in
permutationr, ared-Irms. Supposé is well defined for all elements frorR, less than(v, i)
and (v, i) is at least thdd + 1)st element inP,. We show that:(v,7) is also well defined.
Suppose to the contrary, that there is no posifion i such that(c~! o 7,)(5) is ad-Irm and
Jj is not assigned by before step of construction fév, i) € P,. Letj; < ... < jg < i bethe
positions such tha, 51), ..., (v, ja) € P, and(c~t o) (h(j1)),--., (0 L om,)(h(jq)) are
greater tharjo—! o 7,)(7). They exist from the fact, thdt—! o 7,)(i) is notd-Irm and every
"previous” d-Irms in, are assigned bg. Obviously processap = m,(h(j1)) received a first
progress-message at Ie@(lﬁl = 3llogp + 1 phases before it received a progress-message
from v. From the choice of, processon’ = m,(i) had received a progress-message from

some other processor (@, at least31log p + 1 phases before’ received a progress-message

102

from v. This contradicts the remark at the beginning of the prodfielemma. This completes
the proof of the Claim.

The fact thath is a one-to-one function follows directly from the definitiof A. It follows
that the number of progress-messages sent by process@ysuintil the listwAITING (or list
BUSY) of a processor i), is empty, is at mostd, |Y|)-Surf(Y, o) < (d, |Q¢|)-Surf(¥), as

desired. O

We now define an invariant, that we callfor ¢ = 1,...,[1/e] — 2:

l,;: There are at mogi' ‘¢ non-faulty processors having statusl | ect or or
i nf or mer in any step after the end of epo¢h

Using Lemma 5.16 and Corollary 5.11 we show the following:

Lemma 5.17 In any execution of algorithm Gssir, the invariant } holds for any epoch

0=1,...,[1/e] - 2.

Proof: Forp = 1 itis obvious. Assume > 1. We will use Lemma 5.8 and Corollary 5.11.
Consider any epoch < [1/e] — 1. Suppose to the contrary, that there is a subsetf non-
faulty processors after the end of epdcsuch that each of them has status eithelr | ect or
ori nf or mer and|V;| > p'~*. SinceG, satisfiesCCP(p, p—p' =%, ¢), thereisasef), C V;
such thatQ,| > |V;|/7 > p'~% /7 and the diameter of the subgraph inducedJpyis at most
31logp. Applying Lemma 5.16 and Corollary 5.11 to the §gt epoch/, t = p, ¢ = |Qy|
andd = 31p+1= Jog p, we obtain that the total number of messages sent until soovegsor

v € Qg has listBusy,, empty, is at most
2. (31(logp 4+ 1)p“* V2 |Qg))-Surf(®) + 31|Q,[p“ V% log p < 341|Qe|p“ V% log? p .
More precisely, until some processor @y has status nf or mer, the processors iy,

have sent at mog81(log p 4 1)p“*+1)2,|Q,|)-Surf(¥) messages. Then, after the processors in

103

Q. send at mosBl]Qg\p(”l)E log p messages, every processorn has status nf or nmer .
Finally, after the processors @, send at most31(log p+ 1)p“* D¢, |Q,|)-Surf{¥') messages,
some processor i, C V, has its listBusy empty.

Notice that since no processor Gpy has status dl e in epoch/, each of them sends in
every phase of epochat most|caLL| < pl¢T1)< progress-messages. Consequently the total

number of phases in epoc¢huntil some of the processors @, has its listsusy empty, is at

341|Qe|p“ V" 1og? p
|Qe|ptt+De

Recall thatalog?p > 341log?p. Hence if we consider the firs41log? p phases of

most < 3411og? p.
epoch/, the above argument implies that there is at least one pocasV, that has status

i dl e, which is a contradiction. Hence, holds for epocH. O

We now show the time and message complexity of algorithbs&GR..

Theorem 5.18 Algorithm Gossir solves theGossips, (p, f) problem with time complexity

T = O(log? p) and message complexify = O (p*3¢).

Proof: First we show the bound on time. Observe that each updateandhanication stage
takesO(1) time. Therefore each of the firil /] — 2 epochs take®)(log? p) time. The

last epoch take® (1) time. From this and the fact thatis a constant, we have that the
time complexity of the algorithm is in the worse ca8élog? p). We now show the bound on
messages. From Lemma 5.17 we have that for every/ < [1/¢]| — 2, during epoclY + 1

there are at mogt! —‘¢ processors sending at mast‘+2)s messages in every communication
stage. The remaining processors are either faulty (heegadthnot send any messages) or have
statusi dl e — these processors only respond to call-messages anddtaiimpact on the
message complexity in epoéh-1 is at most as large as the others. Consequently the message

complexity during epoclf + 1 is at mostd(alog? p) - (p'~eplt2e) < dap'*+*log?p <

104

4ap' 3. After epoch[1/e] — 2 there are, perf|,.1_,, at mostp* processors having list
WAITING not empty. In epoclil/c| — 1 each of these processors sends a message to abmost
processors twice, hence the message complexity in thisépbounded byp - p>*. From the
above and the fact thatis a constant, we have that the message complexity of theithigo

is O(p!). O

5.2.4 The Do-All Algorithm based on Gossip

We now put the gossip algorithm to use by constructing a ndaugtdDo-All algorithm,

called algorithm DALL..

5.2.4.1 Description of AlgorithmDOALL .

The algorithm proceeds in a loop that is repeated until eltéisks are executed and all non-
faulty processors are aware of this. A single iteration eflttop is called aepoch Each epoch
consists of?log p+ 1 phaseswheres > 0 is a constant integer. We show that the algorithm is
correct for any integef > 0, but the complexity analysis of the algorithm depends owrifipe
values of/3 that we show to exist. Each phase is divided into siages the work stage and
thegossipstage. In the work stage processors perform tasks, and gossp stage processors
execute an instance of thedGsir algorithm to exchange information regarding completed
tasks and non-faulty processors (more details momenjta@lgmputation starts with epodh
We note that (unlike in algorithm Gssir) the non-faulty processors may stop executing at
different steps. Hence we need to argue about the termimddéoision that the processors must

take. This is done in the paragraph “Termination decision”.

105

The pseudocode for a phase of epdcbf the algorithm is given in Figure 3 (again we

assume that eveifrthen has an implicitelsecontaining no-ops as needed).

Work stage Gossip stage
repeat T times run GossIR. /3 with rumor = (TEMP PROC done);
if TASK not emptythen if done =true anddone,, =true forall w
perform task whose id is first imask; received rumor fronthen
remove task’s id fronTAsK; TERMINATE;
elseif TASK empty andione =f al se else
then setdone tot r ue; updateTASK andPROG;

if TASK empty andlone =f al se then
setdonetotrue;

Figure 3: A phase of epoahof algorithm DoALL.. Code for processar.

Local knowledge.Each processar maintains a list of tasksask, it believes not to be done,
and a list of processomROG, it believes to be non-faulty. Initiallyask, = (1,...,n) and
PROG, = (1,...,p). The processor also has a boolean variahlee,, that describes the
knowledge ofv regarding the completion of the tasks. Initialfgne, is set tof al se, and

when processor is assured that all tasks are completede, is set tot r ue.

Task allocation. Each processor is equipped with a permutation, from a set¥ of per-
mutations onr|. (This is distinct from the set of permutation @) required by the gossip
algorithm.) We show that the algorithm is correct for any afepermutations orin], but its
complexity analysis depends on specific set of permutatiotigat we show to exist.

Initially TASK, is permuted according to, and then processarperforms tasks according
to the ordering of the tids imAsK,. In the course of the computation, when processi@arns
that taskz is performed (either by performing the task itself or by afitay this information

from some other processor), it removeom TASK, while preserving the permutation order.

106

Work stage. For epoch¢, each work stage consists 6f = {%{jﬁ?w work sub-stagesin
each sub-stage, each processqrerforms a task according task,. Hence, in each work
stage of a phase of epoéhprocessow must perform the first, tasks ofrask,. However,
if TASK, becomes empty at a sub-stage prior to sub-statéhenwv performs no-ops in the

remaining sub-stages (each no-op operation takes the samas performing a task). Once

TASK, becomes emptylone, is settot r ue.

Gossip stage.Here processors execute algorithno$sIr /3 using their local knowledge as
the rumor, i.e., for processer, rumor, = (TASK,, PROG,, done,). At the end of the stage,
each processarupdates its local knowledge based on the rumors it receieelupdate rule

is as follows: (a) Ifv does not receive the rumor of processaqQthenwv learns thatv has failed
(guaranteed by the correctness ad$3IR /3). In this casev removesw from PROG,. (b) If v
receives the rumor of processor then it compargAask, andPROGC, with TASK,, andPROGC,
respectively and updates its lists accordingly—it remadhestasks thatv knows are already
completed and the processors thaknows that have crashed. Note thatrifsk, becomes
empty after this update, variabtone, remainsf al se. It will be set tot r ue in the next

work stage. This is needed for the correctness of the algorisee Lemma 5.22).

Termination decision. We would like all non-faulty processors to learn that theksaare
done. Hence, it would not be sufficient for a processor to itgate once the value of itgone
variable is set to r ue. It has to be assured that all other non-faulty processfarse variables
are set td r ue as well, and then terminate. This is achieved as followsrdtpsson starts
the gossip stage of a phase of epéahith done, =t r ue, and all rumors it receives suggest
that all other non-faulty processors know that all tasksdaree (theirdone variables are set to

t r ue), then processar terminates. If at least one processaiigie variable is set td al se,

107

thenv continues to the next phase of epddlor to the first phase of epodht 1 if the previous

phase was the last of epo¢h

Remark 5.1 In the complexity analysis of the algorithm we first assuna th< p? and then
we show how to extend the analysis for the case p?. In order to do so, we assume that
whenn > p?, before the start of algorithm ®ALL,, the tasks are partitioned inid = p?
chunks, where each chunk contains at njestp?] tasks. In this case it is understood that in
the above description of the algorithm,is actuallyn’ and when we refer to a task we really

mean a chunk of tasks.

5.2.4.2 Correctness of AlgorithmDOALL.

We show that the algorithm @aLL. solves theDo-All 4,(n,p, f) problem correctly,
meaning that the algorithm terminates with all tasks penfmt and all non-faulty processors
are aware of this. Note that this is a stronger correctnesgiton than the one required by the
definition of Do-All .

First we show that no non-faulty processor is removed fromoagssor’s list of non-faulty

processors.

Lemma 5.19 In any execution of algorithm DALL., if processors andw are non-faulty by

the end of the gossip stage of phas# epoch/, then processaw is in PROG, and vice-versa.

Proof: Let v be a processor that is non-faulty by the end of the gossipe staghases of
epoch/. By the correctness of algorithmd3sir /3 (called at the gossip stage), processor
receives the rumor of every non-faulty processaand vice-versa. Since there are no restarts,

v andw were alive in all prior phases of epochz, ..., ¢, and hencey andw received each

108

other rumors in all these phases as well. By the update ridéiatvs that processor does not
remove processap from its processor list and vice-versa. Hencés in PROG, andw is in

PROG, by the end of phase, as desired. O

Next we show that no undone task is removed from a procedi&irs undone tasks.

Lemma 5.20 In any execution of algorithm DALL., if a taskz is not in TASK, of any pro-
cessomw at the beginning of the first phase of epdglhenz has been performed in a phase of

one of the epochs, 2,...,¢ — 1.

Proof. From the description of the algorithm we have that initialy taskz is in TASK, of a
processow. We proceed by induction on the number of epochs. At the Inéggnof the first
phase of epocli, z is in TASK,. If by the end of the first phase of epothz is not in TASK,
then by the update rule either (i)performed task during the work stage, or (ii) during the
gossip stage receivedrumor,, from processonw in which z was not inTAsK,,. The latter
suggests that processerperformed task during the work stage. Continuing in this manner
it follows that if z is not in TASK, at the beginning of the first phase of epd;hthenz was
performed in one of the phases of epdch

Assuming that the thesis of the lemma holds for any egoale show that it also holds for
epoch? + 1. Consider two cases:
Case 11f zis not inTASK, at the beginning of the first phase of epdglthen since no tid is
ever added iImASK,, z is not inTASK,, neither at the beginning of the first phase of epbeti.
By the inductive hypothesig, was performed in one of the phases of epochs. , ¢ — 1.
Case 21If z is in TASK, at the beginning of the first phase of epdthut it is not inTASK,
at the beginning of the second phase of epdhen by the update rule it follows that either

(i) v performed task during the work stage of the second phase of egoah (i) during the

109

gossip stage of the second phase of ephahreceivedrumor,, from processorw in which

z was not inTASK,,. The latter suggests that processoperformed task during the work
stage of the second phase of epédh it learned that was done in the gossip stage of the first
phase of epoch. Either case, task was performed. Continuing in this manner it follows that
if z is not inTASK, at the beginning of the first phase of epdch 1, thenz was performed in

one of the phases of epoéh O

Next we show that under certain conditions, local progregsuaranteed. First we intro-
duce some notation. For processowe denote byrask, (“*) the listTask, at the beginning
of phases of epoch?. Note that ifs is the last phase -8(log? p)th phase — of epoch, then
TASK, (6511 =1Ask, “+1:1) meaning that after phaseprocessow enters the first phase of

epoch? + 1.

Lemma 5.21 In any execution of algorithm DALL., if processor enters a work stage of a

phases of epoch? with done,, = f al se, thensizeofTask, (1) < sizeofTask, (“*)).

Proof: Let v be a processor that starts the work stage of phasfeepoch? with done,, =

f al se. According to the description of the algorithm, the valuevafiabledone, is initially

f al se and itis set td r ue only whenTtask, becomes empty. Hence, at the beginning of the
work stage of phase of epoch/ there is at least one task identifiertiask,, (-*) and therefore

v performs at least one task. From this and the fact that n tevér added in a processor’s

task list, we get thasizeofTask, (“-*+1)) < sizeofTask, (©*)). O

We now show that when during a phasef an epocltY, a processor learns that all tasks are
completed and it does not crash during this phase, thengbdthim is guaranteed to terminate

by phases + 1 of epoch/; if s is the last phase epodh then the algorithm is guaranteed to

110

terminate by the first phase of epoéh+ 1. For simplicity of presentation, in the following

lemma we assume thats not the last phase of epoéh

Lemma 5.22 In any execution of algorithm DALL., for any phases of epoch/ and any
processow, if done, is set tot r ue during phase andwv is non-faulty by the end of phase

then the algorithm terminates by phase 1 of epoch/.

Proof: Consider phase of epoch? and processos. According to the code of the algorithm,
the value of variablelone,, is updated during the work stage of a phase (the value of the
variable is not changed during the gossip stage). Hencégifvalue of variableione,, is
changed during the phaseof epoch/ this happens before the start of the gossip stage. This
means thatrAsk, contained inrumor, in the execution of algorithm GssIR /3 is empty.
Sincev does not fail during phase the correctness of algorithmdssir ;3 guarantees that
all non-faulty processors learn the rumorwfand consequently they learn that all tasks are
performed. This means that all non-faulty processorstart the gossip stage of phase- 1
of epoch? with done,, =t r ue and all rumors they receive contain the variatidee set to
true.

The above in conjunction with the termination guaranteesigdrithm Gossir 3 lead to
the conclusion that all non-faulty processors terminatphmses + 1 (and hence the algorithm

terminates by phase+ 1 of epoch?). O

Finally we show the correctness of algorithnoBLL ..

Theorem 5.23 In any execution of algorithm DALL ., the algorithm terminates with all tasks

performed and all non-faulty processors being aware of this

111

Proof: By Lemma 5.19, no non-faulty processor leaves the computasind by our model at
least one processor does not cragh<{ p). Also from Lemma 5.20 we have that no undone
task is removed from the computation. From the code of theritlign we get that a processor
continues performing tasks until itsk list becomes empty and by Lemma 5.21 we have
that local progress is guaranteed. The above in conjunetitinthe correctness of algorithm
Gossir /3 lead to the conclusion that there exist a phasé# an epocty and a processor

so that during phase processon setsdone, tot r ue, all tasks are indeed performed and
survives phasa. By Lemma 5.22 the algorithm terminates by phase 1 of epoch? (or by
the first phase of epoch+ 1 if s is the last phase of epodh Now, from the definition off,

it follows that the algorithm terminates after at meéxtlog p) epochs: consider epodbg p;
Tiogp = [(n + plog®p)/logp] = [n/logp + plog? p]. Recall that each epoch consists of
Blog p+1 phases. Say that= 1. Then, when a processor reaches edoglp, it can perform

all n tasks in this epoch. Hence, all tasks that are not done yddldog p — 1 are guaranteed
to be performed by the end of epolelg p and all non-faulty processors will know that all tasks

have been performed. O

Note from the above that the correctness of algorithmaDL. does not depend on the
set of permutations that processors use to select what tmsl®s next. The algorithm works

correctly for any set of permutations @u. It also works for any integes > 0.

5.2.4.3 Analysis of AlgorithmDOALL .

We now derive the work and message complexities for algorifoALL.. Our analysis
is based on the following terminology. Consider a phase epoch/ of an executiort €

E(DOALL,, Ag). LetV;(¢) denote the set of processors that are non-faulty at the fiegin

112

of phasei. Letp;(&) = |Vi(§)|. LetU;(&) denote the set of taskssuch that: is in some list
TASK,, for somev € V;(¢), at the beginning of phaseLetu; (&) = |U; ()]

Now we classify the possibilities for phageas follows. If at the beginning of phage
pi(€) > p/2¢~1, we say that phaseis amajority phase. Otherwise, phases a minority
phase. If phase is a minority phase and at the endiofhe number of surviving processors
is less thamp;(£)/2, i.e.,pi+1(&) < pi(§)/2, we say that is anunreliable minority phase. If
pit+1(&) > pi(€)/2, we say that is areliable minority phase. If phasgis a reliable minority
phase andi;1(£) < wi(€) — 1pit1(€)Ty, then we say thatis anoptimal reliable minority
phase (the task allocation is optimal — the same task is ipeeft only by a constant number of
processors on average).uf;1(§) < %ui(g), theni is afractional reliable minority phase (a
fraction of the undone tasks is performed). Otherwise welsatyi is anunproductivereliable
minority phase (not much progress is obtained). The claasifin possibilities for phaseof

epoch? are depicted in Figure 4.

otherwise
“unproductive”
majority’ unreliable “fractional”
hase of .) iy
pepochﬁ pi <z | P > B | wit1 < up — 5T
“minority” “reliable” “optimal”

Figure 4: Classification of a phas®ef epoch?; executioné is implied.

Our goal is to choose a s#t of permutations such that for any execution there will be
no unproductive and no majority phases. To do this we anagieof random permutations,
prove certain properties of our algorithm for such sets @mimas 5.24 and 5.25), and finally

use the probabilistic method to obtain an existential deit@istic solution.

113

Lemma 5.24 Let) be a fixed nonempty subset of processors. Then the prolyadsilgvent
“for every execution¢ of algorithm DoALL. such thatV;1(§) 2 @ andu;(¢) > 0, the

following inequality holdsu; (&) — w1 (&) > min{u;(€), |Q|Ty} /4, is at leastl —1 /e2(1QITe).

Proof: Let¢ be an execution of algorithmd@»LL. such that/;1(£) 2 Q andu;(§) > 0. Let

¢ = min{w;(£),|Q|Tr}/4. Let S;(€) be the set of tasks such thatz is in every listTASK,

for v € @, at the beginning of phase Let s;(§) = |S;(£)]. Note thatS;(¢) C U;(), and
that S;(£) describes some properties of gt while U;(£) describes some properties of set
Vi€) 2 Q.

Consider the following cases:

Case 1 s;(&) < u;(§) — ¢. Then after the gossip stage of phasee obtain the required
inequality with probabilityl.

Case 2 s;(£) > u;(§) — c¢. We focus on the work stage of phaseConsider a conceptual
process in which the processors@rperform tasks sequentially, the next processor takes over
when the previous one has performed allTissteps during the work stage of phaseThis
process takeR)|7; steps to be completed. Lé‘tfk)(f) denote the set of taskssuch that:z is

in some listtask,,, for somev € @, at the beginning of phaseand z has not been performed
during the firstk steps of the process, by any processor. 111@(5) = |Ui(k) (&)|. Define the

random variables(y, for 1 < k < |Q|Ty, as follows:

1 ifeither ui(¢) — u™(€) > ¢ or uP(e) £ V(e)
X =

0 otherwise .
Suppose some processoE () is to perform thekth step. Ifu;(§) — ugk) (&) < cthen we also

have the following:

5i(6) = (ui(€) — ulP(€)) > si(€) — ¢ > wi(€)/2 > sizeofTAsK,) /2,

114

whereTASK, is taken at the beginning of phagebecausec < 3u;(£)/4 < s;(§). Thus at
least a half of the tasks imask,,, taken at the beginning of phagehave not been performed
yet, and s®r[X, = 1] > 1/2.

We need to estimate the probabili®y[> ~ Xi > ¢|, where the summation is over |7y
steps of all the processors@hin the considered process. Consider a sequérigeof indepen-
dent Bernoulli trials, witiPr[Y), = 1] = 1/2. Then the sequendgX},) statistically dominates
the sequencéy;,), in the sense thétr[ZXk >d] > Pr[z Yj, > d], foranyd > 0. Note

thatE[> Y] = |Q|Ty/2 andc < E[> Yx]/2, hence we can apply Chernoff bound to obtain

Pr [ZYk Zc] >1—Pr [ZYk < %E[ZY,” > 1 — QTS

Hence the number of tasks @ (&), for any executiorg such that’; (¢) O @, performed

by processors fror) during work stage of phasés at least: with probability 1 — e~ 1917/ 0

Lemma 5.25 Assumen < p?. There exists a constant integg&r> 0 such that for every phase
1 of any epocl¥ of any executior¢ of algorithm DoALL., if there is a task unperformed by
the beginning of phasethen: (a) the probability that phagés a majority phase is at most
e~ (rlogp) "and (b) the probability that phasés a minority reliable unproductive phase is at

moste2(T¢),

Proof. The proof is by induction on phagseFor phasd claim (a) holds even with the proba-
bility 0, sincep < 2[;_1. We prove claim (b). Consider executions such that phaseninority
reliable. We can partition these executions according ¢oftflowing equivalence relation:
executions; and¢, are in the same class i (&1) = V2(&2). Consider a set of processaps

of size at leasp/2, and any executiog such thatl, () = @. By Lemma 5.24 applied t@

and phasé we get that the probability that; (£) — u2(£) < min{u(§),|Q|T1}/4 is at most

115

e~ PRI < ¢—1(plogr) There are at most” different groups of executions represented by
different set9), hence the probability that for every executi§rphasel is a minority reliable
unproductive phase is at ma¥t- e~ 2(®logp) — o—2(logp) < —2(T1) Thus claim (b) holds
for phasel. Note that so far we have not obtained any bound$.on

Suppose that claims (a) and (b) hold for every phase up-tb, wherei — 1 > 1 and there
is an unperformed task at the beginning of phiasé. We prove that if there is an unperformed
task at the beginning of phas¢hen claims (a) and (b) hold for phase

Assume that phasebelongs to epocH, for somef¢ > 1. First we group execution$
such that phaséis a majority phase irf, according to the following equivalence relation:
executioné; and&, are in the same class iff;11(£1) = Viyr1(&2). Every such equivalence
class is represented by some set of procesgauésize greater thagZy, such that for every
execution¢ in this class we hav&;,1(£) = Q. We now define conditions fof that keep
claim (a) satisfied.

Claim There is a constant > 0 such that for any executiofiin the class represented
by @, where|Q| > 22'%1, all tasks were performed by the end of epdch 1 with probability
e—S2(plogp)

We now prove the Claim. Consider an executfdnom a class represented By Consider
all steps taken by processors Ghduring phasej of epoch/ — 1. By Lemma 5.24, since
Vi+1(§) 2 Q, we have that the probability of event “if;(£) > 0 thenw;(§) — uj1(§) >
min{u;(£),|Q|Tr_1}/4,” is at leastl — 1/e?(@IT:=1) | the above condition is satisfied we
call phasej productive (by similarity to names optimal and fractioralt the difference is that
these names are used only for minority phases, but now wet asearding to the progress

made by processors i), and this happens with probability— 1/e(9I7:-1) | Since the total

116

number of tasks is, we have that the number of productive phases during efsedisufficient

to perform all tasks using only processorgjris either at most < =

|QIT—1/4 = n/(4log p)

4log p, or, sincen < p?, is at mostog; ,, n = O(log p).

Therefore there are a total 6f(log p) productive phases, which is sufficient to perform all
tasks. Furthermore, every phase in epbehl is productive. Hence, all tasks are performed by
processors i) during 3 log p phases, for some constaht> 0, of epoch/ — 1 with probability
1 — O(logp) - e 2QITi-1) = 1 — ¢=frlogp) Consequently all processors terminate by the
end of phase log p+ 1 with probability 1 — e~?(P1°2?) This follows by the correctness of the
gossip algorithm and the argument of Lemma 5.22, since epech lastsilog p + 1 phases
and processors i@ are non-faulty at the beginning of epo€hThis completes the proof of the
Claim.

There are at most? of possible sets) of processors, hence by the Claim the probability
that phase is a majority phase is at mogt - ¢~ (logp) < —£(plogp) which proves claim
(a) for phass.

Now we prove claim (b) for phasé Consider executions such that phdsa epoch/
is a minority reliable phase. Similarly as above, we pantii executions according to the
following equivalence relation: executioisandés are in the same class if there is gesuch
thatH = V;11(&1) = Vip1(&2). SetQ is arepresentative of a class. By Lemma 5.24 applied to
phase and set) we obtain that the probability that phaisis unproductive for every execution
¢ such thafV; 1 (£) = Q is e=*(IQI7), Hence the probability that for any executiophasei

is a minority reliable unproductive phase is at most

p/2£*1 p/2471

3 <p>.69($T4)§ S gelesr . 20T < 0T
T

=1 =1

and claim (b) is shown for phase O

117

Recall that epocl? consists of3logp + 1 phases for somg > 0 and thatT, =
[%1. Also by the correctness proof of algorithmoBLL. (Theorem 5.23), the al-
gorithm terminates in at mos?(log p) epochs, hence, the algorithm terminates in at most
O(log? p) phases. Let, be the number of steps that each gossip stage takes in épbeh
g¢ = O(log? p).

We now show the work and message complexity of algorithoaD. ..

Theorem 5.26 There is a set of permutationds and a constant integét > 0 such that algo-
rithm DOALL ., using permutations fron¥, solves theDo-All 4, (n, p, f) problem with work

S = O(n + plog® p) and message complexify = O(p'*2).

Proof: We show that for any executighe £(DOALL., Ag) that solves thé&o-All 4, (n,p, f)
problem there exists a set of permutatiohsand an integed > 0 so that the complexity

bounds are as desired. We consider two cases:

Case 1 n < p?. Consider phase of epoch/ of execution¢ for randomly chosen set of
permutations?. We reason about the probability of phaskeelonging to one of the classes
illustrated in Figure 4, and about the work that phasentributes to the total work incurred
in the execution, depending on its classification. From Leni25(a) we get that phase
may be a majority phase with probabiliey *?(?1°82) which is a very small probability. More
precisely, the probability that for a set of permutatidnsin executiont obtained ford some
phasei is a majority phase, i€ (log? p - e~ ?(Plogr)) = ~2(rlogr) and consequently using
the probabilistic method argument we obtain that for alnaostset of permutationg there is
no execution in which there is a majority phase.

Therefore, we focus on minority phases that occur with higlobability (per

Lemma 5.25(a)). We can not say anything about the probalfita minority phase to be

118

a reliable or unreliable, since this depends on the specificidion. Note however, that by
definition, we cannot have more thél(log p) unreliable minority phases in any execution
(at least one processor must remain operational). Moretverwork incurred in an unreli-
able minority phase of an epoclY in any executiorg is bounded byO(p; (&) - (Ty + g¢)) =

O(5 - (%ﬁgjf + log?p)) = Olpgp + plog?p). Thus, the total work incurred by all

unreliable minority phases in any executiois O(n + plog® p).

From Lemmas 5.24 and 5.25(b) we get that a reliable minotigsp may be fractional or
optimal with high probabilityl — e=*?(7), whereas it may be unproductive with very small
probability e (7). < e~ log”p, Using a similar argument as for majority phases, we get that
for almost all sets of permutationis (probability 1 — O(log? p - e (1)) > 1 — ¢=(T1)) and
for every executiorg, there is no minority reliable unproductive phase. The wodrred by

a fractional phase of an epocl¥ in any executior¢ is bounded byO(p;(&) - (Ty + g¢)) =

O(logp + plog? p). Also note that by definition, there can be at mOstogs 4 n) (= O(logp)
sincen < p?) fractional phases in any executigrand hence, the total work incurred by all
fractional reliable minority phases in any executiis O(n + plog® p). We now consider the
optimal reliable minority phases for any executitnHere we have an optimal allocation of
tasks to processors Irj(¢). By definition of optimality, in average one taskiR(§) \ U;+1(€)

is performed by at modbur processors fronv; (), and by definition of reliability, by at
most eight processors ir;(¢). Therefore, in optimal phases, each unit of work spent on
performing a task results to a unique task completion (withiconstant overhead), for any

executioné. It therefore follows that the work incurred in all optimaliable minority phases

is bounded byD(n) in any executiorg.

119

Therefore, from the above we conclude that whes p?, for random set of permutations
¥ the work complexity of algorithm DALL . executed on such sétis S = O(n + plog® p)
with probability 1 — e=(Plogp) _ =2(Tt) — 1 _ ¢=2(T0) (the probability appears only from
analysis of majority and unproductive reliable minorityagks). Consequently such Seex-
ists. Also, from Lemma 5.25 and the above discussipn; 0 exists. Finally, the bound on
messages using selected $eand constang is obtained as follows: there af@(log® p) exe-
cutions of gossip stages. Each gossip stage reqai(ests) messages (message complexity

of one instance of @ssIr 3). Thus,M = O(p'*<log? p) = O(p'+%).

Case 2n > p. In this case, the tasks are partitioned into= p? chunks, where each chunk
contains at mosfin/p?] tasks (see Remark 5.1). Using the result of Case 1 and st:leeté
and constanB, we get thatS = O(n’ +plog®p)-O(n/p?) = O(p?-n/p* +n/p?-plog® p) =

O(n). The message complexity is derived with the same way as ia Cas O

5.2.4.4 Sensitivity Training and Failure-Sensitive Analgis

We note that the complexity bounds we obtained in the prevémction do not show how
the bounds depend gfy the maximum number of crashes. In fact it is possible toesilihe
algorithm to “failure-sensitivity-training” and obtairelier results. To do so we slightly modify
algorithm DoALL ./, and obtain an algorithm we call@.LL.. We first describe and analyze
the modified version of algorithm @ssir, called GossiE, which algorithm DDALL. uses
as a building block (in a similar manner that algorithnoALL. uses algorithm @ssIr) to

solve theDo-All problem. Then we present algorithmoBLL” and its analysis.

Algorithm GossiB. Algorithm GossI® is a modified version of algorithm @ssir. In

particular, algorithm @ssIP contains a new epoch, called epdctEpochsl, ..., [1/¢] —1

120

are the same epochs as in algorithmro$sIrR. Assume for simplicity of presentation that
p/log? p is an even integer. Epodhis similar to the epoch of algorithm Gossir, except

from the following:

e Epoch0 containsa’ log? p phases, for some positive constaft possibly different than

« from algorithm GssIr;

e The communication grapt¥y used in epocti is defined as follows: leV’ be the set
consisting of arbitrarily chose®p/ log? p processors fron¥’, whereV denotes the set
of all processors(= [p]); Gy is a graph on the set of nod&% satisfying RROPERTY

R(V'],[V']/2).
e The processors i’ perform the normal phase of an epoch of algorithmsSIr .

e To every processor iV’ we attach one permutation from the sBtconsisting of

2p/ log? p permutations from sef),; we show in the analysis that suitable Seexists.
e For every processar € V', the size of SetALLING,\ NEIGHB, is equall.

e The processors that are not Wi perform a different code of the phase: they begin
with a new statusinswer and do not change it by the end of epdxhf during epoch
0 processorv ¢ V' receives a message from a processor of statld ect or or

i nf or mer , it replies to this processor in the same communicatiorestag

e If at the end of epoclk, processor's list sizeofRUMORS) = p, thenv sets its status to

i dl e and removes its id from ligusy,,, otherwisev sets its status tool | ect or .

Remark 5.2 Note that each processor that sets its statugitoe at the end of epoch might

have its listBusy not empty, as opposed to the processors that bedathe after epoch

121

greater thar®, where their lisBusY is empty. However, this does not affect the correctness of
the epochs of number greater tharList BUSY is used by each processor to decide the subset
of the processors it sends a call-message at each step abriiutation (when the proces-
sor has statusnf or mer) and once it becomes empty, the processor sets it staiugdlte.
According to the code of the algorithm, processors that dlee do not send call messages
(they only respond to such messages). Therefore, the parsethat become idle by the end
of epoch0 no longer use their lissusy (whether is empty or not). However it is important
to notice that they remove their id from their liBUSY so that when their local information

is propagated to other processors (via responses to cadlages), the other processors get to

know that these processors are no longer collectors.
We now prove the complexity of algorithmd&sie.

Theorem 5.27 There exist constant’ and set¥ such that algorithm GssIE, using set¥,
solves theGossipy, (p, f) problem with time complexityl” = O(log? p) and message com-

plexity M = O(p) when f < ﬁ, and withT = O(log? p) andM = O(p'*+3) otherwise.

lo

Proof: First we consider the case where there are at I’ﬁ?ﬁ; failures by the end of epodh

Let @ C V' be a set of processors such th&| > |V'|/2 > log%p. By PROPERTY
R(|V'],|V']/2) there exists) C Q' such thatjQ| > |Q’|/7 and the diameter of grapf
is at most31logp. Consider all executions € £(GossIB, Ag) such that every proces-
sor in @’ is not failed by the end of epoch, and choosel randomly. We may look at
the process of collecting rumors by processorg)ifwhen every processor i@ works as a

col | ect or) as performing tasks: if a rumor of processoror information that processor

w is failed), for every processar, is known by some processor (i then we say that task

122

w is performed. We partition the execution into conseculilaeks each containing1 log p
consecutive phases. Notice that during each block all gemrs in() exchange information
between themselves, by definition @ We may use Lemma 5.24 to bound progress: the
probability that “for every considered executigrfsuch that all processors @ are not failed

at the end of epoch) after every consecutive block in epogltthe number of rumors unknown
by processors iif) decreases either k/4)|Q|log p or by factor3/4 " is 1 — e~ (I@llogp),

Consequently, for every considered executiorO(+ logs;y p) = O(logp) num-

_P
|Q|log p
ber of blocks are sufficient to collect all rumors by processo @, with probability at least

1 —logp - e fQNogp) > 1 _ o—2(Qllogr) Ysing the probabilistic method we choose one
suchW, which additionally satisfies the thesis of Theorem 5.10aésure that is good also

for the other cases in this proof) and constahfollows from the fact thatD(log p) blocks,
each of31 log p phases, suffices to collect all rumors by processotg far every executiory.

The process in which processors@n acting as nf or ner , inform all other processors
about collected rumors and the status of all processorgnitasto the process of collecting,
and do not influence the asymptotic complexity. In this casdopming taskw, for every
processolw, is defined as informing processerby some processor if}.

Since the communication gragh has constant degree and in every phase the size of set

CALLING,\ NEIGHB, is equall, the number of messages sent in every phase(j¥’'|) =

0(10§2p), which, in view of the numbe® (log? p) of phases in epoch, gives message com-

plexity O(p) in epoch0.
Consider the case where at the end of efobtiere are more thaﬂ& faulty processors.
In this case there may be some processerV such thasizeofRUMORS),, < p at the end of

epocho (if not then all non-faulty processors becoingl e at the end of epoch and we are

123

done). It follows that all such processors start executparh1 of algorithm Gossi# which
is the same as in algorithmdzsir.

Using the same argument as in the proof of Theorem 5.18 anthéoyatt thatl was
chosen to satisfy the thesis of Theorem 5.10, we obtain Heatrtessage complexity during
execution of @ssIB is O(p'+% log® p) = O(p'*3), which together withO(p) messages
sent in epocld yields the thesis of the theorem, with respect to messaggleaity. The time
complexity yields from the fact that epoéhrunsO(log? p) phases, and the remaining epochs

run also forO(log? p) phases. O

Algorithm DoALL;. Algorithm DoALL is a modified version of algorithm @ALL, /5. In
particular, algorithm @ALL’ contains two new epochs, called epeehand epoch). Epochs
1,...,logp are the same epochs as in algorithADL _ /5.

Epoch—1 of algorithm DoALL. uses the check-pointing algorithm from [28], where the
check-pointing and the synchronization procedures aent&lom [44]. We refer to the algo-
rithm used in epoch-1 as algorithm DGMY. The goal of using this algorithm in epoeh is
to solveDo-All with work O(n+p(f + 1)) and communicatio®(fp® +p min{ f +1,log p})
if the number of failures is small, mainly concerning theecAs< log® p. Hence, in epock-1,
we execute DGMYonly until stepa - (n/p + log® p), for some constant such that the early-
stopping condition of DGMY holds for everf < log? p.

Epoch0 of algorithm DoALL” is similar to an epoch of algorithm @»nLL., except that
instead of algorithm @ssir /3, we use algorithm GSSIFg/3 in each gossip stage of every
phase of epoch. Each gossip stage lasjs = o’ log? p steps, for a fixed constant which

depends on algorithm @£8|#E/3.

124

We now show the work and message complexity of algorithanD.”, which is the main

result of this section.

Theorem 5.28 There exists a set of permutatiofisand a constant integeét > 0 such that
algorithm DoALL. solves theDo-All 4, (n, p, f) problem with workS = O(n + p - min{ f +

1,1og® p} and message complexity = O(fp° + pmin{f + 1,log p}).

Proof: We consider three cases:

Case 11if the number of failureg’ during the execution of DGMY (recall that we execute the
algorithm up to stem - (n/p + log® p)) is not greater thaibg® p then by the early-stopping
property of algorithm DGMY, all non-faulty processors ténate by the end of this execution
of DGMY. Work performed by the algorithm i9(n + (f + 1)p) and the message complexity

isO(fp® + pmin{f + 1,logp}). This follows from the results in [28] and [44].

Case 21f the number of failuresf during the execution of DGMY is greater thasg® p and
some processor terminates in epech, then by correctness of algorithm DGMY all tasks are
performed, thus we stop counting work and communicationagudy analysis as in previous

case.

Case 3if the number of failureg’ during the execution of DGMY is greater tham? p and no
processor terminates during the execution of DGMY, themyemen-faulty processor, unlike
the previous two cases, starts executing egbohDOALL, each at the same time. The work
during the execution of DGMY i§)(n + plog® p) = O(n + p - min{f + 1,log® p}) and the
message complexity @(f'p® + pmin{f'+ 1,logp}), wheref’ < f is the number of crashes
occurred during epoch 1. We now analyze the work and communication complexity of the

remaining epochs.

125

The analysis of the remaining epochs, starting from ef@pdéb done similarly as in The-
orem 5.26. The only difference in the analysis is that we usermore epoch (epodh, in
which the message complexity of every gossip stag@(is), if f < p/log?p (per Theo-
rem 5.27). Notice that the total number of phases is 6tillog? p), as used in the proof of
Theorem 5.26 (but constant may differ from the original). nkke the choice of seb is the
same as in the proof of Theorem 5.26, as well as the condit@ren integer constarnt > 0,
whereflog p + 1 is the number of phases in one epoch (only the constantsriddesymp-
totic notation may differ, and this may increase the coristamith respect to the original one).
The analysis for the general case whére< p is the same as in the proof of Theorem 5.26.
Therefore, we focus on executiofisc £(DOALL’, Ag) such that|¢|4,]| < f < p/log? p.
We have|V;(£)| > p — p/log? p for every phasé in epoch0, and consequently the number
of phases in epoch sufficient to perform all the tasks, which (by the proof of ®hem 5.26
means performing work) (n + plog®p)) is

(n+p log3 P
[n/(plogp) + log? p] - (p — p/log? p)

O< n+plog3p) _
To - (p — p/log? p)

) = 0llogp)
Assuring that the constant hidden in the abé¥gog p) notation must be less thahis

an additional condition fo3 > 0 (8 must also satisfy the conditions in the proof of The-

orem 5.26). This condition proves, that for every executjoa £(DOALL., As) such that

1€lasll < f < p/log?p, there exist a set of permutatiols and a constang > 0, such

that algorithm DpALL. terminates by the end of epoch and by the property of algorithm

GOSS|F§/3,

the total number of messages ser®i® - logp) = O(pmin{f + 1,log p}), since
f>log*pandf < p/log? p.

The thesis of the theorem follows from Theorem 5.26 and thextbases. O

Chapter 6

Shared-Memory: Write-All with Crashes

We present failure-sensitive bounds on work for theite-All 4. (n,p, f) and r-Write-
All 4, (n,p, f) problems with synchronous processors, foK f < p, in Section 6.1. In
Section 6.2 we are concerned with bounding the memory acoessirrency. Kanellakis and
Shvartsman [68] showed that in the presence of processshasathe work of any (determin-
istic) Write-All algorithm must be quadratic if processors are not allowedctiess certain
memory cells concurrently; specifically the showed a lowermu ofQ2(p - n) work for CREW
(concurrent-read, exclusive-write) machines. Hencehénpgresence of crashes and in the ab-
sence of concurrency, parallel computation can be extsemefficient. However, this is not
surprising, since redundancy is necessary for achievigrfalerance and concurrent memory
access provides redundancy. Therefore, since concurreasybe allowed in order to achieve
fault-tolerance and efficiency, it is interesting to undimsl whether concurrent memory ac-
cess can be controlled in the presence of failures and at eXpense on the complexity of

algorithms.

126

127

6.1 Failure-Sensitive Bounds

In this section we give a new refined analysis of the most vedfikient known algorithm
for the shared-memory model, algorithm W [67]. We also distlalthe complexity results for
the iterativeWrite-All and for simulations of synchronous parallel algorithms @sk-prone
processors. As in Section 5.1, our analysis is obtained lmbating the results derived under
the assumption of perfect knowledge for tolerating faduamd the cost of achieving perfect
load balancing, derived from the structure of the algorithm

Algorithm W solvesWrite-All 4. (n, p, f) in the shared-memory model under synchronous
crash-prone processors. In [67] it was shown that the workhefalgorithm isO(n +
plognlogp/loglogp) for p < n. Observe that this bound does not inclutlethe number

of crashes.

6.1.1 Description of Algorithm W

We now give a brief description of the algorithm but to avoid¢anplete restatement,
we refer the reader to [68]. Algorithm W is structured as aalrloop through four phases:
(W1) a failure detecting phase, (W2) a load rescheduling@h@V3) a work phase, and (W4) a
phase that estimates the progress of the computation (tremizg work) and that controls the
parallel loop. These phases use full binary trees With) leaves. The processors traverse the
binary trees top-down or bottom-up according to the phaaehBuch traversal také¥log n)
time (the height of a tree). For a single processor, eacétiter of the loop is called block-
step since there are four phases with at most one tree travezsphase, each block-step takes

O(log n) time.

128

In algorithm W the trees stored in shared memory serve asatiegng places for global
information about the number of active processors, remgitasks and load-balancing. Given
the full details of the algorithm, it is not difficult to seeathby traversing these trees syn-
chronously, processors obtain the information that woeld\milable from the oracl@ in the
algorithm of Figure 1, in Section 4.1. Specifically, phase j¥dvides to the processors an
(under)estimate on the number of operational processatplaase W4 an (over)estimate on
the number of remaining tasks. This information is put thgetn phase W2 where the remain-
ing tasks are allocated a balanced number of processorshiidugy tree used in phase W2 to
implement load-balancing and phase W3 to assess the remwaimirk is called therogress
tree

Here we use the parameterized version of the algorithmmvithn and where the progress
tree hasu = max{p,n/logn} leaves. The Do-All tasks” are associated with the leaves of

this tree, withn /u tasks per leaf. Note that each block-step still takes tinleg n).

6.1.2 Complexity Analysis

We now give the work analysis. We charge each processor fir lack step it starts,

regardless of whether or not the processor completes ishes.

Lemma 6.1 [68] The number of block-steps required by any executionlgdrithm W with

f < pprocessors crashes is

logp
B = .
© (u - Plog 10gp>

Lemma 6.2 The number of block-steps required by any execution of &lgorW with f <

» :
1oyp Processors crashes is

B:O(u—i—plog%p).

129

Proof: It is not difficult to see, that the processor block-stepseaygivalent to the processor
steps under the assumption of perfect knowledge. Hencertiod is the same as the proof of

Lemma 4.2. O

Theorem 6.3 Algorithm W solvesWrite-All 4, (n, p, f) using work

S=0 (n—i—plognk)i) when f < L, and

log(p/f) log p

1
S=0|n+plogn -4 WhenL<f<p.
log log p log p

Proof: We consider the following two cases:

Case lp < %. Here the number of leaves in the progress tree is n/logn and in the
work phase W3 each processor performs = logn tasks. The cost of a single block-step
is C1 = O(logn) since each of the four phases takes at mast: time. We consider two

subcases:

(la) f < @. Per Lemma 6.2, the number of blocks-stéhsg for this case is:
1 1
B, =0 u—i—pOgg =0 n —|—p0g€ .
log 7 logn log 7
Therefore,

n lo lo
S1a = B1a-C1 =0 +p gg -O(logn) =0 | n+plogn gz; .
logn log7 logf

(1b) f > 1o§p- Per Lemma 6.1, the number of block-stdps, for this case is:

logp n log p
By, =0 =0 .
th <u+plog log p) (log n plog logp

Therefore,

1 1
Sy =B C1 =0 n +p OEP -O(logn) =0 n+plogn -V
logn log log p log log p

Case 2 % < p < n. Here the number of leaves in the progress tree is p and in the
work phase W3 each processor performgp| = O(logn) tasks. Thus the cost of a single

block-step iCs = O(log n). We again consider two subcases:

130

(2a) f < @. Per Lemma 6.2, the number of block-stdps, for this case is:

lo lo lo
BQa:O U+p1 g}; :O p+p g}; :O p g}; .
0g log7 log7

Therefore,

I 1
594 = Bag - C2 = O (plc(?:];) -O(logn) = O (plogn ng))

b D
7 log 7

(2b) f > 1o§p- Per Lemma 6.1, the number of block-stdpg, for this case is:

lo lo
By =0 (p+p—l_)—0(p—5L),
loglogp log log p
Therefore,

1 1
Sop=DBo,-Co=0|(p OEP -O(logn) =0 (plogn -V
log log p log log p

Combining Case 1 and Case 2 we obtain the desired resultfop < n. |

6.1.3 lIterative Write-All and Parallel Algorithm Simulati ons

We now consider the complexity of shared-memory synchremeWrite-All 4, (n, p, f)

and of simulations of parallel algorithms on crash-proreepessors.

Theorem 6.4 The r-Write-All 44 (n, p, f) problem can be solved op synchronous crash-

prone processors with work

S=0 (r- (n +plognloi>> when f < ﬂ, and

log(pr/f) log p
1
S=0(r-(n+plogn o8P whenﬂ<f<p.
log log p log p

Proof. The iterativeWrite-All can be solved by running algorithm W erinstances of size
n in sequence. We call this algorithm W*. To analyze the efficieof W* we use the same
approach as in the proof of Theorem 4.11. In the current gomte base our work complexity

arguments on the result of Theorem 6.3. O

The above result on iteratiw/rite-All leads to the following result {dPRAM simulations:

131

Theorem 6.5 Any synchronousn-processor, r-time shared-memory parallel algorithm

(PRAM) can be simulated opcrash-prone synchronous processors with work

S—0 ((n+p10gnloi>) whenf < " and

log(pr/ f) log p
1
S=0(r-(n+plogn o8P whenﬂ<f<p.
log log p log p

Proof: The complexity of simulating a single parallel steprofdeal processors on crash-
prone processors does not exceed the complexity of solvaggte Write-All 4, (n, p, f) in-

stance [72, 104]. The result then follows from Theorem 6.4. O

This last result shows a failure-sensitive improvement tve previously known bounds of
O (r- (n+ plognlogp/loglogp)) for deterministic parallel algorithm simulations on crash

prone processors [104].

6.2 Failure-Sensitive Bounds for Controlled Memory Acces€oncurrency

In this section we derive failure-sensitive bounds on wankthe Write-All and iterative
Write-All problems in the setting where memory access concurrency meusontrolled. In
particular, we give a new failure-sensitive analysis obalym KMS [66] (the only algorithm
for Write-All in this setting) and we refine its range of optimality. We these the algo-
rithm to establish new failure-sensitive bounds on worktl@iterative Write-All problem for
synchronous shared-memory systems, while simultaneboesigding memory access concur-
rency. This yields tighter bounds on work (vs. [66]) for slations of parallel algorithms on
crash-prone processors with bounded memory access cencurrOur analysis is performed
by separately assessing the cost of tolerating failurelsatbfrom the results under the as-
sumption of perfect knowledge and the cost of implementiedget load balancing, derived

from the structure of the algorithm.

132

6.2.1 Description of Algorithm KMS

We now give a brief description of the algorithm but to avoidoanplete restatement, we
refer the reader to [66]. The algorithm consists of two layghere the top layer provides the
overall control structure for solving/rite-All and the bottom layer is responsible for control-
ling memory access concurrency.

The top layer control structure is based on algorithm W [67¢onsists of the main loop
that iterates through fours phases (phases W1,W2,W3 andsé&tSection 6.1.1) until the
Write-All problem is solved. The algorithm uses two complete binaggdsr theprocessor
enumeration tresvith p leaves (used in phase W1 to detect failed processors anchbemuhe
processors compactly) and theogress tredused in phase W2 to implement load-balancing
and in phase W3 to assess the remaining work) wildaves { < h < n), where a cluster of
n/h elements of théVrite-All array (or the Do-All” tasks) are associated with each leaf.

The bottom layer provides specific access routines for ngaftom, and writing to, the
shared memory; it uses two data structures representetiay tiees: (1) Therocessor pri-
ority tree (PPT) coordinates access to memory by determining whicbegamrs are allowed
to read or write each shared location that has to be accessedreently by more than one
processor. The nodes of the tree are associated with porsdsased on a processing num-
bering. Priorities are assigned to the processors acgptdithe tree levels: the root has the
highest priority and priority decrease with each succeskvel. In the top layer, processors
traverse the progress and enumeration trees in a bottomstjph. At each intermediate node
of a tree two PPTs need to be combined into one as the prosdbsbicome up form the chil-
dren of the node “meet” at the parent. This involeesnpactingandmergingthe PPTs. PPTs

are compacted to eliminate “certifiably” faulty processofsvo PPTs are merged by having

133

the processors of the left PPT appended to the tree formelebgrocessors of the right one
(see [66] for details). (2) Theroadcast treg@s used to disseminate values among readers and
writers. The use of broadcast trees in conjunction withrgidrees serves to bound read and
write concurrency.

Algorithm CR/W is the main algorithm of the bottom layer thiaes the above structures to
control memory access concurrency for individual readsvenités. Specifically, itimplements
broadcast (using the broadcast tree) for processors wdifiarent levels of a PPT and allows
processors to write to a shared locatibronly if processors at higher levels haven't done so.
Communication between processors in a PPT takes placegtheshared memory array, call
it B, where the processors communicate based on their posititns PPT.B[k| stores values
read by thekth processor of the PPT. Each processor on legls. , 7 — 1 is associated with
exactly one processor on each of the levedsd lower. Specifically, th¢th processor of the
PPT broadcasts to thgh processor of each level below its own (in a left-to-rightnbering
within each level). The algorithm proceeds|ing p| + 1 iterations that correspond to the PPT
levels. At iterationi, each processor of levereads itsB location. If this location has not been
updated, then the processor redddirectly. Since each full PPT level has one more processor
than all the levels above it combined (PPT is a binary tréeyet may be at least one processor
on each level that reads directly since no processor at a higher level is assignet(foria
full level, this processor is the rightmost one, or the raself for level 0). As long as there
are no failures this is the only direct access toConcurrent accesses can occur only in the
presence of failures. In such a case several processors @arthe level may fail to receive
values from processors at higher levels, in which case tbeguwrently read. directly. A

processor reading directly checks whether it contains the value to be writthen writes to

134

it if it does not. Whenever processors updatehey write the new value fof as well as the
index of the level that effected the write. If a procesk@ccesses and determines thdt has
the correct value, and if the failed procesgdhat should have broadcast kds at or below
the level that effected the write, thénassumes the position of procesgdn the PPT. This
effectively moves failed processors toward the leaves®PRT. Failed processors are moved
downwards only if they are not above the level that effectswtiite — processors above this
level are eliminated by PPT compaction that takes placesagtid of each run of CR/W.

Algorithm CR/W combines a read with a write. However, whea pocessors of a PPT
need to read a common location but no write is involved, twopéér algorithms are used:
Algorithm CR1 which is used for bottom-up traversals anddtgm CR2 which is used for
top-down traversals. Algorithm CRL1 is similar to CR/W butludes no write step. This
algorithm is simpler than CR/W in that the processors thaf@und to have failed are pushed
toward the bottom of the PPT independent of their level. Atbmm CR2 uses a simple top-
down broadcast through the PPT. Starting with the root eagbegsor broadcasts to its two
children; if a processor fails then its two children ré@directly. Thus the processors of level
1 broadcast only to processors of levet 1. Unlike CR1, no processor movement takes place.

From the description of algorithms CR/W, CR1, and CR2 itda# that each takes time
O(log p).

We now describe how algorithm KMS integrates algorithms\WRCZR1, CR2, and PPT

merging and compaction within its four phases.

Phase 1 Processors begin this phase by forming single-procesB®s PThe objective is to
write to each internal node of the enumeration tree the suimeofalues stored at its two

children. Algorithm CR/W is used to store the new value, tize sf the PPT and the

135

index of the level that completed the write. Then all PPTscamapacted. In order to
merge PPTs the processors use algorithm CR1 to read thetolagd at the enumeration
tree node that is the sibling of the node they just updateegn HPTs are merged. At this
point the processors of the merged PPTs know the value thexy toewrite at the next
level of the enumeration tree. This value is the sum of thaevalritten by CR/W and
the value read by CR1. Therefore one call to each of CR/W antli€ Reeded for each

level of the enumeration tree.

Phase 2 This phase involves no concurrent writes. Processorsisawtop-down the progress
tree to allocate themselves to the unvisited leaves. Theglabal information needed
at each level is the values stored at the two children of tieentinode of the progress
tree. Two calls to CR2 are used to read these values, one ¢oradald. Using this
information the processors of a PPT compute locally whethey need to go left or
right based on their identifiers. Here each PPT must be sptivo. If a PPT has
processors of whickk’ need to go left and the remainirig— &’ need to go right, then
by convention the first’ processors of the PPT form the PPT of the left child and the
remainingk — k' processors form the PPT of the right child. No compaction ergimg

is done in this phase.

Phase 3 Processors form PPTs based on the information they gatlienéng Phase 2and
proceed to write 1 to the/h locations that correspond to the leaf they reached. At
this point, processors decide whether they need to useitalgoCR/W, followed by
compaction for each of these writes. This is done locally dgheprocessor. at the
beginning of this phase, the processors have consistemimation on the number of

unvisited leaves, call iz, and the number of available processors, call fthis is the

136

information they used to allocate themselves at the ledwegs rieached by the end of
Phase 2 Whenu > a, it is guaranteed (see [66]) that there is at most one process
per leaf, and therefore the processors do not use CR/W angamion. Instead the
processors go sequentially through the clustet Gf elements at the leaf they reached
and simply write to each element. When< «, several processors may be allocated
to the same leaf and the processors use algorithm CR/W fetidsy compaction to

perform each write in the cluster. In any case, no mergingvisived.

Phase 4 This phase initially uses the PPTs that resulted at the émthase 3 The task
to be performed is similar to that &fhase 1 As before, algorithm CR/W is used for
writing followed by compaction and one call to algorithm GRfter which the PPTs are

merged.

We now state previously known results [66] for algorithm Kidi&d for simulations using this

algorithm.

Theorem 6.6 [66] Algorithm KMS solves theWrite-All 4. (n, p, f) problem with workS =
@) (n+plog2nlog2p/ log logn), write concurrencyw < f, and read concurrency <

7 f logn.

Theorem 6.7 [66] Any n-processory-time exclusive-read, exclusive-write parallel alganith
(EREW PRAM can be simulated on @ synchronous crash-prone processors with work
S = O(r-(n+plog*plog?n/loglogn)), with write concurrencys < £, and the read

concurrencyp < 7flogn

These prior results do not show how the work depends on théeuaf processor crashes.

137
6.2.2 Complexity Analysis

We now give a new, failure-sensitive, analysis of algoritKiS, based on the results
obtained forDo-All under the assumption of perfect knowledge.

In the analysis we use the parameterized version of algoiMS with p < n and where
the progress tree has = max{p,n/lognlogp} leaves. The array elements are associated
with the leaves of this tree, with/u array elements per leaf. Henceforth we use KMS to
denote this parameterized algorithm.

For an execution of algorithm KMS, we defimg to be the number of unvisited leaves of
the progress treéu; < u), andp; to be the number of non-faulty processéps < p), at the
start of thei-th iteration of the main loop. We defirg to be the time required for a processor
to complete one iteration of the main loop whgn< «;. We defines, to be the time required
for a processor to complete one iteration of the main loopnghe> ;. We define dlock-step

to be the execution by one processor of the body of the majm loo

Lemma 6.8 The work required by algorithm KMS to solve th@&rite-All 4. (n,p, f) problem

iSS:O(Ul-u+02- plogp)

log log p
Proof: We consider two cases.
Case 1 Considerall iterationsi in which p; < u;. In this case the number of block-steps is

O(u) since no more than one processor is assigned to each leaé pfdlgress tree. Then,

using the definition oé, the work of algorithm KMS in this case B(o; - u).

Case 2 We now account foall iterations in whichp; > w;. In this case the number of block-

steps isO(plolg"lgogp). Given the load-balancing properties of algorithm KMSstFollows

directly from the case analysis of Theorem 3.1 [50], wheregaconsiders the work of perfect

138

load-balancing iterative algorithms whepn > u;. (The simpler subcase @f = u; is dealt

similarly.) Then, using the definition ef;, the work of algorithm KMS in this case 3(os -

log p
plog logp)'

Combining the two cases yields the result. O
Note that in the above lemma, work is not expressed as a &mndfi f, the number of
processor crashes. In the next lemma, we give work as a @umofif, for f < p/logp. The

proof of the lemma is based on the proof of Lemma 4.2

Lemma 6.9 The work required by algorithm KMS to solve th@&rite-All 4. (n,p, f) problem

. plogu
Whenfg@ISS=O<01-(u+p)+Ug-m>.

Proof: Letu' be the number of unvisited leaves of the progress tree (ribealthe tree has
leaves withn /u array elements assigned to each leaf). Agtdenote the number of proces-
sor crashes within a particular iteration of an executiothefalgorithm. A f is, in general,
different for each iteration, though the sum of these foitathtions cannot exceefl We set
b= b(p, f) = p/(2f), and we defineS(v/, p, f), whereu’ < u, to be the work required to
solve Write-All 4, (u'-n/u,p,). We show that for all.’, p and f, S(v’, p, f) is no more than
o1(p + u') + 302p + o2plog, o5 u'. The proof proceeds by induction an (following our

approach in Lemma 4.2).

Base Case:Observe that whem’ = 1 andp > 1 (hencep > '), S(u/,p, f) < o9p <

o1(p+ u') + 3o9p + ooplog, v/, for all p and f, as desired.
Inductive HypothesisAssume that we have proved the result foralk @ and allp and f.

Inductive StepConsider.’ = 4. We investigate two cases:

139

Case 1p < 4. In this case each processor is assigned to a unique utvisaé(this follows
from the load-balancing properties of algorithm KMS), henc
. < . B B .
S(Uap,f)_glp"’ogni%}éfs(u p+Afap Afaf Af)
Asp—Af >0,u4—p+ Af < aand, by the induction hypothesis,

S(u,p, f) < 01P+OSIIX}>§J£[01(P— Ay +a—p+ Af) +302(p — Af)

+o2(p— Af) logb(p—Af,f—Af)(ﬂ—p+Af)]-
Now, b(p — Af, f — Af) > b(p, f), so that
S(a,p, f) < o1(p+ @) + 302p + oaplogyy, 5 U,

as desired.

Case 2p > u. In this case, by assumption we have
7 < i, p— A —A
S(a,p, f) < 02p+0§rrie}géf5(w,p ff=Af),
wherey = ~(a,p, Af) is the ratio of the number of the remaining unvisited leawes t
(0 <~y <1). Leto = Af/p < f/p < 1, the fraction of processors which fail during this
iteration; theny/2 < v < 2¢ (see proof of Lemma 4.2). Then,

S(t,p, f) < + max S(vya, (1 — f = .
(4,p, f) < o2p S (v, (1 = ¢)p, f — ¢p)

As~u < 1, we may apply the induction hypothesis:

S(ip, f) < oo+ max o1yt + (1= 9)p) +302(1 — O)p

+ 02(1 - $)plogy (1) .
wheret! = b(p — ép, f — ¢p). As abovep’ > b(p, f), so that

S(ﬁ”pmf) 30_2p+ max 01(7ﬁ+(1—¢)p)+302(1—¢)p
$€[0,f/p]

+ 02(1 — ¢)plogy,, 1) (Wl)]-
To complete the proof, it suffices to show that for@le [0, f/p],

019p + 202p + oaplogy,) @ — (1 — ¢)oaplogy,) (vi) > 302(1 — ¢)p — or14(1 — 7).

140

Upper boundin®os(1 — ¢)p — o14(1 —) with 302(1 — ¢)p, removingo; ¢p from the left
hand side, and dividing through by p, it is sufficient to show that

2 +logy,) U — (1 — @) logyp, 1y (v) > 3(1 —),

or, equivalently,
10,5y & — (1 = §) logy,) (v@) > 1 — 3¢,

We now focus on the left hand side of the above equation:
logyp,)@ — (1 =) [IOgb(p,f) Y+ 108y (5,) U] = $logy,) &+ (1= &) logy)7
Sincef < p/logp, for anyp > 16 we have thap/(2f) > 2. Observe that,
dlogyp,) i+ (1 — @) logy 17" = (1= @) logyg, 7"
sinceu > p/f > p/(2f). (Note that ifa < p/f, then all leaves are visited in this iteration.)

Recall thaty~! > (2¢)~! and¢ < f/p. Therefore,

(1= @) logyp v~ = (1= d)logy,) (26) " > 1 -3¢,

Evidently,
logu/ plogu
(1 (WPt log(p/f) 1 (utp) o log(p/f)
as desired. O

Lemma 6.10 Algorithm KMS solves théArite-All 4, (n, p, f) problem with work

1
S:O<01-(u+p)+ag-pﬂ> whenf < L, and
log(p/ f) logp

1
S=0|(o1-(u+p)+o2-p OET whenL<f<p.
log log p logp

Proof: We first record that. < u+ p, log p < logn andlogu < logn. Then the result follows

by combining Lemmas 6.8 and 6.9. O

The above result shows the cost (work) of tolerating fagumhile the cost of imple-
menting load-balancing is hidden in andoy,. We now compute the cost of implementing

load-balancing by algorithm KMS (that is, compute the valaés; andos).

141

Lemma 6.11 For algorithm KMS,o; = O(log nlog p) andoy = O(log nlog? p).

Proof. We consider the following two cases.

Case 1p < m. Here the number of leaves in the progress treedsn/log nlog p and

in Phase 3each processor writes to/u = lognlog p array elements. The time required to
traverse the enumeration and progress tre€Xlisg n log p) and the execution of CR/W takes
O(log p) time.

For the iterationi whenwu; > p;, algorithm CR/W is not used iPhase 3and there-
fore the time to update a leaf 3(lognlogp) (the number of elements). Therefore, =
O(lognlogp) + O(lognlogp) = O(lognlogp) (the time to reach a leaf plus the time to
update a leaf).

For the iterationi whenw; < p;, algorithm CR/W is used iPhase 3 In the worst
case, all processors could be allocated to the same leaf ggn there is only one unvis-
ited leaf left) and hencéog p time must be spent at each element of the leaf. Since there are
log nlog p elements per leaf the worst case time to update a le@f(isg nlog? p). Hence,

o9 = O(log nlog p) + O(log nlog? p) = O(log nlog?p).

Case 2 —— < p < n. Here the number of leaves in the progress tree is p and in
gnlogp

Phase 3each processor writes tg/p = O(log n log p) array elements. Then the boundsan

andos are obtained similarly to Case 1. O

We now state and prove our main result for algorithm KMS.

Theorem 6.12 Algorithm KMS solves théWrite-All 4. (n, p, f) problem with write concur-

rencyw < f, read concurrency < 7 f log n and work

2
S=0 (n+plog2nlog7p) whenf < 2 and
log(p/ f) log p

142

1 2
S=0(n+plog2n—2L) when—L— < f <p.
log log p log p

Proof: The bounds o andp are obtained from Theorem 6.6 (see [66]). We now show the
bounds onS. The bounds are derived by combining the cost of toleratiilgres and the cost

implementing load-balancing. We consider two cases:

Case 1 p < Here the number of leaves in the progress treeuis=

n/lognlogp. Combining Lemmas 6.10 and 6.11 we get= O(o; - (u + p) + o2 -
plogn/log(p/f)) = O((log nlogp) - n/(log nlog p) + (log nlog” p) - plogn/log(p/f)) =
O(n + plog?nlog?p/log(p/f)) when f < p/logp and similarly S = O(n +
plog? nlog? p/loglog p) whenf > p/log p.

Case 2m < p < n. Here the number of leaves in the progress tree-sp. Combining
Lemmas 6.10 and 6.11 we hase= O(o1-(u+p)+o2-plogn/log(p/f)) = O((log nlogp)-
p+ (lognlog?p) - plogn/log(p/ f)) = O(plog® nlog® p/log(p/ f)) whenf < p/log p and

similarly S = O(plog? nlog? p/loglog p) whenf > p/log p.

The result is obtained by combining Case 1 and Case 2. O

This analysis establishes the following processor rangesvhich algorithm KMS be-

comes optimal.

Corollary 6.13 Algorithms KMS is work-optimal ifp = O(nlog(n/f)/log* n), whenf <

p/logp, and ifp = O(nloglogn/log*n)), whenf > p/log p.

Theorem 6.6 teaches that algorithm KMS becomes optimakfO (n log log n/ log? n),
for all f < p. Corollary 6.13 shows that our failure-sensitive analgsitends the range of

optimality of the algorithm wherf < p/log p.

143

6.2.3 lIterative Write-All and Parallel Algorithm Simulati ons

Using algorithm KMS and its new analysis, we obtain new failaensitive bounds for the

iterative Write-All problem with controlled read and write memory access caoroay.

Theorem 6.14 The r-Write-All 4, (n, p, f) problem can be solved om synchronous crash-

prone processors with write concurrengy< f, read concurrency < f logn and work

2
S=0 <7“- <n —|—plog2n10g7p>> when f < ﬂ, and

log(pr/ [) log p
1 2
S=0(r-(n+plog*n o8 P whenﬂ<f<p.
loglog p logp

Proof: We solver-Write-All 44 (n, p, f) by running algorithm KMS- times, once for each
Write-All instance. We enumerate theénstances ofWrite-All using numberd, ..., r, and
we refer to instance as theround:. For roundi, let p; be the number of active processors at
the beginning of the round anf be the number of crashes during the round. Noteghat p,
and thatp; < p.

We first establish the bounds on the memory access concyriegtey; andp; be the write
and read memory access concurrency accrued in rourebpectively. Theny = Y77 | w;
andp = Y., p;. Using Theorem 6.12 for each round, we have that f; andp; < f;logn.

Therefore,

T T r T
w=) wi<)y fi=f and p=3 pi<logn) fi=flogn,
1=1 i=1

i=1 =1
as desired.

Observe that the choice of eag¢fdoes not affect the bounds on the memory access concur-
rency. However, in order to establish the bounds on work veslne determine the values of
the f;s that maximize the overall work et Write-All 4, (n, p, f). The work analysis is done as
in the proof of Theorem 4.11. In the current context we basenmuk complexity arguments

on the result of Theorem 6.12. O

144

Theorem 6.14 enables us to obtain a tighter bound on work \algarithm KMS is it-
eratively used to obtain efficient parallel algorithm siatidns on crash-prone processors (as

opposed to the bound of Theorem 6.7).

Theorem 6.15 Any n processor, r-time exclusive-read, exclusive-write paralldEREW

PRAM) algorithm can be simulated gnsynchronous crash-prone processors with work

2
S=0 <r- <n —|—plog2n10g7p>> when f < ﬂ, and

log(pr/ f) log p
9 long pr
S=0|(r-({n+plog*n—m— when—— < f < p,
loglog p logp

so that the write concurrency of the simulation.is< f and the read concurrency js <

7f logn.

Proof: The complexity of simulating a single parallel steproideal processors onfailure-
prone processors does not exceed the complexity of solvaggte Write-All 4, (n, p, f) in-

stance [72, 104]. The result then follows from Theorem 6.14. O

Note that this last result can be extended to ofHeAM variants, such as concurrent-read,
exclusive-write CREW) and concurrent-read, concurrent-writ€RCW), however in these
cases the read and write concurrency bounds depend on tn esdd and write concur-
rency of the simulated algorithm. Another way is to convhg simulated algorithm into an
equivalentEREW algorithm (using the standaRRAM conversion techniques [69]). Then, the
simulation obtains the same concurrency bounds as in Time@®rE5 at the expense of increas-

ing the work by a logarithmic factor (the overhead is due todbst of the conversion).

Chapter 7

Omni-Do in Partitionable Networks

In the settings where network partitions may interfere wfith progress of computation,
the challenge is to maintain efficiency in performing theksaand learning the results of the
tasks (solvingODmni-Do), despite the dynamically changing group connectivitywdeer, no
amount of algorithmic sophistication can compensate fpthssibility of groups of processors
or even individual processors becoming disconnected guhie computation. In general, an
adversary that is able to partition the network infmomponents will cause any task-performing
algorithm to have work?2(n - g) even if each group of processors performs no more than the
optimal number o (n) tasks. In the extreme case where all processors are isdtatedhe
beginning, the work of any algorithm i8(n - p).

Even given the pessimistic lower bounds on work for parigiole networks, it is desirable
to design and analyze efficient algorithmic approaches daatbe shown to be better than
the oblivious approach where each processor or each gratgrps all tasks. In Section 7.1
we extend the work of Dolev, Segala, and Shvartsman [32]. Y&egmt an asynchronous
Omni-Do algorithm, called AX, and we show that it is optimal in ternfsarst case task-

oriented work, under fragmentations and merges (as oppis#te algorithm in [32] that

145

146

deals only with fragmentations). The algorithm uses a groapmunication service [95] to
provide membership and communication services.

An Omni-Doalgorithm and its efficiency can only be partially understtirough its worst
case work analysis. This is because the resulting worstliased might depend on unusual
or extreme patterns of regroupings. In such cases, worstwasgk may not be the best way
to compare the efficiency of algorithms. Hence, in Secti@) in order to understand better
the practical implications of performing work in partitimiple settings, we initiate the study
of the Omni-Do problem as an on-line problem and we pursaeenpetitive analysi§105].

In particular, we study a simple randomized algorithm, ethlRS, and we compare its ex-
pected task-oriented work to the task-oriented work of dftlflee” algorithm that has full
knowledge of future changes in the communication medium.stdév that algorithm RS is
“optimally-task-oriented-work-competitive” under atrairy patterns of regroupings, including

but not limited to fragmentations and merges.

7.1 Worst Case Analysis of Omni-Do

In this section we present algorithm AX and we show that it@ksoptimal under adver-
sary Arps. We assume that initially the processors belong to a singlapy The algorithm
specification is done in terms tfput/Output Automataf Lynch and Tuttle [81, 80]. In Sec-
tion 7.1.1 we give a brief introduction to Input/Output Aatata. In Section 7.1.2 we present
the group communication service used for providing menttgi@nd communication services.

In Section 7.1.3 we defingew-graphghat we use in the analysis. In Section 7.1.4 we describe
algorithm AX and we show its correctness. Finally, in Satfiol.5 we present the complexity

analysis of the algorithm.

147

7.1.1 Input/Output Automata

The algorithm specification is done in terms of Input/Outautomata of Lynch and Tut-
tle [81, 80]. Each automaton is a state machine with statdstramsitions between states,
where actions are associated with sets of state transitidreye are input, output and internal
actions. A particular action is enabled if the precondsiaf that action are satisfied. Input
actions are always enabled. The statements given as effecexecuted as a program started
in the existing state and atomically producing the nexestatthe result of the transition.

An executior¢ of an Input/Output automatadut is a finite or infinite sequence of alternat-
ing states and actions (events)Afit starting with the initial state, i.e§, = sg, e1, 51, €, .. .,
where s;'s are statess(is the initial state) ana;’s are actions (events). We denote by
exec$Aut) the set of all executions iAut.

Consider an algorithrm that is specified in I/O automata and it solves a specific prabl
under an adversaryl. Then, following the notation established in Section 3.2X2c$A) =

E(A, A).

7.1.2 A Group Communication Service

We assume a group communication service (GCS) with certaipepties. The assump-
tions are basic, and they are provided by several group canwation systems and specifica-
tions [23]. The service maintains group membership infaiomeand it is used to communicate
information concerning the executed tasks within eachgré&ach processor, at each time, has
a unigueview of the membership of the group. The view includes a list offttacessors that
are members of the group. Views can change and may becoraeediffat different processors.

The GCS provides the following primitives:

148

e NEWVIEW(v);: informs processorof a new viewv = (id, set), whereid is the identifier
of the view andset is the set of processor identifiers in the group. WherEa/viEW (v);

primitive is invoked, we say that procesganstallsview v.

e GPMSND(Messagk: processol multicasts a message to the group members.

e GPMRCV(messagg: processot receives multicasts from other processors.

e GP1SND(message,destinatipn processor unicasts a message to another member of

the current group.

e GPIRCV(messagk: processol receives unicasts from another processor.

To distinguish between the messages sent in different seamts we assume that each
message sent by the application is tagged with a unique gegdentifier.

We assume the following safety properties on any exec\tiofian algorithm that uses GCSs:

1. A processor is always a member of its view ([23] Prop. 3fILewVIEW(v); occurs in

¢ theni € v.set.

2. The view identifiers of the views that each processor lisstae monotonically increas-
ing ([23] Prop.3.2). If evenNEWVIEW(v;); occurs ing before evenNEWVIEW (v2);,
thenwy.id < vs.id. This property implies that: (a) A processor does not ihthal same
view twice, and (b) if two processors install the same twovgiethey install these views

in the same order.

3. For every receive event, there exists a preceding sendt efethe same mes-
sage ([23] Prop. 4.1). IEPMRCV(m); (GPIRCV(m);) occurs ing, then there exists

GPMSND(m); (GPLSND(m, i);) earlier in executior.

149

4. Messages are not duplicated ([23] Prop. 4.2)GAMRCV(m1); (GPIRCV(m4);) and

GPMRCV(m2); (GP1IRCV(mz);) occur ing, thenmy # mao.

5. A message is delivered in the same view it was sent in ([28p.P4.3). If processor
i receives message in view v; and processof (it is possible that = j) sendsm in

view vq, thenv; = vs.

6. In the initial statesqy, all processors are in the initial viewy, such thatvg.set =

P ([23] Prop. 3.3 with [39, 88]).

We assume the following additional liveness propertiesronexecutiort of an algorithm

that uses GCSs (cf. [23] Section 10):

7. If a processoi sends a message in the viewwv, then for each processgrin v.set,

eitherj deliversm in v, or ¢ installs another view (ot crashes).

8. If a new view event occurs at any processiorview v (or ¢ crashes), then a view change

will eventually occur at all processors inset — {i}.

7.1.3 View-Graphs

We introduceview-graphghat represent view changes at processors in executiorthaind
are used to analyze properties of executions. View-graphsieected graphs (digraphs) that
are defined by the states and by fevviEW events of executions of algorithms that use group
communication services. Representing view changes aapfigrenables us to use common
graph analysis techniques to formally reason about theeptiep of executions. Our view-
graph approach to the analysis of executions is generalvarigklieve it can be used to study

other properties of group communication services and glgos for partitionable networks.

150

Consider an algorithm\ that uses a group communication service (GCS). We modify al-
gorithm A by introducing, for each processirthe history variablev; that keeps track of the
current view ati as follows: In the initial state, we set; to bewvg, the distinguished initial
view for all processors € P. In the effects of theuewviEw(v); action for processar, we in-
clude the assignment; := v. From this point on (and until the end of Section 7.1) we agsum
that algorithms are modified to include such history vagabM/e now defingiew-graphsby

specifying how a view-graph is induced by an execution oflgorghm.

Definition 7.1 Given an executiog of algorithmA, theview-graphl’s = (V, E, L) is defined

to be the labeled directed graph as follows:

1. LetV, be the set of all views that occur inNEWVIEW(v); events iné. The setl” of

nodes ofl’¢ is the setl; U {vo}. We callv the initial node of";.

2. The set of edge#’ of I'c is a subset oft” x V' determined as follows. For each

NEWVIEW (v); event in{ that occurs in state, the edg€s.cv;, v) isin E.

3. The edges iz are labeled by, : E — 27, such thatl(u,v) = {i : NEWVIEW(v);

occurs in state in £ such thats.cv; = u}.

Observe that the definition ensures that all edges are thbele

Example 7.1 Consider the following executiafi(we omit all events other tharewview and
any states that do not precedgewview events).

£ = 50, NEWVIEW(V1)p,, - - -, S1, NEWVIEW(V2)ps , - . . , S2, NEWVIEW(V3), - - -
53, NEWVIEW(U4)p; , - - - , S4, NEWVIEW (V1) s, - - -, S5, NEWVIEW(V4)pgs - - -

56, NEWVIEW(U4)pg., - - -

151

Letvy.set = {p1,ps}, vo.set = {pa2}, v3.set = {p4} andvy.set = {p1,p2, p3}. Additionally,
vo.set =P = {p1,p2, p3, pa}.

The view-graphl's = (V, E, L) is given in Figure 5. The initial node df; is vg. The
set of nodes o¥ of I'¢c is V' = V: U {vo} = {vo,v1,v2,v3,v4}. The set of edge®’ of I'¢
is E = {(vg,v1), (vo,v2), (vo,v3), (v1,v4), (v2,v4) }, Since for each of thesey, v,) the event
NEWVIEW(vg); Ooccurs in states; wheres;.cv; = vy, for some certain (by the definition of
the history variable). The labels of the edges &fey,vi) = {p1,p3}, L(vo,v2) = {p2},
L(vg,v3) = {pa}, L(v1,v4) = {p1,p3} and L(va,v4) = {p2}, since for eacty; € L(vy,vy)

the eventNewview(vy),, OCCuUrs in state, wheres;.cvy,, = vy.

Vo A
vo.set = {p1,p2,p3,pa}

L(vo,v1) = {p1,p3 L(vo,v3) = {pa} L(vo,vs) = {pa}

— _’Ul_ — U2_ — —] V3
| [vi.set = {p1,p3}] [va.set = {p2}] I [vs.set = {pa}]
|L(U17U4) = {plm A/L(UQ,U4) = {pQ} |
| N I
LB (vga.set = {p1,p2,p3} J _J

J/

Figure 5: Example of a view-graph

We now show certain properties of view-graphs. Given a gidpdnd a node of H, we

defineindegreév, H) (outdegreév, H)) to be the indegree (outdegree)woin H.
Lemma 7.1 For any executiod, indegre¢uvg, I'¢) = 0.

Proof: In the initial statesg, sg.cv is defined to bey for all processors ifP andvg.set = P.
Assume thaindegreguvy, I'c) > 0. By the construction of view-graphs, this implies that some

processot € P installsvy a second time. But this contradicts the property 2(a) of GCSJ

152

Lemma 7.2 Let £ be an execution anb¢|; be the projection of’¢ on the edges whose label

includesi, for somei € P. I'¢|; is an elementary path ang is the path’s source node.

Proof: Let executiort besg, e1, s1, es, Leté®) be the prefix of up to thek!” state. i.e.,
§W) = sg,e1,51,€2,..., 5. LetT'¥ be the view-graph that is induced §%"). Then define
F’g|z- to be the projection of’g on the edges whose label includedor some:; € P. For an
elementary path, we definer.sink to be its sink node.

We prove by induction o thatF’g!i is an elementary path, thﬁgi.sink = si.cv; and that
v is the path’s source node.

Basis k = 0. T'¢|; has only one vertexyy, and no edges¢(®) = s). Thus,T'g|;.sink =
sp-cv; = vg anduy is the source node of this path.

Inductive HypothesisAssume that/n < k, 1‘?|Z- is an elementary path, thE?|i.sink‘

= s,.cv; and that is the path’s source node.

Inductive Stepn = k + 1. For states;; we consider two cases:

Case 1 If evente,, is not aNEWVIEW event involving processar, then F’g“\i = Tgli-
Thus, by inductive hypothesif,’““\i is an elementary path and is its source node. From
statesy, to statesy_, 1, processof did not witness any new view. By the definition of the history
variable,sy.1.cv; = si.cv;. Thus,F?“h.sink = $k.CU; = Sk41-CU;.

Case 2If eventey 1 is aNEWVIEW(v); event that involves processgrthen by the construc-
tion of the view-graph, ;.cv;, v) is a new edge from node,.cv; to nodewv. By inductive
hypothesisr’g\i.sink = sy.cv;. Since our GCS does not allow the same view to be installed
twice (property 2(a))y # u for all u € F’g|z-. Thus,F’§+1|i is also an elementary path, with

its source node anﬂ’g“|i.sz’nk = v. From states;, to states; 1, processoi installs the new

153

view v. By the definition of the history variabley,1.cv; = v. Thus,F’E“\i.sink = Sk41.CU;.

This completes the proof. O

Theorem 7.3 Any view-graphl’, induced by any executiofof algorithm A is a connected

graph.

Proof: The result follows from Definition 7.1(2), from the obseieat that all edges of the

view-graph are labeled and from Lemma 7.2 O

We now demonstrate how we can use view-graphs to represamp fragmentations and

merges. We begin with fragmentations.

Definition 7.2 For a view-graphl’s = (V, E, L), afragmentation subgrapis a connected

labeled subgraplt/ = (Vi, Ex, L) of I'e such that:

1. H contains a unique nodesuch thatindegree(v, H) = 0; v is called theragmentation

nodeof H.
2. Vg = {v} UV}, whereV/, is defined to bdw : (v,w) € E}.
3. Exg ={(v,w) :w e V}}.
4. Ly is the restriction ofL on E'y.
5. Uwevé(w.set) = v.set.

6. Yu,w € V}; such thatu # w, u.set N w.set = (.

7. Yw € VY, Ly(v,w) = w.set.

We refer to allNEwvIEw events that collectively induce a fragmentation subgrayphaf

fragmentation node as afragmentation

154

Example 7.2 Area A in Figure 5 (solid box) shows the fragmentation supgrd =
(Via,Eg,Lyg) of T'e from Example 7.1. HereVy = {vg,v1,v2,v3}, Eg =
{(vo,v1), (vo,v2), (vo,v3)} and the labels are the labelsIof restricted onE'r. We can con-

firm that H is a fragmentation subgraph by examining the individuahgenf Definition 7.2.
We continue with the representation of group merges usiegy-graphs.

Definition 7.3 For a view-graphls = (V, E, L), amerge subgraplis a connected labeled
subgraphid = (Vg, Ey, Ly) of I'¢ such that:
1. H contains a unique nodesuch thabutdegreév, H) = 0 andindegreév, H) > 1; v

is called themerge nodef H.
2. Vg = {v} UV}, whereV/, is defined to bdw : (w,v) € E}.
3. Exg = {(w,v) :w e V] }.
4. Ly is the restriction ofL on E'y.
5. Uwevé(w.set) = v.set.
6. Yu,w € V}; such thatu # w, u.set Nw.set = (.

7. UweV,’{ Ly (w,v) = v.set.

We refer to alINEwVIEW events that collectively induce a merge subgraph for a merge

nodev as amerge

Note that a regrouping of a group to a groupgs such thatg;.set = go.set can be rep-
resented either as a fragmentation subgraph (fragmemtaticas a merge subgraph (merge).
Following the convention established in the definition ofedary. Ay, (Section 3.2.2), we
represent it as a fragmentation subgraph by requiringititeigreév, /) > 1 for any merge

nodev.

155

Example 7.3 Area B in Figure 5 (dashed box) of Example 7.1 shows the meunbgraph
H = (Vg,En, L) of T'¢, whereVy = {vi,v2,v3,v4}, Eg = {(v1,v4), (v2,v4)} and the
labels are the labels af; restricted onf;. We can verify this by examining all conditions of

Definition 7.3.

We now give some additional definitions and show that any gjeaph is a directed acyclic

graph (DAG).

Definition 7.4 Given a view-grapi’s we define:
(a) frag(I'¢) to be the set of all the distinct fragmentation nodeEdn

(b) mergT) to be the set of all the distinct merge node§'in

Definition 7.5 Given a view-grapf’e:
(a) if all of its non-terminal nodes are frag(T’¢), thenI’, is called afragmentation view-
graph

(b) if each of its non-terminal nodes is eitherfiag(I'¢), or it is an immediate ancestor of a

node which is irmergT’¢), thenI'¢ is called arfm view-graph

For I'c in the example in Figure 5 we havg € frag(I'¢) by Definition 7.4(a). Also,
vy € merg(L'¢) per Definition 7.4(b); additionally, the nodesandv, are immediate ancestors
of vy € merg(I'¢). By Definition 7.5(b),I'c is an fm view-graph. Observe thBt is a DAG.

This is true for all view-graphs:

Theorem 7.4 Any view-graphl's = (V, E, L) is a Directed Acyclic Graph (DAG).

Proof: Assume thatl'; is not a DAG. Thus, it contains at least one cycle. Let

((v1,v2)(v2,v3) ... (vk, v1)) be an elementary cycle d%. By the construction of view-graphs

156

(Definition 7.1(3)) and by the monotonicity property (praye2) of GCS,v;.id < v;1.id for

1 <i < kandvg.id < vy.id. But, by the transitivity of ¥<”, vy.id < wv.id, a contradictionD

Corollary 7.5 Any fm view graph is a DAG and any fragmentation view-grapla isooted

tree.

In the complexity analysis of our algorithm, we exploit thetfthat view graphs are DAGs.

In particular we use the following fact.

Fact 7.1 In any (non-emptyDAG, there is at least one vertex, such that all of its desceadant

have outdegree 0.

Remark 7.1 Consider an executiofiof algorithm A under adversaryl ;. In Section 3.2.2
we defined the fragmentation-numbg«(¢| 4,.,,) and merge-numbef,, (¢| 4,,,) of the adver-
sarial patterr¢| 4,,,, of execution{. We can also use view-graphs to define these quantities.
Namely, f,(§]4py,) = {w : NEWVIEW (w); oceurs ing A (v,w) € E A v € frag(T'¢)}|, and
Jm(&|apy) = [{v : NEWVIEW (v); occurs i A v € merg(I'¢)}|, wherel'¢ is the view-graph

of executionf.

7.1.4 Algorithm AX

We present Algorithm AX, that deals with fragmentations aretges and that relies on the
GCS as specified in Section 7.1.2, and prove its correctWesgive its complexity analysis

in Section 7.1.5.

157

7.1.4.1 Description of the Algorithm

Algorithm AX uses a coordinator approach within each groigew The high level idea of
the algorithm is that each processor performs (remaineRst according to a load balancing

rule, and a processor completes its computation when iidetaie results of all the tasks.

Task allocation. The setT’ of the initial tasks is known to all processors. During the-ex
cution each processarmaintains a local seb of tasks already done, a local sktof the
corresponding results, and the gebf processors in the current group. (The getnay be

an underestimate of the set of tasks done globally.) Theggsmrs allocate tasks based on the
shared knowledge of the processors:iabout the tasks done. For a processtetrank (i, G)

be the rank of in G when processor identifiers are sorted in ascending orderl/Ltze the
tasks inT" — D. For ataske in U, letrank(u, U) be the rank of: in U when task identifiers

are sorted in ascending order. Qo@ad balancing ruldfor each processarin G is that:

o if rank(i,G) < |U|, then processoi performs tasku such thatrank(u,U) =

rank(i, G);

e if rank(i,G) > |U|, then processardoes nothing.

Algorithm structure. The algorithm code is given in Figure 6 using Input/Outpubenata
notation [81]. The algorithm uses the group communicatemise to structure its computation
in terms ofroundsnumbered sequentially within each group view.

Initially all processors are members of the distinguishatiail view vy, such thaty.set =
P. Rounds numbered 1 correspond to the initial round eithehénoriginal group or in a
new group upon a regrouping as notified via f@wvvIEW event. If a regrouping occurs, the

processor receives the new set of members from the group ership service and starts the

158

Data types and identifiers:

7 : tasks

R : results

Result : T — R

Mes: messages

P : processor ids

G : group ids

views = G x 2F : views, selectorsd andset

States:

T € 27, the set ofn = |T'| tasks

D € 27, the set of done tasks, initially

R € 2R, the set of known results, initiallfy

G € 2P, current members, inity.set = P

X € 2Mes messages since lasEwVIEW,
initially @

Rnd € N, round number, initially 1

Phase € {send, receive, sleep, mcast, mrecv},
initially send

Transitions at ¢:

input NEWVIEW (v);
Effect:
G «— v.set
X —10
Rnd +— 1
Phase «— send
cv =

output GP1SND(m, j);
Precondition:
Coordinator(j)
Phase = send
m = (i, D, R, Rnd)
Effect:
MSG:= MSGU {m}
Phase < receive

input GPIRCV((j, Z, Q, round));
Effect:
X — XU{{y, 7, Q,round)}
R— RUQ
D—DuZ
if G={j:(j,* * Rnd) € X} then
Phase «— mcast

m € Mes
i,j €EP

v € views
Ze2T

Q€ 2®
round € N
results € 2R

Derived variables:
U =T — D, the set of remaining tasks
Coordinator (i) : Boolean,
if i = maxjec{j}
thentrue elsefalse
Nezt(U, G), next tasku, such that
rank(u,U) = rank(i, G)
History variables:
cv; € views (i € P),
initially Vi, cv; = vg.
MSG; € 2Mes (i € P),
initially Vi, MsG; = 0.

output GPMSND(m);
Precondition:
Coordinator (i)
m = (i, D, R, Rnd)
Phase = mcast
Effect:
MSG:= MSGU {m}
Phase «— mrecv

input GPMRCV({j, Z, Q, round));
Effect:
D—DuZ
R—RUQ
if D =T then
Phase — sleep
else
if rank(i, G) < |U|then
R — RU{Result(Next(U,G))}
D «— D U{Nezt(U,G)}
Rnd «— Rnd+1
Phase «— send

Figure 6: Algorithm AX.

159

first round of this view lEwVIEW action). At the beginning of each round, denoted by a round
numberRnd, processoi knowsG, the local setD of tasks already done, and the $&bf the
results. Since all processors kna@wy they “elect” the group coordinator to be the processor
which has the highest processor id (no communication isimedjsince the coordinator is
uniquely identified). In each round each processor repbrend R to the coordinator of7
(cP1lsND action). The coordinator receives and collates these teff®P1RCV action) and
sends the result to the group memberBNiSNDaction). Upon the receipt of the message from
the coordinator, processors update theimand R, and perform work according to the load
balancing rule ¢PMRCV action).

For generality, we assume that the messages may be delbseted GCS out of order. The
set of messages within the current view is saved in the lcadhble X. The saved messages
are also used to determine when all messages for a given hawedbeen received. Processing
continues until each member 6fknows all results (the processors entergleepstage).

The variables:v andMsG arehistory variableshat do not affect the algorithm, but play a

role in its analysis.

7.1.4.2 Correctness of the Algorithm

We now show the safety of algorithm AX. We first show that noggissor stops working

as long as it knows of any undone tasks.

Theorem 7.6 (Safety 1For all states of any execution of Algorithm AX it holds that

Vi€ P: D; #T = Phase # sleep.

Proof: The proof follows by examination of the code of the algorittand more specifically

from the code of the input acticBPMRCV((j, Z, Q, round));. O

160

Note that the implication in Theorem 7.6 cannot be replacedfl§ <). This is because
if D; = T, we may still havePhase # sleep. This is the case where processdrecomes a
member of a group in which the processors do not know all thelteof all the tasks.

Next we show that if some processor does not know the resatirak task, this is because
it does not know that this task has been performed (Theor8rhélow). We show this using
the history variables1sG; (i € P).

We definemsgG; to be a history variable that keeps on track all the messagedyg proces-
sori € Pinall GP1sND andGPMSNDevents of an execution of algorithAX . Formally, in the
effects of theGP1SND(m, j); andGPMSND(m); actions we include the assignmensg; :=

MSG; U {m}. Initially, MsG; = () for all i. We defineMSG to bel J;,.» MSG;.

Lemma 7.7 If m is a message received by processerP in aGP1RCV(m); Or GPMRCV(m);

event of an execution of algorithm AX, then ¢ MSG.

Proof: Property 3 of the GCS (Section 7.1.2) requires that for evecgive event there exists
a preceding send event of the same message (the GCS doeamtgeanessages). Hence,
m must have been sent by some procegsar P (possiblej =) in some earlier event of
the execution. Messages can be sent onlg®SND(m,7); or GPMSND(m); events. By

definition,m € MsG;. Hence;m € MSG. O

Theorem 7.8 (Safety 2for all states of any execution of Algorithm AX:
@VvteT, Vie P result(t) ¢ R, =t ¢ D;, and

(b)Vt € T,V(i, D', R', Rnd) € MSG : result(t) ¢ R' =t ¢ D'.

Proof: Let ¢ be an execution of AX and” be the prefix of¢ up to thek!" state, i.e.£* =

S0, €1, 81, €2,-..,Sk. The proof is done by induction dn

161

Base Casek = 0. In sg, Vi € P,D; = 0, R; =) and MSG = ().

Inductive HypothesigFor a states, such that < k, Vt € T, Vi € P : result(t) ¢ R, = t &

D;, andVt € T,V(i, D', R', Rnd) € MSG : result(t) ¢ R' =t ¢ D'.
Inductive Step/ = k + 1. Consider the following seven types of actions leading todtate

Sk+1:

1. e+1 = NEWVIEW(v');: The effect of this action does not affect the invariant. Bg t

inductive hypothesis, in statg . 1, the invariant holds.

2. ex+1 = GP1SND(m, j);: Clearly, the effect of this action does not affect part (Bjhe
invariant but it affects part (b). Sinee = (i, D;, R;, Rnd), by the inductive hypothesis
part (a), the assignment € MSG reestablishes part (b) of the invariant. Thus, in state

sk+1, the invariant is reestablished.

3. ex+1 = GPIRCV((j, Z, Q, round)),: Processoi updatesk; and D; according to? and
Z respectively. The action is atomic, i.e. Af is updated, the®; must be also updated.
By Lemma 7.7,(j, Z, Q,round) € MSG. Thus, by the inductive hypothesis part (b),
Vit € T :result(t) ¢ Z =t ¢ Q). From the fact thaD,; andR; are updated according to
Z and(@ respectively and by the inductive hypothesis part (a),atest, 1, the invariant

is reestablished.

4. e = GPMSND(m);: Clearly, the effect of this action does not affect part (Bjhe
invariant but it affects part (b). Sinee = (i, D;, R;, Rnd), by the inductive hypothesis
part (a), the assignment € MSG reestablishes part (b) of the invariant. Thus, in state

sk+1, the invariant is reestablished.

5. exy+1 = GPMRCV((j, Z, Q,round));: By Lemma7.7{j, Z,Q, round) € MSG. By the
inductive hypothesis part (byt € T : result(t) € Z = t ¢ Q. Processoi updatesi;

andD; according ta) andZ respectively. Sinc& and(@ have the required property, by

162

the inductive hypothesis part (a), the assignmeni®;tand R; reestablish the invariant.
In the case wher®),; == T, processot performs a task according to the load balancing
rule. Letu € T be this task. Because of the action atomicity, when procesgpdates
R; with result(u), it must also updat®; with . Hence, in state, 1, the invariant is

reestablished.
6. ex+1 = REQUEST,;: The effect of this action does not affect the invariant.
7. ex+1 = REPORTresults),,;: The effect of this action does not affect the invariant.

This completes the proof. O

7.1.5 Analysis of Algorithm AX

Per Definition 3.6, we express the task-oriented work coritglef algorithm AX un-
der adversarydpy asWa,.,, (n,p, f) = Wap,, (n,p, fr + fm), Where f, and f,,, is the
fragmentation-number and merge-number, respectivetiheoéxecution of algorithm AX that
maximizes work. Per Definition 3.7, the message complesiexpressed a¥l 4,.,, (n, p, f) =
Ma,.,,(n,p, fr + fm). Our analysis focuses on assessing the impact of the fragtien
numberf, and the merge-numbef,, on the work and message complexity, and in the rest of

this section for clarity we leVy, ;= stand forW,,,(n,p, fr + fm), and My, ¢ stand for

MAFM (n7p7 fr + fm)

7.1.5.1 Work Complexity

We begin the analysis of algorithm AX by first providing defimns and then proving

several lemmas that lead to the work complexity of the atgori

163

Definition 7.6 Let&# be any execution of algorithm AX in which all the process@arh the
results of all tasks and that includes a merge of graups. ., gx into the groupu, where the
processors ip undergo no further view changes. We defjttéo be the execution we derive by
removing the merge frorg#* as follows: (1) We remove all states and events that correbpm
the merge of groupg, . . ., gx into the groupu and all states and events for processors within
1. (2) We add the appropriate states and events such thatdbegsors in groupg, - . . , g

undergo no further view changes and perform any remainsigta

Definition 7.7 Let£¥ be any execution of algorithm AX in which all the process@arh the
results of all tasks and that includes a fragmentation ofgtioeip ¢ to the groupsy, - . ., gk
where the processors in these groups undergo no furtherchiewges. We defing” to be
the execution we derive by removing the fragmentation fegnas follows: (1) We remove all
states and events that correspond to the fragmentatiore grdupy to the groupsyy, .. ., g
and all states and events of the processors within the greups. , g.. (2) We add the ap-
propriate states and events such that the processors imdhp @ undergo no further view

changes and perform any remaining tasks.

Note: In Definitions 7.6 and 7.7, we claim that we can remove statdsesents from an exe-
cution and add some other states and events to it. This ifopsecause if the processors in
a single view installed that view and there are no furthewwibanges, then the algorithm will
continue making computation progress. So, if we removetaies and events corresponding

to a view change, then the algorithm can always proceed his ifiew change never occurred.

Lemma 7.9 In algorithm AX, for any vieww, including the initial view, if the group is not

subject to any regroupings, then the work required to cotagk tasks in the view is no more

164

thann — max;e, set{|D;|}, WwhereD; is the value of the state variabl2 of processor at the

start of its local round 1 in view.

Proof: In the first round, all the processors send messages to thdicator containingD;.

The coordinator computes;c,, s¢:{ D; } and broadcasts this result to the group members. Since
the group is not subject to any regroupings, the number &ktathat the processors need to
performis:t = n — | Ujey.set {D;}|. In €ach round of the computation, by the load balancing
rule, the members of the group perform distinct tasks anasiois performed more than once.
Therefore,t is the work performed in this group. On the other handx;c, st {|Di|} <

‘ Uicw.set {Dz}’1 thUS,t <n-— maXiEU.set{’Di‘}- O

In the following lemma, groupg, g1, - - - , gx. are defined as in Definition 7.6.

Lemma 7.10 Let&# be an execution of Algorithm AX as in Definition 7.6. Uét; be the work
performed by the algorithm in the executigh. Let W, be the work performed by Algorithm

AX in the executioré”. ThenW; < Wh.

Proof: For the executior¢, let W' be the work performed by the processors7n—
Ui<i<k(gi-set) — p.set. Observe that the work performed by the processorsPin-
Ui<i<k(gi-set) in the executioré” is equal tol¥’. The work that is performed by proces-
sorj in g;.set prior to theNEWVIEW(11); event ing#, is the same in both executions. Call this
work W ;. DefineW” = =% 5> Wi;. DefineW, = W'+ W". Thus,W, is the
same in both executiong” and&x. DefineWV, to be the work performed by all processors in
p.set in execution{#. For each processgrin g;.set, let D; be the value of the state variable
D just prior to theNEwVIEW(u); event ing#. For eachy;, define:d; = |, ¢, s Djl- Thus

there are at least — d; tasks that remain to be done in eagh

165

In executioné#, the processors in each grogpproceed and complete these remaining
tasks. This requires work at least— d;. Define this work as8¥,,. Thus,W,, > (n — d;).
In executioné”, groupsgs, . - ., g Merge into group:. The number of tasks that need to be
performed by the members ofis at mostn — d;, whered; = max;{d;} for some;. By
Lemma 7.9W,, < n — d;. Observe that:
Wi =Ws+ W, <Ws+n—d, §W5+Zk:(n—dz~) §W5+§:ng = W,

i=1 =1
as desired. O

In the following lemma, group®, g1, . . ., gx. are defined as in Definition 7.7.

Lemma 7.11 Let £¥ be an execution of Algorithm AX as in Definition 7.7. LBt; be the
work performed by the algorithm in the executig¢f. Let W, be the worked performed by
Algorithm AX in the executioré?. ThenW; < W, 4+ W3, whereWs is the work performed

by all processors i), ;< (g:-set) in the executiorg®.

Proof: Let W’ be the work performed by all processors?n— {J, ;. (g:-set) — p.set in
the executions¥?. Observe that the work performed by all processor®in- ¢.set in the
executioné? is equal tolW’. The work that is performed by processpin ¢.set prior to
the NEWVIEW(g;); event in{?, is the same in both executions. Call this wadtk, ;. Define
W =37 icoset We,j- DefineWy = W’ + W”. Thus, W is the same in both executions;
andév. DefineWV,, to be the work performed by all processorsgmet in executioné®. Let
wW" =W, — W". Observe that:
Wi =Ws+Ws < W+ Wa+W" =Wy + Wi,

as desired. O

Lemma7.12 Wy, .. < n-p.

166

Proof: By the construction of algorithm AX, when processors areatiie to exchange in-
formation about task execution due to regroupings, in thestivcase, each processor has to
perform alln tasks by itself. Since we can have at mpgtrocessors doing that the result

follows. O

Lemma 7.13 Wy, . < n- fr +n.

Proof: By induction on the number of views, denoted fyoccurring in an execution. For a
specific executiog, with ¢ views, letf,.(¢,) = f,@ be the fragmentation-number afid (¢,) =

f,Sf) the merge-number.
Base Casel = 0. Sincefﬁé) andf,(f) must also bd, the base case follows from Lemma 7.9.

Inductive HypothesisAssume that for all < k, qu) w<n- f,gg) + n.

r o sJm

Inductive StepNeed to show that fof = k£ + 1, Wf<k+1) fUED) <n- fﬁkﬂ) + n.
Consider a specific executiai,; with £ = k + 1. LetI'¢,, be the view-graph induced by
this execution. The view-graph has at least one vertex $attatl of its descendants are sinks

(Fact 7.1). Letv be such a vertex. We consider two cases:

Case 1Vertexv has a descendantthat corresponds to a merge in the execution. Therefore all
ancestors ofi in T'¢, ., have outdegree. Sincey is a sink vertex, the group that corresponds
to p performs all the remaining (if any) tasks and does not perfany additional work. Let

& = {ZH (per Definition 7.6) be an execution in which this merge dagnocur. In execution

¢, the number of views ig. Also, f5+Y = %) and D — £® 4 1 By inductive
hypothesis)/vfr(k>7fr<f) <n- fT(k) +n. By Lemma 7.10, the work performed in execut©n 1,

is no worse than the work performed in executign Hence, the total work complexity is:

Wfﬁkﬁ-l)’fy(rllc-&-l) < W (0 £() < nm- fT(k) +n =n- f£k+1) +n.

167

Case 2 Vertexv has no descendants that correspond to a merge in the execttierefore,
the group that corresponds #amust fragment, say intg groups. These groups correspond to
sink vertices inl’¢, _,, thus they perform all the remaining (if any) tasks and dopeform
any additional work. Let; 1_, = E,ZH (per Definition 7.7) be an execution in which the
fragmentation does not occur. In executian_,, the number of views i8+1—¢q < k. Also,
flktl=a) _ plktD) o ang fiE+H1=9) — p(BHD gyinductive hypothesisy i1-g ;ki1-o <

n - f£k+1fq)

+ n. From Lemma 7.9, the work performed in each new group caugetieh
fragmentation is no more than Let IV, be the total work performed in ajl groups. Thus,
W, < gqn. By Lemma 7.11, the work performed in executi§n 1, is no worse than the work

performed in executiot 1, and the work performed in ajl groups. Hence, the total work

complexity is:
Win grn € Wigeron g W < 0 S50 n g Wo
= o (fV =g 4t Wy < on (FV =) 4 ntan
= n (kH) —qn+n+qn = n-f,gkﬂ)—i—n.
This completes the inductive proof. O

Note that it is not difficult to see that if > p, then there exists an adversarial strategy
that can cause an@mni-Do algorithm to have task-oriented wotR(n - p) (the adversary
can arrange so that all processors work in isolation for titigeecomputation). Similarly, if
f < p, then there exists an adversarial strategy that can cays@rani-Do algorithm to have
task-oriented work?2(n - f + n) (the adversary partitions the processorsfigroups at the
beginning of the computation, and then lets fhgroups to run in isolation for the remainder
of the computation). Therefor€)(min{n - f +n,n-p}) is a lower bound on the task-oriented

work for Omni-Do. We now show that algorithm AX igptimalunder adversary z ;.

168

Theorem 7.14 Algorithm AX solves the asynchronouBmni-Dog4,.,, (n, p, f) problem with

task-oriented work
Wfva"L < mln{n : f?‘ +n, n- p}

Proof: It follows directly from Lemmas 7.12 and 7.13. O

Observe thatVy, ;, does not depend ofi,, (this of course does not imply that for any
given execution, the work does not depend on merges). Thieradition substantiates the

intuition that merges lead to a more efficient computation.

7.1.5.2 Message Complexity
We start by showing several lemmas that lead to the messagaedty of the algorithm.

Lemma 7.15 For algorithm AX, in any viewy, including the initial view, if the group is not
subject to any regroupings, and for each processar v.set, D; is the value of the state
variable D at the start of its local round 1 in view; then the number of messagksthat are

sent until all tasks are completeddg: — d) < M < 2(¢ + n — d) whereq = |v.set|, and
d= | UiEU.set DZ|

Proof. By the load balancing rule, the algorithm neé@cs;ﬁl rounds to complete all tasks. In
each round each processor sends one message to the cawrdivdhthe coordinator responds
with a single message to each processor. This; 2q - ([”%d}). Using the properties of the

ceiling, we get:2(n — d) < M < 2(q+n — d). O
In the following lemma, groupsg, ¢1, - . . , g5 are defined as in Definition 7.6.

Lemma 7.16 Let £# be an execution of Algorithm AX as in Definition 7.6. Léf; be the
message cost of the algorithm in the executjéin Let M, be the message cost of Algorithm

AX in the executiont*. ThenM; < M + 2p.

169

Proof: For the executiort”, let M’ be the number of messages sent by the processors in
P — Ulgigk(gi.set) — u.set. Observe that the number of messages sent by the processors i
P — U, <i<i(gi-set) in the executiorg” is equal toM".

The number of messages sent by any procegsarg;.set prior to the NEWVIEW(p1)
event in&*, is the same in both executions. Call this message &fst Define M =
Sk > jegiset Mij. DefineMy = M’ + M". Thus,M; is the same in both executiorg;
andgér, Define M, to be the number of messages sent by all processqrssé in execution
&*. For each processgrin g;.set, let D; be the value of the state variabl2just prior to the

NEWVIEW(pu); event in£#. For eachy;, defined; = ||J Dj|. Thus there are at least

Jj€g;.set
n — d; tasks that remain to be done in eagh

In executioné#, the processors in each grogpproceed and complete these remaining
tasks. LetM/,, be the number of messages sent by all processagyssiet in order to complete
the remaining tasks. By Lemma 7.18[,, > 2(n — d;). In execution{”, groupsgi, . . . , gk
merge into group:. The number of tasks that need to be performed by the membersat
mostn — d;, whered; = max;{d;} for somej. By Lemma 7.15)M,, < 2(q + n — d;), where
q = |p.set|. Observe that:

My = M.+ M, < Ms+2(q+n—dj)
< My+20+2% ((n—di) < M+2q+ 5 M,

= My+2q < Mo+ 2p,

as desired. O

In the following lemma, group$, g1, . . ., gx. are defined as in Definition 7.7.

Lemma 7.17 Let £¥ be an execution of Algorithm AX as in Definition 7.7. L&f; be the

message cost of the algorithm in the executién Let M, be the message cost of Algorithm

170

AX in the executiort¥. ThenM; < M, + Ms, whereMs5 is the number of messages sent by

all processors it), ;. (g:.set) in the executiorg”.

Proof: For the executiort?, let M’ be the number of messages sent by the processors in
P — Ulgigk(gi.set) — p.set. Observe that the number of messages sent by the processors i
P — p.set in the executiorg? is equal toM’. The number of messages sent by procegsor
p.set prior to theNEWVIEW(g;); eventiné®, is the same in both executions. Call this message
costM, ;. DefineM” = 3", ... My ;. DefineM, = M’ + M". Thus,M; is the same in
both executionst? and&?. DefinelM,, to be the number of messages sent by all processors in
p.set in executiont®. Let M = M,, — M". Observe that:

My = Mg+ Mz < Mg+ Ms+ M" = My + M,

as desired O

We now give the message complexity of algorithm AX.

Theorem 7.18 Algorithm AX solves the asynchronou8mni-Do4,,,, (n, p, f) problem with

message complexity

Proof: By induction on the number of views, denoted fyccurring in any execution. For a
specific executiog, with ¢ views, letf,.(¢,) = f,gg) be the fragmentation-number afigd(&,) =

f,Sf) be the merge-number.
Base Casel = 0. Sincefﬁé) andf,(f) must also bé, the base case follows from Lemma 7.15.

Inductive HypothesisAssume that for alt < k, /\/lf@) 0 < 4(n- f,@ +n+p- f,(f)).

Inductive StepNeed to show that fof = k+1, M ,11) vy < 4(n- T(k“)+n+p-f7(f“)).

Consider a specific executiai,; with £ = k + 1. LetI'¢, , be the view-graph induced by

171

this execution. The view-graph has at least one vertex fwathatl of its descendants are sinks

(Fact 7.1). Letv be such a vertex. We consider two cases:

Case 1Vertexv has a descendaptthat corresponds to a merge in the execution. Therefore all
ancestors of. in T'¢, ,, have outdegree. Sincey is a sink vertex, the group that corresponds
to 1 performs all the remaining (if any) tasks and no further rages are sent. L&}, = 5;; 1

(per Definition 7.6) be an execution in which this merge doesatcur. In executiorty,

the number of new views is. Also, f5 = £ and f& — B 4 1 By inductive

w < 4(n - ®) L n +p- fm). Hence, the message complexity, using

hypothesis,M oy

Lemma 7.16 is:
Myrn s < My g0 + 2
<4n-fP 4 n4p-fE) +2p
=d4(n- f 4 ntp- 5D —p) +2p
= dnfF) 4+ dn 4 dpfETD —ap 4+ 2p

<A(n- [+ntpe £ITY).

Case 2 Vertexv has no descendants that correspond to a merge in the execttierefore,
the group that corresponds tomust fragment, say intg groups. These groups correspond
to sink vertices inl'¢, ,,, thus they perform all of the remaining (if any) tasks and @b n
send any additional messages. Kgt,_, = {,ZH (per Definition 7.7) be an execution in
which the fragmentation does not occur. In the execugjon _,, the number of new views is
kt1l—q < k. Also, fF179 — $*+0 g and fF+1-9 — £k+D By inductive hypothesis,

(k‘+1fq)

M r1-g) er1—q) < 4(n f("”1 2). From Lemma 7.15, the message cost

m

in each new group caused by a fragmentation is no more4hahet M, be the total number

of messages sent in allgroups. Thus)M,, < 4gn. By Lemma 7.17, the number of messages

172

sent in executiogy; 1, is less than the number of messages sent in execgtion , and the
number of messages sent in@troups. Hence, the message complexity is:
Mfﬁk“),fr(,’f“) < Mfﬁml—q),f;fﬂ—q) + M,
<An - [0 ppgp. fEFI0) 4 A,
=4(n- fFY —gntn+p- fED) + M,
< 4nf7§k+1) —4qn + 4n + 4pf7(f+1) + 4qn

=4(n- fFY 4 n+p-),

This completes the proof. O

7.1.5.3 Analysis Under AdversaryAr

Algorithm AX solves theOmni-Do problem also under patterns of only fragmentations.
Observe thaff = f, and f,,, = 0 for adversary4r. The following corollary is derived from

Theorems 7.14 and 7.18.

Corollary 7.19 Algorithm AX solves the asynchronouSmni-Doy,. (n,p, f) problem with
task-oriented work complexity’ 4. (n, p, f) < min{n- f+n, n-p} and message complexity

May(n,p, f) <4(n- f+n).

The adversary considered in [32] was not allowed to “fragfh@roup into a single group
with the same membership. Such fragmentation is allowedubpydefinition of Ax. In order
to compare our results with the results of [32], we define aemestricted adversand’. that
is constrained to fragmenting each group into at Ieagtoups. Clearly4r is more powerful

than.A4’., and from Corollary 7.19 we have the following.

Corollary 7.20 Algorithm AX solves the asynchronOL@mni-DoA% (n,p, f) problem with

W, (n,p,f) = O(n- f +n) andM_y, (n,p, f) = O(n- f +n).

173

In the rest of this section we deal with adversaty.. Our definition of the fragmentation-
numberf is slightly different from the definition of the fragmentati-numberf’ in [32]. When
a group fragments inté groups,f is defined to be equal tb, but f’ is defined to be equal to

k — 1. The next Lemma relatesand /.
Lemma7.21 f' < f < 2f".

Proof: Assume thak fragmentations occur. Enumerate the fragmentationsrarityt Let the
number of the new views in th&" fragmentation bef;. By the definition off/, f/ = f; — 1.
Thus, f/+1 = f; which implies thatf; < f/+ f/ = 2f/. Butf/ = Y% | flandf = 3% | f..
Hence,f < 2f'. Now observe thatf’ = >°F f/ =% (fi—-1)=SF fi ~k=f—Fk

Thereforef > f'. O

In [32] the work is counted in terms of the rounds executedhwy grocessors. In our
analysis we count only the number of task executions (inetucedundancies). However in our
algorithm, for as long as any tasks remain undone in a giveamrthe processors perform the
tasks in rounds, except for the last round. Therefore therdifice in work complexity for these
two algorithms is at mosf - n. Thus the different definitions of, ' and work are subsumed
in the big-oh analysis, and without substantial variatiorthie constants. On the other hand,
the message complexity of our algorithm, as shown in Camolfa20, is substantially better

than the at least quadratic message complexity of the #hgofrom [32].

174

7.2 Competitive Analysis of Omni-Do

Given that no algorithm is able to maintain low total work hretpresence of network
reconfigurations, we pursue competitive analysis of@neni-Do problem. We consider asyn-
chronous message-passing processors under arbitrapupiggs; in particular, we consider
the Omni-Do problem under adversatiqr (presented in Section 3.2.2).

Processors in the same group can share their knowledge gflemu tasks and, while
they remain connected, avoid doing redundant work. Thdeaigé is to avoid redundant work
“globally”, in the sense that processors should be perfogntiisks with anticipation of future
changes in the network topology. An optimal algorithm, withi knowledge of the future
regroupings, can schedule the execution of the tasks ingradip in such a way that the overall
task-oriented work is the smallest possible, given thaqaar sequence of regroupings.

As an example, consider the scenario watiprocessors which, starting from isolation,
are permitted to proceed synchronously until each has aetph/2 tasks; at this point an
adversary chooses a pair of processors to merge into a dtasigasy to show that iiv,, Ny,
and N3 are subsets dh] of sizen/2, then there is a paiiV;, N;) (wherei # j) so that| V; N
N;| > n/6: in particular, forany scheduling algorithm, there is a pair of processors which, i
merged at this point, will have /6 duplicated tasks; this pair alone must then expenren /6
task-oriented work to complete alltasks. The optimal off-line algorithm that schedules tasks
with full knowledge of future merges, of course, accruesyonltask-oriented work for the
merged pair, as it can arrange for zero overlap. Furthernifdre adversary partitions the two
merged processors immediately after the merge (after mtpthe processors to exchanged

information about task executions), then the task-orgemterk performed by the merged and

175

then partitioned pair is + n/3; the task-oriented work performed by the optimal algorithm
remains unchanged, since it terminates at the merge.

To focus on scheduling issues, we assume that processorsiitgla group work as a
single virtual unit; indeed, we treat them as a single asyoraius processor. To this respect,
we assume that communication within groups is instantaseod reliable. We note that the
above assumptions can be approximated by group commuricsdrvices [95], however the
task-oriented work o©Omni-Do algorithms can be negatively affected in large scale widera
networks [64].

In this section we formulate a simple randomized algoritbailed algorithm RS, and we
compare its expected task-oriented work to the task-aribniork of an optimal off-line algo-
rithm which may schedule tasks with full knowledge of futegroupings. In Section 7.2.1 we
formally define the notion of competitiveness and we pretamiinology borrowed from set
theory and graph theory that we use in the remainder sectinrection 7.2.2 we present al-
gorithm RS and in Section 7.2.3 its analysis. Finally, intec7.2.4 we present lower bounds

on the competitiveness @mni-Do algorithms that show the optimality of algorithm RS.

7.2.1 Preliminaries

As we already mentioned, we consider adverségy,. That is, we consider computational
topologiesC' that can be expressed ag8-DAG (see Section 3.2.2). For the purpose of
the analysis of our randomized algorithm (Section 7.2.38) tanprovide lower bound results
(Section 7.2.4), we require that adversaty r also determines the number of tasks that each
group is allowed to complete, before it is involved in anothegrouping. To this respect,

we annotate the number of tasks that the adversary allowado group to perform on the

176

(p)-DAGs. In particular, we augment a givép)-DAG C = (V, E) with a weight function
h : V — N, so thath(v), v € V, is the number of tasks allowed by the adversary for the
processors in group(v) to performed before the next regrouping (recall thas a labeling
function fromV to 2[?1 \ {)} — see “Adversarydgx” in Section 3.2.2). Functioh respects
the following two conditions: (&Yv € V, h(v) < n, and (b) for any maximal patfv,, ..., vy)
inC, > h(v;) > n. We refer to each “annotatedp)-DAG as a(p, n)-DAG. Note that a given
(p)-DAG may derive several differerip, n)-DAGs.

To facilitate for a better understanding of the materiatsspnted in the remainder subsec-

tions, we give the definition of g, n)-DAG along with an example of &, n)-DAG.

Definition 7.8 A (p,n)-DAG is a directed acyclic grapfl = (V, E') augmented with a weight

functionh : V — N and a labelingy : V — 2P\ {§} so that:

1. Vv € V, h(v) < n and for any maximal patfwy,...,vx) in C, > h(v;) > n. (This

guarantees that any algorithm terminates during the caatipatdescribed by the DAG.)

2. v possesses the following “initial conditiongp] = U v(v).

v: indegree(v)=0

3. ~ respects the following “conservation law”: there is a fuoctp : £ — 207 \ {0} so

that for eachv € V with indegree(v) > 0, vy(v) = U ¢((u,v)),
(u,v)EE

and for eachv € V with outdegree(v) > 0, vy(v) = U o ((v,u)).
(vu)eEE

HereU denotes disjoint union. Finally, for two verticasv € V, we writeu < v if there is a

directed path from. to v; we then writeu < v if u < v andu andv are distinct.

Example 7.4 Consider the12, n)-DAG shown on Figure 7. Here we haye = {p1}, go =

{p2,p3,p4}, 93 = {p5, 06}, 92 = {p7}, 95 = {ps, P9, P10, P11, P12}, 96 = {P1,P2,P3, P41, D6},

177

g7 = {ps,p10}, g8 = {po, P11, P12}, 99 = {p1,p2,P3, P4, 06,8, P10}, 910 = {P5, P11}, and

g11 = {p9,p12}-

Figure 7: An example of &12, n)-DAG.

This computation template models all (asynchronous) caatipms with the following
behavior: () The processors in grougs andg, and processopg of group g are regrouped
during some regrouping to form group. Processops of group g3 becomes a member of
groupgio during the same regrouping (see below). Prior to this rqgnmmy processop; (the
singleton groupy;) has performed exactly tasks, the processors i have cooperatively
performed exacthy tasks and the processors gn have cooperatively performed exacy
tasks (assuming that > 8). (ii) Groupgs is partitioned during some regrouping into two new
groups,g7 andgs. Prior to this regrouping, the processorgjirhave performed exactBtasks.
(iii) Groupsgg andg; merge during some regrouping and form gragp Prior to this merge,
the processors igg have performed exactly tasks (counting only the ones performed after
the formation ofgs and assuming that there are at leatisks remaining to be done) and the
processors ig; have performed exactlytasks. (v) The processors in group and processor
ps Of group g3 are regrouped during some regrouping into grogfasand g;1. Prior to this

regrouping, the processors in grogiphave performed exactlytasks (assuming that there are

178

at leasts tasks remaining, otherwise they would have performed thmanging tasks).) The
processors imy, g19, andgy; run until completion with no further regroupingszi{ Processor

p7 (the singleton group,) runs in isolation for the entire computation.

Before we formally define the notion of competitiveness, mteoiduce some terminology.

Let D be a deterministic algorithm fadmni-Do and C' a computation template. We let
Wp(C) denote the task-oriented work expended by algorithm D, evhegroupings are deter-
mined according to the computation templéte That is, if¢ € £(D, Agr) is the resulting
execution of algorithm D under computation templéte then W (C) is the task-oriented
work of executior¢. We let OPT denote the optimal (off-line) algorithm. Spexifiy, for each
C we defineWopt(C) = minp Wp(C).

We treat randomized algorithms as distributions over datastic algorithms; for a set
and a family of deterministic algorithmi, | (€ Z} we let R= R({D. | ¢ € Z}) denote
the randomized algorithm wheteis selected uniformly at random frof and scheduling is
done according td,. For a real-valued random variahle, we letE[X] denote its expected

value. Then,

Definition 7.9 Let « be a real valued function defined on the set of alln)-DAGs (for all p
andn). A randomized algorithm R ia-competitive if for all computation template§’,
E[Wp,(C)] < a(C)Wopt(C),

this expectation being taken over uniform choice & Z.

Note that usuallyy is fixed for all inputs; we shall see that this would be mealeisgin our
model. Presently, we use a functiarthat depends on a certain parameter (see Definition 7.13)

of the graph structure af.

179

We conclude this subsection with some terminology that veeinishe remainder of Sec-

tion 7.2.

Definition 7.10 A partially ordered sebr posetis a pair(P, <) whereP is a set ank is a
binary relation onP for which (i) for all z € P, z < z, (ii) if x < y andy < z, thenz = y,
and(iii) if x <yandy < z, thenz < z. For a posetP, <) we overload the symbd?, letting

it denote both the set and the poset.

Definition 7.11 Let P be a poset. We say that two elementandy of P arecomparableif

x < yory < x; otherwiser andy areincomparable A chainis a subset o’ such that any
two elements of this subset are comparable.afitichainis a subset of? such that any two
distinct elements of this subset are incomparable. Wiadkh of P, denotedw (P), is the size

of the largest antichain aP.

Associated with any directed acyclic graph (DAG)= (V, E) is the naturalvertex poset
(V, <) whereu < v if and only if there is a directed path fromto v. Then thewidth of C,

denotedw (C), is the width of the posgtl/, <).

Definition 7.12 Given a DAGC = (V, E) and a vertex € V, we define thgredecessor
graph atv, denotedPc(v), to be the subgraph @f that is formed by the union of all paths in
C terminating aw. Likewise, thesuccessor graph at, denotedS¢(v), is the subgraph of

that is formed by the union of all the pathsGhoriginating atv.

In Section 3.2.2 we informally defined the notion of tmmputation widthof a computa-

tion template (that is, of g, n)-DAG)). We now give its formal definition.

Definition 7.13 Thecomputation widthof a DAG C = (V, E), denotedcw (C'), is defined as

cw(C) = max w(Sc(v)).

180

Note that the processors that comprise a group formed daric@mputation templat€’
may be involved in many different groups at later stages @fttbhmputation, but no more than

cw(C) of these groups can be computing in ignorance of each othextgess.

Example 7.5 In the (12, n)-DAG of Figure 7, the maximum width among all successor gsaph
is 3: w(S((g5,2))) = 3. Therefore, the computation width of this DAG 3s Note that
the width of the DAG is6 (nodes(g1,5), (92, 3), (g3, 8), (94, 1), (g7,5) and(gs,6) form an

antichain of maximum size).

7.2.2 Description of Algorithm RS

We consider the natural randomized algorithm RS where aepsmr (or group) with
knowledge that the tasksin a setK' C [n] have been completed selects to next complete
a task at random from the spt] \ K. (Recall that we treat randomized alorithms as distri-
butions over deterministic algorithms.) More formallyt 1& = (74, ..., 7,) be ap-tuple of
permutations, where eaeah is a permutation ofn]. We describe a deterministic algorithm;D

so that
RS=R({Dn | I € (S,)P});

hereS,, is the collection of permutations dn]. Let G be a group of processors and= G
the processor it with the lowest processor identifier. Then the determiniatgorithm Oy
specifies that the grou@@, should it know that the tasks i C [n] have been completed, next

completes the first task in the sequemgél), ..., m,(n) which is not ink'.

7.2.3 Analysis of Algorithm RS

We now analyze the competitive ratio (in terms of task-dadrwork) of algorithm RS.

For algorithm RS subjected to a computation templ@tere write Wrs(C') = E [Wrs(C)],

181

this expectation taken over the random choices of the algoriwhereC' can be inferred from
context, we simply writdVrs andWopr.

We first recall Dilworth’s Lemma [29], a duality theorem foogets:

Lemma 7.22 [29] The width of a poseP is equal to the minimum number of chains needed

to coverP. (A family of nonempty subsets of a s@tis said tocover(if their union is@.)

We will also use a generalized degree-counting argument:

Lemma 7.23 Let G = (U,V, E) be an undirected bipartite graph with no isolated vertices
andh : V — R a non-negative weight function off. For a vertexv, let I'(v) denote
the vertices adjacent to. Suppose that for somB; > 0 and for each vertex. € U we

havezver(u) h(v) < Bj and that for som&3, > 0 and for each vertex € V we have

2wy P(u) _ By

h(u) > By, then =¥~ — £ > =

ZuEF(U) ()— 2 Zvev h(U) fetl Bl
Proof: We compute the quantity (u,0)EE h(u)h(v) by expanding according to each side of

the bipartition:

B b= (h(u)- 3 h(v)) =3 hwhw)=3" (h(v)- 3 h(u)) >By > h(v).

uelU uelU vel'(u) (u,v)eE veV u€el(v) veV

h B .
As B; > 0andy, h(v) > By > 0, we conclude thatM > 22 asdesired. O
ZUEV h(U) Bl

We now establish an upper bound on the competitive ratioematgorithm RS.
Theorem 7.24 Algorithm RS is(1 + cw(C') /e)-competitive for anyp, n)-DAG C = (V, E).

Proof: Let C be a(p, n)-DAG; recall that associated withl are the two function : V' — N
andy : V. — 2PI\ {0}. For a subgrapi®’ = (V', E’) of C, we letH(C") = 3, h(v).

Recall thatPo(v) and S¢(v) denote the predecessor and successor grapfisavfu. Then,

182

we say that a vertex € V is saturatedif H(Pc(v)) < n; otherwise,v is unsaturated
Note that ifv is saturated, then the grougv) must completei(v) tasksregardless of the
scheduling algorithm usedAlong these same lines, if is an unsaturated vertex for which
n > > . ., h(u), the groupy(v) must complete at leashax(h(v),n — >, h(u)) tasks
under any scheduling algorithm. As these portiong”oivhich correspond to computation
which must be performed by any algorithm will play a spect@érin the analysis, it will be
convenient for us to rearrange the DAG so that all such wopears on saturated vertices. To
achieve this, note that if is an unsaturated vertex for whi¢h,, _, 2(u) < n, we may replace
v with a pair of verticesp; andv,, where all edges directed intoare redirected te;,, all
edges directed out efare changed to originate at, the edggvs, v,) is added taF, andh is

redefined so that

h(vs) =n—> h(u) and h(vy) = h(v) — h(v,).

u<v

Note that the grapb” obtained by altering’' in this way corresponds to the same computation,
in the sense thdt/p(C) = Wp(C’) for any algorithm D. For the remainder of the proof we
will assume that this alteration has been made at everyamiexertex, so that the grapti

satisfies the condition
v unsaturated=> > _ h(u) > n. 2)

u<v

Finally, for a vertexv, we letT, be the random variable equal to the number of tasks that
RS completes at vertex Note that ifv is saturated, theff,, = h(v). LetS andl/ denote
the sets of saturated and unsaturated vertices, resggctBa/en the above definitions, we

immediately have

WopT > Z h(s)
seS
and, by linearity of expectation,

Wrs = E[Z T,] =3 " h(s) + Y EIT] < Wopr+ > E[T,]. 3)

seS ueU uel

183

Our goal is to conclude that for some appropridte

E ZTu

uel

Sﬁ'zh(s)ﬁﬂ'WOPT

seS

and hence that RS is+ 5 competitive. We will obtain such a bound by applying Lemni287.
to an appropriate bipartite graph, constructed next.

GivenC = (V, E) construct the (undirected) bipartite graph= (S,U, E¢) whereEg =
{(s,u) | s < u}. Asin Lemma 7.23, for a vertex, we letI'(v) denote the set of vertices
adjacent tov. Now assign weights to the vertices Gfaccording to the rulé*(v) = E[T,,].

Note that fors € S, h*(s) = h(s) and hence by condition (2) above, we immediately have the

bound
Vuel, Y h*(s 4
sel(u)
We now show that's € S,
3 h(u) < ew(C) - g (5)
uel(s)

Before proceeding to establish this bound, note that emumt{4) and (5), together with

Lemma 7.23 imply that
Was(@) < S n(e)+ St < (14 D)) < (14 MDY iwger(c),

seS ueU seS

as desired.
Returning now to equation (5), lete S be a saturated vertex and consider the successor
graph (ofC) ats, Sc(s). By Lemma 7.22 (Dilworth’s Lemma), there exist= w(Sc(s)) <
w(C) paths inS¢(s), P1, Py, ... P, so that their union coverSc(s). Let X; be the random
variable whose value is the number of tasks performed by R@@portion of the path;
consisting of unsaturated vertices. Note that iE V is unsaturated and < v, thenwv is
unsaturated and hence, for each pBththere is a first unsaturated verte%after which every

vertex of P; is unsaturated. Note now that for a fixed individual taslkconditioned upon the

184

event thatr is not yet complete, the probability thatis not chosen by RS for completion at
a given selection point i (u?) is no more thar{1 — 1/n). Let L; be the random variable
whose value is the set of tasks left incomplete by RS at thedtion of the groupy(u?). As

uZO is unsaturatedy h(v) > n by condition (2) and hence, for each

v<u?

Prire Li] < (1—-1/n)" <1/e.

As there are a total of tasks,
E[|L;]] < n/e.

Of course, since RS completes a new task at each &teg, |L;| so thatE[X;] < n/e and by

the linearity of expectation
E[ZXZ} <w-nfe.
%

Now every unsaturated vertex i (s) appears in somé; and hence

Z h*(u) < E[ZXZ] <wn/e <cw(C)-nje,

uel(s)

as desired. O

7.2.4 Lower Bounds

We now show that the competitive ratio achieved by algorifR&is tight. We begin with
a lower bound fordeterministicalgorithms. This is then applied to give a lower bound for

randomized algorithms in Corollary 7.26.

Theorem 7.25Let ¢ : N — R and D be a deterministic algorithm f&@mni-Do so that
D is a(cw(-))-competitive (that is D isx-competitive, for a functionx = a o cw)). Then

a(c) > 1+ c/e.

Proof: Fix £ € N. Consider the case when= p = g > k andn mod k = 0, g being
the number of initial groups. We consider a computation tatef’c determined by a tuple

G = (G1,...,Gy) Where eactG; C [n] is a set of sizés and|J; G; = [n]. Initially, the

185

computation templat€'c has the processors synchronously proceed until each hgdetech
n/k tasks; at this point, the processorginare merged and allowed to exchange information
about task executions. Ea€h is then immediately partitioned intogroups. Note that the off-
line optimal algorithm accrues exactlyf /k work for this computation template (it terminates
prior to the partitions of thé:;).

We will show that for any D, there is a selection of tigso that

Wo(Ca) > n2/k |1+ ¢(1 — %)k —o()]

and hence that(c) > 1 + ¢/e. Consider the behavior of D when tiieis selected at random,
uniformly among all such tuples. L&?, C [n] be the subset of/k tasks completed by
processor before the merges take place; these sets are determinee laygtbrithm D. We

begin by bounding

E Pl .
El|U -
1€G1
To this end, consider an experiment where we setesetsQq, ..., Q, €eachQ); selected

independently and uniformly from the sgP; }. Now, for a specific task, letp, = Prg, [T &
Q1], so thatPrg, [T € U, Qi) = p*. As theQ; are selected independently,

E[ln - Uad] = ok
Observe now that Z '

Z(l —pr) = ng[T €Q1] = %‘%HQlH =n/k

and hence__p. = n(1 — 1/k). As the functionz — z* is convex on[0,c), >°_pF is
minimized when the.- are equal and we must have
1\ *
_ Al >n - N
%%[H”] LZJQZ‘] =" (1 k)
Now observe that, conditioned on tldg being distinct, the distribution of@1, ..., Q%) is

identical to that of Py, . .. ’Pgi) where the random variabt&; = {g{,..., g} }. Considering

186

thatPr[3i # j,Q; = Q] < k*/n, we have

[UQZ}_(l——) [n—|UP|]+1 a

i€Gy

and hence as — oo we see that the expected number of tasks remaining for thhosegsors

in groupGy is
E |:n - “U Pq > (1 — 1/k)F — o(1).

Of course, the distribution of ead; is the same, so that

{%@UP) [1—o(1](%)n(l—%)k

i=1 jeG
In particular, there must exist a specific selectiorGot= (G, . .., G, ;) which achieves this

bound. Recall that ever§; is partitioned inta: groups. Therefore, for sud@, the total work

is at least

n? 1.4
(1o e (1=).
(1o e -)
Aslimy,_,(1 — +)* = 1, this completes the proof. O

As the above stochastic computation template is independent of the deterministic al-

gorithm D, this immediately gives rise to a lower bound fardamized algorithms:

Corollary 7.26 Leta : N — R andR ({D¢ | ¢ € Z}) be a randomized algorithm f@mni-

Do that is(a o cw)-competitive. Ther(c) > 1+ ¢/e.

Proof: Assume for contradiction that for somga(c) < 1 + ¢/e and letk be large enough so
that(1— £)* > a(c) — 1. For thisk we proceed as in the proof above, considering a ranGom
and the computation templafé; with n = g = p congruent td mod k, g being the number

of initial groups. Then, as above,

E [I? [WDC(CG)}]

v
=
7 N

—

+

oy

|

Q

—

—

=

—

—

|
| =

N—

E
~_

187

Hence there exists@ so thatl [Wp, (Cg)] > 2= - (14 [1 — o(1)]€), which completes the

proof. O

The above result yields the optimality of algorithm RS. Sfpeally, RS achieves the op-
timal competitive ratio over the set of all computation téatgs with a given computation

width.

Chapter 8

Conclusions and Future Work

This thesis studies the impact of the adverse environmetteefficiency of distributed
cooperative computing. In particular, the thesis considbe Do-All problem wherep pro-
cessors must cooperatively performtasks in the presence of adversity, and develops upper
and lower bound results that demonstrate precisely howsitivaffectsDo-All solutions. We
summarize the contributions of the thesis and discussdutgearch directions.

The thesis present®o-All lower bounds on work for synchronous crash-prone proces-
sors that capture the dependence of work not only»@md p, but also onf, the number of
crashes, for the entire range p{1 < f < p). This gives the first non-trivial lower bound for
Write-All work for a moderate number of failureg € p/logp). For the model of compu-
tation where processors are able to make perfect load-datpdecisions locally (the perfect
knowledge assumption), matching upper bounds are givenimfsnrtant contribution of the
thesis is the definition of thigerative Do-All problem that models the repetitive usel2d-All
algorithms, such as found in algorithm simulations, anddéeelopment of failure-sensitive
bounds forr-iterative Do-All work, that are stronger than thefold work complexity of a sin-

gle Do-All. The thesis introduces an approach where the analysis difisgdgorithms can be

188

189

divided into two parts: (i) the analysis of the cost of totarg failures while assuming “free”
load-balancing, and (ii) the analysis of the cost of implatimg) load-balancing. The utility
and generality of this approach is demonstrated by deriamg failure-sensitive analysis of
three known efficient algorithms: algorithm W (for the syrmfous shared-memory model),
algorithm KMS (for the synchronous shared-memory modehwintrolled memory access
concurrency), and algorithm AN [17] (for the synchronousseagje-passing model). For each
of the three algorithms, substantial improvement in thdyaimis recorded, especially for a
moderate number of failureg (< p/log p). Also, by iteratively using algorithms W, KMS,
and AN and using the new approach to their failure-sensitiayses, we obtain tighter upper
bounds for theterative Write-All problem in shared-memory systems, and the first non-trivial
upper bound analysis of thiterative Do-All problem in message-passing systems.

An interesting research direction is to develop failuresiive upper and lower bounds
on the work of Do-All for the model with processor crashes and restarts. As nmaation
Section 2.3, the prior bounds f@o-All under the assumption of perfect knowledge for this
setting are not failure-sensitive [68] (both upper and lolveunds are given as functions of
only n andp). Also, the bounds on work given f@o-All in the message-passing and shared-
memory models for processor crashes and restarts do natatdggshow the dependence of
work on the crashes and restarts (see Sections 2.1 and 2j{®)sstble direction toward this
is to investigate whether the approach used in the model pvidbessor crashes can also be
successfully applied here: given an algorithm, first aralye cost of tolerating crashes and
restarts assuming perfect load-balancing, and then am#hez cost of implementing perfect
load-balancing based on the structure of the algorithm. cHladlenge here is to overcome the

additional complication resulted by the ability of proamssto restart after crashing.

190

Another contribution of the thesis is the development ofwa rebust algorithm fop syn-
chronous processors that solves BeeAll problem withn tasks in the presence of any pattern
of f crashes f < p). This algorithm achieves asymptotically better work céewrjty than the
algorithm of Galil, Mayer, and Yung [44] (the previously b&aown algorithm for this setting)
while obtaining the same message complexity. Unlike algoriAN [17] that has comparable
work complexity (even using our new failure-sensitive gae) but uses reliable multicast, the
new algorithm uses simple point-to-point messaging. Therahm uses an approach where
processors share information using a new gossip algorifiine processors decide where to
send a gossip message based on sets of permutations withl sgmubinatorial properties
that we show to exist. This gossip algorithm achieves sukiatly better message complexity
than the message complexity of the previously best knowsigadgorithm of Chlebus and
Kowalski [21], while obtaining the same asymptotic time gabexity.

Both ourGossipand Do-All algorithms work correctly under any set of permutations, bu
the complexity result can only be guaranteed under the pgatinns with specific combinato-
rial properties that we show only to exist. A future direntis to investigate how to efficiently
construct these permutations. Another direction is torektie technique of using a gossip
algorithm for information sharing to the model with synamoos restartable crash-prone pro-
cessors and develop an efficient algorithm that soesAll using point-to-point messaging.
(Recall that algorithm AR [17] is the only known algorithmattefficiently solvesDo-All for
synchronous restartable crash-prone processors, bugstsiounder the strong assumption of
reliable multicast.) This gives rise to another interegtiesearch problem: how is th@ossip
problem formulated in the presence of crashes and restaitg?challenge is to specify the

termination condition: When should the problem be considas solved? In the presence

191

of only processor crashes, the problem is considered soWesh each non-faulty processor
either knows the rumor of a processor or it knows that thegssar crashed. This is no longer
sufficient for the case of processor crashes and restarts.

The thesis substantially contributes to the study of@meni-Do problem in partitionable
networks, where algorithms must deal with groups of pramsstghat become disconnected
and reconnected during the computation. The thesis pseseméw robust algorithm, called
algorithm AX, that solveOmni-Do for asynchronous processors under group fragmentations
and merges. This extends the work of Dolev, Segala and Sisvasin [32], that considers only
group fragmentations. In addition, algorithm AX has bett&ssage complexity (subquadratic
in n) than the algorithm of Doleet al. (at least quadratic im) and the same task-oriented
work complexity under group fragmentations. Algorithm A&lies on a group communication
service (GCS) [95] with certain properties to provide mersbig and communication services.
These properties are basic and are provided by several grmmpnunication systems and
specifications [23]. For the analysis of the algorithm, tbéamn of view-graphss introduced.
View-graphs are directed acyclic graphs used to reprekermartially-ordered view evolution
history witnessed by the processors. We believe that viegtes have the potential of serving
as a general tool for studying cooperative computing wittugrcommunication services.

A recent study performed by Jacobsen, Zhang, and Marzullpdémonstrated that algo-
rithm AX may not be practical in wide-area networks. In partar, they showed, via trace
analysis, that algorithm AX performs poorly with respecttte total completion time. The au-
thors argue that the reason for this is the use of group cornwation services that do not scale
well in large networks, where communication is less likelbe transitive and symmetric (as

assumed by group communications). They substantiatertsreent by simulating algorithm

192

AX in a wide-area network and comparing its performance whtit of a simpler algorithm.
The simpler algorithm, which has much larger worst case-taignted work complexity than
AX, appears to work much better in practice. That algorithmesinot use group communica-
tion services, but instead it uses a technique that relidsases [56]. However, as the authors
point out, group communications can be used effectively ANE. Thus it is interesting to
evaluate the performance of AX in LANSs.

Given that no algorithm is able to maintain low total worssedask-oriented work in the
presence of network partitions, the thesis initiates thdysof Omni-Doas an on-line problem
and pursues competitive analysis. Specifically, a simpielamized algorithm, called algo-
rithm RS, is introduced and analyzed under arbitrary pasgtef network reconfigurations. The
thesis establishes bounds on the competitive ratio of ifigRS and shows that for the rele-
vant gradation of the computation templates these bouragt, by proving lower bounds.
These results lead to a better understanding on the eff@eths 0olOmni-Do computations in
partitionable networks and demonstrate precisely the @nglapartitions on the efficiency of
the computation.

One outstanding problem is to derandomize the scheduleshystask-performing algo-
rithms and produce task-oriented work- and message-ciimpateterministicalgorithms for
Omni-Do. Another promising direction is to study the task-perfargnparadigm in models
of computation that combine network reconfigurations witbcessor failures. The goal is
to establish complexity results that show how the perforreant task-performing algorithms
depends on both on the extent of the network reconfiguratidnoa the number of processor

failures.

193

The thesis has considered tB®-All problem under the assumption that the number of
participating processors and the number of tasks is fixed, bounded, and knowan priori.
It would be equally important to consid&o-All in dynamic systems, where the number of
processors and tasks are not known and are not bounded)d-d problem in such settings
abstractsveb-based computingee section 2.8), where a large number of processing etemen
cooperate via the Internet in computing a large number adpeddent tasks (e.g., SETI [74])
that a fixed-size collection of processing machines wouldbeoable to handle. The set of
processing elements available to the computation may digadignchange, possibly due to
processor failures or processors becoming unavailablegiperiods when they are required
to perform other unrelated (local) computations, or duesfmaired or idle processors joining
the computation already in progress. Furthermore, tagkgamnerated dynamically and dif-
ferent tasks may be known to different processors. Dewvetpaigorithms forDo-All in such
dynamic systems is very challenging, since these algositimast not only tolerate component
failures, but they must also deal with the dynamic naturdnefdystem. Th&o-All problem
must be formulated for such settings, and new efficiency oreaseed to be defined, since
the established measures of efficiency assume that the naitasks and the number of pro-
cessors are known. One approach to evaluaflogAll algorithms in dynamic systems is to
express the measures of efficiency as functions of time. fbggesearch is attempting to for-
mulate a theoretical framework, that would enable the sbidlye Do-All problem in dynamic

systems.

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

M. Abdelguerfi and S. LavingtonEmerging Trends in Database and Knowledge-Base
Machines: The Application of Parallel Architectures to Smiaformation Systems
IEEE Press, 1995.

C. Aguirre, J. Martinez-Munoz, F. Corbacho, and R. HaertSmall-world topology
for multi-agent collaboration. IProceedings of thé1*" International Workshop on
Database and Expert Systems Applicatiqregges 231-235, 2000.

M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory ofhgeetitive analysis for dis-
tributed algorithms. IfProceedings of th5!* Symposium on Foundations of Computer
Science (FOCS 1994pages 401-411, 1994.

N. Alon and F.R.K. Chung. Explicit construction of lineaized tolerant networks.
Discrete Mathemati¢s/2:15-19, 1988.

N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. Ster Scalable secure storage
when half the system is faulty. Rroceedings of the7*" International Colloquium on
Automata, Languages and Programming (ICALP 20@apes 577-587, 2000.

N. Alon and J.H. SpencefThe Probabilistic Method J. Wiley and Sons, Inc., second
edition, 2000.

R.J. Anderson and H. Woll. Algorithms for the certified W&rAll problem. SIAM
Journal of Computing26(5):1277-1283, 1997.

J. Aspnes and W. Hurwood. Spreading rumors rapidly desm adversaryJournal of
Algorithms 26(2):386—411, 1998.

Y. Aumann and M.O. Rabin. Clock construction in fully @asjronous parallel systems
and PRAM simulation. IiProceedings of tha3"? IEEE Symposium on Foundations of
Computer Science (FOCS 199ppges 147-156, 1992.

O. Babaoglu, R. Davoli, L. Giachini, and M. Baker. RedacA communication in-
frastructure for constructing reliable applications irgkxscale distributed systems. In
Proceedings of th@st" Hawaii International Conference on System Science (HICSS
1995) pages 612621, 1995.

194

195

[11] O. Babaoglu, R. Davoli, and A. Montresor. Group comneatibn in partitionalbe sys-
tems: Specification and algorithms. Technical Report UBR&81, Dept. of Computer
Science, University of Bologna, 1998.

[12] O. Babaoglu, R. Davoli, A. Montresor, and R. Segala. t&yssupport for partition-
aware network applications. Proceedings of thés!" IEEE International Conference
on Distributed Computing Systems (ICDCS 1998)ges 184—-191, 1998.

[13] P. Berman and J. Garay. Cloture voting:/4)-resilient distributed consensustn- 1
rounds.Mathematical Systems ThepB6(1):3—-20, 1993.

[14] K.P. Birman and R. van RenesdReliable Distributed Computing with the Isis Toolkit
IEEE Computer Society Press, 1994.

[15] J. Buss, P.C. Kanellakis, P. Ragde, and A.A. Shvartsramallel algorithms with pro-
cessor failures and delaydournal of Algorithms20(1):45-86, 1996.

[16] T.D.Chandra and S. Toueg. Unreliable failure detector reliable distributed systems.
Journal of the ACM43(2):225-267, 1996.

[17] B. Chlebus, R. De Prisco, and A.A. Shvartsman. Perfogrtiasks on restartable
message-passing processdsstributed Computingl14(1):49-64, 2001.

[18] B. Chlebus, S. Dobrev, D. Kowalski, G. Malewicz, A.A.\&litsman, and I. Vrto. To-
wards practical deterministic Write-All algorithms. Rroceedings of thé3t* ACM
Symposium on Parallel Algorithms and Architectures (SPRB1Y pages 271-280,
2001.

[19] B.S. Chlebus, L. Gasieniec, D.R. Kowalski, and A.A. 8itsman. Bounding work and
communication in robust cooperative computationPtoceedings of theé6t" Interna-
tional Symposium on Distributed Computing (DISC 20@2pes 295-310, 2002.

[20] B.S. Chlebus and D. R. Kowalski. Randomization helppddform tasks on processors
prone to failures. IrProceedings of thé3!" International Symposium on Distributed
Computing (DISC 1999pages 284-296, 1999.

[21] B.S. Chlebus and D.R. Kowalski. Gossiping to reach easss. IrProceedings of the
14" ACM Symposium on Parallel Algorithms and ArchitecturesASR002) pages
220-229, 2002.

[22] B.S. Chlebus, D.R. Kowalski, and A. Lingas. The Do-Atbplem in broadcast net-
works. InProceedings of the0?» ACM Symposium on Principles of Distributed Com-
puting (PODC 2001)pages 117-126, 2001.

[23] G.V. Chockler, I. Keidar, and R. Vitenberg. Group conmuation specifications: A
comprehensive studACM Computing Survey83(4):1-43, 2001.

[24] F. Cristian. Group, majority and strict agreement imed asynchronous distributed
systems. IrProceedings of the6! Conference on Fault-Tolerant Computer Systems
pages 178-187, 1996.

196

[25] P. Dasgupta, Z. Kedem, and M. Rabin. Parallel procgssinnetworks of workstation:
A fault-tolerant, high performance approach. Rroceedings of thé5" IEEE Inter-
national Conference on Distributed Computer Systems (IS@95) pages 467-474,
1995.

[26] H. Davenport.Multicative Number TheorySpringer, second edition, 1980.

[27] R. De Prisco, A. Fekete, N. Lynch, and A.A. Shvartsmandykamic view-oriented
group communication service. Proceedings of thé7** ACM Symposium on Princi-
ples of Distributed Computing (PODC 199@ages 227-236, 1998.

[28] R. De Prisco, A. Mayer, and M. Yung. Time-optimal mess&dficient work perfor-
mance in the presence of faults. Rroceedings of thé3"» ACM Symposium on Princi-
ples of Distributed Computing (PODC 1994ages 161-172, 1994.

[29] R.P. Dilworth. A decomposition theorem for partiallydered setsAnnals of Mathe-
matics 51:161-166, 1950.

[30] D. Dolev and D. Malki. The transis approach to high aaility cluster communica-
tions. Communications of the ACN39(4):64—70, 1996.

[31] D. Dolev, D. Malki, and R. Strong. A framework for paitihable membership service.
Technical Report TR 95-4, Institute of Computer Scienceg Hebrew University of
Jerusalem, 1995.

[32] S. Dolev, R. Segala, and A.A. Shvartsman. Dynamic lcadring with group commu-
nication. InProceedings of thé'" International Colloquium on Structural Information
and Communication Complexity (SIROCCO 19%@)ges 111-125, 1999.

[33] C. Dwork, J. Halpern, and O. Waarts. Performing workogfitly in the presence of
faults. SIAM Journal on Computing27(5):1457-1491, 1998. A preliminary version
appears in théroceedings of thé1* ACM Symposium on Principles of Distributed
Computing (PODC 1992pages 91-102, 1992.

[34] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in thesence of partial syn-
chrony. Journal of the ACM35(2):288—323, 1988.

[35] C. Dwork and Y. Moses. Knowledge and common knowledga Byzantine environ-
ment: Crash failuresinformation and Computatiqr88(2):156—186, 1990.

[36] R. Elmasri and S.B. NavatheFundamentals of Database Systenddison-Wesley
publishing company, second edition, 1994.

[37] P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newfofault-tolerant group com-
munication protocol. IrProceedings of thé5! IEEE International Conference on
Distributed Computing Systems (ICDCS 199%ges 296—-306, 1995.

[38] A. Fekete, N. Lynch, and A.A. Shvartsman. Specifying aising a partitionable group
communication service. IRroceedings of the6* ACM Symposium on Principles of
Distributed Computing (PODC 1997pages 53-62, 1997.

197

[39] A. Fekete, N. Lynch, and A.A. Shvartsman. Specifyinglarsing a partitionable
group communication serviceACM Transactions on Computer Systerh9(2):171—
216, 2001.

[40] M.J. Fischer and N.A. Lynch. A lower bound for the timeassure interactive consis-
tency. Information Processing Letterd4(4):183-186, 1982.

[41] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impoditybdf distributed consensus
with one faulty processlournal of the ACM32(2):374—-382, 1985.

[42] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hugh@smputer Graphics: Principle
and Practice Addison-Wesley publishing company, second edition, 1996

[43] S. Fortune and J. Wyllie. Parallelism in random acceashimes. IrProceedings of the
10*» ACM Symposium on Theory of Computing (STOC 197&)es 114-118, 1978.

[44] Z. Galil, A. Mayer, and M. Yung. Resolving message coexfily of byzantine agree-
ment and beyond. IRroceedings of thg6!* IEEE Symposium on Foundations of Com-
puter Science (FOCS 199%)ages 724—733, 1995.

[45] G.R. Gallager. A perspective on multi-access chanigEE Transactions on Informa-
tion Theory 31(2):124-142, 1985.

[46] J.A. Garay and Y. Moses. Fully polynomial Byzantine egment for processors in
rounds.SIAM Journal on Computin@®7(1):247-290, 1998.

[47] Ch. Georgiou, D.R. Kowalski, and A.A. Shvartsman. Eéfit gossip and robust dis-
tributed computation. IrProceedings of tha7** International Symposium on Dis-
tributed Computing (DISC 2003pages 224-238, 2003.

[48] Ch. Georgiou, A. Russell, and A.A. Shvartsman. The dexity of synchronous itera-
tive Do-All with crashes Distributed ComputingTo appear.

[49] Ch. Georgiou, A. Russell, and A.A. Shvartsman. The dexify of synchronous it-
erative Do-All with crashes. IfProceedings of theé5! International Symposium on
Distributed Computing (DISC 2001pages 151-165, 2001.

[50] Ch. Georgiou, A. Russell, and A.A. Shvartsman. The dewity of distributed cooper-
ation in the presence of failures. Rroceedings of tha” International Conference on
Principles of Distributed Systems (OPODIS 2QQf3ges 245-264, 2000.

[51] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Fa#seasitive analysis of paral-
lel algorithms with controlled memory access concurrenicyProceedings of thé!”
International Conference on Principles of Distributed ®yss (OPODIS 2002pages
127-138, 2002.

[52] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Workapetitive scheduling for co-
operative computing with dynamic groups. Rroceedings of thg5* ACM Symposium
on Theory of Computing (STOC 200pages 251-258, 2003.

[53] Ch. Georgiou and A.A. Shvartsman. Cooperative conmgutiith fragmentable and
mergeable groupslournal of Discrete Algorithmsl(2):211-235, 2003.

198

[54] Ch. Georgiou and A.A. Shvartsman. Cooperative conmgutiith fragmentable and
mergeable groups. IRroceedings of th&” International Colloquium on Structural
Information and Communication Complexity (SIROCCO 20payes 141-156, 2000.

[65] A. Gharakhani and A.F. Ghoniem. Massively parallel iempentation of a 3D vortex-
boundary element method. Rroceedings of the European Series in Applied and In-
dustrial Mathematicsvolume 1, pages 213-223, 1996.

[56] C.G. Gray and D.R. Cheriton. Leases: An efficient faalerant mechanism for dis-
tributed file cache consistency. Rroceedings of thé2* ACM Symposium on Operat-
ing Systems Principles (SOSP 198%ges 202—-210, 1989.

[57] J.N. Gray. Notes on database operating systems. In RerB&.M. Graham, and
G. Seegmuller, editorperating Systems: An Advanced Courgglume 60 ofLec-
ture Notes in Computer Scienahapter 3.F, pages 393-481. Springer-Verlag, 1978.

[58] S.A. Green.Parallel Processing for Computer GraphicMIT Press/Pitman Publishing,
1991.

[59] J.F. Groote, W.H. Hesselink, S. Mauw, and R. VermeuleAn algorithm for the
asynchronous Write-All problem based on process collisibistributed Computing
14(2):75-81, 2001.

[60] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts related problems. IDis-
tributed Systemghapter 5, pages 97-145. ACM Press/Addison-Wesley, 1993.

[61] M. Hayden.The Ensemble SystefhD thesis, Cornell University, 1998.

[62] M. Hiltunen and R. Schlichting. Properties of membgoséervices. InProceedings
of the2™? International Symposium on Autonomous Decentralizece8)spages 200—
207, 1995.

[63] D.R. Hughes and F.C. Pipdbesign Theory Cambridge University Press, 1985.

[64] K. Jacobsen, X. Zhang, and K. Marzullo. Group membersirid wide-area master-
worker computations. IfProceedings of th@3™ IEEE International Conference on
Distributed Computing Systems (ICDCS 2Q(#)ges 570-581, 2003.

[65] C.B. JenssenParallel Computational Fluid Dynamics 2000: Trends and Aqgdions
Elsevier Science Ltd., first edition, 2001.

[66] P.C. Kanellakis, D. Michailidis, and A.A. Shvartsmadontrolling memory access con-
currency in efficient fault-tolerant parallel algorithmslordic Journal of Computing
2(2):146-180, 1995.

[67] P.C. Kanellakis and A.A. Shvartsman. Efficient patdadlgorithms can be made robust.
Distributed Computing5(4):201-217, 1992. A preliminary version appears inRhz
ceedings of th&"» ACM Symposium on Principles of Distributed Computing (PODC
1989) pages 211-222, 1989.

[68] P.C. Kanellakis and A.A. Shvartsmarfrault-Tolerant Parallel Computatian Kluwer
Academic Publishers, 1997.

199

[69] R.M. Karp and V. Ramachandran. A survey of parallel atpms for shared-memory
machines. Handbook of Theoretical Computer Science, Volume A: Algmis and
Complexity pages 869-941, 1990.

[70] Z.M. Kedem, K.V. Palem, M.O. Rabin, and A. Raghunath&fficient program trans-
formations for resilient parallel computation via randaation. InProceedings of the
24th ACM Symposium on Theory of Computing (STOC 199)es 306318, 1992.

[71] Z.M. Kedem, K.V. Palem, A. Raghunathan, and P. Spiraki@mbining tentative and
definite executions for dependable parallel computing?rsceedings of the3 ™ ACM
Symposium on Theory of Computing (STOC 19p4ges 381-390, 1991.

[72] Z.M. Kedem, K.V. Palem, and P. Spirakis. Efficient robparallel computations. In
Proceedings of the2"¢ ACM Symposium on Theory of Computing (STOC 1980)es
138-148, 1990.

[73] R. Khazan, A. Fekete, and N.A. Lynch. Multicast groupnzounication as a base for a
load-balancing replicated data service Pimceedings of theé2t" International Sympo-
sium on Distributed Computing (DISC 1998pges 258—-272, 1998.

[74] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and Mbafsky. SETI@home:
Massively distributed computing for SETIComputing in Science and Engineerjng
3(1):78-83, 2001.

[75] D.R. Kowalski and A.A. Shvartsman. Performing work lwésynchronous processors:
message-delay-sensitive boundsPhceedings of the2"? ACM Symposium on Prin-
ciples of Distributed Computing (PODC 200®ages 265-274, 2003.

[76] L. Lamport, R. Shostak, and M. Pease. The Byzantine rgés@roblem.ACM Trans-
actions on Programming Languages and Systet(®):382—401, 1982.

[77] E. Y. Lotem, I. Keidar, and D. Dolev. Dynamic voting foomsistent primary compo-
nents. InProceedings of thé6"* ACM Symposium on Principles of Distributed Com-
puting (PODC 1997)pages 63—-71, 1997.

[78] M.C. Loui and H.H. Abu-Amara. Memory requirements fgreement among unreli-
able asynchronous processes. In F.P. Preparata, dehtailel and Distributed Com-
puting volume 4 ofAdvances in Computing Researglages 163-183. JAl Press, 1987.

[79] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan gsapCombinatorica 8:261—
277, 1988.

[80] N.A. Lynch. Distributed Algorithms Morgan Kaufmann Publishers, 1996.

[81] N.A. Lynch and M.R. Tuttle. An introduction to Input/@wut automata.CWI Quar-
terly, 2(3):219-246, 1989.

[82] G. Malewicz. A work-optimal deterministic algorithnoif the asynchronous certified
Write-All problem. InProceedings of the2"? ACM Symposium on Principles of Dis-
tributed Computing (PODC 2003pages 255—-264, 2003.

200

[83] G. Malewicz, A. Russell, and A.A. Shvartsman. Distté cooperation during the
absence of communication. Proceedings of th@4! International Symposium on
Distributed Computing (DISC 2000pages 119-133, 2000.

[84] G. Malewicz, A. Russell, and A.A. Shvartsman. Optimeheaduling for disconnected
cooperation. IrProceedings of th&*" International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO 20payes 259-274, 2001.

[85] C. Martel, A. Park, and R. Subramonian. Work-optimatrashronous algorithms for
shared memory parallel computer&IAM Journal on Computing21(6):1070-1099,
1992.

[86] C. Martel and R. Subramonian. On the complexity of ¢iedi Write-All algorithms.
Journal of Algorithms16(3):361-387, 1994.

[87] C. Martel, R. Subramonian, and A. Park. Asynchronou®\MR are (almost) as good
as synchronous PRAMs. Rroceedings of th81%¢ IEEE Symposium on Foundations
of Computer Science (FOCS 199pages 590-599, 1990.

[88] S. Mishra, L.L. Peterson, and R.D. Schlichting. Congutommunication substrate for
fault-tolerant distributed program®istributed Systems Engineering Journi{2):87—
103, 1993.

[89] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: Higlesg rendering using image
composition.Computer Graphics26(2):231-240, 1992.

[90] L.E. Moser, Y. Amir, P.M. Melliar-Smith, and D.A. Agamal. Extended virtual syn-
chrony. InProceedings of the4'" IEEE International Conference on Distributed Com-
puting Systems (ICDCS 1994ages 56—65, 1994.

[91] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Bhia, and C.A. Lingley-
Papadopolous. Totem: A fault-tolerant multicast group mmmication systemCom-
munications of the ACVB9(4):54-63, 1996.

[92] Y. Moses and O. Waarts. Coordinated travergak- 1)-round Byzantine agreement in
polynomial time.Journal of Algorithms17(1):110-156, 1994.

[93] The Olson laboratory fight AIDS@home project. At httwww.fightaidsathome.org.

[94] M. Pease, R. Shostak, and L. Lamport. Reaching agreeiméine presence of faults.
Journal of the ACM27(2):228-234, 1980.

[95] D. Powell, editor. Special Issue on Group Communication Seryicedume 39(4) of
Communications of the ACMACM Press, 1996.

[96] The RSA factoring by web project. At http://www.npag.edu/factoring.

[97] A. Ricciardi, A. Schiper, and K. Birman. Understandipgrtitions and the “no parti-
tion” assumption. IrProceedings of the!” Workshop on Future Trends of Distributed
Computing Systempages 354—-360, 1993.

201

[98] R.L. Rivest, A. Shamir, and L. Adleman. A method for dhtag digital signatures and
public key cryptosystems€Communications of the ACN1:120-126, 1978.

[99] A.L. Rosenberg. Accountable web-computing. Aroceedings of th@'” IEEE Inter-
national Parallel and Distributed Processing SymposiuROPS 2002)2002.

[100] M. Saks, N. Shavit, and H. Woll. Optimal time randondzeonsensus — making re-
silient algorithms fast in practice. Rroceedings of the"? ACM-SIAM Symposium on
Discrete Algorithms (SODA 1991pages 351-362, 1991.

[101] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J.RytSinLoad balancing for
multi-projector rendering systems. 8iIGGRAPH/Eurographics Workshop on Graphics
Hardware pages 107-116, 1999.

[102] R.D. Schlichting and F.B. Schneider. Fail-stop pssmes: An approach to designing
fault-tolerant computing system&CM Transactions on Computing Syste(8):222—
238, 1983.

[103] N. Shavit. Concurrent Time Stamping PhD thesis, The Hebrew University of
Jerusalem, 1989.

[104] A.A. Shvartsman. Achieving optimal CRCW PRAM fautte¢rance.Information Pro-
cessing Letters39(2):59-66, 1991.

[105] D. Sleator and R. Tarjan. Amortized efficiency of ligidate and paging rule€ommu-
nications of the ACM28(2):202—-208, 1985.

[106] D.R. StinsonCryptography: Theory and practic]€ RC PRess, 1995.

[107] J.B. Sussman and K. Marzullo. The bancomat problemexample of resource allo-
cation in a partitionable asynchronous systemPioceedings of thé2t" International
Symposium on Distributed Computing (DISC 199®)ges 363—-377, 1998.

[108] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G.A. KamiakS. Marsella, and I. Muslea.
Building agent teams using an explicit teamwork model aadiieg. Artificial Intelli-
gence 110(2):215-239, 1999.

[109] E. Upfal. Tolerating a linear number of faults in netl® of bounded degredénforma-
tion and Computation115:312—-320, 1994.

[110] R. van Renesse, K.P. Birman, and S. Maffeis. Horus: ®ldle group communication
system.Communications of the ACN89(4):76—83, 1996.

[111] G. Varghese and N. A. Lynch. A tradeoff between safety Bveness for randomized
coordinated attack protocols. Rroceedings of thé1** ACM Symposium on Principles
of Distributed Computing (PODC 1992)ages 241-250, 1992.

[112] S.G. Ziavras and P. Meer. Adaptive multiresolutiorustures for image processing
on parallel computersJournal of Parallel and Distributed Computing3(3):475-483,
1994.

