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The ability to cooperatively perform a collection of tasks in a distributed setting is key to

solving a broad range of computation problems ranging from distributed search to distributed

simulation and multi-agent collaboration.Do-All , an abstraction of such cooperative activity,

is the problem of usingp processors to cooperatively performn independent and idempotent

tasks in the presence of adversity. TheDo-All problem can be used to identifying the trade-

offs between efficiency and fault-tolerance in distributedcooperative computing. Solutions for

Do-All may yield insight leading to efficient and fault-tolerant algorithms for distributed co-

operation. Although significant research was dedicated to studying Do-All , prior work offers

only a partial understanding of this problem. In particular, while prior work shows how to

achieve fault-tolerance in the presence of adversity, it does not adequately teach how the ad-

verse environment affects the efficiency ofDo-All solutions. This thesis substantially increases

this understanding. One of the contributions includes failure sensitive upper and lower bounds

for Do-All in certain models of computation, that show how failures affect the efficiency of

Do-All solutions. The upper/lower bounds are given as functions ofn, p andf , the number

of failures caused by the adverse environment. Another contribution of the thesis is the def-

inition and analysis of theiterative Do-All problem, that models the repetitive use ofDo-All

algorithms, such as found in typical algorithm simulations.
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This thesis also studies the distributed cooperation problem in partitionable networks,

where partitions may interfere with the progress of the computation. Group communication

services are used to develop robust algorithms for this settings. Moreover, it is shown that it

is possible to obtain optimally-competitive scheduling algorithms in partitionable networks by

proving upper and lower bound results. These results demonstrate precisely how partitions

affect the efficiency of computation.

Overall, the thesis is substantially contributing to the study of the trade-offs between ef-

ficiency and fault-tolerance in cooperative computing and is advancing the state-of-the-art in

principles of robust distributed computing.
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Chapter 1

Introduction

This thesis studies the impact of the adverse environment onthe efficiency of distributed

cooperative computing.

1.1 Motivation for this research

The ability to cooperatively perform a collection of tasks in a distributed setting is key to

solving a broad range of computation problems ranging from distributed search (e.g., SETI [74])

to distributed simulation (e.g., [25]) and multi-agent collaboration (e.g., [2, 108]). Therefore,

cooperative computing has drawn a lot of attention from the research community in the last

two decades and substantial research was dedicated to investigating how processors can coop-

erate effectively in order to exploit parallelism in a system consisting of multiple processing

elements.

Distributed systems consisting of hundreds and thousands of processing units (e.g., mul-

tiprocessor machines, clusters of workstations, wide-area networks) are widely used. In such

systems it is possible that the set of processing elements available to the computation and

1
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their ability to communicate may dynamically change due to perturbations in the computation

medium. Such changes may degrade the efficiency of algorithms designed to solve computa-

tional problems on these multiprocessing systems, and cause algorithms to produce incorrect

results.

Therefore, there is a corresponding need for the development of efficient and dependable

algorithms that are able to cope with unpredictable changesin the computation medium caused

by component failures or delays. Algorithms need to be both efficient and fault-tolerant. We

call such algorithmsrobust. However, developing robust algorithms for distributed coopera-

tion is inherently difficult sincefault-toleranceis achieved byintroducing redundancy, while

efficiencyis achieved byeliminating redundancy.

To study aspects of the trade-off between efficiency and fault-tolerance in cooperative com-

puting and to obtain insight into developing robust algorithms for distributed cooperation, past

research (e.g., [33, 68, 17, 44, 28]) has focused on studyingthe abstract problem of performing

a set of tasks in a decentralized setting, known as theDo-All problem.

Do-All : p processors must cooperatively performn tasks in the presence of adversity.

In theDo-All problem, the tasks are assumed to be similar, independent and idempotent.

By the similarity of the tasks we mean that the task executions consume equal or comparable

resources. By the independence of the tasks we mean that the completion of any task does not

affect any other task. By the idempotence of the tasks we meanthat each task can be executed

multiple times or concurrently and produce the same final result.

Several high-level computational problems can be abstracted in terms of theDo-All prob-

lem. For example, in image processing [112] and computer graphics [42], a significant amount

of data processing (e.g., operations on large data structures, computing complicated partial and



3

ordinary differential equations) is required, especiallyin visualization (achieving graphical vi-

sual realism of real world objects) [89, 101]. When the data to be computed can be decomposed

into smaller independent “chunks”, a usual approach is to load-balance the chunks among the

different processing units of a parallel machine (or a cluster of machines) [101, 58]. The data

chunks can be abstracted asDo-All tasks and the processing units can be abstracted asDo-

All processors. In databases [36], when querying a large (unsorted) data space, it is often

desirable to use multiple machines to search different records of the database in an attempt to

decrease the search time [1]. In fluid dynamics, researchersstudy the behavior of fluids in dif-

ferent settings by running simulations that involve solving numerically complicated differential

equations over large data spaces. Again, when the data can bedecomposed into smaller inde-

pendent chunks, the chunks are assigned on different multiprocessing units to achieve faster

and reliable computation [55, 65]. Another example can be found in Cryptography. In partic-

ular, in breaking cryptographic schemes. The goal is to search and find a user’s private key.

A key may be a string of 128 bits, meaning that there are2128 different strings that a user

could choose as his private key. Among the various techniques available, the most frequently

used is exhaustive search where multiple processing units search simultaneously for the key,

each unit searching different sets of bit permutations [106]. Each set of bit permutation can be

abstracted as aDo-All task and each processing unit can be abstracted as aDo-All processor.

In general, any problem that involves performing a number ofsimilar independent calculations

can be abstracted in terms of theDo-All problem.

As we will see in Section 1.3 and more extensively in Chapter 2, prior research offers only

a partial understanding of theDo-All problem. Specifically, there is a partial understanding

on how the adverse environment (e.g., failures) affects theefficiency ofDo-All solutions, and
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more generally, how it affects cooperative computing — quantification of adversity does not

figure prominently in complexity results. This is rather surprising, especially since research

conducted for other fundamental problems of distributed computing, for example theconsensus

problem (a set of processors must agree on a common value, seeSection 2.7), always focused

on how adversity affects the efficiency and doability of the problem.

The underlying theme that we address in this thesis is

Understanding precisely how the adverse environment affects

the efficiency of cooperative computing.

1.2 Background

TheDo-All problem and variations of this problem have been studied in avariety of set-

tings, e.g., inshared-memorymodels [68, 86, 59, 7], inmessage-passingmodels [33, 28, 22,

44] and inpartitionable networks[32, 83].

In message-passing models, processors communicate by exchanging messages while in

shared-memory models processors communicate by reading from and writing to shared mem-

ory. In shared-memory models, theDo-All problem is known as theWrite-All problem —

given a zero-valued array ofn elements andp processors, write value1 into each array loca-

tion — and it was introduced by Kanellakis and Shvartsman [67]. The main difference between

theDo-All problem in message-passing models and theWrite-All problem in shared-memory

models is that inDo-All the tasks may be supplied to the processors from some external source,

while in Write-All the tasks are stored in shared-memory accessible to all processors. In par-

ticular, each location of theWrite-All input array may be associated with a task, and when

a processor writes the value1 into a specific location of the input array, this implies thatthe
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processor has performed the associated task. In the contextof this thesis we abstract away from

the source and the nature of the tasks and we treatDo-All andWrite-All as the same problem.

However, when we studyDo-All in shared-memory models, we refer explicitly toWrite-All .

Do-All has also been studied in the setting of processor groups in partitionable networks,

i.e., when the topology of the network may dynamically change due to changes in the commu-

nication medium [32, 83]. In this setting, the goal is to utilize the resources of every component

of the system during the entire computation. We call this problemOmni-Do — a set ofn tasks

must be performed byp processors in a distributed system, where each processor must learn

all results— and it was introduced by Dolev, Segala and Shvartsman [32].

Do-All has been also studied under the assumption ofperfect knowledge[68], where

message-passing and shared-memory issues are abstracted away by the assumption of anora-

cle that performs the load-balancing computation on behalf of the processors.

Finally, Write-All algorithms have been used in developing simulations of failure-free al-

gorithms on failure-prone processors, e.g., [72, 104, 85, 68]. This is done by iteratively using

a Write-All algorithm to simulate the steps of failure-free processorson failure-prone proces-

sors. In this thesis we abstract this iterative use ofDo-All algorithms as ther-iterative Do-All

problem —usingp processors, solver instances ofn-taskDo-All with the added restriction

that every task of theith instance must be completed before any task of the(i + 1)st instance

is begun. (Ther-iterative Write-All andr-iterative Omni-Doproblems are defined similarly.)

The efficiency of algorithmic solutions toDo-All is usually assessed in terms ofwork,

timeandcommunicationcomplexity, depending on the specific model of computation.Work

is defined either as the total number of computational steps taken by all available processors

during the computation (known asavailable processor steps, introduced by Kanellakis and
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Shvartsman [67]) or as the total number of onlytask-orientedcomputational steps taken by the

processors (introduced by Dwork, Halpern, and Waarts [33]). A computational step taken by a

processor is said to be task-oriented, if during that step the processor performs aDo-All task.

We refer to the first variation of work asworkand we denoting it byS. We refer to the second

variation of work astask-oriented workand we denote it byW . In synchronous systems,

time is defined as the total number of parallel steps requiredfor the computation to terminate.

In asynchronous systems, time is defined as the total number of time-units required for the

computation to terminate, where a time-unit is usually defined in terms of the clock-ticks of a

global clock (that may or may not be accessible to processors). Communication complexity or

message complexityis defined as the total number of point-to-point messages sent during the

computation. We denote it byM .

A trivial lower bound on work forDo-All is Ω(n), since each task has to be performed at

least once. A trivial solution toDo-All can be obtained by having each processor obliviously

perform each of then tasks. This solution has workΘ(n · p) and requires no communication.

To this respect, aDo-All algorithm is consideredefficient if it achieves work substantially

better than the oblivious algorithm. In particular, we say that aDo-All algorithm isoptimal if

it can achieve workO(n), polylogarithmically efficientif it can achieve workO(n logO(1) n)

andpolynomially efficientif it can achieve workO(n1+ε), for someε ∈ (0, 1).

1.3 Prior Work

In this section we overview related research. An extensive literature review is given in

Chapter 2.
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Synchronous message-passing algorithms solvingDo-All with processorcrashes(a faulty

processor stops all activities and does not perform any further actions) have been provided by

Dwork, Halpern and Waarts [33], by De Prisco, Mayer and Yung [28], and by Galil, Mayer and

Yung [44]. (The analysis in [33] uses thetask-oriented workmeasure that allows processors

to idle whereas the analyses in [28] and [44] use thework measure where idling processors

are charged.) These algorithms use point-to-point messaging and tolerate up top − 1 proces-

sor crashes. The algorithm by Galilet al. [44] (the best among these algorithms) has work

S = O(n + fp) and message complexityM = O(fpε + p min{f + 1, log p}), wheref is

number of crashes(f < p) and0 < ε < 1. These deterministic algorithms rely on single coor-

dinators or checkpointing strategies for sharing the knowledge about the progress of a compu-

tation. Such strategies are subject to the lower bound ofΩ(n + (f + 1)p) on work [28]. Chle-

bus, De Prisco and Shvartsman [17] developed an algorithm – Algorithm AN – that beats this

lower bound by using a strategy involving multiple coordinators. It has workS = O(log f(n+

p log p/ log log p)) and message complexityM = O(n+p log p/ log log p+pf), f < p. How-

ever algorithm AN usesreliable multicast[60], which is a strong assumption: if a processor

crashes while multicasting a message, then either all non-faulty processors deliver the message

or none do. Some local area networks (LANs) might approximate this assumption, but in gen-

eral it is too costly (or impossible) to provide in many typesof distributed systems. Chlebus,

Gasieniec, Kowalski and Shvartsman [19] pursued an approach that uses point-to-point mes-

saging and avoids the use of coordinators and checkpointingand developed an algorithm with

the combined work and message complexity ofO(n + p1.77), for all f < p. Observe that the

work bound is close to the quadratic bound obtained by the oblivious algorithm (where each

processor performs all tasks). All of the above give rise to the following question regarding
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synchronous message-passingDo-All algorithms with processor crashes: “Can we develop al-

gorithms that obtain better work and message complexity than the existing ones and that use

only point-to-point messaging?”. This thesis gives a positive answer to this question.

Chlebus, De Prisco and Shvartsman [17] developed a message-passing solution forDo-

All – Algorithm AR – that can tolerate processor crashes andrestarts(a faulty processor may

resume computation). Like algorithm AN, algorithm AR uses reliable multicast. It remains

an open problem whether it is possible to develop efficient message-passing algorithms that

solveDo-All for processor crashes and restarts, without the assumptionof reliable multicast.

It is also worth mentioning that prior work did not consider the iterative Do-All problem in

message-passing systems. We define and studyiterative Do-All in this thesis.

In shared-memory models,Write-All has been studied in synchronous systems under pro-

cessor crashes (e.g., [67, 66, 68]), in synchronous systemsunder processor crashes and restarts

(e.g., [15, 68]) and in asynchronous systems (e.g., [85, 87,59, 68, 7, 18]). Also, Kanellakis,

Michailidis and Shvartsman [66], considered theWrite-All problem for crash-prone proces-

sors in a synchronous shared-memory model where thememory access concurrencyneeds to

be controlled. The write (resp. read) concurrency is measured as the “redundant” write (resp.

read) memory accesses: consider a step of a parallel computation wherex processors concur-

rently write to the same memory location the same value. Thenthese writes are redundant,

since a single write should suffice. Hence, the write concurrency for this step isx − 1. Read

concurrency is measured in a similar manner.

Write-All algorithms can be used iteratively to simulate parallel algorithms formulated for

synchronous failure-free processors on failure-prone processors (e.g., [72, 104, 68]). It was

shown that the execution of a singlen-processor step onp failure-prone processors does not
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exceed the work complexity of solving an-size instance ofWrite-All usingp failure-prone

processors. By iteratively using algorithm W ([67]), Kanellakis and Shvartsman [68] gave

the first upper bound foriterative Write-All under processor crashes. In a similar manner, by

iteratively using algorithm KMS ([66]), Kanellakis, Michailidis and Shvartsman [66] gave the

first upper bound foriterative Write-All under processor crashes in the shared-memory model

where memory access concurrency needs to be controlled. We note that the bounds [68, 66]

on iterative Write-All do not adequately demonstrate how the work complexity depends on the

number of failuresf .

Prior lower/upper bound results forDo-All in message-passing and shared-memory mod-

els do not teach adequately how the work complexity depends on the number of failures. That

is, work was typically given as a function ofn andp, but it was either not elucidated howf

impacts work, or, whenf was a part of the equation, it was primarily due to the nature of a

specific algorithm, and not due to the inherent properties oftheDo-All problem. For example,

the work of the best known synchronous shared-memory algorithm (algorithm W) is given as

a function ofn andp (S = O(n + p log n log p/ log log p)) [67]. The work of the best syn-

chronous shared-memory algorithm with controlled memory access concurrency (algorithm

KMS) is also given only as a function ofn andp (S = O(n + p log2 n log2 p/ log log n)) [66].

This is also the case with the best known asynchronous shared-memory algorithm (algorithm

AWT, S = O(npε), ∀ε > 0) [7]. Similarly, the best known lower bound for shared-memory

models (S = Ω(n + p log p)) [71] and the best known lower bound applicable to message-

passing models (S = Ω(n + p log p/ log log p)) [15] do not involvef . The work of message-

passing algorithms, e.g., [28, 44], typicallydoesincludef , but this is due to the use of single
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coordinators (see discussion above), which means that forf coordinator failures the work nec-

essarily includes an additive termf · p. Two message-passing algorithms (algorithms AN and

AR) use multiple coordinators [17] to avoid this inefficiency and include a term in the bound

on work that depends onlog f , but this term is due to the use of multiple coordinators (hence

it is due to the nature of the specific algorithms) and not due to the inherent properties of the

Do-All problem. Obtainingfailure-sensitivelower/upper bounds forDo-All that demonstrate

precisely how failures affectDo-All efficiency, is important in identifying the trade-offs be-

tween efficiency and fault-tolerance in cooperative computing. As mentioned before, this is

the main focus of this thesis.

In partitionable networks, the first solution forOmni-Do given by Dolev, Segala and

Shvartsman [32], considers the case of groupfragmentations: changes in the communica-

tion medium may partition (fragment) the network into several connected components, called

groups. No group merges are considered. They developed a work-efficient algorithm, called

AF, that uses a group communication service [95] to provide membership and communication

services to the processors. Algorithm AF has workS = O(n+n ·f), wheref is the total num-

ber of new groups created due to fragmentations minus one (for example, if a group fragments

into k new groups,f = k − 1). We note that in [32] the message complexity of algorithm AF

was not analyzed since obtaining message efficiency was not one of the goals in that paper.

However, given the full details of the algorithm it is not difficult to observe that the message

complexity of AF is at least quadratic. For the case of fully dynamic changes (including frag-

mentations and merges), in the same paper, Dolevet al. showed that the termination time of

any on-lineOmni-Do algorithm is greater than the termination time of an off-line Omni-Do

algorithm by a factor greater thanp/12. They also developed an efficient scheduling strategy
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for minimizing the execution redundancy showing that it is possible to scheduleΘ(n
1
3 ) tasks

with at most one common task for any two processors.

Malewicz, Russell and Shvartsman [83, 84] extended the scheduling strategy of Dolevet

al. [32]. They introduced the notion ofk-wastethat measures the worst-case redundant work

performed byk groups (or processors) when started in isolation and mergedinto a single group

at some later time. They adequately investigate the case of2-wasteand they show that the work

redundancy increases gracefully as the number of tasks performed in isolation increases.

Thus prior work regarding theOmni-Doproblem established reasonably tight (in the length

of the processor schedule) results for asinglemerge, illustrated the fact that on-line algorithms

subject to diverging reconfiguration patterns incur linear(in p) overhead relative to an off-line

algorithm, and showed an upper bound for an algorithm using group communication services

for a limited pattern of network reconfigurations (fragmentations). In this thesis we substan-

tially increase the understanding of solvingOmni-Do and we demonstrate precisely how the

changes in the network topology affect the efficiency ofOmni-Do algorithms.

1.4 Summary of Contributions

This dissertation substantially advances the understanding on how the adverse environ-

ment affects the efficiency of distributed cooperative computations. One of the contributions

includes upper and lower bounds forDo-All in certain models of computation, that are given

not only as a function of the number of tasksn and the number of participating processorsp,

but also as a function of the number of failuresf caused by the adverse environment during the

computation. Another contribution of the thesis is the definition and analysis of theiterative

Do-All problem, that models the repetitive use ofDo-All algorithms. This thesis also studies
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the distributed cooperation problem in partitionable networks, where partitions may interfere

with the progress of the computation. Group communication services are used to develop

robust algorithms for this settings. Moreover, it is shown that it is possible to obtain optimally-

competitive scheduling algorithms in partitionable networks by proving upper and lower bound

results. These results demonstrate precisely how partitions affect the efficiency of computation.

Overall, the dissertation is substantially contributing to the study of the trade-offs between ef-

ficiency and fault-tolerance in cooperative computing and is advancing the state-of-the-art in

principles of robust distributed computing.

We now overview the technical accomplishments detailed in later chapters of the the-

sis. The thesis presentsDo-All lower bounds on work for synchronous crash-prone pro-

cessors that capture the dependence of work not only onn andp, but also onf , the num-

ber of crashes, for the enire range off (1 ≤ f < p). Specifically we show that work

S = Ω(n + p log p/ log(p/f))1 is required to solveDo-All whenf ≤ p/ log p, and work

S = Ω(n + p log p/ log log p) is required whenf > p/ log n. This gives the first non-trivial

lower bound onDo-All work for a moderate number of crashes (f ≤ p/ log p). For the model

of computation where processors are able to make perfect load-balancing decisions locally (the

perfect knowledge assumption), matching upper bounds are given. Another contribution of the

thesis is the definition and analysis of ther-iterative Do-All problem that models the repetitive

use ofDo-All algorithms such as found in algorithm simulations. Our failure-sensitive analysis

enables us to derive tight bounds forr-iterative Do-All work, that are stronger than ther-fold

work complexity of a singleDo-All . Our approach that models perfect load-balancing allows

for the analysis of specific algorithms to be divided into twoparts: (i) the analysis of the cost

1It is understood that whenf = 0, thenx/ log(y/f) = 0, for anyx 6= 0 andy 6= 0.
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of tolerating failures while assuming “free” load-balancing, and (ii) the analysis of the cost of

implementing load-balancing.

We demonstrate the utility and generality of the above approach by improving the anal-

ysis of three known efficient algorithms: (a) We derive a new and complete failure sensitiv-

ity analysis of the best known algorithm for the synchronousshared-memory model (algo-

rithm W [67]). Specifically we show that algorithm W solves the Write-All problem under

processors crashes with workS = O(n + log n log p/ log(p/f)) when f ≤ p log p, and

work S = O(n + log n log p/ log log p) whenf > p log p, f being the number of crashes.

(b) We improve the analysis of the work and message complexity for an efficient synchronous

message-passing algorithm (algorithm AN [17]). We show that algorithm AN solves the

Do-All problem under processor crashes with workS = O(log f(n + p log p/ log(p/f)))

and message costM = O(n + p log p/ log(p/f) + pf) when f ≤ p/ log p and, S =

O(log f(n + p log p/ log log p)) andM = O(n + p log p/ log log p + pf) whenf > p/ log p.

(c) We derive a new and complete failure sensitivity analysis on the work of the best known al-

gorithm for the synchronous shared-memory model where the memory access concurrency

needs to be controlled (algorithm KMS [66]). Specifically, we show that algorithm KMS

achieves workS = O(n + p log2 n log2 p/ log(p/f)) when f ≤ p/ log p, and workS =

O(n + p log2 n log2 p/ log log p) whenf > p/ log p. For each of the three algorithms, sub-

stantial improvement in the analysis is recorded, especially for a moderate number of failures

(f ≤ p/ log p). Finally, by iteratively using algorithms W, KMS, and AN and using our new

approach to their failure-sensitive analyses, we obtain tighter upper bounds for theiterative

Write-All problem in shared-memory systems, and the first non-trivialupper bound analysis

of the iterative Do-All problem in message-passing systems.
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Another contribution of the thesis is the development of a new robust algorithm forp syn-

chronous processors that solves theDo-All problem withn tasks in the presence of up tof

crashes (f < p) with work complexityS = O(n + p min{f + 1, log3 p}) and message com-

plexity M = O(fpε + p min{f + 1, log p}), for anyε > 0. This result improves the work

complexityS = O(n + fp) of the algorithm of Galilet al. [44] mentioned in the previous

section, while obtaining the same message complexity. It also improves on the algorithm of

Chlebuset al. [19], also mentioned in the previous section, that hasS = O(n + p1.77) and

M = O(p1.77). Unlike algorithm AN [17] that has comparable work complexity (even using

our new failure-sensitive analysis) but uses reliable multicast, the new algorithm uses simple

point-to-point messaging. The algorithm uses an approach for sharing knowledge among pro-

cessors that is less authoritarian than the use of coordinators and checkpointing (as used in

previously developed algorithms in the same setting). Instead, it uses an approach where pro-

cessors share information using a new gossip algorithm, where the point-to-point messaging

is constrained by means of a communication graph that represents a certain subset of edges

in a complete communication network. The processors decidewhere to send a gossip mes-

sage based on sets of permutations with special combinatorial properties that we show to exist.

This gossip algorithm tolerates up top − 1 processor crashes and it runs inO(log2 p) time

and sendsO(p1+ε) messages, for anyε > 0. This result substantially improves on the mes-

sage complexityM = O(p1.77) of the previously best known gossip algorithm of Chlebus and

Kowalski [21], while obtaining the same asymptotic time complexity.

The thesis also substantially contributes to the study of theOmni-Do problem in partition-

able networks, where algorithms must deal with groups of processors that become disconnected

and reconnected during the computation. We present a robustalgorithm, called algorithm AX,
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that solves theOmni-Doproblem for asynchronous processors under group fragmentations and

merges. Algorithm AX uses a group communication service (GCS) [95] with certain properties

to provide membership and communication services to the groups of processors. We argue that

these properties are basic and are provided by several groupcommunication systems and spec-

ifications [23]. It also uses a coordinator-based approach for load-balancing the tasks within

each group of processors. To analyze the algorithm we introduceview-graphsthat are directed

acyclic graphs used to represent the partially-ordered view evolution history witnessed by the

processors (the group changes that processors undergo during the computation). We believe

that view-graphs have the potential of serving as a general tool for studying cooperative com-

puting with group communication services. We show that algorithm AX solves theOmni-Do

problem forn tasks,p processors and any pattern of group fragmentations and merges with

task-orientedwork W < min{nfr +n, np} and message complexityM < 4(nfr +n+pfm),

wherefr denotes the number of new groups created due to fragmentations andfm the number

of new groups created due to merges. This extends the work of Dolev, Segala and Shvartas-

man [32], mentioned in the previous section. In addition, algorithm AX has better message

complexity (subquadratic inn) than the algorithm of Dolevet al. (at least quadratic inn) and

the same asymptotic task-oriented work complexity, under group fragmentations.

An Omni-Doalgorithm and its efficiency can only be partially understood through its worst

case work analysis. This is because the resulting worst casebound might depend on unusual or

extreme patterns of group reconfigurations where all algorithms perform poorly. In such cases,

worst case work may not be the best way to compare the efficiency of algorithms. Hence, in or-

der to understand better the practical implications of performing work in partitionable settings,
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we initiate the study of theOmni-Do problem as an on-line problem and we pursuecompeti-

tive analysis[105]. Specifically, we study a simple randomized algorithm, called algorithm RS,

where each processor (or group) determines the next task to complete by randomly selecting

the task from the set of tasks this group does not know to be completed. We compare the ex-

pected task-oriented work of this algorithm to the task-oriented work of an “off-line” algorithm

that has full knowledge of the future changes in the communication medium. We consider ar-

bitrary patterns of network reconfigurations (including but not limited to fragmentations and

merges). We describe a notion ofcomputation width, which associates a natural number with

a history of changes in the communication medium, and show both upper and lower bounds

on competitiveness in terms of this quantity. Specifically,we show that algorithm RS obtains

the competitive ratio(1 + cw/e), wherecw is the computation width; we also show that this

ratio is tight. We note thatcw captures precisely the effect of network reconfigurations on the

efficiency of the computation.

1.5 Document Structure

The rest of the thesis is organized as follows. In Chapter 2 wesurvey prior and related

work. In Chapter 3 we formally define the models of computation, theDo-All problem and

its variations, and the measures of efficiency we use to evaluateDo-All algorithms. In Chap-

ter 4 we present matching failure-sensitive upper and lowerbounds on work forDo-All and

iterative Do-All. We consider the model with synchronous crash-prone processors that are

assisted by an “oracle” for load-balancing and terminationdecisions (assumption of perfect

knowledge). In Chapter 5 we present failure-sensitive bounds on work and messages for the
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Do-All problem for synchronous message-passing processors proneto crashes. We first con-

sider a message-passing model where reliable multicast is available (Section 5.1) and then we

consider a message-passing model without reliable multicast (Section 5.2). In Chapter 6 we

present failure-sensitive bounds on work for theWrite-All problem for synchronous crash-

prone processors, first in a shared-memory model where the memory access concurrency does

not need to be controlled (Section 6.1), and then in a shared-memory model where the memory

access concurrency must be controlled (Section 6.2). Chapter 7 considers theOmni-Do prob-

lem in partitionable networks. We first analyze algorithmicsolutions toOmni-Do in terms of

worst case work (Section 7.1), and then we analyze the work ofOmni-Do algorithms in terms

of competitive analysis (Section 7.2). We conclude in Chapter 8 with a discussion of future

research directions.



Chapter 2

Related Work

In this chapter we overview results forDo-All in several models of computation. We

also give an overview ofgroup communication services, and two problems that are related

to Do-All , thecooperative collectandconsensusproblems. We conclude this section with a

discussion onweb-based computing.

2.1 Do-All in Message-Passing Models

Dwork, Halpern and Waarts were the first to considerDo-All in message-passing systems

[33]. They developed several deterministic algorithms that solved the problem for synchronous

crash-prone processors. To evaluate the performance of their algorithms, they used the “total

number of tasks performed” work complexity measure (task-oriented work), denoted byW

and the “total number of messages sent” message complexity measure, denoted byM . They

also used theeffort complexity measure, defined as the sum ofW andM . This measure of

efficiency makes sense for algorithms for which the work and message complexities are similar,

which was the case for the algorithms in [33]. One algorithm presented in [33], called protocol

18
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B has effortO(n+p
√

p), with work contributing the costO(n+p) and the message complexity

contributing the costO(p
√

p) toward the effort. The running time of the algorithm isO(n+p).

The algorithm uses synchrony to detect processor crashes bymeans of timeouts. The algorithm

operates as follows. Then tasks are divided into chunks and each chunk is divided into sub-

chunks. Processors checkpoint their progress by multicasting the completion information to

subsets of processors after performing a subchunk, and broadcasting to all processors after

completing chunks of work. Another algorithm, called protocol C has effortO(n + p log p). It

has optimal workW = O(n + p), message complexityM = O(p log p) and timeO(p2(n +

p)2n+p). This shows that reducing the message complexity may cause asignificant increase in

time. The last algorithm presented in [33], called protocolD, obtains work optimality and it is

designed for maximumspeed-up(the ratio between the parallel time over the sequential time),

which is achieved with a more aggressive check-pointing strategy, thus trading-off time for

messages. The message complexity is quadratic inp for the fault-free case, and in the presence

of f < p crashes the message complexity degrades toΘ(fp2). Finally, the authors in [33]

demonstrate how each of their algorithms can be used to construct efficient algorithms for the

Byzantine agreement problem (see Section 2.7 for more details).

De Prisco, Mayer and Yung [28] provided an algorithmic solution for Do-All considering

the same setting as Dworket al., (synchrony, processor crashes) but using the “available pro-

cessor steps” work complexity measure, denoted byS. De Priscoet al. use a “lexicographic”

criterion: first evaluate an algorithm according to its available processor steps and then accord-

ing to its message complexity. This approach makes sense when optimization of work is more

important than optimization of communication. They present a deterministic algorithm that

hasS = O(n + (f + 1)p) andM = O((f + 1)p). The algorithm operates as follows. At each
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step all the processors have a consistent (over)estimate ofthe set of all the available processors

(using checkpoints). One processor is designated to be the coordinator. The coordinator allo-

cates the undone tasks according to a certain load balancingrule and waits for notifications of

the tasks which have been performed. The coordinator changes over time. To avoid a quadratic

upper bound forS, substantial processor slackness is assumed (p ≪ n). We note thatf ap-

pears in the equations mainly because of the use of the coordinator approach. The authors also

develop a lower bound ofS = Ω(n + (f + 1)p) for any algorithm using the stage-checkpoint

strategy, this bound being quadratic inp for f comparable withp.

Galil, Mayer and Yung [44], while working in the context of Byzantine agreement (see

Section 2.7) assuming synchronous crash-prone processors, developed an efficient algorithm

that has the same work bound as De Priscoet al. [28] (S = O(n + (f + 1)p)) but has better

message complexity:M = O(fpε + min{f + 1, log p}p), for anyε > 0. The improvement

on the message complexity is mainly due to the improvement ofthe checkpoint strategy used

in [28] by replacing the “rotating coordinator” approach with what they called the “rotating

tree” (diffusion tree) approach.

Chlebus, De Prisco and Shvartsman [17] developed the only known efficient deterministic

algorithm, that solvesDo-All in the synchronous model under processor crashes and restarts.

Their algorithm, called AR, uses an algorithmic technique that is based on an aggressive co-

ordination paradigm by which multiple coordinators may be active as the result of failures:

when the failures of coordinators disrupt the progress of the computation, the number of co-

ordinators is increased (doubled); when the failures recede, a single coordinator is chosen.

Algorithm AR has workS = O((n + p log p + f) · min{log p, log f}) and message com-

plexity M = O(n + p log p + fp), wheref is the number of processor crashes and restarts.
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En route to the solution for restartable processors, the authors presented another algorithm,

called AN, which is designed to solveDo-All for synchronous processors prone to crashes (no

restarts). Algorithm AN has workS = O((n+p log p/ log log p) log f) and message complex-

ity M = O(n + p log p/ log log p + fp), wheref is the number of processor crashes. Observe

that algorithm AN has better work than the algorithms in [28]and [44] whenn, p andf are

comparable. However, algorithms AN and AR assume reliable multicast [60] (if a processor

fails while multicasting a message, then either all non-faulty processors deliver the message or

none do), whereas prior solutions use simple point-to-point messaging. In Section 5.1 we give

a more detailed description of algorithm AN and we develop failure-sensitive bounds on the

work and message complexities that demonstrate precisely how processor crashes affect the

efficiency of the algorithm.

Chlebus and Kowalski [20] studied theDo-All problem for synchronous crash-prone pro-

cessors with reliable multicast under aweakly-adaptive linearly boundedadversary: the adver-

sary selectsf < c · p (0 < c < 1) crash-prone processors prior to the start of the computation,

then any of these processors may crash at any time during the computation. They designed

a randomized algorithm with expected combined work complexity and message complexity

S + M = O(n + p(1 + log∗ p− log∗(p/n))). They also showed that the performance of their

randomized algorithm is better than that of any deterministic algorithm in the same setting,

where workS = Ω(p log p/ log log p) has to be performed.

Chlebus, Kowalski and Lingas [22] studiedDo-All in the setting of broadcast networks

where processors communicate over a multiple access channel [45], synchronized by a global

clock. If exactly one processor broadcasts at a time, then the message is delivered to all proces-

sors. If more than one processor broadcasts thencollision occurs and no message is delivered.
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The authors provide randomized and deterministic solutions with and without collision detec-

tion, and for various size-bounded adversaries.

Chlebus, Gasieniec, Kowalski and Shvartsman [19] developed a deterministic algorithm

that solvesDo-All for synchronous crash-prone processors with combined workand message

complexityS + M = O(n + p1.77). This is the first algorithm that achieves subquadratic in

p combinedS andM for theDo-All problem for synchronous crash-prone processors. They

present another deterministic algorithm that has workS = O(n + p log2 p) againstf -bounded

adversaries such thatp−f = Ω(pα) for a constant0 < α < 1. They also show how to achieve

S+M = O(n+p log2 p) against a linearly-bounded adversary by carrying out communication

on an underlying constant-degree network.

Recently, Kowalski and Shvartsman [75] considered theDo-All problem in asynchronous

message-passing systems. Recall that theDo-All problem can be solved without any com-

munication with workS = Θ(np) by an oblivious algorithm where each processor performs

all tasks. The authors observe that it is not possible to obtain subquadratic (inn) work when

themessage delayd is substantial, e.g.,d = Θ(n). Therefore, they pursue amessage-delay-

sensitiveapproach: The upper bounds on work and communication are given as functions ofp,

n, andd, the upper bound on message delays, however algorithms haveno knowledge ofd and

they cannot rely on the existence of an upper bound ond. The authors present two families of

asynchronous algorithms achieving, for the first time, subquadratic work as long asd = o(n).

The first, is a family of deterministic algorithms parameterized by a positive integerq and a

list of q permutations on the set[q] = {1, ..., q}, where2 < q < p < n. It is shown that

for any constantε > 0 there is a constantq such that the corresponding algorithm has work

S = O(npε +pd[n/d]ε) and message complexityM = O(p ·S). The algorithms in this family



23

are modeled after an algorithm of Anderson and Woll [7] (see next section), and use a list ofq

permutations is a similar way. The second family, is a familyof deterministic and randomized

algorithms, parametrized by a list ofp permutations on the set[p]. The randomized algorithms

have expected workS = O(n log p + pd log(2 + n/d)) and expected message complexity

M = O(np log p + p2d log(2 + n/d)). It is shown that there exists a deterministic list of

schedules such that the deterministic algorithm has workS = O(n log p + pd log(2 + n/d))

and message complexityM = O(np log p + p2d log(2 + n/d)). The authors also present

the first delay-sensitive lower bound forDo-All in this setting, that helps explain the behav-

ior of the their algorithms. Specifically, they show that anydeterministic (resp. randomized)

algorithm with p asynchronous processors andn tasks has work (resp. expected work) of

Ω(n + pd logd+1 n).

2.2 Write-All in Shared-Memory Models

Kanellakis and Shvartsman were the first to consider theWrite-All problem [67]. They

developed the best known deterministic synchronous algorithm, called W, that solvesWrite-

All under processor crashes with workS = O(n+p log n log p/ log log p) [67]. The algorithm

uses binary trees of depthO(log n) for estimating the number of operational processors, the

number of completed tasks (elements of the input array that have value1) and for balancing the

loads of the operational processors. In particular, the elements of the input array are associated

with the leaves of a binary tree of depthO(log n), called theprogress tree. The processors

are initially distributed to the leaves of the progress treewhere each of them performs a task

and writes1 to the corresponding tree location. Then the processors traverse the tree bottom-

up recording the progress that it made. This gives an (under)estimate of the number of done
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tasks. The processors also traverse, bottom-up, a tree of depth O(log p), called theprocessor

enumeration treeto estimate the number of operational processors. Using thetwo estimated

values, the processors traverse the progress tree top-downuntil they reach to a leaf of the tree.

This evenly distributes the operational processors onto undone tasks. The processors perform

the task associated with the leaf they reached, and then traverse the progress tree up to the

root to record the new progress. This is repeated until all tasks are performed. Observe that

the bound on work for algorithm W does not includef , the number of processor crashes. In

Section 6.1 we give a more detailed description of algorithmW and we present our failure-

sensitive analysis of its work complexity.

Kedem, Palem, and Spirakis [72] performed an average case analysis of algorithm W [67]

consideringrandom processor crashes (each processor may crash with a fixed probabil-

ity). They showed that algorithm W can solve theWrite-All problem with expected time

O(log p log n) and expected workO((p + n) log n). This shows that algorithm W performs

well under random failures. In the same paper, Kedemet al. developed a simple algorithm,

called algorithm PS, which is a trivial modification of the straightforward pointer-doubling al-

gorithm (PS is short for pointer shortcutting). The algorithm improves on the expected time of

algorithm W while it obtains the same expected work complexity. Specifically, algorithm PS

solves theWrite-All problem under random failures with expected timeO(log n) and expected

work O(n log n).

Kanellakis, Michailidis and Shvartsman [66] developed a deterministic synchronous algo-

rithm, algorithm KMS (called algorithmWopt
CR/W in [66]) that solvesWrite-All under proces-

sor crashes while controlling the read and write memory access concurrency. The algorithm

uses the same data structures as algorithm W to record the progress of the computation and
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to perform load balancing, and it uses two additional data structures to control the memory

access concurrency: (a)processor priority treesare used to determine which processors are

allowed to read or write each shared location that has to be accessed concurrently by more

than one processor, and (b)broadcast arraysare used to disseminate values among readers

and writers. The write concurrency, denotedω, measures the redundant write memory ac-

cesses as follows: Consider a step of a synchronous parallelcomputation, where a particu-

lar location is written byx ≤ p processors. Thenx − 1 of these writes are “redundant”,

because a single write should suffice. Hence, the write concurrency for this step isx − 1.

The read concurrency, denotedρ, is measured in a similar manner. Algorithm KMS has

work S = O(n + p log2 n log2 p/ log log n), write concurrencyω ≤ f and read concurrency

ρ ≤ f log n, f being the number of crashes. Observe that although the bounds on the read and

write concurrencies are given as a function off , the bound on work is not given as a function

of f . In Section 6.2 we give a more detailed description of algorithm KMS and we present a

failure-sensitive analysis of its work complexity.

Algorithm V [15] is a variation of algorithm W that solvesWrite-All with synchronous

restartable crash-prone processors. As in algorithm W, theprocessors use binary trees of depth

O(log n) to perform load balancing. Restarted processors join the computation at a pre-defined

phase. Algorithm V requires workS = O(n + p log2 n + f log n), wheref is the number

of processor crashes and restarts. Observe that sincef can be arbitrarily large, the work of

algorithm V might not be bounded by a function ofn andp.

Anderson and Woll [7] developed the best deterministic asynchronous algorithm forWrite-

All . We call this algorithmAWT. Algorithm AWT has workS = O(npε), for arbitrary

0 < ε < 1. The algorithm uses aq-ary tree, calledprogresstree to load balance processors
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to tasks (array elements) and a list ofq ≤ p permutations of[q], used in conjunction with

processor identifiers to let the processors know in what order to traverse each of theq subtrees

of each interior node in the progress tree. The work complexity does not account for the time

required for these permutations to be computed; it is assumed that they are known before

the execution of the algorithm. The authors of [7] provide a construction (exponential inq

processing time) of permutations needed by their algorithm. Grooteet al. [59] introduced a

different approach that does not use permutation lists and hence no pre-processing is needed

to construct such lists. They present an algorithm that has work S = O(nplog(x+1
x

)) where

x = n
1

log p . The authors argue that their algorithm performs better than AWT under practical

circumstances wherep ≪ n, e.g., whenn = p2. Another practical algorithm, that does not

require a precomputed set of permutations is algorithm X, developed by Buss, Kanellakis,

Radge and Shvartsman [15]. Algorithm X is a special case of algorithm AWT, whereq = 2

and it has workS = O(np0.59). Algorithm X can also be used to solve theWrite-All problem

for synchronous processors prone to crashes and restarts using workS = O(np0.59).

Recently, Malewicz [82] developed a deterministic asynchronous algorithm for theWrite-

All problem that has workS = O(n + p4 log n). This is the first asynchronousWrite-All

algorithm that has optimal work for a nontrivial number of processors (p < (n/ log n)1/4), as

opposed to all previously known deterministic algorithms that require as much asω(n) work

whenp = n1/c, for any fixedc > 1. The algorithm operates oncollision detection: each pro-

cessor has a collection of intervals of the input array and iteratively selects an interval to work

on. The processor proceeds from one edge of the interval toward the other edge, executing the

tasks associated with the cells in the interval. When processors “collide”, meaning that they are

allocated to the same input element, they exchange appropriate information and schedule their
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future work accordingly. The algorithm uses Test-And-Set instructions to detect collisions, as

opposed to the previous algorithms that used only atomic Read/Write instructions.

Kedem, Palem, Raghunathan and Spirakis [71] showed that anycrash-free execution of an

algorithm designed to solveWrite-All deterministically forn = p with crash-prone processors

requires timeΩ(log n) and workΩ(n log n). Martel and Subramonian [86] extended these

lower bounds for randomized algorithms. Specifically they showed that the lower bound on

expected time and expected work on randomized algorithms for Write-All is Ω(log n) and

Ω(n log n), for n = p, respectively (these lower bounds apply to both synchronous crash-prone

and asynchronous processors). Martel, Park, and Subramonian [85] developed a randomized

asynchronous algorithm forWrite-All that matches the above lower bound on the expected

work for randomized algorithms. Their algorithm proceeds as follows: the locations of the

input array are viewed asn leaves of a binary tree that isΘ(log n) deep (this is similar to the

progress tree of algorithm X [15]). Initially all tree nodesare unmarked. Each processor selects

a tree node at random. If the nodev is a leaf node or if its children are marked, then nodev is

also marked. This is repeated until the root is marked.

Write-All algorithms can be usediteratively to simulate parallel algorithms formulated for

synchronous failure-free processors (see the works of Kedem, Palem, and Spirakis [72], Ke-

dem, Palem, Raghunathan, and Spirakis [71], Martel, Park, and Subramonian [85], Martel,

Subramonian, and Park [87], and Shvartsman [104]). It was shown that the execution of a sin-

gle n-processor step onp failure-prone processors does not exceed the complexity ofsolving

a n-size instance ofWrite-All usingp failure-prone processors. This commonly requires that

(i) the individual processor steps are made idempotent (since they may have to be performed

multiple times due to failures or asynchrony), and that(ii) a linear in the number of processors
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auxiliary memory is made available (to be used as a “scratchpad” and to store intermediate

results). While the former can be solved with the help of an automated tool, e.g., a compiler,

the latter requires sophisticated solutions because of thedifficulty of (re)using the auxiliary

memory due to “late writers” (i.e., processors that are slowand that unknowingly write stale

values to memory). Examples of randomized solutions addressing these problems include the

works of Aumann and Rabin [9] , and Kedem, Palem, Rabin, and Raghunathan [70]. Another

important aspect of algorithm simulations is the use of an optimistic approach, where the com-

putation may proceed for several steps assuming that all tasks assigned to active processors are

successfully completed. Such approach was used by Kedem, Palem, Raghunathan and Spi-

rakis in [71]. In some deterministic models optimal simulations are possible (as demonstrated

by Shvartsman in [104]), however randomized solutions are able to achieve (expected) opti-

mality for broader ranges of models and algorithms. An example of a practical implementation

is discussed by Dasgupta, Kedem and Rabin in [25].

2.3 Do-All Under the Assumption of Perfect Knowledge

Kanellakis and Shvartsman [68] showed thatDo-All can be solved using unit-time memory

snapshots (equivalently assuming perfect knowledge – see below) for synchronous crash-prone

processors with workS = O(n + p log p/ log log p) for f < p ≤ n (f is the number of

processor crashes). They showed that this bound is tight, bygiving a matching lower bound.

The authors also presented a matching lower and upper bound on work for Do-All assuming

synchronous crash-prone and restartable processors. The bound isS = Θ(n + p log p) for

p ≤ n and anyf , the number of processor crashes and restarts. This result also holds for the
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model of perfect knowledge with asynchronous processors, where a crash and restart event can

be modeled as a delay.

The above bounds hold under the assumption that processors can read all memory in con-

stant time (memory snapshots). However, it is not difficult to see that the memory snapshot

assumption in shared-memory is equivalent to the assumption of perfect knowledge, where a

deterministic omniscient oracle provides load-balancingand termination to the processors in

constant time (information that can be obtained also in constant time in the memory snapshots

model). Hence any result provided in the “memory snapshots model” holds trivially in the

“perfect knowledge model”.

2.4 Omni-Do in Partitionable Networks

Omni-Do was introduced and studied by Dolev, Segala and Shvartsman in [32]. They

present the following results, under the assumption thatp = n. (a) For the case of dynamic

group changes, including fragmentations and merges, they show that the termination time of

any on-line task assignment algorithm is greater than the termination time of an off-line task

assignment algorithm (that has the knowledge of the dynamicgroup changes pattern) by a

factor greater thann/12. (b) They present a load balancing algorithm, called AF thatsolves

theOmni-Do problem with group fragmentations (no merges) and under theassumption that

all processors belong initially to a single group, with workS = O(n + f · n), f < n being

the fragmentation-numberof the computation. (The fragmentation-number of a fragmentation

is the number of new groups created due to this fragmentationminus one. The fragmentation-

number of the computation is the sum of all fragmentation-numbers of all the fragmentations

occurred in the computation.) The basic idea of algorithm AFis the following: each processor
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performs undone tasks according to a certain load balancingrule until it learns the results of

all tasks. The algorithm uses a group communication serviceto handle group memberships

and communication within groups (see Section 2.5). The authors did not measure the message

complexity of algorithm AF, however it is not difficult to seethat M is at least quadratic.

(c) They develop an effective scheduling strategy for minimizing thetask execution redundancy

(see below) between any two processors that merge during thecomputation. More specifically,

they show that if initially all processors work in isolation, then the task redundancy incurred

when the communication is first established between any two processors is bounded by1 as

long as no processor has executed more thanΘ(n1/3) tasks. The task execution redundancy

is defined as follows. Consider two processors,i andj, that at some point of the computation

merge. LetTi be the set of task identifiers of the tasks that processori performed before the

merge and letTj be the set of task identifiers of the tasks that processori performed before the

merge. LetRi = Ti ∩ Tj . Then the task execution redundancy of this merge is|Ri|. (Hence,

if processorsi and j performed different tasks before they merge, then the task execution

redundancy is zero.) We note that all the results in [32] wereshown for the asynchronous

timing model.

Malewicz, Russell, and Shvartsman in [83, 84] introduced the notion ofk-wastethat mea-

sures the redundant task-oriented work performed byk groups (or processors) when they start

in isolation and then merge into a single group. However, they only adequately investigate the

case of thepairwise waste(2-waste) until thefirst merge. This is the case when from a pool of

p processors, any two processors merge into one group having performeda andb (a, b ≤ n)

tasks respectively. The authors first show a lower bound on pairwise waste ofΩ(a2/n) (when
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n ≥ a ≥ b andn = p). Then they present an asymptotically optimal randomized construc-

tion as well as a near-asymptotically-optimal deterministic construction using elements from

design theory [63].

2.5 Group Communication Services

Group communication services (GCS) [95] provide membership and communication ser-

vices to the group of processors. GCSs have been establishedas effective building blocks for

constructing fault-tolerant distributed applications. These services enable the application com-

ponents at different processors to operate collectively asa group, using the service to multicast

messages. The basis of a group communication service is agroup membership service. Each

processor, at each time, has a uniqueviewof the membership of the group. The view includes

a list of the processors that are members of the group. Views can change and may become

different at different processors. There is a substantial amount of research dealing with speci-

fication and implementation of GCSs. Some GCS implementations are Isis [14], Transis [30],

Totem [91], Newtop [37], Relacs [10], Horus [110], Consul [88] and Ensemble [61]. Some

GCS specifications are presented in [97, 11, 38, 31, 24, 62, 90]. An extended study on speci-

fications of GCS can be found at [23]. Examples of recent work dealing with primary groups

are [27, 77]. An example of an application using a GCS for loadbalancing is by Fekete, Khazan

and Lynch [73]. Babaogluet al. [12] study systematic support for partition awareness based

on group communication services in a wide range of application areas, including applications

that require load balancing. To evaluate the effectivenessof partitionable GCSs, Sussman and

Marzulo [107] proposed a measure (cushion) precipitated by a simple partition-aware applica-

tion.
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2.6 Cooperative Collect

Omni-Do has an analogous counterpart in the shared-memory model of computation,

called thecollect problem, introduced by Shavit [103] and studied by Saks, Shavit and Woll

in [100]. There arep processors each with a shared register. The goal is to have all the pro-

cessors learn (collect) all the register values. Computation is asynchronous, with the adversary

controlling timing of the processors. A trivial solution tothis problem is to have allp proces-

sors reading allp registers. Saks, Shavit and Woll recognized the opportunity for improving the

efficiency of shared-memory algorithms by finding a way for processors to cooperate during

their collects [100]. They developed a randomized algorithm, which they analyzed in a model

where a time unit is the minimal interval in the execution of the algorithm during which each

processor executes at least one step (known as thebig-stepmodel). The goal is to minimize

the number of big-steps.

Ajtai, Aspnes, Dwork and Waarts [3] showed that the problem can be solved determin-

istically with work S = O(p3/2 log p), by adapting the algorithm of Anderson and Woll

(AWT) [7]. The authors assume single-writer, multi-reader registers, each of sizeO(p log p)

bits. The authors point out that for the asynchronousWrite-All problem, usually some sort

of multi-writer registers are assumed, each of sizeO(log p) bits. Then, the authors argue that

for a model that provides multi-writer registers, the cooperative collect would be equivalent to

the Write-All problem: given aWrite-All algorithm, if each of the writes to the registers is

replaced by a read, and the value read is propagated along with the certification that the par-

ticular register was accessed, then when each processor terminates, it knows that each register

was accessed along with each register’s value. The authors,using this observation, show that

the algorithm of Anderson and Woll [7] can be modified to solvethe collect problem using
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single-writer, multi-reader registers, by choosing “appropriate” set of permutations on[p] that

they show to exist.

Aspnes and Hurwood [8] developed a randomized algorithm forthe cooperative collect

problem that has workS = O(n log3 n) with high probability. The idea of the algorithm is

that each processor keeps reading randomly selected registers. However, before a processor

attempts to read a register, it “leaves a note” saying where it is going. This is necessary to

prevent situations where the adversary chooses a specific register and delay each processor

that attempts to read that register (it is not difficult to seethat this leads to quadratic work).

The authors show that the processors, using the notes left byother processors, can detect such

traps with high probability and hence avoid quadratic work with high probability. The work

achieved by this algorithm is very close to the lower bound ofΩ(n log n), shown in [100].

Although the algorithmic techniques when dealing with the collect problem are different,

the goal of having all processors to learn a set of values is similar to the goal of having all

processor to learn the results of a set of tasks inOmni-Do.

2.7 Consensus

Consensusis the abstract problem of havingp processors to agree on a common value.

This problem is one of the fundamental problems of distributed computing, and solutions to

this problems are used as building blocks in various distributed applications. Dwork, Halpern

and Waarts [33] showed that algorithmic solutions toDo-All can be used to provide efficient

solutions to consensus. Also, De Prisco, Mayer and Yung [28], and Galil, Mayer and Yung
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showed that algorithmic solutions to consensus can be used to solveDo-All . The consen-

sus problem has been studied in various models of computation and we present an overview,

focusing mainly on work that is related to our research.

The Coordinated Attack Problem

The coordinated attackproblem is a fundamental problem of reaching consensus in

message-passing systems, where messages may be lost. It wasintroduced by Gray [57] in

the context of distributed databases. Abstractly, there are several generals that want to agree

on an attack time, and that communicate using messengers whomay be lost. Gray [57] proved

that this problem is impossible to be solved deterministically in the absence of reliable com-

munication, even if the system is synchronous. Due to this impossibility result, the randomized

version of the coordinator attach problem has been considered: agreement is reached with high

probability. Unlike the deterministic version, the randomized coordinated attack problem can

be solved (in synchronous systems). See, for example, [111].

Byzantine Agreement and its Connection to Do-All

When processors are subject to processor failures (rather than communication failures),

consensus is better known asByzantine agreement. Byzantine agreement was introduced by

Lamport, Shostak and Pease [76] in which consensus was formulated in terms ofByzantine

generalsprone toByzantinefailures (faulty processors may exhibit totally unconstrained be-

havior [76]): as in the coordinated attack problem, the generals want to agree on a time to carry

out an attack, but in this case, they do not worry about lost messengers, but about the traitorous

behavior by some general. Alternatively, the problem is formulated, for both crash and Byzan-

tine failures, as follows:p processors, a subset of which may be faulty, must agree on a value
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broadcast by a distinguished processor called thesenderor thegeneralin such a way that all

non-faulty processors decide the same value, and when the general is non-faulty, they decide

on the value the general sent. The number of faulty processors is bounded in advance, by a

fixed numberf .

For the synchronous message-passing model with Byzantine processor failures, Pease,

Shostak and Lamport [94, 76] presented upper and lower bounds of 3f + 1 for the number of

processors required for Byzantine agreement. Moses and Waarts [92], Berman and Garay [13]

and Garay and Moses [46] have producedf + 1 round Byzantine agreement algorithms (in

each round, each processor can send messages to other processors and receive the messages

sent by other processors in the same round) with polynomial communication (number of point-

to-point messages sent). Fischer and Lynch [40] showed thatByzantine agreement cannot be

solved in fewer thanf + 1 rounds.

Byzantine agreement was also studied in the synchronous message-passing model under

processor crashes. In [80] two deterministic algorithms are presented that solve Byzantine

agreement (each using a different technique) inf + 1 rounds and withO((f + 1)p2) message

complexity, wherep is the number of processors andf the number of processor crashes. For

the same model, Dwork and Moses [35] showed that Byzantine agreement cannot be solved in

fewer thanf + 1 rounds (like in the case of Byzantine failures).

Dwork, Halpren and Waarts [33], while working in the contextof the Do-All problem

assuming synchronous crash-prone processors (see Section2.1), developed an algorithm that

can use aDo-All algorithm as a building block to solve the Byzantine agreement problem for

synchronous crash-prone processors. Their algorithm proceeds in two stages: first the general

broadcasts its value to processors withPID = 1, . . . , f + 1. Then thesef + 1 processors use
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one of theDo-All algorithms (ProtocolsB, C or D [33]) to perform the “work” of informing

processors1, . . . p about the general’s value. Hence, performing aDo-All task here means

sending a message containing the general’s value. Initially all processors have the initial value

0 as the general’s value (the general of course has it own valueas initial value). When a proces-

sor receives a message about a value for the general different from its current value, it adopts

the new value. Finally, at a predetermined time by which the underlying Do-All algorithm

is guaranteed to have terminated, each processor decides onits current value for the general.

Using protocolC as theDo-All algorithm the authors solve the Byzantine agreement problem

for synchronous crash-prone processors inO(2p) time and withO(p + f log f) message com-

plexity. When they use protocolB they obtain a Byzantine agreement solution ofO(p) time

andO(p + f
√

f) message complexity. Observe that whenp andf are comparable, the sec-

ond solution has the same asymptotic time complexity as the algorithms presented in [80] and

substantially better message complexity. This shows thatDo-All solutions can yield efficient

solutions to the Byzantine agreement problem (and to the consensus problem in general).

Galil, Mayer and Yung [44] developed an algorithm that solves Byzantine agreement for

synchronous crash-prone processors that uses a linear number of messages (O(p)) and super-

linear time (O(p1+ε)). They also improved the message complexity of theDo-All algorithm of

De Priscoet al. [28] (see Section 2.1). This algorithm relies on two agreement-like protocols:

(a) the check-point protocol that processors use to agree onthe set of operational processors,

and (b) the synchronization protocol that processors use toagree on the time that the next

check-point protocol will begin. Given the full details of the protocols, it is not difficult to

observe that these protocols solve multiple instances of the Byzantine agreement problem.

This shows that efficient solutions to consensus can lead to efficient solutions toDo-All .
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FLP Impossibility Result

One of the fundamental impossibility results in the theory of distributed computing is the

FLP result which states that consensus cannot be solved in asynchronous models, even if there

is guaranteed to be no more than one processor failure. More precisely, every asynchronous

consensus algorithm has the possibility of nontermination(that is, a non-faulty processor might

never decide on a value and the algorithm runs indefinitely),even with only one faulty proces-

sor. This result was shown by Fischer, Lynch and Paterson (thus the name FLP) in [41] for the

asynchronous message-passing model and it was later extended to the read/write asynchronous

shared-memory model by Loui and Abu-Amara [78]. Since this impossibility result has prac-

tical implications for distributed applications in which agreement is required, a lot of research

has been done in solving consensus in asynchrony either by relying on randomized correctness

or by weakening the problem (e.g.k-Agreement, approximate agreement) or strengthening the

model (e.g. assuming read-modify-write or compare-and-swap shared memory, using failure

detectors, introducing some timing conditions — partial synchrony). For such solutions we

refer the reader to [34, 16, 80].

The research performed on consensus in the models that allowfault-tolerant solutions teach

that the maximum number of processor failures needs to be included in upper/lower bounds

and impossibility results. This contributes to the understanding of the impact that failures have

on the efficiency and dependability of algorithms and in identifying the trade-offs between

fault-tolerance and efficiency for solving distributed problems (such asDo-All ). This research

motivated in part the research in this thesis: show failure-sensitive upper/lower bounds for the

Do-All problem.
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2.8 Web-Based Computing

In recent years, the web has become the computing platform ofchoice for a variety of

computational problems that cannot be handled efficiently by the traditional fixed-size col-

lection of machines (such as clusters of workstations or multiprocessor machines). This has

given rise to the study ofweb-based computing(WBC) [99]: A large number of processing

elements cooperate in computing a large number of independent tasks. A usual WBC com-

putation proceeds as follows: Interested “volunteers” register with a specific web-site. Then,

each registered volunteer visits the web-site occasionally to receive a task to compute. Once

the volunteer performs the task, it returns the results fromthat task. The computation continues

in this manner.

Possibly the most popular web-based project is SETI@home [74]. SETI stands for “Search

of Extra-Terrestrial Intelligence”. The project, initiated at University of California at Berkeley,

was the first attempt to use large-scale distributed computing to perform a search for radio

signals possibly coming from extraterrestrial civilizations. It soon became obvious that great

amount of computer power would be necessary to get the job done: the universe is potentially

infinite, and the parameters of a possible alien signal are unknown. The SETI team counts

on using thousands of home personal computers that are idle most of the time, especially

when their owners are at work or are asleep. People, can register at the project’s web-site

(http://setiathome.ssl.berkeley.edu), and make their computer available to the project, when

they are not using it.

Several web-based projects similar to SETI@home are in existence. For example, the

RSA@home project [96]. The project is involved in finding theprime factors of large in-

tegers. The problem of factoring integers has drawn considerable attention due to the RSA
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cryptographic scheme [98], since the security of RSA depends upon the difficulty of factoring

large numbers. Another example is the AIDS@home project [93]. Through the “donation”

of large computing power, scientists and researchers have an ideal system to model the evolu-

tion of drug resistance and design anti-HIV drugs necessaryto fight AIDS. More examples of

web-based projects can be found at http://www.intel.com/cure.

As we demonstrate later on (see Section 4.3), complexity results obtained forDo-All in the

model of perfect knowledge can yield insight about the bounds on task execution redundancy

in settings where a server repeatedly allocates tasks to failure-prone processors (as in web-

based computing). This follows from the observation that the oracle assumed in the model of

perfect knowledge can be used to abstract the server that makes the load-balancing decisions

in web-based computing.



Chapter 3

Models of Computation and the Do-All Problem

In this chapter we define the models of computation, theDo-All problem and the efficiency

measures we use to evaluateDo-All algorithms.

3.1 General Setting and Definitions

Distributed setting: We consider a distributed system consisting ofp processors; each pro-

cessor has a unique identifier (PID) from the setP = [p] = {1, 2, . . . , p}. We assume thatp is

fixed and is known to all processors.

Each processor’s activity is governed by a local clock. Whenthe processor clocks are

assumed to be globally synchronized, our distributed setting is synchronousand we say that

the processors are synchronous. In this case, processor activities are structured in terms of

synchronoussteps(constant units of time). When the processors take steps at arbitrary rela-

tive speeds, our distributed setting isasynchronousand we say that the processors are asyn-

chronous.

40
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Tasks: We define ataskto be any computation that can be performed by a single processor in

constant time. The tasks are assumed to besimilar, independent, andidempotent. By the sim-

ilarity of the tasks we mean that the task executions consumeequal or comparable resources.

By the independence of the tasks we mean that the tasks can be executed in any order, that is,

the execution of a task is independent of the execution of anyof the other tasks. By the idem-

potence of the tasks we mean that executing a task many times and/or concurrently has the

same effect as executing the task once. We define theresultof a task to be the outcome of the

task execution. Each task has a unique identifier (TID) from the setT = [n] = {1, 2, . . . , n}.

We assume thatn is fixed and known to all processors.

We also consider sequences of task-setsT1,T2, . . . ,Tr, where eachTi, for 1 ≤ i ≤ r, is

a set ofn tasks and the execution of any task inTi must be delayed until all tasks inTi−1 are

performed. This models the situation where the execution ofthe tasks inTi depends on the

execution of the tasks inTi−1, for 2 ≤ i ≤ r. However we assume that the tasks within each

Ti are independent, similar and idempotent and that they are known to all processors. We also

assume that each task inTi, 1 ≤ i ≤ r, has a uniqueTID. For example, each task inTi may

have aTID from the set{(i− 1)n + 1, (i − 1)n + 2, . . . , in}.

Communication: In message-passing models, processors communicate by sending messages.

Unless otherwise stated (see partitionable networks below), the underlying communication

network is assumed to be fully connected, that is, any processor inP can send messages to any

other processor inP. We also assume that messages are neither lost nor corruptedin transit.

In partitionable networks, the processors may be partitioned into groups of communicating

processors. We assume that communication within groups is reliable but communication across

groups is not possible. Partitions may change over time.
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In synchronous message-passing systems we assume that message delivery has fixed

known latency. Specifically, within a step, a processor can send messages to other proces-

sors and receive messages from other processors sent to it inthe previous step (if any). In

asynchronous systems, we assume no bounds on the message delivery latency.

In shared-memory models, processors communicate by reading from and writing to shared-

memory locations. We assume that it takes a unit of time for a processor to read or write to a

memory cell, according to its local clock. We consider synchronous shared-memory systems

where the reads and writes can be concurrent. When two or moreprocessors simultaneously

write to the same memory cell, eithercommonor arbitrary concurrent write discipline is ob-

served. This follows the conventions established for the Parallel Random Access Machine

(PRAM) [43]: for the common writes it is assumed that all values concurrently written to a

memory location are the same, and for the arbitrary writes itis assumed that the concurrent

writes to the memory location are arbitrarily ordered.

The assumption of perfect knowledge:In Chapter 4 we consider computations where the

processors, instead of communicating with each other, communicate with some deterministic

omniscientoracle, call it oracleO, to obtain information regarding the status of the computa-

tion. In particular, the oracle informs the processors whether the computation is completed and

if not, what task to perform next. We assume that the oracle performs perfect load-balancing,

that is, the live processors are only allocated to unperformed tasks, and all such tasks are

allocated a balanced number of live processors. We also assume that a processor can obtain

load-balancing and termination information from the oracle inO(1) time and that it can consult

the oracle only once per local clock-tick.



43

The assumption of perfect knowledge (or the oracle assumption) abstracts away any con-

cerns about communication that normally dominate specific message-passing and shared-

memory models. This allows for the most general results to beestablished and it enables

us to use these results in the context of specific models by understanding how the information

provided by an oracle is simulated in specific algorithms. Also, any lower bound developed

under the assumption of perfect knowledge, applies equallywell to message-passing or shared-

memory models.

3.2 Models of Adversity

In this section we present the models of adversity. We first present the failure types and

then we introduce the notion of an adversary and present specific adversarial models.

3.2.1 Failure Types

We consider the following failure types.

Processor stop-failures/crashes([102]): We considercrashfailures, where a processor may

crash at any moment during the computation and once crashed it does not restart. For message-

passing models we assume that messages sent to crashed processors are lost and no messages

are sent by crashed processors. For shared-memory models weassume that no reads and writes

are performed by crashed processors. We also assume that processor crashes do not corrupt

the contents of the shared-memory or make the shared-memoryinaccessible. Following [102],

we define afail-stop failure to be a crash failure that can be detected. In synchronous settings,

crash failures can be detected (by timeouts) and hence in such settings the two terms have the

same meaning.
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Regroupings/partitionable networks(applicable only to message-passing systems): We con-

siderpartitionable networkswhere dynamic changes to the network topology partition thepro-

cessors into non-overlappinggroupsof communicating processors (processors do not crash).

We represent each processor groupg as a pair〈g.id, g.set〉, whereg.id is the unique identifier

of g andg.set is the set of processor identifiers that constitute the membership of the group.

To reduce notation clutter, for this point on, given a group namedg we useg to stand forg.set

(e.g., if two, possibly distinct, groupsg andg′ have identical membership, we express this by

g = g′). We refer to a transition from one partition to another as aregrouping. We also consider

special types of regroupings: when a single group partitions into a collection of new groups,

we call this afragmentation. When a collection of groups merge and form a new group that

contains all the processors of the merging groups, we call this amerge.

3.2.2 Adversarial Models

The concept of theadversaryis useful for obtaining lower bound results for specific prob-

lems. An event caused by the adversary, e.g., a processor crash, in a computation may nega-

tively affect the efficiency of the computation. We considertwo adversary types:

(a) omniscient and on-line: the adversary has complete knowledge of the computation that

it is affecting, and it makes instant dynamic decisions on how to affect the computation.

(b) oblivious and off-line: the adversary determines the sequence of events it will cause

before the start of the computation and without having anya priori knowledge on how

the computation will be affected under this sequence.
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Note that the distinction between the two adversary types isonly useful when considering

randomized algorithms, where the knowledge or not of the random “coin tosses” may be signif-

icant. For deterministic algorithms the two adversary types are essentially the same, since the

adversary knows exactly, before the beginning of the computation, how a specific deterministic

algorithm would be affected by a specific event caused by the adversary.

Consider an adversaryA and an algorithmΛ that solves a specific problem under adversary

A. We denote byE(Λ,A) the set of all executions of algorithmΛ for adversaryA. Let ξ be an

execution inE(Λ,A). We denote byξ|A the set of events caused byA in ξ and we refer to it

as theadversarial patternof ξ. For an adversarial patternξ|A of an executionξ, we denote by

‖ξ|A‖ theweightof ξ|A. The value of‖ξ|A‖ depends on the specific adversaryA considered

(e.g., if adversaryA causes processor crashes, then‖ξ|A‖ is the number of crashes caused by

the adversary; if the adversary causes fragmentations, then ‖ξ|A‖ is the number of new groups

created due to the fragmentations). Unless otherwise stated, we assume that the processors

have knowledge neither ofξ|A nor of any bounds on‖ξ|A‖.

We now present the adversaries we consider in the thesis. We first present the adversaries

that cause processor failures and then we present the adversaries that cause regroupings.

Adversaries Causing Processor Failures

We consider only one adversary that causes processor failures. In particular, we consider

an adversary that causes processor crashes.

Adversary AS: We denote byAS an omniscient and on-line adversary that can cause proces-

sor crashes (but not restarts). Consider an algorithmΛ that solves a problem under adversary

AS. Let ξ be an execution inE(Λ,AS). Then, the adversarial patternξ|AS
is a set of triples
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(crash, PID, t), where crash is the event caused by the adversary,PID is the identifier of the

processor that crashes, andt is the time of the execution (according to some external clock not

available to the processors) in which the adversary forced processorPID to crash. Note that

any adversarial pattern contains at most one triple (crash, PID, t) for anyPID, i.e., if processor

PID crashes, timet during which it crashes is uniquely defined.

For an adversarial patternξ|AS
we define‖ξ|AS

‖ to be the number of processors that crash.

For the purpose of the thesis we consider only executionsξ where‖ξ|AS
‖ < p, that is we

require that the adversary leaves at least one processor operational in the entire course of the

computation to ensure computational progress.

Adversaries Causing Regroupings

We consider three adversaries that cause regroupings. The first one is an omniscient and

on-line adversary that can cause only fragmentations and the second one is an omniscient and

on-line adversary that can cause fragmentations and merges. The third one is an oblivious

and off-line adversary that can cause arbitrary regroupings. This adversary is assumed to be

oblivious and off-line because later in the thesis we consider randomized algorithms under this

adversary, as opposed to the first two adversaries where we consider deterministic algorithms

(this is also the case for adversaryAS).

Adversary AF : We denote byAF an omniscient and on-line adversary that can cause only

group fragmentations (no merges). Consider an executionξ of an algorithmΛ that solves a

specific problem underAF , i.e.,ξ ∈ E(Λ,AF ). For the purpose of this thesis we consider only

executions where initially all processors belong in asinglegroup.
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When adversaryAF forces groupg to fragment into groupsg1, g2, . . . , gk we require that

(a)
⋃

i∈[k] gi = g, and (b)∀i, j s.t. 1 ≤ i, j ≤ k and i 6= j, gi ∩ gj = ∅. We say that the

fragmentation-numberof this fragmentation isk. Note thatk new groups are created due to this

fragmentation. Syntactically, we present such fragmentations in the adversarial patternξ|AF

as the triple(fragmentation, g, {g1 , g2, . . . , gk}). Consequently, we represent an adversarial

patternξ|AF
of an executionξ as a set of such triples and we define the fragmentation-number

fr(ξ|AF
) = ‖ξ|AF

‖ to be the sum of the fragmentation-numbers of all the fragmentations in

ξ|AF
. In other words,fr(ξ|AF

) is the total number of new groups created due to the fragmen-

tations inξ|AF
. By convention, when a group is regrouped in such a way that itforms a new

group with the same participants, we view this as a fragmentation.

Adversary AFM : We denote byAFM an omniscient and on-line adversary that can can cause

fragmentationsandmerges. Consider an executionξ of an algorithmΛ that solves a specific

problem underAFM , i.e.,ξ ∈ E(Λ,AFM ). As for adversaryAF , we consider only executions

where initially all processors belong in a single group.

When adversaryAFM forces groupsg1, g2, . . . , gℓ to merge and form a groupg, we require

that g =
⋃

i∈[ℓ] gi, and we say that themerge-numberof this merge is1 (note that a merge

results to the creation of only one new group). Syntactically, we present such a merge in

the adversarial patternξ|AF M
as the triple(merge, {g1, g2, . . . , gℓ}, g). Fragmentations are

presented as for adversaryAF . Therefore, we represent an adversarial patternξ|AF M
of an

executionξ as a set of “fragmentation” and “merge” triples, and we definethe merge-number

fm(ξ|AF M
) to be the sum of all merge-numbers of all merges inξ|AF M

. Then,‖ξ|AF M
‖ =

fr(ξ|AF M
)+ fm(ξ|AF M

). In other words,‖ξ|AF M
‖ is the total number of new groups created,

due to the fragmentations and merges inξ|AF M
.
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Observe that adversaryAFM is more powerful thanAF , and thatE(Λ,AF ) ⊆ E(Λ,AFM )

for an algorithmΛ that solves a specific problem. Also note that since we consider only

executionsξ where all processors initially belong in a single group (andfrom the convention

mentioned in the description of adversaryAF regarding a group being formed by a group with

the same members), we have thatfr(ξ|AF M
) > fm(ξ|AF M

).

Adversary AGR: We denote byAGR an oblivious and off-line adversary that can cause ar-

bitrary regroupings. Consider an algorithmΛ that solves a specific problem under adversary

AGR. The adversary determines a sequence of regroupings prior to the start of an execution

and it can not change this sequence once the execution has begun. We refer to such a pre-

determined sequence of regroupings as acomputation template.

AdversaryAGR is restricted in determining only computations templates that can be ex-

pressed as the following labeled directed acyclic graph (DAG) C = (V,E), which we call

(p)-DAG (p is the number of participating processors): each vertex corresponds to a group

of processors and a directed edge is placed from groupg1 to groupg2 if g2 is created by a

regrouping involvingg1. Each vertex of the DAG is labeled with the group of processors

associated with that vertex. To this respect, the DAG is augmented with a labeling func-

tion γ : V → 2[p] \ {∅} (i.e., γ(v) is the set ofPIDs of the processors that belong in the

group corresponding to vertexv). The functionγ satisfies the following two conditions: (a)

[p] = ˙⋃
v: indegree(v)=0γ(v), and (b) there is a functionφ : E → 2[p] \ {∅} so that for

eachv ∈ V with indegree(v) > 0, γ(v) = ˙⋃
(u,v)∈Eφ((u, v)), and for eachv ∈ V with

outdegree(v) > 0, γ(v) = ˙⋃
(v,u)∈Eφ((v, u)). Here ˙⋃ denotes disjoint union. Note that the

above definition allows forseveralinitial groups (no more thanp).
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Given a(p)-DAG, we say that two vertices (groups) areindependentif there is no direct

path connecting one to the other. Then, for a computation templateC, we define thecompu-

tation width ofC, cw(C) to be the maximum number of independent groups reachable (along

directed paths) in the(p)-DAG, that representsC, from any vertex. This discussion is revisited

in Section 7.2.1 where we give a formal definition ofcw(C) using elements from set-theory

and graph-theory.

Consider a problem of a specific size and all algorithms that solve this problem using

the same number of processors, under adversaryAGR. The same computation template can

be applied to all these algorithms, however, the resulting execution might be different, de-

pending on the steps that each algorithm takes in the presence of this computation template.

Let C be a computation template determined by the adversary and let ξ be the resulting ex-

ecution of an algorithm under this computation template. Note that the execution might ter-

minate (meaning that the specific problem is solved) before all regroupings specified by the

computation template take place (since the adversary does not know a priori how the algo-

rithm would behave under this sequence of regroupings). Therefore, if (p)-DAG represents

the computation templateC, then the adversarial patternξ|AGR
is represented by a subgraph

of (p)-DAG. Furthermore, the weight ofξ|AGR
is the computation width of this subgraph.

Hence,‖ξ|AGR
‖ ≤ cw(C). For the purpose of this thesis, when considering algorithms under

adversaryAGR, failure-sensitivity is measured in terms of the properties of the computation

templates. However, the efficiency of algorithms is measured based on the resulting executions.
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3.3 TheDo-All Problem

We now define the abstract problem of havingp processors cooperatively performn tasks

in the presence of adversity.

Definition 3.1 Do-All : Given a setT of n tasks, perform all tasks usingp processors, under

adversaryA.

We let Do-All A(n, p, f) stand for theDo-All problem forn tasks,p processors and ad-

versaryA constrained to adversarial patterns of weight less or equalto f . We considerDo-

All A(n, p, f) to be solved when alln tasks are completed and at least one operational processor

knows about it. We letDo-All OA(n, p, f) stand for theDo-All A(n, p, f) problem when the pro-

cessors are assisted by oracleO (as discussed in paragraphAssumption of perfect knowledge

in Section 3.1).

In the shared-memory model theDo-All problem is known as theWrite-All problem.

The main difference is that inDo-All the tasks may be supplied to the processors from some

external sources, while inWrite-All the tasks are stored in shared-memory accessible to all

processors. In the context of this thesis we abstract away from the sources and the nature of the

tasks and we treatDo-All andWrite-All as the same problem in that regard. However, when

we studyDo-All in shared-memory models, we will be referring to theWrite-All problem,

defined formally as follows:

Definition 3.2 Write-All : Given a zero-valued shared array ofn elements, write the value1

into each array location usingp processors, under adversaryA.
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We note that each “Do-All task” is associated with each location of the input array. When

a processor sets the value of a certain location of the input array to 1, this implies that the

processor has performed the associated task.

We let Write-All A(n, p, f) stand for theWrite-All problem for a shared array ofn el-

ements (or ofn tasks),p processors and adversaryA constrained to adversarial patterns of

weight less or equal tof . We considerWrite-All A(n, p, f) to be solved, when the value of

each of then array elements is set to1 (meaning that all tasks are performed) and at least one

operational processor knows about it.

Do-All algorithms have been used in developingsimulationsof failure-free algorithms on

failure prone processors [72, 104, 68]. This is done by iteratively using aDo-All algorithm

to simulate the steps of then failure-free “virtual” processors onp failure-prone “physical”

processors (here the usual case is that the number of physical processors does not exceed

the number of virtual processors, i.e.,p ≤ n). We abstract this idea as theiterative Do-All

problem:

Definition 3.3 r-Iterative Do-All: Given any sequenceT1, . . . ,Tr of r sets ofn tasks, perform

all r · n tasks usingp processors by doing one set at a time, under adversaryA.

We let r-Do-AllA(n, p, f) stand for theiterative Do-All problem forr sets ofn tasks,

p processors and adversaryA constrained to adversarial patterns of weight less or equalto

f . We considerr-Do-AllA(n, p, f) to be solved, when allr · n tasks are completed and at

least one operational processor knows about it. We letr-Do-All OA(n, p, f) stand for ther-Do-

All A(n, p, f) problem when processors are assisted by oracleO. The r-Iterative Write-All

problem is defined similarly and it is denoted asr-Write-AllA(n, p, f).
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When solvingDo-All in partitionable networks, our goal is to utilize the resources of every

group of the system during the entire computation. This is sofor two reasons: (a) a client, at

any point of the computation, may request for a result of a task from a certain group. This might

be the only group that the client can communicate with. Hence, we would like all groups to be

able to provide the results of all tasks, and (b) if differentgroups happen to perform different

tasks and a regrouping merges these two groups, then more computational progress can be

achieved with less computation waste. Hence, we would like all components to be computing

in anticipation of regroupings.

Therefore, in partitionable networks, each processor mustbe computing until it learns the

results of all tasks. We call this variation ofDo-All , Omni-Do.

Definition 3.4 Omni-Do: Given a setT of n tasks andp message-passing processors, each

processor must learn the result of all tasks, under adversary A.

We letOmni-DoA(n, p, f) stand for theOmni-Do problem forn tasks,p processors and

adversaryA constrained to adversarial patterns of weight less or equalto f . (For adversary

AGR we consider computation templates with computation width less or equal tof .) We

considerOmni-DoA(n, p, f) to be solved when all operational processors know the results of

all n tasks.

Finally, we assume that the number of processorsp is no more than the number of tasksn

(p ≤ n). StudyingDo-All in the case ofp > n is not as interesting. This is so for two reasons:

(1) the most interesting challenge is to consider the settings where maximum parallelism can be

extracted for the case when each processor can initially have at least one distinct task to work
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on, (2) additionally, for the simulation results the most interesting case is when the number of

simulating processors does not exceed the number of simulated processors.

3.4 Measures of Efficiency

We now define the complexity measures that will determine theefficiency of algorithms.

Work complexity. We first define the notion ofwork. We are considering two versions of the

definition of work. The first definition of work, denoted byS, is based on theavailable pro-

cessor stepsmeasure, introduced by Kanellakis and Shvartsman in [67]. The second definition

of work, denoted byW , is based on thenumber of tasks performedmeasure, introduced by

Dwork, Halpern and Waarts in [33]. We note that the second definition is meaningful only for

task-performing algorithms, while the first one is more general.

We assume that it takes a unit of time for a processor to perform a unit of work, according

to its local clock. LetΛ be an algorithm that solves a problem of sizen with p processors

under adversaryA. For an executionξ ∈ E(Λ,A) denote bySi(ξ) the number of processors

completing a unit of work at timei of the execution, according to some external clock not

available to the processors (for synchronous computations, the external clock is assumed to

run in synchrony with the processors’ local clocks).

Definition 3.5 (available processor steps orwork) Let Λ be an algorithm that solves a prob-

lem of sizen with p processors under adversaryA. If execution ξ ∈ E(Λ,A), where

‖ξ|A‖ ≤ f , solves the problem by timeτ(ξ) (according to the external clock), then thework

complexityS of algorithmΛ is:

S = SA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

Si(ξ)






.
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Note that in Definition 3.5 the idling processors consume a unit of work per idling step

even though they do not contribute to the computation.

Let Λ be a task-performing algorithm that solves a problem withn tasks andp processors

under adversaryA. For an executionξ ∈ E(Λ,A) denote byWi(ξ) the number of processors

completing a task-oriented unit of work (a task-oriented unit of work is a unit of work that is

spent in performing a task) at timei of the execution, according to some external clock not

available to the processors (for synchronous computations, the external clock is assumed to

run in synchrony with the processors’ local clocks).

Definition 3.6 (number of tasks performed ortask-oriented work) Let Λ be a task-

performing algorithm that solves a problem withn tasks andp processors under adversaryA.

If executionξ ∈ E(Λ,A), where‖ξ|A‖ ≤ f , solves the problem by timeτ(ξ) (according to

the external clock), then thetask-oriented work complexityW of algorithmΛ is:

W = WA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

Wi(ξ)






.

Note that in Definition 3.6 the idling processors are not charged for work (since we count

only task-oriented units of work).

Observe from the above definitions that thework measure is more “conservative” than the

task-oriented workmeasure. Given an algorithmΛ that solvesDo-All under adversaryA

thenWA(n, p, f) = O(SA(n, p, f)), sinceSA(n, p, f) counts the idle/wait steps, which are

not included inWA(n, p, f). The equalityWA(n, p, f) = SA(n, p, f) can be achieved, for

example, by algorithms that perform at least one task duringany fixed time period. Also note

that Definitions 3.5 and 3.6 do not depend on the specifics of the target model of computation,

e.g., whether it is message-passing or shared-memory. Whenpresenting algorithmic solutions

or lower/upper bounds, we explicitly state which work measure is assumed.
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Message complexity.The efficiency of message-passing algorithms is additionally character-

ized in terms of theirmessage complexity. Let Λ be an algorithm that solves a problem of size

n with p processors under adversaryA. For an executionξ ∈ E(Λ,A) denote byMi(ξ) the

number of point-to-point messages sent at timei of the execution, according to some exter-

nal clock not available to the processors (for synchronous computations, the external clock is

assumed to run in synchrony with the processors’ local clocks).

Definition 3.7 (message complexity)Let Λ be an algorithm that solves a problem of sizen

with p processors under adversaryA. If executionξ ∈ E(Λ,A), where‖ξ|A‖ ≤ f , solves

the problem by timeτ(ξ) (according to the external clock), then themessage complexityM of

algorithmΛ is:

M = MA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

Mi(ξ)






.

Note that when processors communicate using broadcasts or multicasts, each broacast /

multicast is counted as the number of point-to-point messages from the sender to each receiver.

Read and write memory access concurrency.In synchronous shared-memorysystems, we

are also interested in studying the read and write memory access concurrency ofWrite-All

algorithms. Consider a step of a synchronous parallel computation, where a particular location

is written byx ≤ p processors. Thenx−1 of these writes are potentially “redundant”, because

a single write suffices. The following read and write concurrency measures, introduced by

Kanellakis, Michailidis, and Shvartsman in [66], assess the worst case number of redundant

read and write memory accesses.
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Definition 3.8 (read and write concurrency) Let Λ be a synchronous shared-memory algo-

rithm that solves a problem of sizen with p processors under adversaryA. Consider an ex-

ecutionξ ∈ E(Λ,A) with ‖ξ|A‖ ≤ f that solves the problem by timeτ(ξ). If at time i

(1 ≤ i ≤ τ(ξ)), pr
i(ξ) processors complete reads fromnr

i(ξ) distinct shared memory locations

andpw
i (ξ) processors complete writes tonw

i (ξ) distinct locations, then we define:

(i) the read concurrencyρ of Λ as:

ρ = ρA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

(
pr

i(ξ)− nr
i(ξ)

)






,

(ii) the write concurrencyω of Λ as:

ω = ωA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

(
pw

i (ξ)− nw
i (ξ)

)






.



Chapter 4

Perfect Knowledge: Do-All with Crashes

In this chapter we considersynchronouscrash-prone processors under the assumption of

perfect knowledge, where an oracle provides termination and load-balancing information to

the processors (see paragraph “The assumption of perfect knowledge” in Section 3.1). The

assumption of perfect knowledge abstracts away communication and scheduling issues and al-

lows us to focus on the effects of processor failures on the efficiency ofDo-All . We present a

completeanalysis ofDo-All OAS
(n, p, f) andr-Do-All OAS

(n, p, f) work complexity that demon-

strates precisely how failures affect efficiency. In particular, we provide matching upper and

lower failure-sensitive bounds on work that are given as functions ofn, p and f , the num-

ber of processor crashes, for the entire range off . This also establishes the first non-trivial

lower bound forDo-All for moderate number of failures (f ≤ p/ log p). In later sections, we

demonstrate the utility and generality of the results we obtain under the assumption of perfect

knowledge by improving the analysis of three efficient algorithms: Algorithm AN [17] that

solvesDo-All in the message-passing model assuming reliable multicast (see Section 5.1), al-

gorithm W [67], the best known algorithm that solvesWrite-All in the shared-memory model

57
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(see Section 6.1), and algorithm KMS [66] that solvesWrite-All with controlled memory ac-

cess concurrency (see Section 6.2). By iteratively using these algorithms we also give improved

failure-sensitive upper bounds foriterative Do-All in the corresponding models. Finally, our

results under the perfect knowledge assumption yield insight about the bounds on task exe-

cution redundancy incurred when a central authority repeatedly allocates tasks to crash-prone

processors (see Section 4.3).

4.1 Do-All Upper Bounds with Perfect Knowledge

To study the upper bounds forDo-All we give an oracle-based algorithm in Figure 1.

The algorithm uses oracleO that performs the termination and load-balancing computation on

behalf of the processors. In particular, during each synchronous iteration of an execution of

the algorithm, the oracleO makes available to each processori two values:Oracle-complete,

a Boolean which takes the valuetrue if and only if all tasks are complete at the beginning

of this iteration, andOracle-task(i), a natural number from[n], whose value is a task iden-

tifier. Oracle-taskis a function from processor identifiers to task identifiers,with the prop-

erty that processors are only allocated to undone tasks, andthat all such tasks are allocated

a balanced number of processors. For example, if processorsi1, . . . , ik ∈ [p] are alive and

tasksj1, . . . , jℓ ∈ [n] are undone at the beginning of a given iteration of the algorithm, then

Oracle-task(is) = jt, wheret = (s − 1 mod ℓ) + 1.

for each processor PID = 1..p begin
while not Oracle-complete

perform task withTID = Oracle-task(PID)
end

Figure 1: Oracle-based algorithm.
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We begin with a result shown by Kanellakis and Shvartsman [68]. This result was orig-

inally shown for theWrite-All problem with memory snapshots (processors can access the

entire shared-memory in constant time). It is not difficult to see that this result is trivially

applicable to theDo-All problem with perfect knowledge (this is discussed in Section 2.3).

Lemma 4.1 [68] TheDo-All OAS
(n, p, f) problem can be solved withf < p using work

S = O

(

n + p
log p

log log p

)

.

Note that Lemma 4.1 does not show how, if at all, work depends on f . We now present an

upper bound considering moderate number of crashes (f ≤ p/ log p).

Lemma 4.2 TheDo-All OAS
(n, p, f) problem can be solved withf ≤ p/ log p using work

S = O
(

n + p log p
f

p
)

.

Proof: For an iteration of the algorithm in Figure 1, let∆f denote the number of processor

crashes in this iteration. (∆f can be different for each iteration, though the sum of these for

all iterations cannot exceedf .) We setb = b(p, f) = p
2f , and we defineS(n, p, f) to be the

work required to solveDo-All OAS
(n, p, f). Our goal is to show that for allu, p andf , the work

S(u, p, f) is no more than16p + u + p log p
2f

(min(u, p)), whereu ≤ n denotes the number of

undone tasks. The proof proceeds by induction onu.

Base Case:Observe that whenu ≤ 16, S(u, p, f) ≤ 16p < 16p + u + p logb(min(u, p)), for

all p andf .

Inductive Hypothesis:Assume that we have proved the theorem for allu < û (û ≤ n) and all

p andf .

Inductive Step:Consideru = û. We investigate two cases:
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Case 1: p ≤ û (in particular,min(û, p) = p). In this case each processor is assigned to a

unique task, hence

S(û, p, f) ≤ p + max
0≤∆f≤f

S(û− p + ∆f, p−∆f, f −∆f).

As p−∆f > 0, û− p + ∆f < û and, by the induction hypothesis,

S(û, p, f) ≤ p + max
0≤∆f≤f

[

16(p −∆f) + (û− p + ∆f)

+ (p−∆f) logb(p−∆f,f−∆f)(min(û− p+ ∆f, p−∆f)
]

.

Now, b(p−∆f, f −∆f) ≥ b(p, f), and

logb(p,f)(min(û− p + ∆f, p−∆f) ≤ logb(p,f)(p−∆f),

so that

S(û, p, f) ≤ 16p + û + p logb(p,f) p = 16p + û + p logb(p,f)(min(û, p)),

as desired.

Case 2: p > û (in particular,min(û, p) = û). In this case, by assumption we have

S(û, p, f) ≤ p + max
0≤∆f≤f

S(γû, p−∆f, f −∆f),

whereγ = γ(û, p,∆f) is the ratio of the number of the remaining tasks toû (0 ≤ γ < 1).

Let φ = ∆f/p ≤ f/p < 1, the fraction of processors which fail during this iteration; then

φ/2 < γ < 2φ.
(

To see this, observe that

φp

⌈p/û⌉û =
φp/⌈p/û⌉

û
≤ γ ≤ φp/⌊p/û⌋

û
=

φp

⌊p/û⌋û .

Let p = cû, c > 1. Then

c

⌈c⌉φ =
φcû

⌈c⌉û ≤ γ ≤ φcû

⌊c⌋û =
c

⌊c⌋φ.

Now observe that1 ≤ c
⌊c⌋ < 2 and1/2 < c

⌈c⌉ ≤ 1, ∀c > 1, and hence,φ/2 < γ < 2φ, as

desired.
)

Then,

S(û, p, f) ≤ p + max
φ∈[0,f/p]

S(γû, (1− φ)p, f − φp).
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As γû < û, we may apply the induction hypothesis:

S(û, p, f)≤p+ max
φ∈[0,f/p]

[

16(1 − φ)p + γû + (1− φ)p logb′(min(γû, (1 − φ)p))
]

,

whereb′ = b(p − φp, f − φp). As above,b′ ≥ b(p, f) andmin(γû, (1 − φ)p)) ≤ γû, so that

S(û, p, f) ≤ p + max
φ∈[0,f/p]

[

16(1 − φ)p + γû + (1− φ)p logb(p,f)(γû)
]

.

To complete the proof, it suffices to show that for allφ ∈ [0, f/p],

15p + p logb(p,f) û− (1− φ)p logb(p,f)(γû) ≥ 16(1 − φ)p− û(1− γ).

Upper bounding16(1 − φ)p − û(1 − γ) with 16(1 − φ)p and dividing through byp, it is

sufficient to show that

15 + logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 16(1 − φ),

or, equivalently,

logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 1− 16φ.

We now focus on the left hand side of the above equation:

logb(p,f) û− (1− φ)
[

logb(p,f) γ + logb(p,f) û
]

= φ logb(p,f) û + (1− φ) logb(p,f) γ−1.

Sincef ≤ p
log(min(û,p)) = p

log û , for anyû > 16 we have thatp2f > 2. Observe that,

φ logb(p,f) û + (1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f) γ−1

sinceû ≥ p/f > p/2f . (Note that ifû < p/f , then all tasks are completed in this iteration.)

Recall thatγ−1 ≥ (2φ)−1 andφ < f/p. Therefore,

(1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f)(2φ)−1 ≥ 1− 16φ.

Evidently,
S = O

(

n + p + p log p
f
(min(n, p)

)

= O
(

n + p log p
f

p
)

,

as desired. 2

We now give our failure-sensitive upper-bound result.
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Theorem 4.3 TheDo-All OAS
(n, p, f) problem can be solved using work

S = O

(

n + p
log p

log(p/f)

)

whenf ≤ p

log p
, and

S = O

(

n + p
log p

log log p

)

when
p

log p
< f < p.

Proof: This follows from Lemmas 4.1 and 4.2. 2

4.2 Do-All Lower Bounds

We now develop the lower bounds forDo-All OAS
(n, p, f); these bounds match the upper

bounds presented in Section 4.1. Note that the results in this section hold also for theDo-

All AS
(n, p, f) problem (without the oracle).

The following mathematical facts (from [67]) are used in theproofs.

Fact 4.1 If a1, a2, . . . , am (m > 1) is a sorted list of nonnegative integers, then for allj

(1 ≤ j < m) we have
(

1− j
m

)
∑m

i=1 ai ≤
∑m

i=j+1 ai.

Fact 4.2 Given n ∈ N, κ ∈ R, such thatn · κ > 1, κ ≤ 1
2 , and σ ∈ N such thatσ <

log n
log(κ−1)

− 1, then the following inequality holds:⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ times

> 0.

Proof: To show the result it suffices to show that, after dropping onefloor and strengthening

the inequality:(⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ−1 times

· κ)− 1 > 0, or that⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ−1 times

> 1
κ .

Applying this transformation forσ − 1 more steps, we see that it suffices to show

that n > 1
κσ + 1

κσ−1 + . . . + 1
κ , or, using geometric progression summation, thatn >

(κ−1)σ+1−(κ−1)
(κ−1)−1

.

We observe that (κ−1)σ+1 >
(κ−1)σ+1 − (κ−1)

(κ−1)− 1
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for κ ≤ 1
2 , thus it is enough to show thatn > (κ−1)σ+1. After taking logarithms of both

sides of the inequality,log n > (σ+1) log(κ−1), and so it suffices to haveσ < log n
log(κ−1)

− 1. 2

We now define a specific adversarial strategy of adversaryAS used to derive our lower

bounds. LetΛ be an iterative algorithm that solves theDo-All problem. Letpi be the number

of processors remaining at the end of theith iteration of an execution ofΛ and letui denote

the number of tasks that remain to be done at the end of iteration i. Initially, p0 = p and

u0 = n. The adversarial strategy is defined assuming the same initial number of tasks and

processors, that is,p0 = n0. The strategy of the adversary is defined for each iteration of the

algorithm. Based on a variableκ, defined in the interval(0, 1/2), the adversary determines

which processors will be allowed to work and which will be stopped in a given iteration. We

call this adversarial strategyA.

Adversarial strategy A:

Iteration1: The adversary choosesu1 = ⌊κu0⌋ tasks with the least number of processors

assigned to them. This can be done since the adversary is omniscient; it knows all

the actions to be performed byΛ (as well as any advice provided by the oracle). The

adversary then crashes the processors assigned to these tasks, if any.

Iterationi: Amongui−1 tasks remaining after the iterationi− 1, the adversary choosesui =

⌊κui−1⌋ tasks with the least number of processors assigned to them and crashes these

processors.

Termination: The adversary continues for as long asui > 1. As soon asui = 1, the adversary

allows all remaining processors to perform the single remaining task, andΛ terminates.

We now study the adversarial strategyA and derive lower bound results.
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Remark 4.1 Relationship betweenn andκ: If κ is chosen so thatκ ·n ≤ 1 then by the adver-

sarial strategyA, an algorithm solvingDo-All may be able to solve it in a constant number of

iterations (namely two) with workO(p). This is becauseu1 = ⌊κu0⌋ ≤ κn ≤ 1. Henceforth

we considerκ to be such thatκ · n > 1.

Lemma 4.4 For adversarial strategyA, if at iterationi the number of remaining tasks isui−1 >

1, then

(a)ui = ⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

i times

, and

(b) pi ≥ (1− κ)i p0.

Proof: Part (a) is immediate from the definition ofA. To express the number of surviving

processorspi for part (b), we use Fact 4.1 with the following definitions:

Let m = ui−1, and leta1, . . . , am be the quantities of processors assigned to each task,

sorted in ascending order. Letam also include the quantity of any un-assigned processors,

i.e., a1 is the least number of processors assigned to a task,a2 is the next least quantity of

processors, etc. (In other words,a1 ≤ a2 ≤ . . . ≤ am.) Let j = ui. Thus the adversary

stops exactly
∑j

i=1 ai processors. At the beginning of iterationi, the number of processors

pi−1 =
∑m

i=1 ai, therefore, the number of surviving processorspi =
∑m

i=j+1 ai.

Using Fact 4.1, we havepi ≥ (1− ui

ui−1
)pi−1, and after substituting forui = ⌊κui−1⌋ we have

pi ≥
(

1− ⌊κui−1⌋
ui−1

)

pi−1 ≥ (1− κ) pi−1 ≥ (1− κ)i p0,

as desired. 2

Lemma 4.5 Given any algorithm solving theDo-All OAS
(p, p, f) problem (p = n), the adver-

sarial strategyA will cause the algorithm to cycle through at leastlog p
log(κ−1) − 1 iterations.
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Proof: Let τ be the earliest iteration when the last task is performed. Weuse Fact 4.2 withσ

the largest integer such thatσ < log p/ log(κ−1) − 1. Thenuσ = ⌊. . . ⌊⌊p · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ times

> 0,

and soτ must be greater thanσ becauseuτ = 0. Thus,τ ≥ log p

log(κ−1)
− 1 > σ. 2

Lemma 4.6 Given any algorithmΛ that solves theDo-All OAS
(p, p, f) problem (p = n) with

f < p, the adversarial strategyA with κ = 1
log p causes workS = Ω

(

p
log p

log log p

)

.

Proof: We first assume thatp > 4 (we aim to establish an asymptotic result, and this eliminates

uninteresting cases). Sinceκ = 1/ log p, we have thatκ ∈ (0, 1/2) when p > 4. From

Lemma 4.4(a) and Lemma 4.5 we see thatA will cause algorithmΛ to iterate at leastτ =

(log p/ log log p) − 1 times. Now observe that the work must be at leastpτ · τ , wherepτ

is the number of surviving processors afterΛ terminates. From Lemma 4.4(b) we have that

pτ ≥ (1− κ)τp0 = (1− 1
log p)τp. Therefore,

pτ ≥ p
(

1− 1
log p

) log p
log log p

−1
≥ p

(

1− 1
log p

) log p
log log p

≥ p
(

1−
(

1
log p

)

·
(

log p
log log p

))

= p− p
log log p .

Let fτ denote the actual number of crashes caused by the adversary.Then,fτ = p− pτ ≤

p − p + p
log log p = p

log log p < p. Hence,A when using this specificκ does not exceed the

allowed number of crashes. Now, the work caused byA is:

S = Ω(pτ · τ) = Ω

((

p− p

log log p

)

·
(

log p

log log p
− 1

))

= Ω

(

p
log p

log log p

)

.

This completes the proof. 2

Corollary 4.7 Given any algorithmΛ that solves theDo-All OAS
(n, p, f) problem (p ≤ n) there

exists an adversarial strategy that causes workS = Ω

(

n + p
log p

log log p

)

.
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Proof: Note thatS = Ω(n) because all tasks must be performed. From Lemma 4.6 we know

that Do-All OAS
(p, p, f) requiresΩ(p log p/ log log p) work. Given that work is nondecreas-

ing in n (as follows from Definition 3.5) we obtain the desired resultby combining the two

bounds. 2

Observe that Lemma 4.6 and Corollary 4.7, by themselves, do not show how work depends

onf . We now give lower bounds considering moderate number of crashes (f ≤ p/ log p).

Lemma 4.8 Given any algorithmΛ that solves theDo-All OAS
(p, p, f) problem (p = n),

the adversarial strategyA with (κ−1) log(κ−1) = p log p
f and f ≤ p

log p causes workS =

Ω
(

p log p
f

p
)

.

Proof: We assume thatp > 4 (we aim to establish an asymptotic result, and this eliminates

uninteresting cases). From(κ−1) log(κ−1) = p log p
f , f ≤ p

log p , and p > 4 we see that

log(κ−1) > 4κ. This implies thatκ ∈ (0, 1/2). Hence, from Lemma 4.5 we have thatA

will cause algorithmΛ to iterate at leastτ = (log p/ log(κ−1))− 1 times.

Now observe that the work must be at leastpτ · τ , wherepτ is the number of surviving proces-

sors afterΛ terminates. Recall from Lemma 4.4(b) thatpτ ≥ (1− κ)τp0. Therefore,

pτ ≥ p (1− κ)τ ≥ p (1− κ)
log p

log(κ−1)
−1

≥ p (1− κ)
log p

log(κ−1) ≥ p
(

1− κ · log p
log(κ−1)

)

= p
(

1−
(

κ
log(κ−1)

)

log p
)

= p
(

1−
(

f
p log p

)

log p
)

= p− f.

Let fτ denote the actual number of crashes caused by the adversary.Then,fτ = p− pτ ≤

p− (p− f) = f . Hence,A when using this specificκ does not exceed the allowed number of

crashes (f ≤ p/ log p).
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Recall that(κ−1) log(κ−1) = p log p
f , therefore,(κ−1) = Θ

(
p log p

f

log( p log p
f

)

)

. Thus,

log(κ−1) = Θ

(

log

(
p log p

f

)

− log log

(
p log p

f

))

= Θ

(

log

(
p log p

f

))

.

Then, noting thatpτ ≥ p − f ≥ p − p/ log p = Θ(p) and thatκ · p > 1 (see Remark 4.1), we

assess the workS caused byA as follows:

S = Ω(pτ · τ) = Ω

(

p · log p

log(κ−1)

)

= Ω

(

p + p
log p

log(p log p
f )

)

.

Now recall thatp/f ≥ log p. Hence, for anyp > 4 we have thatp/f > 2 and that

log((p log p)/f) = log(p/f) + log log p = Θ(log(p/f)). From the above,

S = Ω

(

p + p
log p

log( p
f )

)

= Ω
(

p log p
f

p
)

.

This completes the proof. 2

Corollary 4.9 Given any algorithmΛ that solves theDo-All OAS
(n, p, f) problem (p ≤

n), there exists an adversarial strategy that causesf ≤ p
log p crashes, and workS =

Ω
(

n + p log p
f

p
)

.

Proof: Note thatS = Ω(n) because all tasks must be performed. From Lemma 4.8 we

know thatDo-All OAS
(p, p, f) requiresΩ(p log p

f
p) work, for f ≤ p/ log p. Given that work is

nondecreasing inn we obtain the desired result by combining the two bounds. 2

We now give our failure-sensitive lower-bound result.

Theorem 4.10 Given any algorithmΛ that solves theDo-All OAS
(n, p, f) problem there exists

an adversarial strategy that causes work

S = Ω

(

n + p
log p

log(p/f)

)

whenf ≤ p

log p
, and

S = Ω

(

n + p
log p

log log p

)

when
p

log p
< f < p.
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Proof: For the range of failuresf ≤ p/ log p, per Corollary 4.9, the work isΩ(n+p logp/f p).

From Corollary 4.9 we also obtain the fact that whenf = p/ log p then work must be

Ω (n + p log p/ log log p). Note that this is the worst case work for anyf (see Corollary 4.7).

Therefore, for the rangep/ log p < f < p, the adversary establishes this worst case work using

the initial p/ log p failures. 2

4.3 Iterative Do-All

Do-All algorithms have been used in developing simulations of failure-free algorithms on

failure-prone processors. This is done by iteratively using aDo-All algorithm to simulate the

steps of the failure-free processors. We study theiterativeDo-All problems to understand the

complexity implications of iterative use ofDo-All algorithms.

In studying simulations, aDo-All AS
(n, p, f) solution abstracts the setting wherep physical

crash-prone processors simulaten virtual processors, such that each taski among then tasks

in Do-All represents a single step of the virtual processori. TheiterativeDo-All then models

the simulation of multiple steps of the virtual processors.

In principle r-Do-AllAS
(n, p, f) can be solved by running an algorithm forDo-

All AS
(n, p, f) for r iterations. For example,r-Do-All OAS

(n, p, f) can be solved by running

the oracle-based algorithm in Figure 1 forr iterations. If the work of aDo-All solution isS,

then the work of ther-iterative Do-All is at mostr · S. However we show that it is possible

to obtain a finer result that takes into account the diminishing number of failures “available” to

the adversary. We refer to eachDo-All iteration as aroundof r-Do-AllAS
(n, p, f).

For the model of perfect knowledge we obtain the following failure-sensitive upper bound

on work.
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Theorem 4.11 Ther-Do-All OAS
(n, p, f) problem can be solved using work

S = O

(

r ·
(

n + p
log p

log(pr/f)

))

whenf ≤ pr

log p
, and

S = O

(

r ·
(

n + p
log p

log log p

))

when
pr

log p
< f < p.

Proof: Let ri denote theith round of the iterativeDo-All . Let pi be the number of active

processors at the beginning ofri andfi be the number of crashes duringri. Note thatp1 = p,

wherer1 is the first round ofr-Do-All OAS
(n, p, f) and thatpi ≤ p. We consider two cases:

Case 1: f > pr
log p . Consider a roundri. From Theorem 4.3 we see that the work for this

round isO
(

n + pi logpi/fi
pi

)

whenfi ≤ pi/ log pi andO (n + pi log pi/ log log pi) other-

wise. However in this case, we can havefi = Θ (p/ log p) for all ri without “running out” of

processors. Thus,

S1 = O

(

r ·
(

n + p
log p

log log p

))

.

Case 2: f ≤ pr
log p . First observe that any reasonable adversarial strategy would not kill

more that pi/ log pi processors in roundri, since it would not cause more work than

O(n + pi log pi/ log log pi) (which is achieved whenfi ≥ pi/ log pi). Therefore, we con-

siderfi ≤ pi/ log pi for all roundsri. Hence, the work in every roundri (per Theorem 4.3) is

O (n + pi log pi/ log(pi/fi)) = O (n + p log p/ log(p/fi)).

Let S(n, p, f) be this one-round upper bound. Asf =
∑

fi, an upper bound onr-Do-

All OAS
(n, p, f) can be given by maximizing

∑

i S(n, pi, fi) over all such adversarial patterns.

As S(·, ·, ·) is monotone inp, we may assume thatpi = p for the purposes of the upper bound.

We show that this maximum is attained atf1 = f2 = . . . = fr. For simplicity, treatfi as a con-

tinuous parameter and consider the factor in the single round work expression (given above)

that depends onfi : c/ log( p
fi

), wherec is the constant hidden by theO(·) notation.

The first derivative overfi is
∂

∂fi

(

c/log

(
p

fi

))

= c/fi(log p− log fi)
2, and its second
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derivative is
∂2

∂f2
i

(

c/log

(
p

fi

))

= 2c/f2
i (log p− log fi)

3 − c/f2
i (log p− log fi)

2. Observe

that the second derivative is negative in the domain considered (assumingp > 16). Hence the

first derivative is decreasing (withfi). In this case, given any twofi, fj wherefi > fj, the

adversarial pattern obtained by replacingfi with fi−ǫ andfj by fj +ǫ (whereǫ < (fi−fj)/2)

results in increased work. This implies that the sum maximized when allfis are equal, specifi-

cally whenfi = f/r.

As the above upper bound on the sum
∑

i S(n, pi, fi) is valid overall fi in this range, it holds

in particular for the choices made by the adversary which must, of course, cause an integer

number of faults in each round. Therefore,

S2 = O

(

r ·
(

n + p
log p

log(pr
f )

))

.

The result then follows by combining the two cases. 2

We now show a matching lower bound.

Theorem 4.12 Given any algorithm that solves ther-Do-All OAS
(n, p, f) problem, there exists

an adversarial strategy that causes work

S = Ω

(

r ·
(

n + p
log p

log(pr/f)

))

whenf ≤ pr

log p
, and

S = Ω

(

r ·
(

n + p
log p

log log p

))

when
pr

log p
< f < p.

Proof: Consider two cases:

Case 1: f > pr
log p . In this case the adversary may crashp/ log p processors in every round

of r-Do-All OAS
(n, p, f). Note that for this adversaryΩ(p) processors remain alive during

the first⌈r/2⌉ rounds. Per Theorem 4.10 this results in⌈r/2⌉ · Ω (n + p log p/ log log p) =

Ω (Nr + pr log p/ log log p) work.
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Case 2: f ≤ pr
log p . In this case the adversary ideally would crashf/r processors in every

round. It can do that in the case wherer dividesf . If this is not the case, then the adversary

crashes⌈f/r⌉ processors inrA rounds and⌊f/r⌋ in rB rounds in such a way thatr = rA +

rB . Again considering the first half of the rounds and appealingto Theorem 4.10 results in

a Ω
(

Nr + pr logpr/f p
)

lower bound for work. Note that we consider only the case where

r ≤ f ; otherwise the work is triviallyΩ(rN).

The result then follows by combining the two cases. 2

Application of iterative Do-All: The bounds we obtained forDo-All and iterative Do-All

under the assumption of perfect knowledge, yield insight about the bounds on task execution

redundancy in settings where a server repeatedly allocatestask to processors (e.g., SETI [74]).

Consider the setting where a central server repeatedly allocates tasks to crash-prone pro-

cessors. When a processor completes a task, it reports this to the server. If a server detects

processor failures, it must re-allocate the tasks to other processors. Processor crashes might

cause some tasks to be executed more than once. Our results obtained for synchronousDo-

All OAS
(n, p, f) and r-Do-All OAS

(n, p, f) are relevant to the bounds on task execution redun-

dancy in such a setting. When the server allocatesn similar, independent and idempotent tasks

to p synchronous, crash-prone processors, then, per Theorems 4.3 and 4.10, the total num-

ber of task executions isΘ
(

n + p log p
log(pr/f)

)

whenf ≤ p
log p , andΘ

(

n + p log p
log log p

)

when

p
log p < f < p. Similarly, if the server allocatesr “waves” of n tasks (so that a task-wave is

completed before the next is begun) top synchronous, crash-prone processors, then per The-

orems 4.11 and 4.12, the total number of task executions isΘ
(

r ·
(

n + p log p
log(pr/f)

))

when

f ≤ pr
log p , andΘ

(

r ·
(

n + p log p
log log p

))

when pr
log p < f < p.



Chapter 5

Message-Passing: Do-All with Crashes

We present failure-sensitive bounds on work and messages for theDo-All AS
(n, p, f) prob-

lem with synchronous message-passing processors, for the entire range off (1 ≤ f < p). In

Section 5.1 we assume that reliable multicast [60] is available (if a processor crashes while

multicasting a message, then either all targeted processors receive the message or none do),

whereas in Section 5.2 we assume that only traditional point-to-point messaging is available

(multicast is not reliable).

5.1 Failure-Sensitive Bounds with Reliable Multicast

In this section we give a new, failure-sensitive, analysis of algorithm AN [17] and establish

new complexity results for the iterativeDo-All in the message-passing model. We achieve this

by separately assessing the cost of tolerating failures andthe cost of achieving perfect knowl-

edge (that is, perfect load-balancing). The first analysis is derived from the results obtained

under the assumption of perfect knowledge. The latter is derived from the structure of the

algorithm.

72
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Algorithm AN presented by Chlebuset al. [17] uses a multiple-coordinator approach to

solve Do-All AS
(n, p, f) on crash-prone synchronous message-passing processors (p ≤ n).

The model assumes that messages incur a known bounded delay and that reliable multicast [60]

is available (when a processor multicasts a message to a collection of processors, either all

messages are delivered to non-faulty processors or no messages are delivered).

5.1.1 Description of Algorithm AN

We now give a brief description of the algorithm, but to avoida complete restatement,

we refer the reader to [17]. Algorithm AN proceeds in aloop which is iterated until all the

tasks are executed. A single iteration of the loop is called aphase. A phase consists of three

consecutivestages. Each stage consists of three steps. In each stage processors use the first step

to receive messages sent in the previous stage, the second step to perform local computation,

and the third step to send messages. A processor can be acoordinatoror aworker. A phase

may have multiple coordinators. The number of processors that assume the coordinator role is

determined by themartingale principle: if none of the expected coordinators survive through

the entire phase, then the number of coordinators for the next phase is doubled. If at least one

coordinator survives in a given phase, then in the next phasethere is only one coordinator. A

phase that is completed with at least one coordinator alive is calledattended, otherwise it is

calledunattended.

Processors become coordinators and balance their loads according to each processor’slocal

view. A local view contains the set of ids of the processors assumed to be alive. The local view

is partitioned intolayers. The first layer contains one processor id, the second two ids, theith

contains2i−1 ids.
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Given a phase, in the first stage, the processors perform a task according to the load-

balancing rule derived from their local views and report thecompletion of the task to the

coordinators of that phase (determined by their local views). In the second stage, the coordi-

nators gather the reports, they update the knowledge of the done tasks and they multicast this

information to the processors that are assumed to be alive. In the last stage, the processors

receive the information sent by the coordinators and updatetheir knowledge of done tasks and

their local views. Given the full details of the algorithm, it is not difficult to see that the com-

bination of coordinators and local views allows the processors to obtain the information that

would be available from the oracleO in the algorithm in Figure 1 of Section 4.1.

It is shown in [17] that the work of algorithm AN isS = O((n + p log p/ log log p) log f)

and its message complexity isM = O(n + p log p/ log log p + fp), for p ≤ n.

In the rest of this section we present the new analysis of workand message complexity of

algorithm AN. Throughout we assume that the algorithm correctness is shown as in [17].

5.1.2 Analysis of Work Complexity

To assess the workS, we consider separately all the attended phases and all the unattended

phases of the execution. LetSa be the part ofS spent during all the attended phases andSu be

the part ofS spent during all the unattended phases. Hence we haveS = Sa + Su.

Lemma 5.1 [17] In any execution of algorithm AN withf < p we have Sa =

O
(

n+p log p
log log p

)

andSu = O (Sa log f).

We now give the new analysis of algorithm AN.

Lemma 5.2 In any execution of algorithm AN withf ≤ p
log p we have Sa =

O
(

n + p log p
f

p
)

.
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Proof: Given a phasei of an execution of algorithm AN, we definepi to be the number of

live processors andui to be the number of undone tasks at the beginning of the phase (p0 = p

andu0 = n). Let α1, α2, . . . ατ , denote all the attended phases of this execution (ατ is the last

phase of the execution).

Observe that for allαi, 1 ≤ i ≤ τ − 1 it holds that (a)uai > uai+1 , and (b)pai ≥ pai+1.

This follows from the construction of algorithm AN: Since phaseαi is attended, there is at

least one coordinator, call itc, alive in phaseαi; c executes one task. Hence, at least one task

is executed and consequently at least one task is removed from uai . The number of processors

can only decrease, since we do not allow restarts.

In [17], Section 3.2, it is shown that if at the beginning of phaseai, the processors have

consistent information on the number of surviving processors (pai) and the number of remain-

ing tasks (uai), then the operational processors will have consistent information onpai+1 and

uai+1 at the beginning of phaseai+1. And since the processors have consistent information

at a0, that means that at the beginning of every attended phase, the surviving processors have

consistent view of the system. Hence, the processors in attended phases can perform perfect

load balancing, as in the case where the processors are assisted by the oracleO, in the oracle

model. Therefore, focusing only on the attended phases (andassuming that in the worst case

no progress is made in unattended phases), we obtain the desired result by induction on the

size of undone tasksu, as in the proof of Lemma 4.2. 2

Theorem 5.3 In any execution of algorithm AN we have work

S = O

(

log f

(

n + p
log p

log(p/f)

))

whenf ≤ p

log p
, and

S = O

(

log f

(

n + p
log p

log log p

))

when
p

log p
< f < p.
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Proof: This follows from Lemmas 5.1 and 5.2, and the fact thatS = Sa + Su. 2

5.1.3 Analysis of Message Complexity

To assess the message complexityM we consider separately all the attended phases and all

the unattended phases of the execution. LetMa be the number of messages sent during all the

attended phases andMu the number of messages sent during all the unattended phases. Hence

we haveM = Ma + Mu.

Lemma 5.4 [17] In any execution of algorithm AN withf < p we haveMa = O(Sa) and

Mu = O(fp).

Theorem 5.5 In any execution of algorithm AN we have

M = O

(

n + p
log p

log(p/f)
+ fp

)

whenf ≤ p

log p
, and

M = O

(

n + p
log p

log log p
+ fp

)

when
p

log p
< f < p.

Proof: It follows from Lemmas 5.1, 5.2 and 5.4, and the fact thatM = Ma + Mu. 2

5.1.4 Analysis of Message-Passing Iterative Do-All

We now consider the message-passing, synchronousr-Do-AllAS
(n, p, f) problem.

Theorem 5.6 The r-Do-AllAS
(n, p, f) problem can be solved on synchronous crash-prone

message-passing processors whenf ≤ pr
log p with

S = O

(

r · log
(

f

r

)

·
(

n + p
log p

log(pr/f)

))

andM = O

(

r ·
(

n + p
log p

log(pr/f)

)

+ fp

)

,

and when pr
log p < f < p with

S = O

(

r · log
(

f

r

)

·
(

n + p
log p

log log p

))

andM = O

(

r ·
(

n + p
log p

log log p

)

+ fp

)

.
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Proof: The iterativeDo-All can be solved by running algorithm AN onr instances of sizen

in sequence. We call this algorithm AN*. To analyze the efficiency of AN* we use the same

approach as in the proof of Theorem 4.11. In the current context we base our work complexity

arguments on the result of Theorem 5.3, and we base our message complexity arguments on

the result of Theorem 5.5. 2

5.2 Failure-Sensitive Bounds without Reliable Multicast

In this section we present a new efficient synchronous message-passing algorithm forDo-

All AS
(n, p, f). The new algorithm has work complexity comparable to algorithm AN [17],

however it uses simple point-to-point messaging. This algorithm achieves better work com-

plexity than the algorithm of Galilet al. [44] (the previously best known algorithm not relying

on reliable multicast) while obtaining the same asymptoticmessage complexity. The new algo-

rithm does not use coordinator-based or checkpointing-based strategies to implement informa-

tion sharing among processors (as the previously mentionedalgorithms do). Instead, it uses an

approach where processors share information using a gossipalgorithm we developed to solve

the gossip problem in synchronous message-passing systemswith processor crashes. Our gos-

sip algorithm achieves better message complexity than the previously best known algorithm of

Chlebus and Kowalski [21], while obtaining the same asymptotic time complexity. The point-

to-point messaging is constrained by means of a communication graph that represents a certain

subset of the edges in a complete communication network. Processors send messages based on

permutations with certain properties that we show to exist.We first define the gossip problem

and relevant measures of efficiency (Section 5.2.1). We thenpresent combinatorial tools that

we use in the analysis of our gossip algorithm (Section 5.2.2). Then we present and analyze
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our gossip algorithm (Section 5.2.3). Finally we present and analyze ourDo-All algorithm

(Section 5.2.4).

5.2.1 The Gossip Problem

The Gossipproblem is considered one of the fundamental problems in distributed com-

puting and it is normally stated as follows: each processor has a distinct piece of information,

called arumor and the goal is for each processor to learn all rumors. In our setting, where we

consider processor crashes, it might not always be possibleto learn the rumor of a processor

that crashed, since all the processors that have learned therumor of that processor might have

also crashed in the course of the computation. Hence, we consider a variation of the traditional

gossip problem. We require that every non-faulty processorlearns the following about each

processorv: either the rumor ofv or thatv has crashed. It is important to note that we do not

require for the non-faulty processors to reach agreement: if a processor crashes then some of

the non-faulty processors may get to learn its rumor while others may only learn that it has

crashed.

Formally, we define theGossipproblem with crash-prone processors, as follows:

Definition 5.1 TheGossipproblem: Given a set ofp processors, where initially each processor

has a distinct piece of information, called arumor, the goal is for each processor to learn all

the rumors in the presence of processor crashes. The following conditions must be satisfied:

(1) Correctness: (a) All non-faulty processors learn the rumors of all non-faulty processors,

(b) For every failed processorv, non-faulty processorw either knows thatv has failed,

or w knowsv’s rumor.

(2) Termination: Every non-faulty processor terminates its protocol.
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We letGossipAS
(p, f) stand for theGossipproblem forp processors (andp rumors) and

adversaryAS constrained to adversarial patterns of weight less or equalto f .

We now define the measures of efficiency we use in studying the complexity of theGossip

problem. We measure the efficiency of aGossipalgorithm in terms of itstime complexityand

message complexity. Time complexity is measured as the number of parallel stepstaken by the

processors until theGossipproblem issolved. TheGossipproblem is said to be solved at step

τ , if τ is the first step where the correctness condition is satisfiedand at least one (non-faulty)

processor terminates its protocol. More formally:

Definition 5.2 (time complexity) Let Λ be an algorithm that solves a problem withp proces-

sors under adversaryA. If executionξ ∈ E(Λ,A), where‖ξ|A‖ ≤ f , solves the problem by

time τ(ξ), then thetime complexityT of algorithmΛ is:

T = TA(p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f

{
τ(ξ)

}
.

The message complexity is defined as in Definition 3.7 where the size of the problem isp:

it is measured as the total number of point-to-point messages sent by the processors until the

problem is solved. As before, when a processor communicatesusing a multicast, its cost is the

total number of point-to-point messages.

The previously best deterministic solution for theGossipproblem in the message passing

model under adversaryAS is due to Chlebus and Kowalski [21]. Their algorithm hasT =

O(log2 p) time complexity andM = O(p1.77) message complexity. As we will see, our gossip

algorithm substantially improves on the message complexity of their algorithm while obtaining

the same asymptotic time complexity.
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5.2.2 Combinatorial Tools

We now develop tools used to control the message complexity of our gossip algorithm.

5.2.2.1 Communication Graphs

We first describecommunication graphs— conceptual data structures that constrain com-

munication patterns.

Informally speaking, the computation begins with a communication graph that contains

all nodes, where each node represents a processor. Each processorv can send a message to

any other processorw thatv considers to be non-faulty and that is a neighbor ofv according

to the communication graph. As processors crash, meaning that nodes are “removed” from

the graph, the neighborhood of the non-faulty processors changes dynamically such that the

graph induced by the remaining nodes guarantees “progress in communication”: progress in

communication according to a graph is achieved if there is atleast one “good” connected

component, which evolves suitably with time and satisfies the following properties: (i) the

component contains “sufficiently many” nodes so that collectively they have learned “suitably

many” rumors, (ii) it has “sufficiently small” diameter so that information can be shared among

the nodes of the component without “undue delay”, and (iii) the set of nodes of each successive

good component is a subset of the set of nodes of the previous good component.

We use the following terminology and notation. LetG = (V,E) be a (undirected) graph,

with V the set of nodes (representing processors,|V | = p) andE the set of edges (representing

communication links). For a subgraphGQ of G induced byQ (Q ⊆ V ), we defineNG(Q) to

be the subset ofV consisting of all the nodes inQ and their neighbors inG. The maximum

node degree of graphG is denoted by∆.
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Let GVi be the subgraph ofG induced by the setsVi of nodes. Each setVi corresponds

to the set of processors that haven’t crashed by stepi of a given execution. HenceVi+1 ⊆ Vi

(since processor do not restart). Also, each|Vi| ≥ p− f , since no more thanf < p processors

may crash in a given execution. LetGQi denote a component ofGVi whereQi ⊆ Vi.

Chlebuset al. [19] formulated the notion of a “good” componentGQi of a subgraphGVi

of graphG by settingQi = P (Vi), whereP is a function that satisfies a certain property called

propertyR:

Definition 5.3 ([19]) GraphG satisfies PROPERTYR(p, f) if there is a functionP , which

assigns subgraphP (R) ⊆ G to each subgraphR ⊆ G of size at leastp − f , such that the

following hold:

R.1 : P (R) ⊆ R. R.3 : The diameter ofP (R) is at most30 log p + 1.

R.2 : |P (R)| ≥ |R|/7. R.4 : If R1 ⊆ R2 thenP (R1) ⊆ P (R2).

Let L(p,∆0) denote the family of constructive regular graphs ofp nodes and degree∆0,

that have good expansion properties. Such graphs were introduced by Lubotzky, Phillips and

Sarnak [79]. These graphs are defined and can be constructed for each numberp′ of the form

q(q2 − 1)/2, whereq is a prime integer congruent to1 modulo4. The node degree∆0 can be

any number such that∆0 − 1 is a prime congruent to1 modulo4 and a quadratic nonresidue

moduloq. It follows, from the properties of the distribution of prime numbers (see e.g. [26]),

that∆0 can be selected to be a constant independent ofp andq such thatp′ = q(q2 − 1)/2 =

Θ(p). Since for eachp there is a numberp′ = Θ(p), we let each processor simulateO(1)

nodes, and we henceforth assume thatp is as required so thatL(p,∆0) can be constructed.

In [19] the authors extended the result of Upfal [109], who showed that there is a functionP ′

such that ifR is a subgraph ofL(p) of size at least7172 · p then subgraphP ′(R) of R has size at
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least|R|/6 and diameter at most30 log p. (These constants in the case of linear-size subgraphs

can be improved, see [5].) LetGk be thek-th power of graphG, that is,Gk = (V,E′), where

the edge(u, v) ∈ E′ if and only if there is a path betweenu andv in G of length at mostk.

The authors in [19] proved the following lemma.

Lemma 5.7 ([19]) For everyf < p there exists a positive integerj such that graphL(p)j has

PROPERTYR(p, f). Moreover, the maximum degree∆ of graphL(p)j is O
(( p

p−f

)2 logγ ∆0
)
,

for some absolute constantγ, which for∆0 = 74 could be taken equal toγ = 27/5.

However, the above property is too strong for our purpose andapplied to the communica-

tion analysis of our gossip algorithm does not yield the desired result. Therefore, we define a

weaker property that yields the desired results with our analysis:

Definition 5.4 GraphG = (V,E) has theCompact Chain PropertyCCP(p, f, ε), if:

I. The maximum degree ofG is at most
( p

p−f

)1+ε
,

II. For a given sequenceV1 ⊇ . . . ⊇ Vk (V = V1), where|Vk| ≥ p − f , there is a sequence

Q1 ⊇ . . . ⊇ Qk such that for everyi = 1, . . . , k:

(a) Qi ⊆ Vi,

(b) |Qi| ≥ |Vi|/7, and

(c) the diameter ofGQi is at most31 log p.

We now prove existence of graphs satisfyingCCP for some parameters.

Lemma 5.8 For p>2, everyf<p, and constantε>0, there is a graphG of O(p) nodes satis-

fying propertyCCP(p, f, ε).

Proof: Notice that forp − f ≤ √pε, the complete graphKp satisfies propertyCCP(p, f, ε),

for every constantε > 0. The same holds ifp− f ≥ p/4, by applying Lemma 5.7 and setting
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Qi = P (Gi) (in this case∆ is constant). For the remainder of the proof we assume that

√
pε < p− f < p/4.

Fix f andε > 0. Our candidate for graphG is a graphL(p,∆), where we take the smallest

possible∆ ≥ 9+
( p

p−f

)1+ε
. (By properties of graphsL, we can find∆ = O

(
1+
( p

p−f

)1+ε)
).

Let λ = 2
√

∆− 1 be the bound for the absolute value of the second eigenvalue of graph

L(p,∆) (see [79]). Alon and Chung [4] showed that for every setR ⊆ V , the number of edges

in the subgraph induced byR (denoted bye(R)) can be bounded as follows:

∣
∣
∣e(R)− ∆ · |R|2

2p

∣
∣
∣ ≤ λ

2

(

1− |R|
p

)

|R| . (1)

For a given graph induced byR such that
√

pε < |R| < p/4 and a subsetQ ⊆ R, we denote

by SQ,R the family of setsS ⊇ Q such thatS is a maximal (in the sense of inclusion) subset

of R such that no node inS has more than∆ |R|
2p neighbors outside ofS in graphG. We

call a subgraph induced byS a simple expander, if for every S′ ⊆ S of size at most|S|/2,

|NS(S′)| ≥ 4|S′|/3. We assume thatQ is a simple expander that has size less than|R|/7.

Claim: Forp > 2, if
√

pε < |R| < p/4 then for every subsetS ∈ S, S is of size|R|/7 and

a subgraph induced byS is a simple expander. Hence a diameter of the subgraph induced by

S is at most4 log p.

We prove the Claim. Consider anyS ∈ S. First we show that|S| ≥ |R|/7. Suppose to the

contrary, that|S| < |R|/7. By applying inequality (1) and setting∆ > 9 andλ = 2
√

∆− 1,

we obtain that

e(V \ S) ≤ ∆
(
p− |S|

)2

2p
+

λ|S|
2p

(

p− |S|
)

≤ ∆
(
p− |S|

)

2
− ∆

(
p− |S|

)

2

|S|
p

+
∆
(
p− |S|

)

3

|S|
p

=
∆
(
p− |S|

)

2
− ∆

(
p− |S|

)

6

|S|
p

<
∆
(
p− |S|

)

2
− ∆

(
p− |R|

7

)

6

|S|
p

.
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This contradicts the definition ofS, since from the definition ofS it follows that the number of

edges having one end inS and other end outside ofS, is at most∆|R||S|
2p , and consequently

e(V \ S) ≥ ∆
(
p− |S|

)

2
− ∆|R||S|

4p
>

∆
(
p− |S|

)

2
− ∆

(
p− |R|

7

)

6

|S|
p

.

Next we show that for everyS′ ⊆ S of size at most|S|/2, we have|NS(S′)| ≥ 4|S′|/3.

By definition ofS, the total number of edges incident to nodes inS′ is at least|S′|∆
(
1− |R|

2p

)
.

On the other hand, using inequality (1) we obtain

e(S′) ≤ ∆ · |S′|2
2p

+
λ

2

(

1− |S
′|

p

)

|S′| .

Thus the number of edges having one end inS′ and other end outside ofS′ is at least

|S′|∆
(
1− |R|

2p

)
− e(S′) ≥ |S′|∆

(
1− |R|

2p

)
− ∆ · |S′|2

2p
− λ

2

(

1− |S
′|

p

)

|S′|

≥ |S′|∆ ·
(

1− |R|+ |S
′|

2p
− 1√

∆ + 1

)

≥ |S′|∆/3 .

Since every node inNS(S′) \ S′ has at most∆ neighbors inS′, it follows that |NS(S′) \

S′| ≥ |S′|∆/3
∆ = |S′|/3. ConsequentlyS is a simple expander. We show that the diameter

of S is at most2 log 3
2
p < 4 log p. Consider two nodesv,w ∈ S. By the simple-expansion

property, the numberN
S

log3/2 p(v) (and alsoN
S

log3/2 p(w)) of nodes of distancelog 3
2
p from v

(and also fromw) in the graph induced byS is greater thanp/2. ConsequentlyN
S

log3/2 p(v)∩

N
S

log3/2 p(w) 6= ∅, and then the shortest path betweenv andw is of length at most2 log 3
2
p <

4 log p. This completes the proof of the Claim.

We now show how to construct a sequenceQ1 ⊇ . . . ⊇ Qk having a sequenceV1 ⊇ . . . ⊇

Vk, so that propertyCCP(p, f, ε) is satisfied. We proceed inductively: we apply the Claim to

the setR = Vk and defineQk to be a set fromSVk,∅. If we have defined setQi, for 1 < i ≤ k,

we apply the Claim to the setR = Vi−1 and defineQi−1 to be a set inSVi−1,Qi including set



85

Qi. The inductive proof shows that theQis are well defined and that graphG satisfies property

CCP(p, f, ε). More precisely, the following invariant holds after construction of setQi:

(a) Qi ⊆ Vi andQi ⊇ . . . ⊇ Qk,
(b) |Qi| ≥ |Vi|/7,
(c) the diameter ofGQi is at most31 log p,

(d) every node inQi has at most∆ |R|
2p neighbors outside ofQi in graphG.

We show that fori > 1 the setQi−1 is well defined and satisfies the invariant. Fori = k it

follows directly from the Claim. Consider1 < i < k. From property (d) in invariant after

stepi it follows that if we apply the Claim to the setR = Vi−1 thenQi is included in some

S ∈ SVi−1,Qi . Consequently the definition ofQi−1 is correct. By the thesis of the Claim

applied to suchR andS we obtain properties (b) and (c) of invariant after stepi−1. Properties

(a) and (d) follow directly from the definition ofQi−1. 2

5.2.2.2 Sets of Permutations

We now deal withsets of permutationsthat satisfycertain properties. These permutations

are used by the processors in the gossip algorithm to decide to what subset of processors they

send their rumor in each step of a given execution. Consider the groupSt of all permutations

on set{1, . . . , t}, with the composition operation◦, and identityet (t is a positive integer).

For permutationπ = 〈π(1), . . . , π(t)〉 in St, we say thatπ(i) is a d-left-to-right maximum

(d-lrm in short), if there are less thand previous elements inπ of value greater thanπ(i), i.e.,

|{π(j) : π(j) > π(i) ∧ j < i}| < d.

Let Υ andΨ, Υ ⊆ Ψ, be two sets containing permutations fromSt. For everyσ in St, let

σ ◦Υ denote the set of permutation{σ ◦π : π ∈ Υ}. For given permutationπ, let (d)-LRM(π)

denote the number ofd-left-to-right maxima inπ. Now we define the notion ofsurfeit. (We will

show thatsurfeit relates to the redundant activity in our algorithms, i.e., “overdone” activity,
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or literally “surfeit”.) For a givenΥ and permutationσ ∈ St, let (d, |Υ|)-Surf(Υ, σ) be equal

to
∑

π∈Υ(d)-LRM(σ−1 ◦ π). We then define the(d, q)-surfeit of setΨ as(d, q)-Surf(Ψ) =

max{(d, q)-Surf(Υ, σ) : Υ ⊆ Ψ ∧ |Υ| = q ∧ σ ∈ St}.

We obtain the following results for(d, q)-surfeit.

Lemma 5.9 Let Υ be a set ofq random permutations on set{1, . . . , t}. For every fixed pos-

itive integerd, the probability that(d, q)-Surf(Υ, et) > t ln t + 10qd ln(t + p) is at most

e−[t ln t+9qdHt+p] ln(9/e).

Proof: First observe, that ford ≥ t/e the thesis is obvious. In the rest of the proof we assume

d < t/e.

First we describe the way of generating random permutation.This is done by induction on

the number of elementsi ≤ t that are permuted. Wheni = 1, there is only one permutation and

this permutation is random. Suppose we can generate random permutation ofi − 1 different

elements, we show how to permutei elements. First we choose randomly one element from

the i elements and put it as the last element in the permutation. Byinduction we generate a

random permutation from the remainingi − 1 elements and we put these elements as the first

i − 1 elements in the permutation. Simple induction proof shows that every permutation of

i elements has equal probability, since it is a concatenationof two independent and random

events.

It follows that the random set of permutationΥ can be selected by applying the above ruleq

times, independently. LetX(π, i), for i = 1, . . . , t, be the random value such thatX(π, i) = 1

if π(i) is ad-lrm in π, andX(π, i) = 0 otherwise.

Claim: Using the above method of generating random permutation wecan show that ifπ

is a random permutation, thenX(π, i) = 1 with probability min{d/i, 1}, independently of
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other valuesX(π, j), for j > i. More precisely,Pr[X(π, i) = 1|∧j>i X(π, j) = aj] =

min{d/i, 1}, for any 0-1 sequenceai+1, . . . , at.

This is becauseπ(i) might be ad-lrm if during the(t − i − 1)th step of the generation of

π we selected randomly one of thed greatest remaining elements (there arei ≥ d remaining

elements in this step of generation; ifi = d, then by definitionπ(i) is ad-lrm with probability

one). Hence the Claim is proved.

First notice that for everyπ ∈ Υ and everyi = 1, . . . , d, π(i) isd-lrm. Second, observe that

E
[∑

π∈Υ

∑t
i=d+1 X(π, i)

]
= qd·∑t

i=d+1
1
i = qd(Ht−Hd). We use Chernoff bound (see [6])

Pr




∑

j

Yj > E

[∑

j

Yj

]

(1 + b)



 <
( eb

(1 + b)1+b

)
E[
∑

j Yj ]
< e−E[

∑

j Yj ](1+b) ln 1+b
e ,

whereYj are independent random 0-1 variables andb > 0 is any constant, to prove the lemma.

We use Chernoff bound and derive the following (for somep < t):

Pr

[
∑

π∈Υ

t∑

i=d+1

X(π, i)>t ln t+9qdHt+p

]

=Pr

[
∑

π∈Υ

t∑

i=d+1

X(π, i)>qd(Ht −Hd)·
t ln t+9qdHt+p

qd(Ht −Hd)

]

≤ e
−qd(Ht−Hd)

t ln t+9qdHt+p
qd(Ht−Hd)

ln
t ln t+9qdHt+p
e·qd(Ht−Hd)

≤ e−[t ln t+9qdHt+p] ln(9/e)

since t ln t+9qdHt+p

qd(Ht−Hd) > 1 (the condition for using Chernoff bound of this type).

From the above and the fact thatln i ≤ Hi ≤ ln i + 1, we obtain that

Pr
[∑

π∈Υ

t∑

i=1

X(π, i) > t ln t + 10qd ln(t + p)
]

≤ Pr
[∑

π∈Υ

t∑

i=d+1

X(π, i) > t ln t + 9qdHt+p

]

≤ e−[t ln t+9qdHt+p] ln(9/e) .

This completes the proof of the lemma. 2

Theorem 5.10 For a random set of p permutations Ψ from St, the event

“for every positive integersd andq ≤ p, (d, q)-Surf(Ψ) > t ln t + 10qd ln(t + p)”

holds with probability at moste−t ln t·ln(9/e2).
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Proof: Observe that ford ≥ t/e the result is straightforward. In the rest of the proof we

assume thatd < t/e.

First notice, that ifΥ is a random set of permutation, then for arbitrary permutation

σ on set{1, . . . , t}, set σ−1 ◦ Υ is also a random set of permutation, since composition

with a permutation is a bijective operation on sets ofq permutations. Consequently, by

Lemma 5.9,(d, q)-Surf(Υ, σ) > t ln t + 10qd ln(t + p) holds with probability at most

e−[t ln t+9qdHt+p] ln(9/e).

Hence the probability that a random setΨ of p permutation satisfies(d, q)-Surf(Ψ) > t ln t +

10qd ln(t + p) is at most

t! ·
(

p

q

)

· e−[t ln t+9qdHt+p] ln(9/e) ≤ et ln t+q ln(ep/q)−[t ln t+9qdHt+p] ln(9/e)

≤ e−[t ln t+8qdHt+p] ln(9/e2) .

It follows, that the probability of event:

“for everyd andq, (d, q)-Surf(Ψ) > t ln t + 10qd ln(t + p)”,

is at most
⌈t/e⌉−1
∑

d=1

p
∑

q=1

e−[t ln t+8qdHt+p] ln(9/e2)
∞∑

d=⌈t/e⌉

p
∑

q=1

0 ≤ e−t ln t·ln(9/e2) ,

for p ≥ 1 andt ≥ 3. 2

Using the probabilistic method [6] we obtain the following result.

Corollary 5.11 There is a set ofp permutationsΨ from St such that, for every positive integers

d andq ≤ p, (d, q)-Surf(Ψ) ≤ t ln t + 10qd ln(t + p).

The efficiency of our gossip algorithm relies on the existence of the permutations in the

thesis of the corollary (however the algorithm is correct for any permutations).
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5.2.3 The Gossip Algorithm

Our new gossiping algorithm, called GOSSIPε , improves on the algorithm of [21]. The

improvement is obtained by using the better properties of communication graphs described in

Lemma 5.8, the set of permutations with certain properties stated in Corollary 5.11, and by

using many epochs instead of the two epochs in [21] (in [21] they refer to epochs as phases).

Moreover, the communication graphs we consider have dynamically changing degree, as op-

posed to [21] that they consider graphs with fixed degree. Thechallenges motivating our tech-

niques are: (i) how to assure low communication during everyepoch, and (ii) how to switch

between epochs without a “huge complexity hit”.

5.2.3.1 Description of AlgorithmGOSSIPε

Suppose constant0 < ε < 1/3 is given. The algorithm proceeds in a loop that is re-

peated until each non-faulty processorv learns either the rumor of every processorw or that

w has failed. A single iteration of the loop is called anepoch. The algorithm terminates after

⌈1/ε⌉ − 1 epochs. Each of the first⌈1/ε⌉ − 2 epochs consists ofα log2 p phases, whereα is

such thatα log2 p is the smallest integer that is larger than341 log2 p. Each phase is divided

into two stages, the updatestage, and thecommunicationstage. In the update stage proces-

sors update their local knowledge regarding other processors’ rumor (known/unknown) and

condition (failed/operational) and in the communication stage processors exchange their local

knowledge (more momentarily). We say that processorv heard about processorw if either

v knows the rumor ofw or it knows thatw has failed. Epoch⌈1/ε⌉ − 1 is the terminating

epoch where each processor sends a message to all the processors that it haven’t heard about,

requesting their rumor.
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Iterating epochs

for ℓ = 1 to ⌈1/ε⌉ − 2 do
if BUSY is emptythen

setstatus to idle;
NEIGHB= {v : v ∈ ACTIVE ∧ v ∈ NGℓ

};
repeatα log2 p times

update stage;
communication stage;

Terminating epoch (⌈1/ε⌉ − 1)

update stage;
if status = collector then

send〈ACTIVE, BUSY, RUMORS, call〉 to
each processor inWAITING ;

receivemessages;
send〈 ACTIVE, BUSY, RUMORS, reply〉 to

each processor inANSWER;
receivemessages;
update RUMORS;

Figure 2: Algorithm GOSSIPε. Code for processorv.

The pseudocode of the algorithm is given in Figure 2 (we assume, where needed, that

every if-then has an implicitelseclause containing the necessary number of no-ops to match

the length of the code in thethen clause).

Local knowledge and messages.Initially each processorv has itsrumorv and permutationπv

from a setΨ of permutations on[p], such thatΨ satisfies the thesis of Corollary 5.11. Moreover,

each processorv is associated with the variablestatusv. Initially statusv = collector (and

we say thatv is a collector), meaning thatv has not heard from all processors yet. Oncev hears

from all other processors, thenstatusv is set toinformer (and we say thatv is an informer),

meaning that nowv will inform the other processors of its status and knowledge. When pro-

cessorv learns that all non-faulty processorsw also havestatusw = informer then at the

beginning of the next epoch,statusv becomesidle (and we say thatv idles), meaning thatv

idles until termination, but it might send responses to messages (see call-messages below).

Each processor maintains several lists and sets. We now describe the lists maintained by

processorv:

• List ACTIVEv : it contains the pids of the processors thatv considers to be non-faulty.

Initially, list ACTIVEv contains allp pids.
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• List BUSYv : it contains the pids of the processors thatv consider as collectors. Initially

list BUSYv contains all pids,permuted according toπv.

• List WAITING v : it contains the pids of the processors thatv did not hear from. Initially

list WAITING v contains all pids except fromv, permuted according toπv.

• List RUMORSv : it contains pairs of the form(w, rumorw) or (w,⊥). The pair

(w, rumorw) denotes the fact that processorv knows processorw’s rumor and the pair

(w,⊥) means thatv does not knoww’s rumor, but it knows thatw has failed. Initially

list RUMORSv contains the pair(v, rumorv).

A processor can send a message to any other processor, but to lower the message complexity,

in some cases (see communication stage) we require processors to communicate according to

a conceptual communication graphGℓ, ℓ ≤ ⌈1/ε⌉ − 2, that satisfies propertyCCP(p, p −

p1−ℓε, ε) (see Definition 5.4 and Lemma 5.8). When processorv sends a messagem to another

processorw, m contains listsACTIVEv , BUSYv RUMORSv , and the variabletype. Whentype =

call, processorv requires an answer from processorw and we refer to such message as acall-

message. Whentype = reply, no answer is required—this message is sent as a response to

a call-message.

We now present the sets maintained by processorv.

• Set ANSWERv : it contains the pids of the processors thatv received a call-message.

Initially set ANSWERv is empty.

• Set CALLING v : it contains the pids of the processors thatv will send a call-message.

Initially CALLING v is empty.

• Set NEIGHBv : it contains the pids of the processors that are inACTIVEv and that

according to the communication graphGℓ, for a given epochℓ, are neighbors ofv
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(NEIGHBv = {w : w ∈ ACTIVEv ∧ w ∈ NGℓ
(v)}). Initially, NEIGHBv contains all

neighbors ofv (all nodes inNG1(v)).

Communication stage. In this stage the processors communicate in an attempt to obtain

information from other processors. This stage containsfour sub-stages:

• First sub-stage: every processorv that is either a collector or an informer (i.e.,statusv 6=

idle) sends message〈ACTIVEv , BUSYv , RUMORSv , call〉 to every processor in

CALLING v . The idle processors do not send any messages in this sub-stage.

• Second sub-stage: all processors (collectors, informers and idling) collect the informa-

tion sent to by the other processors in the previous sub-stage. Specifically, processor

v collects listsACTIVEw , BUSYw and RUMORSw of every processorw that received a

call-message from andv insertsw in setANSWERv .

• Third sub-stage: every processor (regardless of its status) responds to each processor

that received a call-message from. Specifically, processorv sends message〈ACTIVEv ,

BUSYv , RUMORSv , reply〉 to the processors inANSWERv and emptiesANSWERv .

• Fourth sub-stage: the processors receive the responses to their call-messages.

Update stage.In this stage each processorv updates its local knowledge based on the messages

it received in thelast communication stage. If statusv = idle, thenv idles. We now present

the sixupdate rules and their processing. Note that the rules are not disjoint, but we apply

them in the order from (r1) to (r6):

(r1) UpdatingBUSYv or RUMORSv : For every processorw in CALLING v (i) if v is an in-

former, it removesw from BUSYv , (ii) if v is a collector andRUMORSw was included

in one of the messages thatv received, thenv adds the pair(w, rumorw) in RUMORSv
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and, (iii) if v is a collector butRUMORSw was not included in one of the messages thatv

received, thenv adds the pair(w,⊥) in RUMORSv .

(r2) UpdatingRUMORSv andWAITING v : For every processorw in [p], (i) if (w, rumorw) is

not in RUMORSv andv learns the rumor ofw from some other processor that received

a message from, thenv adds(w, rumorw) in RUMORSv , (ii) if both (w, rumorw) and

(w,⊥) are in RUMORSv , thenv removes(w,⊥) from RUMORSv , and (iii) if either of

(w, rumorw) or (w,⊥) is in RUMORSv andw is in WAITING v , thenv removesw from

WAITING v .

(r3) UpdatingBUSYv : For every processorw in BUSYv , if v receives a message from proces-

sorv′ so thatw is not inBUSYv′ , thenv removesw from BUSYv .

(r4) UpdatingACTIVEv andNEIGHBv : For every processorw in ACTIVEv (i) if w is not in

NEIGHBv andv received a message from processorv′ so thatw is not inACTIVEv′ , then

v removesw from ACTIVEv , (ii) if w is in NEIGHBv andv did not receive a message

from w, thenv removesw from ACTIVEv andNEIGHBv , and (iii) if w is in CALLING v

andv did not receive a message fromw, thenv removesw from ACTIVEv .

(r5) Changing status: If the size ofRUMORSv is equal top andv is a collector, thenv becomes

an informer.

(r6) UpdatingCALLING v : Processorv emptiesCALLING v and (i) if v is a collector then it

updates setCALLING v to contain the firstp(ℓ+1)ε pids of list WAITING v (or all pids of

WAITING v if sizeof(WAITING v ) < p(ℓ+1)ε) and all pids of setNEIGHBv , and (ii) if v is

an informer then it updates setCALLING v to contain the firstp(ℓ+1)ε pids of list BUSYv

(or all pids ofBUSYv if sizeof(BUSYv ) < p(ℓ+1)ε) and all pids of setNEIGHBv .
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Terminating epoch. Epoch⌈1/ε⌉ − 1 is the last epoch of the algorithm. In this epoch, each

processorv updates its local information based on the messages it received in the last commu-

nication stage of epoch⌈1/ε⌉ − 2. If after this update processorv is still a collector, then it

sends a call-message to every processor that is inWAITING v (containing pids of the processors

whose rumorv does not know or processors that failed). Then every processor receives the

call-messages sent by the other processors. Next, every processor that received a call-message

sends its local knowledge to the sender. Finally each processorv updatesRUMORSv based on

any received information.

5.2.3.2 Correctness of AlgorithmGOSSIPε

We show that algorithm GOSSIPε solves theGossipAS
(p, f) problem correctly, meaning

that by the end of epoch⌈1/ε⌉ − 1 each non-faulty processor has heard about all otherp − 1

processors. First we show that no non-faulty processor is removed from a processor’s list of

active processors.

Lemma 5.12 In any execution of algorithm GOSSIPε, if processorsv andw are non-faulty by

the end of any epochℓ < ⌈1/ε⌉ − 1, thenw is in ACTIVEv and vice-versa.

Proof: Consider processorsv andw that are non-faulty by the end of epochℓ < ⌈1/ε⌉ − 1.

We show thatw is in ACTIVEv . The proof of the inverse is done similarly. The proof proceeds

by induction on the number of epochs.

Initially all processors (includingw) are in ACTIVEv . Consider phases of epoch1 (for

simplicity assume thats is not the last phase of epoch1). By the update rule, a processorw is

removed fromACTIVEv if v is not idle and (a) during the communication stage of phases, w is

not in NEIGHBv andv received a message from a processorv′ so thatw is not inACTIVEv′ , (b)
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during the communication stage of phases, w is in NEIGHBv andv did not receive a message

from w, or (c) v sent a call-message tow in the communication stage of phases of epoch1

andv did not receive a response fromw in the same stage.

Case (c) is not possible: Sincew is non-faulty in all phasess of epoch1, w receives

the call-message fromv in the communication stage of phases and addsv in ANSWERw.

Then, processorw sends a response tov in the same stage. Hencev does not removew

from ACTIVEv . Case (b) is also not possible: Sincew is non-faulty andw is in NEIGHBv , by

the properties of the communication graphG1, v is in NEIGHBw as well (and sincev is non-

faulty). From the description of the first sub-stage of the communication stage, ifstatusw 6=

idle, w sends a message to its neighbors, includingv. If statusw = idle, thenw will not

send a message tov in the first sub-stage, but it will send a reply tov′ call-message in the

third sub-stage. Therefore, by the end of the communicationstage,v has received a message

from w and hence it does not removew from ACTIVEv . Neither case (a) is possible: This

follows inductively, using points (b) and (c): no processorwill removew from its set of active

processors in a phase prior tos and hencev does not receive a message from any processorv′

so thatw is not inACTIVEv′ .

Now, assuming thatw is in ACTIVEv by the end of epochℓ − 1, we show thatw is still

in ACTIVEv by the end of epochℓ. Sincew is in ACTIVEv by the end of epochℓ − 1, w is in

ACTIVEv at the beginning of the first phase of epochℓ. Using similar arguments as in the base

case of the induction and from the inductive hypothesis, it follows thatw is in ACTIVEv by the

end of the first phase of epochℓ. Inductively it follows thatw is in ACTIVEv by the end of the

last phase of epochℓ, as desired. 2
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Next we show if a non-faulty processorw has not heard from all processors yet then no

non-faulty processorv removesw from its list of busy processors.

Lemma 5.13 In any execution of algorithm GOSSIPε and any epochℓ < ⌈1/ε⌉− 1, if proces-

sorsv andw are non-faulty by the end of epochℓ andstatusw = collector, thenw is in

BUSYv .

Proof: Consider processorsv andw that are non-faulty by the end of epochℓ < ⌈1/ε⌉−1 and

statusw = collector. The proof proceeds by induction on the number of epochs.

Initially all processorsw have statuscollector and w is in BUSYv (CALLING v\

NEIGHBv is empty). Consider phases of epoch1. By the update rule, a processorw is re-

moved fromBUSYv if (a) at the beginning of the update stage of phases, v is an informer and

w is in CALLING v , or (b) during the communication stage of phases, v receives a message

from a processorv′ so thatw is not inBUSYv′ .

Case (a) is not possible: Sincev is an informer andw is in CALLING v at the beginning

of the update stage of phases, this means that in the communication stage of phases − 1,

processorv was already an informer and it sent a call-message tow. In this case,w would

receive this message and it would become an informer during the update stage of phases.

This violates the assumption of the lemma. Case (b) is also not possible: Forw not being in

BUSYv′ it means that either (i) in some phases′ < s, processorv′ became an informer and

sent a call-message tow, or (ii) during the communication stage of a phases′′ < s, v′ received

a message from a processorv′′ so thatw was not inBUSYv′′ . Case (i) implies that in phase

s′ + 1, processorw becomes an informer which violates the assumption of the lemma. Using

inductively case (i) it follows that case (ii) is not possible either.
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Now, assuming that by the end of epochℓ− 1, w is in BUSYv we would like to show that

by the end of epochℓ, w is still in BUSYv . Sincew is in BUSYv by the end of epochℓ − 1, w

is in BUSYv at the beginning of the first phase of epochℓ. Using similar arguments as in the

base case of the induction and from the inductive hypothesis, it follows thatw is in BUSYv by

the end of the first phase of epochℓ. Inductively it follows thatw is in BUSYv by the end of the

last phase of epochℓ, as desired. 2

We now show that each processor’s list of rumors is updated correctly.

Lemma 5.14 In any execution of algorithm GOSSIPε and any epochℓ<⌈1/ε⌉−1,

(i) if processorsv andw are non-faulty by the end of epochℓ andw is not inWAITING v , then

(w, rumorw) is in RUMORSv , and (ii) if processorv is non-faulty by the end of epochℓ and

(w,⊥) is in RUMORSv , thenw is not inACTIVEv .

Proof: We first prove part (i) of the lemma. Consider processorsv andw that are non-faulty

by the end of epochℓ and thatw is not inWAITING v . The proof proceeds by induction on the

number of epochs.

Initially w is in WAITING v and RUMORSv contains only the pair(v, rumorv). Consider

phases of epoch1. By the update rule, processorw is removed fromWAITING v if during

the update stage of phases, either (w, rumorw) or (w,⊥) is in RUMORSv . In order for

(w, rumorw) to be in RUMORSv by phases one of the following must be true: (a) Proces-

sor v sent a call-message to processorw in the communication stage of phases − 1 andv

received a response fromw, (b) During the communication stage of phases − 1 processorv

received a message from processorv′ so that(w, rumorw) is in RUMORSv′ .

Case (a) is possible, sincew is non-faulty. In case (b), in order for processorv′ to know the

rumor ofw it must either learned it (b′) from w or (b′′) from some other processorv′′ in a phase
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s′ < s − 1. Case (b′) shows trivially that case (b) is possible. For case (b′′) to be possible,

it must be the case that eitherv′′ learned the rumor ofw from w or some other nodev′′′ in a

phases′′ < s′. Using case (b′) inductively, it follows that case (b′′) is possible, and thus, case

(b) is possible. Hence, if by the end of epoch1, w is not inWAITING v , then(w, rumorw) is in

RUMORSv .

Now assuming that part (i) of the lemma holds by the end of epoch ℓ − 1, we would like

to show that it also holds by the end of epochℓ. This follows from the inductive hypothesis

and the fact that no processor identifier is ever added inWAITING v and no pair of the form

(w, rumorw) is removed fromRUMORSv .

The proof of part (ii) of the lemma is analogous to the proof ofpart (i). The key argument

is that the pair(w,⊥) is added inRUMORSv if w does not respond to a call-message sent

by v which in this casew is removed fromACTIVEv (if w was not removed fromACTIVEv

earlier). 2

Finally we show the correctness of algorithm GOSSIPε.

Theorem 5.15 By the end of epoch⌈1/ε⌉ − 1 of any execution of algorithm GOSSIPε, every

non-faulty processorv either knows the rumor of processorw or it knows thatw has failed.

Proof: Consider a processorv that is non-faulty by the end of epoch⌈1/ε⌉ − 1. In the update

stage of epoch⌈1/ε⌉ − 1 processorv updates it local knowledge based on the knowledge it

had in the previous epochs and the new information it obtained in the communication stage of

the last phase of epoch⌈1/ε⌉ − 2. Lemmas 5.12, 5.13, and 5.14 guarantee that this knowledge

does not contain false information.
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If after this last update, processorv is still a collector, meaning thatv did not hear from

all processors yet, according to the description of the algorithm, processorv will send a call-

message to the processors whose pid is still inWAITING v (by Lemma 5.14 and the update rule,

it follows that listWAITING v contains all processors thatv did not hear from yet). Then all non-

faulty processorsw receive the call-message ofv and then they respond tov. Thenv receives

these responses. Finallyv updates listRUMORSv accordingly: if a processorw responded to

v’s call-message (meaning thatv now learns the rumor ofw), thenv adds(w, rumorw) in

RUMORSv . If w did not respond tov’s call-message, and(w, rumorw) is not in RUMORSv (it

is possible for processorv to learn the rumor ofw from some other processorv′ that learned

the rumor ofw before processorw failed), thenv knows thatw has failed and adds(w,⊥) in

RUMORSv .

Hence the last update that each non-faulty processorv performs onRUMORSv maintains

the validity that the list had from the previous epochs (guaranteed by the above three lemmas).

Moreover, the size ofRUMORSv becomes equal top andv either knows the rumor of each

processorw, or it knows thatv has failed, as desired. 2

Note from the above that the correctness of algorithm GOSSIPε does not depend on whether

the set of permutationsΨ satisfy the conditions of Corollary 5.11. The algorithm is correct for

any set of permutations of[p].

5.2.3.3 Analysis of AlgorithmGOSSIPε

Consider some setVℓ, |Vℓ| ≥ p1−ℓε, of processors that are not idle at the beginning of

epochℓ and do not fail by the end of epochℓ. Let Qℓ ⊆ Vℓ be such that|Qℓ| ≥ |Vℓ|/7 and the
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diameter of the subgraph induced byQℓ is at most31 log p. Qℓ exists because of Lemma 5.8

applied to graphGℓ and setVℓ (chains have size2).

For any processorv, let CALLv = CALLING v\ NEIGHBv . Recall that the size ofCALL

is equal top(ℓ+1)ε (or less if list WAITING , or BUSY, is shorter thanp(ℓ+1)ε) and the size

of NEIGHB is at mostp(ℓ+1)ε. We refer to the call-messages sent to the processors whose

pids are inCALL asprogress-messages. If processorv sends a progress-message to processor

w, it will remove w from list WAITING v (or BUSYv) by the end of current stage. Letd =

(31 log p + 1)p(ℓ+1)ε. Note thatd ≥ (31 log p + 1) · |CALL |.

We begin the analysis of the gossip algorithm by proving a bound on the number of

progress-messages sent under certain conditions.

Lemma 5.16 The total number of progress-messages sent by processors inQℓ from the begin-

ning of epochℓ until the first processor inQℓ will have its list WAITING (or list BUSY) empty,

is at most(d, |Qℓ|)-Surf(Ψ).

Proof: Fix Qℓ and consider some permutationσ ∈ Sp that satisfies the following property:

“Consideri < j ≤ p. Let τi (τj) be the time step in epochℓ where some processor inQℓ

hears aboutσ(i) (σ(j)) the first time among the processors inQℓ. Thenτi ≤ τj .” (We note

that it is not difficult to see that for a givenQℓ we can always findσ ∈ Sp that satisfies the

above property.) We consider only the subsetΥ ⊆ Ψ containing permutations of indexes

from setQℓ. To show the lemma we prove that the number of messages sent byprocessors

from Qℓ is at most(d, |Υ|)-Surf(Υ, σ) ≤ (d, |Qℓ|)-Surf(Ψ). Suppose that processorv ∈ Qℓ

sends a progress-message to processorw. It follows from the diameter ofQℓ and the size

of set CALL in epochℓ, that none of processorv′ ∈ Qℓ had sent a progress-message tow
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before31 log p phases, and consequently position of processorw in permutationπv is at most

d− |CALL | ≤ d− p(ℓ+1)ε greater than position ofw in permutationπv′ .

For each processorv ∈ Qℓ, let Pv contain all pairs(v, i) such thatv sends a progress-

message to processorπv(i) by itself during the epochℓ. We construct functionh from the set

⋃

v∈Qℓ
Pv to the set of alld-lrm of setσ−1 ◦ Ψ and show thath is one-to-one function. We

run the construction independently for each processorv ∈ Qℓ. If πv(k) is the first processor

in the permutationπv to whomv sends a progress-message at the beginning of epochℓ, we set

h(v, k) = 1. Suppose that(v, i) ∈ Pv and we have defined functionh for all elements from

Pv less than(v, i) in the lexicographic order. We defineh(v, i) as the firstj ≤ i such that

(σ−1 ◦ πv)(j) is ad-lrm not assigned yet byh to any element inPv .

Claim: For every(v, i) ∈ Pv , h(v, i) is well defined.

We prove the Claim. For the first element inPv function h is well defined. For the first

d elements inPv it is also easy to show thath is well defined, since the firstd elements in

permutationπv ared-lrms. Supposeh is well defined for all elements fromPv less than(v, i)

and(v, i) is at least the(d + 1)st element inPv . We show thath(v, i) is also well defined.

Suppose to the contrary, that there is no positionj ≤ i such that(σ−1 ◦ πv)(j) is ad-lrm and

j is not assigned byh before step of construction for(v, i) ∈ Pv. Let j1 < . . . < jd < i be the

positions such that(v, j1), . . . , (v, jd) ∈ Pv and(σ−1 ◦ πv)(h(j1)), . . . , (σ
−1 ◦ πv)(h(jd)) are

greater than(σ−1 ◦ πv)(i). They exist from the fact, that(σ−1 ◦ πv)(i) is notd-lrm and every

”previous”d-lrms inπv are assigned byL. Obviously processorw = πv(h(j1)) received a first

progress-message at leastd|CALL| = 31 log p + 1 phases before it received a progress-message

from v. From the choice ofσ, processorw′ = πv(i) had received a progress-message from

some other processor inQ′
ℓ at least31 log p + 1 phases beforew′ received a progress-message
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from v. This contradicts the remark at the beginning of the proof ofthe lemma. This completes

the proof of the Claim.

The fact thath is a one-to-one function follows directly from the definition of h. It follows

that the number of progress-messages sent by processors inQℓ until the list WAITING (or list

BUSY) of a processor inQℓ is empty, is at most(d, |Υ|)-Surf(Υ, σ) ≤ (d, |Qℓ|)-Surf(Ψ), as

desired. 2

We now define an invariant, that we call Iℓ, for ℓ = 1, . . . , ⌈1/ε⌉ − 2:

Iℓ: There are at mostp1−ℓε non-faulty processors having statuscollector or
informer in any step after the end of epochℓ.

Using Lemma 5.16 and Corollary 5.11 we show the following:

Lemma 5.17 In any execution of algorithm GOSSIPε, the invariant Iℓ holds for any epoch

ℓ = 1, . . . , ⌈1/ε⌉ − 2.

Proof: For p = 1 it is obvious. Assumep > 1. We will use Lemma 5.8 and Corollary 5.11.

Consider any epochℓ < ⌈1/ε⌉ − 1. Suppose to the contrary, that there is a subsetVℓ of non-

faulty processors after the end of epochℓ such that each of them has status eithercollector

orinformerand|Vℓ| > p1−ℓε. SinceGℓ satisfiesCCP(p, p−p1−ℓε, ε), there is a setQℓ ⊆ Vℓ

such that|Qℓ| ≥ |Vℓ|/7 > p1−ℓε/7 and the diameter of the subgraph induced byQℓ is at most

31 log p. Applying Lemma 5.16 and Corollary 5.11 to the setQℓ, epochℓ, t = p, q = |Qℓ|

andd = 31p(ℓ+1)ε log p, we obtain that the total number of messages sent until some processor

v ∈ Qℓ has listBUSYv empty, is at most

2 · (31(log p + 1)p(ℓ+1)ε, |Qℓ|)-Surf(Ψ) + 31|Qℓ|p(ℓ+1)ε log p ≤ 341|Qℓ|p(ℓ+1)ε log2 p .

More precisely, until some processor inQℓ has statusinformer, the processors inQℓ

have sent at most(31(log p + 1)p(ℓ+1)ε, |Qℓ|)-Surf(Ψ) messages. Then, after the processors in
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Qℓ send at most31|Qℓ|p(ℓ+1)ε log p messages, every processor inQℓ has statusinformer.

Finally, after the processors inQℓ send at most(31(log p+1)p(ℓ+1)ε, |Qℓ|)-Surf(Ψ) messages,

some processor inQℓ ⊆ Vℓ has its listBUSY empty.

Notice that since no processor inQℓ has statusidle in epochℓ, each of them sends in

every phase of epochℓ at most|CALL | ≤ p(ℓ+1)ε progress-messages. Consequently the total

number of phases in epochℓ until some of the processors inQℓ has its listBUSY empty, is at

most
341|Qℓ|p(ℓ+1)ε log2 p

|Qℓ|p(ℓ+1)ε
≤ 341 log2 p.

Recall thatα log2 p ≥ 341 log2 p. Hence if we consider the first341 log2 p phases of

epochℓ, the above argument implies that there is at least one processor in Vℓ that has status

idle, which is a contradiction. Hence, Iℓ holds for epochℓ. 2

We now show the time and message complexity of algorithm GOSSIPε .

Theorem 5.18 Algorithm GOSSIPε solves theGossipAS
(p, f) problem with time complexity

T = O(log2 p) and message complexityM = O(p1+3ε).

Proof: First we show the bound on time. Observe that each update and communication stage

takesO(1) time. Therefore each of the first⌈1/ε⌉ − 2 epochs takesO(log2 p) time. The

last epoch takesO(1) time. From this and the fact thatε is a constant, we have that the

time complexity of the algorithm is in the worse caseO(log2 p). We now show the bound on

messages. From Lemma 5.17 we have that for every1 ≤ ℓ < ⌈1/ε⌉ − 2, during epochℓ + 1

there are at mostp1−ℓε processors sending at most2p(ℓ+2)ε messages in every communication

stage. The remaining processors are either faulty (hence they do not send any messages) or have

statusidle — these processors only respond to call-messages and their total impact on the

message complexity in epochℓ+1 is at most as large as the others. Consequently the message

complexity during epochℓ + 1 is at most4(α log2 p) · (p1−ℓεp(ℓ+2)ε) ≤ 4αp1+2ε log2 p ≤
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4αp1+3ε. After epoch⌈1/ε⌉ − 2 there are, per I⌈1/ε⌉−2, at mostp2ε processors having list

WAITING not empty. In epoch⌈1/ε⌉− 1 each of these processors sends a message to at mostp

processors twice, hence the message complexity in this epoch is bounded by2p · p2ε. From the

above and the fact thatε is a constant, we have that the message complexity of the algorithm

is O(p1+3ε). 2

5.2.4 The Do-All Algorithm based on Gossip

We now put the gossip algorithm to use by constructing a new robustDo-All algorithm,

called algorithm DOALLε.

5.2.4.1 Description of AlgorithmDOALLε

The algorithm proceeds in a loop that is repeated until all the tasks are executed and all non-

faulty processors are aware of this. A single iteration of the loop is called anepoch. Each epoch

consists ofβ log p+1 phases, whereβ > 0 is a constant integer. We show that the algorithm is

correct for any integerβ > 0, but the complexity analysis of the algorithm depends on specific

values ofβ that we show to exist. Each phase is divided into twostages, thework stage and

thegossipstage. In the work stage processors perform tasks, and in thegossip stage processors

execute an instance of the GOSSIPε algorithm to exchange information regarding completed

tasks and non-faulty processors (more details momentarily). Computation starts with epoch1.

We note that (unlike in algorithm GOSSIPε) the non-faulty processors may stop executing at

different steps. Hence we need to argue about the termination decision that the processors must

take. This is done in the paragraph “Termination decision”.
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The pseudocode for a phase of epochℓ of the algorithm is given in Figure 3 (again we

assume that everyif-then has an implicitelsecontaining no-ops as needed).

Work stage
repeat Tℓ times

if TASK not emptythen
perform task whose id is first inTASK;
remove task’s id fromTASK;

elseif TASK empty anddone = false
then setdone to true;

if TASK empty anddone = false then
setdone to true;

Gossip stage
run GOSSIPε/3 with rumor =(TEMP,PROC,done);
if done = true anddonew = true for all w
received rumor fromthen

TERMINATE;
else

updateTASK andPROC;

Figure 3: A phase of epochℓ of algorithm DOALLε. Code for processorv.

Local knowledge.Each processorv maintains a list of tasksTASKv it believes not to be done,

and a list of processorsPROCv it believes to be non-faulty. InitiallyTASKv = 〈1, . . . , n〉 and

PROCv = 〈1, . . . , p〉. The processor also has a boolean variabledonev, that describes the

knowledge ofv regarding the completion of the tasks. Initiallydonev is set tofalse, and

when processorv is assured that all tasks are completeddonev is set totrue.

Task allocation. Each processorv is equipped with a permutationπv from a setΨ of per-

mutations on[n]. (This is distinct from the set of permutation on[p] required by the gossip

algorithm.) We show that the algorithm is correct for any setof permutations on[n], but its

complexity analysis depends on specific set of permutationsΨ that we show to exist.

Initially TASKv is permuted according toπv and then processorv performs tasks according

to the ordering of the tids inTASKv . In the course of the computation, when processorv learns

that taskz is performed (either by performing the task itself or by obtaining this information

from some other processor), it removesz from TASKv while preserving the permutation order.



106

Work stage. For epochℓ, each work stage consists ofTℓ =
⌈

n+p log3 p
p

2l log p

⌉

work sub-stages. In

each sub-stage, each processorv performs a task according toTASKv . Hence, in each work

stage of a phase of epochℓ, processorv must perform the firstTℓ tasks ofTASKv . However,

if TASKv becomes empty at a sub-stage prior to sub-stateTℓ, thenv performs no-ops in the

remaining sub-stages (each no-op operation takes the same time as performing a task). Once

TASKv becomes empty,donev is set totrue.

Gossip stage.Here processors execute algorithm GOSSIPε/3 using their local knowledge as

the rumor, i.e., for processorv, rumorv = (TASKv , PROCv , donev). At the end of the stage,

each processorv updates its local knowledge based on the rumors it received.Theupdate rule

is as follows: (a) Ifv does not receive the rumor of processorw, thenv learns thatw has failed

(guaranteed by the correctness of GOSSIPε/3). In this casev removesw from PROCv . (b) If v

receives the rumor of processorw, then it compareTASKv andPROCv with TASKw andPROCw

respectively and updates its lists accordingly—it removesthe tasks thatw knows are already

completed and the processors thatw knows that have crashed. Note that ifTASKv becomes

empty after this update, variabledonev remainsfalse. It will be set totrue in the next

work stage. This is needed for the correctness of the algorithm (see Lemma 5.22).

Termination decision. We would like all non-faulty processors to learn that the tasks are

done. Hence, it would not be sufficient for a processor to terminate once the value of itsdone

variable is set totrue. It has to be assured that all other non-faulty processors’done variables

are set totrue as well, and then terminate. This is achieved as follows: If processorv starts

the gossip stage of a phase of epochℓ with donev = true, and all rumors it receives suggest

that all other non-faulty processors know that all tasks aredone (theirdone variables are set to

true), then processorv terminates. If at least one processor’sdone variable is set tofalse,
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thenv continues to the next phase of epochℓ (or to the first phase of epochℓ+1 if the previous

phase was the last of epochℓ).

Remark 5.1 In the complexity analysis of the algorithm we first assume thatn ≤ p2 and then

we show how to extend the analysis for the casen > p2. In order to do so, we assume that

whenn > p2, before the start of algorithm DOALLε, the tasks are partitioned inton′ = p2

chunks, where each chunk contains at most⌈n/p2⌉ tasks. In this case it is understood that in

the above description of the algorithm,n is actuallyn′ and when we refer to a task we really

mean a chunk of tasks.

5.2.4.2 Correctness of AlgorithmDOALLε

We show that the algorithm DOALLε solves theDo-All AS
(n, p, f) problem correctly,

meaning that the algorithm terminates with all tasks performed and all non-faulty processors

are aware of this. Note that this is a stronger correctness condition than the one required by the

definition ofDo-All .

First we show that no non-faulty processor is removed from a processor’s list of non-faulty

processors.

Lemma 5.19 In any execution of algorithm DOALLε, if processorsv andw are non-faulty by

the end of the gossip stage of phases of epochℓ, then processorw is in PROCv and vice-versa.

Proof: Let v be a processor that is non-faulty by the end of the gossip stage of phases of

epochℓ. By the correctness of algorithm GOSSIPε/3 (called at the gossip stage), processorv

receives the rumor of every non-faulty processorw and vice-versa. Since there are no restarts,

v andw were alive in all prior phases of epochs1, 2, . . . , ℓ, and hence,v andw received each
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other rumors in all these phases as well. By the update rule itfollows that processorv does not

remove processorw from its processor list and vice-versa. Hencew is in PROCv andw is in

PROCv by the end of phases, as desired. 2

Next we show that no undone task is removed from a processor’slist of undone tasks.

Lemma 5.20 In any execution of algorithm DOALLε, if a taskz is not in TASKv of any pro-

cessorv at the beginning of the first phase of epochℓ, thenz has been performed in a phase of

one of the epochs1, 2, . . . , ℓ− 1.

Proof: From the description of the algorithm we have that initiallyany taskz is in TASKv of a

processorv. We proceed by induction on the number of epochs. At the beginning of the first

phase of epoch1, z is in TASKv . If by the end of the first phase of epoch1, z is not in TASKv

then by the update rule either (i)v performed taskz during the work stage, or (ii) during the

gossip stagev receivedrumorw from processorw in which z was not inTASKw . The latter

suggests that processorw performed taskz during the work stage. Continuing in this manner

it follows that if z is not in TASKv at the beginning of the first phase of epoch2, thenz was

performed in one of the phases of epoch1.

Assuming that the thesis of the lemma holds for any epochℓ, we show that it also holds for

epochℓ + 1. Consider two cases:

Case 1: If z is not inTASKv at the beginning of the first phase of epochℓ, then since no tid is

ever added inTASKv , z is not inTASKv neither at the beginning of the first phase of epochℓ+1.

By the inductive hypothesis,z was performed in one of the phases of epochs1, . . . , ℓ− 1.

Case 2: If z is in TASKv at the beginning of the first phase of epochℓ but it is not inTASKv

at the beginning of the second phase of epochℓ, then by the update rule it follows that either

(i) v performed taskz during the work stage of the second phase of epochℓ, or (ii) during the
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gossip stage of the second phase of epochℓ, v receivedrumorw from processorw in which

z was not inTASKw . The latter suggests that processorw performed taskz during the work

stage of the second phase of epochℓ or it learned thatz was done in the gossip stage of the first

phase of epochℓ. Either case, taskz was performed. Continuing in this manner it follows that

if z is not inTASKv at the beginning of the first phase of epochℓ + 1, thenz was performed in

one of the phases of epochℓ. 2

Next we show that under certain conditions, local progress is guaranteed. First we intro-

duce some notation. For processorv we denote byTASKv
(ℓ,s) the list TASKv at the beginning

of phases of epochℓ. Note that ifs is the last phase – (β log2 p)th phase – of epochℓ, then

TASKv
(ℓ,s+1) =TASKv

(ℓ+1,1), meaning that after phases processorv enters the first phase of

epochℓ + 1.

Lemma 5.21 In any execution of algorithm DOALLε, if processorv enters a work stage of a

phases of epochℓ with donew = false, thensizeof(TASKv
(ℓ,s+1)) < sizeof(TASKv

(ℓ,s)).

Proof: Let v be a processor that starts the work stage of phases of epochℓ with donew =

false. According to the description of the algorithm, the value ofvariabledonev is initially

false and it is set totrue only whenTASKv becomes empty. Hence, at the beginning of the

work stage of phases of epochℓ there is at least one task identifier inTASKv
(ℓ,s), and therefore

v performs at least one task. From this and the fact that no tid is ever added in a processor’s

task list, we get thatsizeof(TASKv
(ℓ,s+1)) < sizeof(TASKv

(ℓ,s)). 2

We now show that when during a phases of an epochℓ, a processor learns that all tasks are

completed and it does not crash during this phase, then the algorithm is guaranteed to terminate

by phases + 1 of epochℓ; if s is the last phase epochℓ, then the algorithm is guaranteed to
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terminate by the first phase of epochℓ + 1. For simplicity of presentation, in the following

lemma we assume thats is not the last phase of epochℓ.

Lemma 5.22 In any execution of algorithm DOALLε, for any phases of epochℓ and any

processorv, if donev is set totrue during phases andv is non-faulty by the end of phases,

then the algorithm terminates by phases + 1 of epochℓ.

Proof: Consider phases of epochℓ and processorv. According to the code of the algorithm,

the value of variabledonew is updated during the work stage of a phase (the value of the

variable is not changed during the gossip stage). Hence, if the value of variabledonew is

changed during the phases of epochℓ this happens before the start of the gossip stage. This

means thatTASKv contained inrumorv in the execution of algorithm GOSSIPε/3 is empty.

Sincev does not fail during phases, the correctness of algorithm GOSSIPε/3 guarantees that

all non-faulty processors learn the rumor ofv, and consequently they learn that all tasks are

performed. This means that all non-faulty processorsw start the gossip stage of phases + 1

of epochℓ with donew = true and all rumors they receive contain the variabledone set to

true.

The above in conjunction with the termination guarantees ofalgorithm GOSSIPε/3 lead to

the conclusion that all non-faulty processors terminate byphases+1 (and hence the algorithm

terminates by phases + 1 of epochℓ). 2

Finally we show the correctness of algorithm DOALLε.

Theorem 5.23 In any execution of algorithm DOALLε, the algorithm terminates with all tasks

performed and all non-faulty processors being aware of this.
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Proof: By Lemma 5.19, no non-faulty processor leaves the computation, and by our model at

least one processor does not crash (f < p). Also from Lemma 5.20 we have that no undone

task is removed from the computation. From the code of the algorithm we get that a processor

continues performing tasks until itsTASK list becomes empty and by Lemma 5.21 we have

that local progress is guaranteed. The above in conjunctionwith the correctness of algorithm

GOSSIPε/3 lead to the conclusion that there exist a phases of an epochℓ and a processorv

so that during phases processorv setsdonev to true, all tasks are indeed performed andv

survives phases. By Lemma 5.22 the algorithm terminates by phases + 1 of epochℓ (or by

the first phase of epochℓ + 1 if s is the last phase of epochℓ). Now, from the definition ofTℓ

it follows that the algorithm terminates after at mostO(log p) epochs: consider epochlog p;

Tlog p = ⌈(n + p log3 p)/ log p⌉ = ⌈n/ log p + p log2 p⌉. Recall that each epoch consists of

β log p+1 phases. Say thatβ = 1. Then, when a processor reaches epochlog p, it can perform

all n tasks in this epoch. Hence, all tasks that are not done until epochlog p− 1 are guaranteed

to be performed by the end of epochlog p and all non-faulty processors will know that all tasks

have been performed. 2

Note from the above that the correctness of algorithm DOALLε does not depend on the

set of permutations that processors use to select what tasksto do next. The algorithm works

correctly for any set of permutations on[n]. It also works for any integerβ > 0.

5.2.4.3 Analysis of AlgorithmDOALLε

We now derive the work and message complexities for algorithm DOALLε. Our analysis

is based on the following terminology. Consider a phasei in epochℓ of an executionξ ∈

E(DOALLε,AS). Let Vi(ξ) denote the set of processors that are non-faulty at the beginning



112

of phasei. Let pi(ξ) = |Vi(ξ)|. Let Ui(ξ) denote the set of tasksz such thatz is in some list

TASKv , for somev ∈ Vi(ξ), at the beginning of phasei. Let ui(ξ) = |Ui(ξ)|.

Now we classify the possibilities for phasei as follows. If at the beginning of phasei,

pi(ξ) > p/2ℓ−1, we say that phasei is a majority phase. Otherwise, phasei is a minority

phase. If phasei is a minority phase and at the end ofi the number of surviving processors

is less thanpi(ξ)/2, i.e.,pi+1(ξ) < pi(ξ)/2, we say thati is anunreliableminority phase. If

pi+1(ξ) ≥ pi(ξ)/2, we say thati is a reliable minority phase. If phasei is a reliable minority

phase andui+1(ξ) ≤ ui(ξ) − 1
4pi+1(ξ)Tℓ, then we say thati is anoptimal reliable minority

phase (the task allocation is optimal – the same task is performed only by a constant number of

processors on average). Ifui+1(ξ) ≤ 3
4ui(ξ), theni is a fractional reliable minority phase (a

fraction of the undone tasks is performed). Otherwise we saythati is anunproductivereliable

minority phase (not much progress is obtained). The classification possibilities for phasei of

epochℓ are depicted in Figure 4.

phasei of
epochℓ

“minority”

pi ≤
p

2ℓ−1

pi > p
2ℓ−1

“majority”

- pi+1 ≥ pi

2

“reliable”

pi+1 < pi

2

“unreliable”

-

- ui+1 ≤ ui −
pi+1

4
Tℓ

ui+1 ≤ 3ui

4

otherwise

“optimal”

“fractional”

“unproductive”

-

-

-

-

Figure 4: Classification of a phasei of epochℓ; executionξ is implied.

Our goal is to choose a setΨ of permutations such that for any execution there will be

no unproductive and no majority phases. To do this we analyzesets of random permutations,

prove certain properties of our algorithm for such sets (in Lemmas 5.24 and 5.25), and finally

use the probabilistic method to obtain an existential deterministic solution.
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Lemma 5.24 Let Q be a fixed nonempty subset of processors. Then the probability of event

“for every executionξ of algorithm DOALLε such thatVi+1(ξ) ⊇ Q and ui(ξ) > 0, the

following inequality holdsui(ξ)−ui+1(ξ) ≥ min{ui(ξ), |Q|Tℓ}/4,” is at least1−1/eΩ(|Q|Tℓ).

Proof: Let ξ be an execution of algorithm DOALLε such thatVi+1(ξ) ⊇ Q andui(ξ) > 0. Let

c = min{ui(ξ), |Q|Tℓ}/4. Let Si(ξ) be the set of tasksz such thatz is in every listTASKv

for v ∈ Q, at the beginning of phasei. Let si(ξ) = |Si(ξ)|. Note thatSi(ξ) ⊆ Ui(ξ), and

that Si(ξ) describes some properties of setQ, while Ui(ξ) describes some properties of set

Vi(ξ) ⊇ Q.

Consider the following cases:

Case 1: si(ξ) ≤ ui(ξ) − c. Then after the gossip stage of phasei we obtain the required

inequality with probability1.

Case 2: si(ξ) > ui(ξ) − c. We focus on the work stage of phasei. Consider a conceptual

process in which the processors inQ perform tasks sequentially, the next processor takes over

when the previous one has performed all itsTℓ steps during the work stage of phasei. This

process takes|Q|Tℓ steps to be completed. LetU
(k)
i (ξ) denote the set of tasksz such that:z is

in some listTASKv , for somev ∈ Q, at the beginning of phasei andz has not been performed

during the firstk steps of the process, by any processor. Letu
(k)
i (ξ) = |U (k)

i (ξ)|. Define the

random variablesXk, for 1 ≤ k ≤ |Q|Tℓ, as follows:

Xk =







1 if either ui(ξ)− u
(k)
i (ξ) ≥ c or u

(k)
i (ξ) 6= u

(k−1)
i (ξ) ,

0 otherwise .

Suppose some processorv ∈ Q is to perform thekth step. Ifui(ξ)− u
(k)
i (ξ) < c then we also

have the following:

si(ξ)−
(
ui(ξ)− u

(k)
i (ξ)

)
> si(ξ)− c ≥ ui(ξ)/2 ≥ sizeof(TASKv )/2,
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whereTASKv is taken at the beginning of phasei, because3c ≤ 3ui(ξ)/4 ≤ si(ξ). Thus at

least a half of the tasks inTASKv , taken at the beginning of phasei, have not been performed

yet, and soPr[Xk = 1] ≥ 1/2.

We need to estimate the probabilityPr[
∑

Xk ≥ c], where the summation is over all|Q|Tℓ

steps of all the processors inQ in the considered process. Consider a sequence〈Yk〉 of indepen-

dent Bernoulli trials, withPr[Yk = 1] = 1/2. Then the sequence〈Xk〉 statistically dominates

the sequence〈Yk〉, in the sense thatPr
[∑

Xk ≥ d
]
≥ Pr

[∑

Yk ≥ d
]
, for anyd > 0. Note

thatE[
∑

Yk] = |Q|Tℓ/2 andc ≤ E[
∑

Yk]/2, hence we can apply Chernoff bound to obtain

Pr
[∑

Yk ≥ c
]

≥ 1− Pr

[
∑

Yk <
1

2
E

[∑

Yk

] ]

≥ 1− e−|Q|Tℓ/8 .

Hence the number of tasks inUi(ξ), for any executionξ such thatVi+1(ξ) ⊇ Q, performed

by processors fromQ during work stage of phasei is at leastc with probability1−e−|Q|Tℓ/8. 2

Lemma 5.25 Assumen ≤ p2. There exists a constant integerβ > 0 such that for every phase

i of any epochℓ of any executionξ of algorithm DOALLε, if there is a task unperformed by

the beginning of phasei then: (a) the probability that phasei is a majority phase is at most

e−Ω(p log p), and (b) the probability that phasei is a minority reliable unproductive phase is at

moste−Ω(Tℓ).

Proof: The proof is by induction on phasei. For phase1 claim (a) holds even with the proba-

bility 0, sincep ≤ p
2ℓ−1 . We prove claim (b). Consider executions such that phase1 is minority

reliable. We can partition these executions according to the following equivalence relation:

executionsξ1 andξ2 are in the same class iffV2(ξ1) = V2(ξ2). Consider a set of processorsQ

of size at leastp/2, and any executionξ such thatV2(ξ) = Q. By Lemma 5.24 applied toQ

and phase1 we get that the probability thatu1(ξ)− u2(ξ) < min{u1(ξ), |Q|T1}/4 is at most
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e−Ω(|Q|T1) ≤ e−Ω(p log p). There are at most2p different groups of executions represented by

different setsQ, hence the probability that for every executionξ, phase1 is a minority reliable

unproductive phase is at most2p · e−Ω(p log p) = e−Ω(p log p) ≤ e−Ω(T1). Thus claim (b) holds

for phase1. Note that so far we have not obtained any bounds onβ.

Suppose that claims (a) and (b) hold for every phase up toi− 1, wherei− 1 ≥ 1 and there

is an unperformed task at the beginning of phasei−1. We prove that if there is an unperformed

task at the beginning of phasei then claims (a) and (b) hold for phasei.

Assume that phasei belongs to epochℓ, for someℓ ≥ 1. First we group executionsξ

such that phasei is a majority phase inξ, according to the following equivalence relation:

executionξ1 andξ2 are in the same class iffVi+1(ξ1) = Vi+1(ξ2). Every such equivalence

class is represented by some set of processorsQ of size greater than p
2ℓ−1 , such that for every

executionξ in this class we haveVi+1(ξ) = Q. We now define conditions forβ that keep

claim (a) satisfied.

Claim: There is a constantβ > 0 such that for any executionξ in the class represented

by Q, where|Q| > p
2ℓ−1 , all tasks were performed by the end of epochℓ− 1 with probability

e−Ω(p log p).

We now prove the Claim. Consider an executionξ from a class represented byQ. Consider

all steps taken by processors inQ during phasej of epochℓ − 1. By Lemma 5.24, since

Vj+1(ξ) ⊇ Q, we have that the probability of event “ifuj(ξ) > 0 thenuj(ξ) − uj+1(ξ) ≥

min{uj(ξ), |Q|Tℓ−1}/4,” is at least1 − 1/eΩ(|Q|Tℓ−1). If the above condition is satisfied we

call phasej productive (by similarity to names optimal and fractional,but the difference is that

these names are used only for minority phases, but now we use it according to the progress

made by processors inQ), and this happens with probability1− 1/eΩ(|Q|Tℓ−1). Since the total
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number of tasks isn, we have that the number of productive phases during epochℓ−1 sufficient

to perform all tasks using only processors inQ is either at most
n

|Q|Tℓ−1/4
≤ n

n/(4 log p)
=

4 log p, or, sincen ≤ p2, is at mostlog1/4 n = O(log p).

Therefore there are a total ofO(log p) productive phases, which is sufficient to perform all

tasks. Furthermore, every phase in epochℓ−1 is productive. Hence, all tasks are performed by

processors inQ duringβ log p phases, for some constantβ > 0, of epochℓ−1 with probability

1 − O(log p) · e−Ω(|Q|Tℓ−1) = 1 − e−Ω(p log p). Consequently all processors terminate by the

end of phaseβ log p+1 with probability1−e−Ω(p log p). This follows by the correctness of the

gossip algorithm and the argument of Lemma 5.22, since epochℓ− 1 lastsβ log p + 1 phases

and processors inQ are non-faulty at the beginning of epochℓ. This completes the proof of the

Claim.

There are at most2p of possible setsQ of processors, hence by the Claim the probability

that phasei is a majority phase is at most2p · e−Ω(p log p) ≤ e−Ω(p log p), which proves claim

(a) for phasei.

Now we prove claim (b) for phasei. Consider executions such that phasei in epochℓ

is a minority reliable phase. Similarly as above, we partitions executions according to the

following equivalence relation: executionsξ1 andξ2 are in the same class if there is setQ such

thatH = Vi+1(ξ1) = Vi+1(ξ2). SetQ is a representative of a class. By Lemma 5.24 applied to

phasei and setQ we obtain that the probability that phasei is unproductive for every execution

ξ such thatVi+1(ξ) = Q is e−Ω(|Q|Tℓ). Hence the probability that for any executionξ phasei

is a minority reliable unproductive phase is at most

p/2ℓ−1
∑

x=1

(
p

x

)

· e−Ω(xTℓ) ≤
p/2ℓ−1
∑

x=1

2x log p · e−Ω(xTℓ) ≤ e−Ω(Tℓ) ,

and claim (b) is shown for phasei. 2
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Recall that epochℓ consists ofβ log p + 1 phases for someβ > 0 and thatTℓ =

⌈ n+p log3 p
(p/2ℓ) log p

⌉. Also by the correctness proof of algorithm DOALLε (Theorem 5.23), the al-

gorithm terminates in at mostO(log p) epochs, hence, the algorithm terminates in at most

O(log2 p) phases. Letgℓ be the number of steps that each gossip stage takes in epochℓ, i.e.,

gℓ = Θ(log2 p).

We now show the work and message complexity of algorithm DOALLε.

Theorem 5.26 There is a set of permutationsΨ and a constant integerβ > 0 such that algo-

rithm DOALLε, using permutations fromΨ, solves theDo-All AS
(n, p, f) problem with work

S = O(n + p log3 p) and message complexityM = O(p1+2ε).

Proof: We show that for any executionξ ∈ E(DOALLε,AS) that solves theDo-All AS
(n, p, f)

problem there exists a set of permutationsΨ and an integerβ > 0 so that the complexity

bounds are as desired. We consider two cases:

Case 1: n ≤ p2. Consider phasei of epochℓ of executionξ for randomly chosen set of

permutationsΨ. We reason about the probability of phasei belonging to one of the classes

illustrated in Figure 4, and about the work that phasei contributes to the total work incurred

in the execution, depending on its classification. From Lemma 5.25(a) we get that phasei

may be a majority phase with probabilitye−Ω(p log p) which is a very small probability. More

precisely, the probability that for a set of permutationsΨ, in executionξ obtained forΨ some

phasei is a majority phase, isO(log2 p · e−Ω(p log p)) = e−Ω(p log p), and consequently using

the probabilistic method argument we obtain that for almostany set of permutationsΨ there is

no execution in which there is a majority phase.

Therefore, we focus on minority phases that occur with high probability (per

Lemma 5.25(a)). We can not say anything about the probability of a minority phase to be
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a reliable or unreliable, since this depends on the specific execution. Note however, that by

definition, we cannot have more thanO(log p) unreliable minority phases in any executionξ

(at least one processor must remain operational). Moreover, the work incurred in an unreli-

able minority phasei of an epochℓ in any executionξ is bounded byO(pi(ξ) · (Tℓ + gℓ)) =

O( p
2ℓ−1 · (n+p log3 p

p

2ℓ log p
+ log2 p)) = O( n

log p + p log2 p). Thus, the total work incurred by all

unreliable minority phases in any executionξ is O(n + p log3 p).

From Lemmas 5.24 and 5.25(b) we get that a reliable minority phase may be fractional or

optimal with high probability1 − e−Ω(Tℓ), whereas it may be unproductive with very small

probability e−Ω(Tℓ) ≤ e− log2 p. Using a similar argument as for majority phases, we get that

for almost all sets of permutationsΨ (probability1−O(log2 p · e−Ω(Tℓ)) ≥ 1− e−Ω(Tℓ)) and

for every executionξ, there is no minority reliable unproductive phase. The workincurred by

a fractional phasei of an epochℓ in any executionξ is bounded byO(pi(ξ) · (Tℓ + gℓ)) =

O( n
log p + p log2 p). Also note that by definition, there can be at mostO(log3/4 n) (= O(log p)

sincen ≤ p2) fractional phases in any executionξ and hence, the total work incurred by all

fractional reliable minority phases in any executionξ is O(n + p log3 p). We now consider the

optimal reliable minority phases for any executionξ. Here we have an optimal allocation of

tasks to processors inVi(ξ). By definition of optimality, in average one task inUi(ξ)\Ui+1(ξ)

is performed by at mostfour processors fromVi+1(ξ), and by definition of reliability, by at

most eight processors inVi(ξ). Therefore, in optimal phases, each unit of work spent on

performing a task results to a unique task completion (within a constant overhead), for any

executionξ. It therefore follows that the work incurred in all optimal reliable minority phases

is bounded byO(n) in any executionξ.
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Therefore, from the above we conclude that whenn ≤ p2, for random set of permutations

Ψ the work complexity of algorithm DOALLε executed on such setΨ is S = O(n + p log3 p)

with probability1 − e−Ω(p log p) − e−Ω(Tℓ) = 1 − e−Ω(Tℓ) (the probability appears only from

analysis of majority and unproductive reliable minority phases). Consequently such setΨ ex-

ists. Also, from Lemma 5.25 and the above discussion,β > 0 exists. Finally, the bound on

messages using selected setΨ and constantβ is obtained as follows: there areO(log2 p) exe-

cutions of gossip stages. Each gossip stage requiresO(p1+ε) messages (message complexity

of one instance of GOSSIPε/3). Thus,M = O(p1+ε log2 p) = O(p1+2ε).

Case 2: n > p2. In this case, the tasks are partitioned inton′ = p2 chunks, where each chunk

contains at most⌈n/p2⌉ tasks (see Remark 5.1). Using the result of Case 1 and selected setΨ

and constantβ, we get thatS = O(n′+p log3 p) ·Θ(n/p2) = O(p2 ·n/p2 +n/p2 ·p log3 p) =

O(n). The message complexity is derived with the same way as in Case 1. 2

5.2.4.4 Sensitivity Training and Failure-Sensitive Analysis

We note that the complexity bounds we obtained in the previous section do not show how

the bounds depend onf , the maximum number of crashes. In fact it is possible to subject the

algorithm to “failure-sensitivity-training” and obtain better results. To do so we slightly modify

algorithm DOALLε/2 and obtain an algorithm we call DOALL ′
ε. We first describe and analyze

the modified version of algorithm GOSSIPε, called GOSSIP′ε, which algorithm DOALL ′
ε uses

as a building block (in a similar manner that algorithm DOALLε uses algorithm GOSSIPε) to

solve theDo-All problem. Then we present algorithm DOALL ′
ε and its analysis.

Algorithm GOSSIP′ε. Algorithm GOSSIP′ε is a modified version of algorithm GOSSIPε . In

particular, algorithm GOSSIP′ε contains a new epoch, called epoch0. Epochs1, . . . , ⌈1/ε⌉ − 1



120

are the same epochs as in algorithm GOSSIPε . Assume for simplicity of presentation that

p/ log2 p is an even integer. Epoch0 is similar to the epoch1 of algorithm GOSSIPε, except

from the following:

• Epoch0 containsα′ log2 p phases, for some positive constantα′, possibly different than

α from algorithm GOSSIPε ;

• The communication graphG0 used in epoch0 is defined as follows: letV ′ be the set

consisting of arbitrarily chosen2p/ log2 p processors fromV , whereV denotes the set

of all processors (V = [p]); G0 is a graph on the set of nodesV ′ satisfying PROPERTY

R(|V ′|, |V ′|/2).

• The processors inV ′ perform the normal phase of an epoch of algorithm GOSSIPε .

• To every processor inV ′ we attach one permutation from the setΨ consisting of

2p/ log2 p permutations from setSp; we show in the analysis that suitable setΨ exists.

• For every processorv ∈ V ′, the size of setCALLING v\ NEIGHBv is equal1.

• The processors that are not inV ′ perform a different code of the phase: they begin

with a new statusanswer and do not change it by the end of epoch0; if during epoch

0 processorv /∈ V ′ receives a message from a processor of statuscollector or

informer, it replies to this processor in the same communication stage.

• If at the end of epoch0, processor’sv list sizeof(RUMORS) = p, thenv sets its status to

idle and removes its id from listBUSYv , otherwisev sets its status tocollector.

Remark 5.2 Note that each processor that sets its status toidle at the end of epoch0 might

have its listBUSY not empty, as opposed to the processors that becomeidle after epoch
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greater than0, where their listBUSY is empty. However, this does not affect the correctness of

the epochs of number greater than0: List BUSY is used by each processor to decide the subset

of the processors it sends a call-message at each step of the computation (when the proces-

sor has statusinformer) and once it becomes empty, the processor sets it status toidle.

According to the code of the algorithm, processors that are idle do not send call messages

(they only respond to such messages). Therefore, the processors that become idle by the end

of epoch0 no longer use their listBUSY (whether is empty or not). However it is important

to notice that they remove their id from their listBUSY so that when their local information

is propagated to other processors (via responses to call messages), the other processors get to

know that these processors are no longer collectors.

We now prove the complexity of algorithm GOSSIP′ε.

Theorem 5.27 There exist constantα′ and setΨ such that algorithm GOSSIP′ε , using setΨ,

solves theGossipAS
(p, f) problem with time complexityT = O(log2 p) and message com-

plexity M = O(p) whenf ≤ p
log2 p

, and withT = O(log2 p) andM = O(p1+3ε) otherwise.

Proof: First we consider the case where there are at mostp
log2 p

failures by the end of epoch0.

Let Q′ ⊆ V ′ be a set of processors such that|Q′| ≥ |V ′|/2 ≥ p
log2 p

. By PROPERTY

R(|V ′|, |V ′|/2) there existsQ ⊆ Q′ such that|Q| ≥ |Q′|/7 and the diameter of graphGQ

is at most31 log p. Consider all executionsξ ∈ E(GOSSIP′ε ,AS) such that every proces-

sor in Q′ is not failed by the end of epoch0, and chooseΨ randomly. We may look at

the process of collecting rumors by processors inQ (when every processor inQ works as a

collector) as performing tasks: if a rumor of processorw (or information that processor

w is failed), for every processorw, is known by some processor inQ then we say that task
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w is performed. We partition the execution into consecutiveblocks, each containing31 log p

consecutive phases. Notice that during each block all processors inQ exchange information

between themselves, by definition ofQ. We may use Lemma 5.24 to bound progress: the

probability that “for every considered executionξ (such that all processors inQ are not failed

at the end of epoch0) after every consecutive block in epoch0 the number of rumors unknown

by processors inQ decreases either by(3/4)|Q| log p or by factor3/4 ” is 1 − e−Ω(|Q| log p).

Consequently, for every considered executionξ, O(
p

|Q| log p
+ log3/4 p) = O(log p) num-

ber of blocks are sufficient to collect all rumors by processors in Q, with probability at least

1 − log p · e−Ω(|Q| log p) ≥ 1 − e−Ω(|Q| log p). Using the probabilistic method we choose one

suchΨ, which additionally satisfies the thesis of Theorem 5.10 (toassure thatΨ is good also

for the other cases in this proof) and constantα′ follows from the fact thatO(log p) blocks,

each of31 log p phases, suffices to collect all rumors by processors inQ for every executionξ.

The process in which processors inQ, acting asinformer, inform all other processors

about collected rumors and the status of all processors, is similar to the process of collecting,

and do not influence the asymptotic complexity. In this case performing taskw, for every

processorw, is defined as informing processorw by some processor inQ.

Since the communication graphG has constant degree and in every phase the size of set

CALLING v\ NEIGHBv is equal1, the number of messages sent in every phase isO(|V ′|) =

O( p
log2 p

), which, in view of the numberO(log2 p) of phases in epoch0, gives message com-

plexity O(p) in epoch0.

Consider the case where at the end of epoch0 there are more than p
log2 p

faulty processors.

In this case there may be some processorv ∈ V such thatsizeof(RUMORS)v < p at the end of

epoch0 (if not then all non-faulty processors becomeidle at the end of epoch0 and we are
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done). It follows that all such processors start executing epoch1 of algorithm GOSSIP′ε which

is the same as in algorithm GOSSIPε.

Using the same argument as in the proof of Theorem 5.18 and by the fact thatΨ was

chosen to satisfy the thesis of Theorem 5.10, we obtain that the message complexity during

execution of GOSSIP′ε is O(p1+2ε log3 p) = O(p1+3ε), which together withO(p) messages

sent in epoch0 yields the thesis of the theorem, with respect to message complexity. The time

complexity yields from the fact that epoch0 runsO(log2 p) phases, and the remaining epochs

run also forO(log2 p) phases. 2

Algorithm DOALL ′
ε. Algorithm DOALL ′

ε is a modified version of algorithm DOALLε/2. In

particular, algorithm DOALL ′
ε contains two new epochs, called epoch−1 and epoch0. Epochs

1, . . . , log p are the same epochs as in algorithm DOALLε/2.

Epoch−1 of algorithm DOALL ′
ε uses the check-pointing algorithm from [28], where the

check-pointing and the synchronization procedures are taken from [44]. We refer to the algo-

rithm used in epoch−1 as algorithm DGMY. The goal of using this algorithm in epoch−1 is

to solveDo-All with work O(n+p(f +1)) and communicationO(fpε +p min{f +1, log p})

if the number of failures is small, mainly concerning the casef ≤ log3 p. Hence, in epoch−1,

we execute DGMYonly until stepa · (n/p + log3 p), for some constanta such that the early-

stopping condition of DGMY holds for everyf ≤ log3 p.

Epoch0 of algorithm DOALL ′
ε is similar to an epoch of algorithm DOALLε, except that

instead of algorithm GOSSIPε/3 , we use algorithm GOSSIP′ε/3 in each gossip stage of every

phase of epoch0. Each gossip stage lastsg0 = α′ log2 p steps, for a fixed constantα′ which

depends on algorithm GOSSIP′ε/3.
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We now show the work and message complexity of algorithm DOALL ′
ε, which is the main

result of this section.

Theorem 5.28 There exists a set of permutationsΨ and a constant integerβ > 0 such that

algorithm DOALL ′
ε solves theDo-All AS

(n, p, f) problem with workS = O(n + p ·min{f +

1, log3 p} and message complexityM = O(fpε + p min{f + 1, log p}).

Proof: We consider three cases:

Case 1:If the number of failuresf during the execution of DGMY (recall that we execute the

algorithm up to stepa · (n/p + log3 p)) is not greater thanlog3 p then by the early-stopping

property of algorithm DGMY, all non-faulty processors terminate by the end of this execution

of DGMY. Work performed by the algorithm isO(n + (f + 1)p) and the message complexity

is O(fpε + p min{f + 1, log p}). This follows from the results in [28] and [44].

Case 2:If the number of failuresf during the execution of DGMY is greater thanlog3 p and

some processor terminates in epoch−1, then by correctness of algorithm DGMY all tasks are

performed, thus we stop counting work and communication andapply analysis as in previous

case.

Case 3:If the number of failuresf during the execution of DGMY is greater thanlog3 p and no

processor terminates during the execution of DGMY, then every non-faulty processor, unlike

the previous two cases, starts executing epoch0 of DOALL ′
ε, each at the same time. The work

during the execution of DGMY isO(n + p log3 p) = O(n + p ·min{f + 1, log3 p}) and the

message complexity isO(f ′pε + p min{f ′ +1, log p}), wheref ′ ≤ f is the number of crashes

occurred during epoch−1. We now analyze the work and communication complexity of the

remaining epochs.
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The analysis of the remaining epochs, starting from epoch0, is done similarly as in The-

orem 5.26. The only difference in the analysis is that we use one more epoch (epoch0), in

which the message complexity of every gossip stage isO(p), if f ≤ p/ log2 p (per Theo-

rem 5.27). Notice that the total number of phases is stillO(log2 p), as used in the proof of

Theorem 5.26 (but constant may differ from the original). Hence the choice of setΨ is the

same as in the proof of Theorem 5.26, as well as the conditionsfor an integer constantβ > 0,

whereβ log p + 1 is the number of phases in one epoch (only the constants hidden in asymp-

totic notation may differ, and this may increase the constant β with respect to the original one).

The analysis for the general case wheref < p is the same as in the proof of Theorem 5.26.

Therefore, we focus on executionsξ ∈ E(DOALL ′
ε,AS) such that‖ξ|AS

‖ ≤ f ≤ p/ log2 p.

We have|Vi(ξ)| ≥ p − p/ log2 p for every phasei in epoch0, and consequently the number

of phases in epoch0 sufficient to perform all the tasks, which (by the proof of Theorem 5.26

means performing workO(n + p log3 p) ) is

O
( n + p log3 p

T0 · (p− p/ log2 p)

)

= O
( n + p log3 p

[n/(p log p) + log2 p] · (p − p/ log2 p)

)

= O(log p) .

Assuring that the constant hidden in the aboveO(log p) notation must be less thanβ is

an additional condition forβ > 0 (β must also satisfy the conditions in the proof of The-

orem 5.26). This condition proves, that for every executionξ ∈ E(DOALL ′
ε,AS) such that

‖ξ|AS
‖ ≤ f ≤ p/ log2 p, there exist a set of permutationsΨ and a constantβ > 0, such

that algorithm DOALL ′
ε terminates by the end of epoch0, and by the property of algorithm

GOSSIP′ε/3 , the total number of messages sent isO(p · log p) = O(p min{f + 1, log p}), since

f > log3 p andf ≤ p/ log2 p.

The thesis of the theorem follows from Theorem 5.26 and the three cases. 2



Chapter 6

Shared-Memory: Write-All with Crashes

We present failure-sensitive bounds on work for theWrite-All AS
(n, p, f) and r-Write-

All AS
(n, p, f) problems with synchronous processors, for1 ≤ f < p, in Section 6.1. In

Section 6.2 we are concerned with bounding the memory accessconcurrency. Kanellakis and

Shvartsman [68] showed that in the presence of processor crashes, the work of any (determin-

istic) Write-All algorithm must be quadratic if processors are not allowed toaccess certain

memory cells concurrently; specifically the showed a lower bound ofΩ(p · n) work for CREW

(concurrent-read, exclusive-write) machines. Hence, in the presence of crashes and in the ab-

sence of concurrency, parallel computation can be extremely inefficient. However, this is not

surprising, since redundancy is necessary for achieving fault-tolerance and concurrent memory

access provides redundancy. Therefore, since concurrencymust be allowed in order to achieve

fault-tolerance and efficiency, it is interesting to understand whether concurrent memory ac-

cess can be controlled in the presence of failures and at whatexpense on the complexity of

algorithms.

126
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6.1 Failure-Sensitive Bounds

In this section we give a new refined analysis of the most work-efficient known algorithm

for the shared-memory model, algorithm W [67]. We also establish the complexity results for

the iterativeWrite-All and for simulations of synchronous parallel algorithms on crash-prone

processors. As in Section 5.1, our analysis is obtained by combining the results derived under

the assumption of perfect knowledge for tolerating failures and the cost of achieving perfect

load balancing, derived from the structure of the algorithm.

Algorithm W solvesWrite-All AS
(n, p, f) in the shared-memory model under synchronous

crash-prone processors. In [67] it was shown that the work ofthe algorithm isO(n +

p log n log p/ log log p) for p ≤ n. Observe that this bound does not includef , the number

of crashes.

6.1.1 Description of Algorithm W

We now give a brief description of the algorithm but to avoid acomplete restatement,

we refer the reader to [68]. Algorithm W is structured as a parallel loop through four phases:

(W1) a failure detecting phase, (W2) a load rescheduling phase, (W3) a work phase, and (W4) a

phase that estimates the progress of the computation (the remaining work) and that controls the

parallel loop. These phases use full binary trees withO(n) leaves. The processors traverse the

binary trees top-down or bottom-up according to the phase. Each such traversal takesO(log n)

time (the height of a tree). For a single processor, each iteration of the loop is called ablock-

step; since there are four phases with at most one tree traversal per phase, each block-step takes

O(log n) time.



128

In algorithm W the trees stored in shared memory serve as the gathering places for global

information about the number of active processors, remaining tasks and load-balancing. Given

the full details of the algorithm, it is not difficult to see that by traversing these trees syn-

chronously, processors obtain the information that would be available from the oracleO in the

algorithm of Figure 1, in Section 4.1. Specifically, phase W1provides to the processors an

(under)estimate on the number of operational processors and phase W4 an (over)estimate on

the number of remaining tasks. This information is put together in phase W2 where the remain-

ing tasks are allocated a balanced number of processors. Thebinary tree used in phase W2 to

implement load-balancing and phase W3 to assess the remaining work is called theprogress

tree.

Here we use the parameterized version of the algorithm withp ≤ n and where the progress

tree hasu = max{p, n/ log n} leaves. The “Do-All tasks” are associated with the leaves of

this tree, withn/u tasks per leaf. Note that each block-step still takes timeO(log n).

6.1.2 Complexity Analysis

We now give the work analysis. We charge each processor for each block step it starts,

regardless of whether or not the processor completes it or crashes.

Lemma 6.1 [68] The number of block-steps required by any execution of algorithm W with

f < p processors crashes is
B = O

(

u + p
log p

log log p

)

.

Lemma 6.2 The number of block-steps required by any execution of algorithm W with f ≤

p
log p processors crashes is

B = O
(

u + p log p
f

p
)

.
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Proof: It is not difficult to see, that the processor block-steps areequivalent to the processor

steps under the assumption of perfect knowledge. Hence, theproof is the same as the proof of

Lemma 4.2. 2

Theorem 6.3 Algorithm W solvesWrite-All AS
(n, p, f) using work

S = O

(

n + p log n
log p

log(p/f)

)

whenf ≤ p

log p
, and

S = O

(

n + p log n
log p

log log p

)

when
p

log p
< f < p.

Proof: We consider the following two cases:

Case 1: p < n
log n . Here the number of leaves in the progress tree isu = n/ log n and in the

work phase W3 each processor performsn/u = log n tasks. The cost of a single block-step

is C1 = O(log n) since each of the four phases takes at mostlog n time. We consider two

subcases:

(1a) f ≤ p
log p . Per Lemma 6.2, the number of blocks-stepsB1a for this case is:

B1a = O

(

u + p
log p

log p
f

)

= O

(

n

log n
+ p

log p

log p
f

)

.

Therefore,

S1a = B1a · C1 = O

(

n

log n
+ p

log p

log p
f

)

·O(log n) = O

(

n + p log n
log p

log p
f

)

.

(1b) f > p
log p . Per Lemma 6.1, the number of block-stepsB1b for this case is:

B1b = O

(

u+p
log p

log log p

)

= O

(
n

log n
+ p

log p

log log p

)

.

Therefore,

S1b = B1b · C1 = O

(
n

log n
+ p

log p

log log p

)

·O(log n) = O

(

n + p log n
log p

log log p

)

.

Case 2: n
log n ≤ p ≤ n. Here the number of leaves in the progress tree isu = p and in the

work phase W3 each processor performs⌈n/p⌉ = O(log n) tasks. Thus the cost of a single

block-step isC2 = O(log n). We again consider two subcases:
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(2a) f ≤ p
log p . Per Lemma 6.2, the number of block-stepsB2a for this case is:

B2a = O

(

u + p
log p

log p
f

)

= O

(

p + p
log p

log p
f

)

= O

(

p
log p

log p
f

)

.

Therefore,

S2a = B2a · C2 = O

(

p
log p

log p
f

)

·O(log n) = O

(

p log n
log p

log p
f

)

.

(2b) f > p
log p . Per Lemma 6.1, the number of block-stepsB2b for this case is:

B2b = O

(

p + p
log p

log log p

)

= O

(

p
log p

log log p

)

.

Therefore,

S2b = B2b · C2 = O

(

p
log p

log log p

)

·O(log n) = O

(

p log n
log p

log log p

)

.

Combining Case 1 and Case 2 we obtain the desired result for1 ≤ p ≤ n. 2

6.1.3 Iterative Write-All and Parallel Algorithm Simulati ons

We now consider the complexity of shared-memory synchronous r-Write-AllAS
(n, p, f)

and of simulations of parallel algorithms on crash-prone processors.

Theorem 6.4 The r-Write-AllAS
(n, p, f) problem can be solved onp synchronous crash-

prone processors with work

S = O

(

r ·
(

n + p log n
log p

log(pr/f)

))

whenf ≤ pr

log p
, and

S = O

(

r ·
(

n + p log n
log p

log log p

))

when
pr

log p
< f < p.

Proof: The iterativeWrite-All can be solved by running algorithm W onr instances of size

n in sequence. We call this algorithm W*. To analyze the efficiency of W* we use the same

approach as in the proof of Theorem 4.11. In the current context we base our work complexity

arguments on the result of Theorem 6.3. 2

The above result on iterativeWrite-All leads to the following result forPRAM simulations:
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Theorem 6.5 Any synchronousn-processor, r-time shared-memory parallel algorithm

(PRAM) can be simulated onp crash-prone synchronous processors with work

S = O

(

r ·
(

n + p log n
log p

log(pr/f)

))

whenf ≤ pr

log p
, and

S = O

(

r ·
(

n + p log n
log p

log log p

))

when
pr

log p
< f < p.

Proof: The complexity of simulating a single parallel step ofn ideal processors onp crash-

prone processors does not exceed the complexity of solving asingleWrite-All AS
(n, p, f) in-

stance [72, 104]. The result then follows from Theorem 6.4. 2

This last result shows a failure-sensitive improvement over the previously known bounds of

O (r · (n + p log n log p/ log log p)) for deterministic parallel algorithm simulations on crash-

prone processors [104].

6.2 Failure-Sensitive Bounds for Controlled Memory AccessConcurrency

In this section we derive failure-sensitive bounds on work for theWrite-All and iterative

Write-All problems in the setting where memory access concurrency must be controlled. In

particular, we give a new failure-sensitive analysis of algorithm KMS [66] (the only algorithm

for Write-All in this setting) and we refine its range of optimality. We thenuse the algo-

rithm to establish new failure-sensitive bounds on work forthe iterative Write-All problem for

synchronous shared-memory systems, while simultaneouslybounding memory access concur-

rency. This yields tighter bounds on work (vs. [66]) for simulations of parallel algorithms on

crash-prone processors with bounded memory access concurrency. Our analysis is performed

by separately assessing the cost of tolerating failures derived from the results under the as-

sumption of perfect knowledge and the cost of implementing perfect load balancing, derived

from the structure of the algorithm.
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6.2.1 Description of Algorithm KMS

We now give a brief description of the algorithm but to avoid acomplete restatement, we

refer the reader to [66]. The algorithm consists of two layers, where the top layer provides the

overall control structure for solvingWrite-All and the bottom layer is responsible for control-

ling memory access concurrency.

The top layer control structure is based on algorithm W [67]:It consists of the main loop

that iterates through fours phases (phases W1,W2,W3 and W4;see Section 6.1.1) until the

Write-All problem is solved. The algorithm uses two complete binary trees: theprocessor

enumeration treewith p leaves (used in phase W1 to detect failed processors and renumber the

processors compactly) and theprogress tree(used in phase W2 to implement load-balancing

and in phase W3 to assess the remaining work) withh leaves (1 ≤ h ≤ n), where a cluster of

n/h elements of theWrite-All array (or the “Do-All ” tasks) are associated with each leaf.

The bottom layer provides specific access routines for reading from, and writing to, the

shared memory; it uses two data structures represented as binary trees: (1) Theprocessor pri-

ority tree (PPT) coordinates access to memory by determining which processors are allowed

to read or write each shared location that has to be accessed concurrently by more than one

processor. The nodes of the tree are associated with processors based on a processing num-

bering. Priorities are assigned to the processors according to the tree levels: the root has the

highest priority and priority decrease with each successive level. In the top layer, processors

traverse the progress and enumeration trees in a bottom-up fashion. At each intermediate node

of a tree two PPTs need to be combined into one as the processors that come up form the chil-

dren of the node “meet” at the parent. This involvescompactingandmergingthe PPTs. PPTs

are compacted to eliminate “certifiably” faulty processors. Two PPTs are merged by having
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the processors of the left PPT appended to the tree formed by the processors of the right one

(see [66] for details). (2) Thebroadcast treeis used to disseminate values among readers and

writers. The use of broadcast trees in conjunction with priority trees serves to bound read and

write concurrency.

Algorithm CR/W is the main algorithm of the bottom layer thatuses the above structures to

control memory access concurrency for individual reads andwrites. Specifically, it implements

broadcast (using the broadcast tree) for processors withindifferent levels of a PPT and allows

processors to write to a shared locationL only if processors at higher levels haven’t done so.

Communication between processors in a PPT takes place through a shared memory array, call

it B, where the processors communicate based on their positionsin the PPT.B[k] stores values

read by thekth processor of the PPT. Each processor on levels0, . . . , i − 1 is associated with

exactly one processor on each of the levelsi and lower. Specifically, thejth processor of the

PPT broadcasts to thejth processor of each level below its own (in a left-to-right numbering

within each level). The algorithm proceeds in⌊log p⌋+ 1 iterations that correspond to the PPT

levels. At iterationi, each processor of leveli reads itsB location. If this location has not been

updated, then the processor readsL directly. Since each full PPT level has one more processor

than all the levels above it combined (PPT is a binary tree), there may be at least one processor

on each level that readsL directly since no processor at a higher level is assigned to it (for a

full level, this processor is the rightmost one, or the root itself for level 0). As long as there

are no failures this is the only direct access toL. Concurrent accesses can occur only in the

presence of failures. In such a case several processors on the same level may fail to receive

values from processors at higher levels, in which case they concurrently readL directly. A

processor readingL directly checks whether it contains the value to be written,then writes to



134

it if it does not. Whenever processors updateL they write the new value forL as well as the

index of the level that effected the write. If a processork accessesL and determines thatL has

the correct value, and if the failed processorℓ that should have broadcast tok is at or below

the level that effected the write, thenk assumes the position of processorℓ in the PPT. This

effectively moves failed processors toward the leaves of the PPT. Failed processors are moved

downwards only if they are not above the level that effects the write – processors above this

level are eliminated by PPT compaction that takes place at the end of each run of CR/W.

Algorithm CR/W combines a read with a write. However, when the processors of a PPT

need to read a common location but no write is involved, two simpler algorithms are used:

Algorithm CR1 which is used for bottom-up traversals and algorithm CR2 which is used for

top-down traversals. Algorithm CR1 is similar to CR/W but includes no write step. This

algorithm is simpler than CR/W in that the processors that are found to have failed are pushed

toward the bottom of the PPT independent of their level. Algorithm CR2 uses a simple top-

down broadcast through the PPT. Starting with the root each processor broadcasts to its two

children; if a processor fails then its two children readT directly. Thus the processors of level

i broadcast only to processors of leveli + 1. Unlike CR1, no processor movement takes place.

From the description of algorithms CR/W, CR1, and CR2 it follows that each takes time

O(log p).

We now describe how algorithm KMS integrates algorithms CR/W, CR1, CR2, and PPT

merging and compaction within its four phases.

Phase 1: Processors begin this phase by forming single-processor PPTs. The objective is to

write to each internal node of the enumeration tree the sum ofthe values stored at its two

children. Algorithm CR/W is used to store the new value, the size of the PPT and the
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index of the level that completed the write. Then all PPTs arecompacted. In order to

merge PPTs the processors use algorithm CR1 to read the data stored at the enumeration

tree node that is the sibling of the node they just updated. Then PPTs are merged. At this

point the processors of the merged PPTs know the value they need to write at the next

level of the enumeration tree. This value is the sum of the value written by CR/W and

the value read by CR1. Therefore one call to each of CR/W and CR1 is needed for each

level of the enumeration tree.

Phase 2: This phase involves no concurrent writes. Processors traverse top-down the progress

tree to allocate themselves to the unvisited leaves. The only global information needed

at each level is the values stored at the two children of the current node of the progress

tree. Two calls to CR2 are used to read these values, one for each child. Using this

information the processors of a PPT compute locally whetherthey need to go left or

right based on their identifiers. Here each PPT must be split in two. If a PPT hask

processors of whichk′ need to go left and the remainingk − k′ need to go right, then

by convention the firstk′ processors of the PPT form the PPT of the left child and the

remainingk− k′ processors form the PPT of the right child. No compaction or merging

is done in this phase.

Phase 3: Processors form PPTs based on the information they gathered duringPhase 2and

proceed to write 1 to then/h locations that correspond to the leaf they reached. At

this point, processors decide whether they need to use algorithm CR/W, followed by

compaction for each of these writes. This is done locally by each processor: at the

beginning of this phase, the processors have consistent information on the number of

unvisited leaves, call itu, and the number of available processors, call ita (this is the
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information they used to allocate themselves at the leaves they reached by the end of

Phase 2). Whenu > a, it is guaranteed (see [66]) that there is at most one processor

per leaf, and therefore the processors do not use CR/W and compaction. Instead the

processors go sequentially through the cluster ofn/h elements at the leaf they reached

and simply write to each element. Whenu ≤ a, several processors may be allocated

to the same leaf and the processors use algorithm CR/W followed by compaction to

perform each write in the cluster. In any case, no merging is involved.

Phase 4: This phase initially uses the PPTs that resulted at the end of Phase 3. The task

to be performed is similar to that ofPhase 1. As before, algorithm CR/W is used for

writing followed by compaction and one call to algorithm CR1, after which the PPTs are

merged.

We now state previously known results [66] for algorithm KMSand for simulations using this

algorithm.

Theorem 6.6 [66] Algorithm KMS solves theWrite-All AS
(n, p, f) problem with workS =

O
(
n + p log2 n log2 p/ log log n

)
, write concurrencyω ≤ f , and read concurrencyρ ≤

7 f log n.

Theorem 6.7 [66] Any n-processor,r-time exclusive-read, exclusive-write parallel algorithm

(EREW PRAM) can be simulated on ap synchronous crash-prone processors with work

S = O
(
r ·
(
n + p log2 p log2 n/ log log n

))
, with write concurrencyω ≤ f , and the read

concurrencyρ ≤ 7f log n

These prior results do not show how the work depends on the number of processor crashes.
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6.2.2 Complexity Analysis

We now give a new, failure-sensitive, analysis of algorithmKMS, based on the results

obtained forDo-All under the assumption of perfect knowledge.

In the analysis we use the parameterized version of algorithm KMS with p ≤ n and where

the progress tree hasu = max{p, n/ log n log p} leaves. The array elements are associated

with the leaves of this tree, withn/u array elements per leaf. Henceforth we use KMS to

denote this parameterized algorithm.

For an execution of algorithm KMS, we defineui to be the number of unvisited leaves of

the progress tree(ui ≤ u), andpi to be the number of non-faulty processors(pi ≤ p), at the

start of thei-th iteration of the main loop. We defineσ1 to be the time required for a processor

to complete one iteration of the main loop whenpi < ui. We defineσ2 to be the time required

for a processor to complete one iteration of the main loop whenpi ≥ ui. We define ablock-step

to be the execution by one processor of the body of the main loop.

Lemma 6.8 The work required by algorithm KMS to solve theWrite-All AS
(n, p, f) problem

is S = O

(

σ1 · u + σ2 ·
p log p

log log p

)

.

Proof: We consider two cases.

Case 1: Considerall iterationsi in which pi < ui. In this case the number of block-steps is

O(u) since no more than one processor is assigned to each leaf of the progress tree. Then,

using the definition ofσ1, the work of algorithm KMS in this case isO(σ1 · u).

Case 2: We now account forall iterations in whichpi ≥ ui. In this case the number of block-

steps isO(p log p
log log p). Given the load-balancing properties of algorithm KMS, this follows

directly from the case analysis of Theorem 3.1 [50], where Case 2 considers the work of perfect



138

load-balancing iterative algorithms whenpi > ui. (The simpler subcase ofpi = ui is dealt

similarly.) Then, using the definition ofσ2, the work of algorithm KMS in this case isO(σ2 ·

p log p
log log p).

Combining the two cases yields the result. 2

Note that in the above lemma, work is not expressed as a function of f , the number of

processor crashes. In the next lemma, we give work as a function of f , for f ≤ p/ log p. The

proof of the lemma is based on the proof of Lemma 4.2

Lemma 6.9 The work required by algorithm KMS to solve theWrite-All AS
(n, p, f) problem

whenf ≤ p
log p is S = O

(

σ1 · (u + p) + σ2 ·
p log u

log(p/f)

)

.

Proof: Let u′ be the number of unvisited leaves of the progress tree (recall that the tree hasu

leaves withn/u array elements assigned to each leaf). Let∆f denote the number of proces-

sor crashes within a particular iteration of an execution ofthe algorithm. ∆f is, in general,

different for each iteration, though the sum of these for alliterations cannot exceedf . We set

b = b(p, f) = p/(2f), and we defineS(u′, p, f), whereu′ ≤ u, to be the work required to

solveWrite-All AS
(u′ ·n/u, p, f). We show that for allu′, p andf , S(u′, p, f) is no more than

σ1(p + u′) + 3σ2p + σ2p logp/(2f) u′. The proof proceeds by induction onu′ (following our

approach in Lemma 4.2).

Base Case:Observe that whenu′ = 1 andp ≥ 1 (hencep ≥ u′), S(u′, p, f) ≤ σ2p ≤

σ1(p + u′) + 3σ2p + σ2p logb u′, for all p andf , as desired.

Inductive Hypothesis:Assume that we have proved the result for allu′ < û and allp andf .

Inductive Step:Consideru′ = û. We investigate two cases:
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Case 1: p < û. In this case each processor is assigned to a unique unvisited leaf (this follows

from the load-balancing properties of algorithm KMS), hence

S(û, p, f) ≤ σ1p + max
0≤∆f≤f

S(û− p + ∆f, p−∆f, f −∆f).

As p−∆f > 0, û− p + ∆f < û and, by the induction hypothesis,

S(û, p, f) ≤ σ1p + max
0≤∆f≤f

[

σ1(p −∆f + û− p + ∆f ) + 3σ2(p−∆f)

+ σ2(p−∆f) logb(p−∆f,f−∆f)(û− p + ∆f)
]

.

Now, b(p−∆f, f −∆f) ≥ b(p, f), so that

S(û, p, f) ≤ σ1(p + û) + 3σ2p + σ2p logb(p,f) û,

as desired.

Case 2: p ≥ û. In this case, by assumption we have

S(û, p, f) ≤ σ2p + max
0≤∆f≤f

S(γû, p−∆f, f −∆f),

whereγ = γ(û, p,∆f) is the ratio of the number of the remaining unvisited leaves to û

(0 ≤ γ < 1). Let φ = ∆f/p ≤ f/p < 1, the fraction of processors which fail during this

iteration; thenφ/2 < γ < 2φ (see proof of Lemma 4.2). Then,

S(û, p, f) ≤ σ2p + max
φ∈[0,f/p]

S(γû, (1 − φ)p, f − φp).

As γû < û, we may apply the induction hypothesis:

S(û, p, f) ≤ σ2p + max
φ∈[0,f/p]

[

σ1(γû + (1− φ)p) + 3σ2(1− φ)p

+ σ2(1− φ)p logb′(γû)
]

,

whereb′ = b(p − φp, f − φp). As above,b′ ≥ b(p, f), so that

S(û, p, f) ≤ σ2p + max
φ∈[0,f/p]

[

σ1(γû + (1− φ)p) + 3σ2(1− φ)p

+ σ2(1− φ)p logb(p,f)(γû)
]

.

To complete the proof, it suffices to show that for allφ ∈ [0, f/p],

σ1φp + 2σ2p + σ2p logb(p,f) û− (1− φ)σ2p logb(p,f)(γû) ≥ 3σ2(1− φ)p − σ1û(1− γ).
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Upper bounding3σ2(1 − φ)p − σ1û(1 − γ) with 3σ2(1 − φ)p, removingσ1φp from the left

hand side, and dividing through byσ2p, it is sufficient to show that

2 + logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 3(1− φ),

or, equivalently,

logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 1− 3φ.

We now focus on the left hand side of the above equation:

logb(p,f) û− (1− φ)
[

logb(p,f) γ + logb(p,f) û
]

= φ logb(p,f) û + (1− φ) logb(p,f) γ−1.

Sincef ≤ p/ log p, for anyp ≥ 16 we have thatp/(2f) > 2. Observe that,

φ logb(p,f) û + (1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f) γ−1

sinceû ≥ p/f > p/(2f). (Note that ifû < p/f , then all leaves are visited in this iteration.)

Recall thatγ−1 ≥ (2φ)−1 andφ < f/p. Therefore,

(1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f)(2φ)−1 ≥ 1− 3φ.

Evidently,

S = O

(

σ1 · (u′ + p) + σ2 ·
p log u′

log(p/f)

)

= O

(

σ1 · (u + p) + σ2 ·
p log u

log(p/f)

)

,

as desired. 2

Lemma 6.10 Algorithm KMS solves theWrite-All AS
(n, p, f) problem with work

S = O

(

σ1 · (u + p) + σ2 · p
log n

log(p/f)

)

whenf ≤ p

log p
, and

S = O

(

σ1 · (u + p) + σ2 · p
log n

log log p

)

when
p

log p
< f < p.

Proof: We first record thatu < u+p, log p ≤ log n andlog u ≤ log n. Then the result follows

by combining Lemmas 6.8 and 6.9. 2

The above result shows the cost (work) of tolerating failures, while the cost of imple-

menting load-balancing is hidden inσ1 andσ2. We now compute the cost of implementing

load-balancing by algorithm KMS (that is, compute the values ofσ1 andσ2).
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Lemma 6.11 For algorithm KMS,σ1 = O(log n log p) andσ2 = O(log n log2 p).

Proof: We consider the following two cases.

Case 1: p < n
log n log p . Here the number of leaves in the progress tree isu = n/ log n log p and

in Phase 3each processor writes ton/u = log n log p array elements. The time required to

traverse the enumeration and progress trees isO(log n log p) and the execution of CR/W takes

O(log p) time.

For the iterationi when ui ≥ pi, algorithm CR/W is not used inPhase 3and there-

fore the time to update a leaf isO(log n log p) (the number of elements). Therefore,σ1 =

O(log n log p) + O(log n log p) = O(log n log p) (the time to reach a leaf plus the time to

update a leaf).

For the iterationi when ui < pi, algorithm CR/W is used inPhase 3. In the worst

case, all processors could be allocated to the same leaf (e.g., when there is only one unvis-

ited leaf left) and hence,log p time must be spent at each element of the leaf. Since there are

log n log p elements per leaf the worst case time to update a leaf isO(log n log2 p). Hence,

σ2 = O(log n log p) + O(log n log2 p) = O(log n log2 p).

Case 2: n
log n log p ≤ p ≤ n. Here the number of leaves in the progress tree isu = p and in

Phase 3each processor writes ton/p = O(log n log p) array elements. Then the bounds onσ1

andσ2 are obtained similarly to Case 1. 2

We now state and prove our main result for algorithm KMS.

Theorem 6.12 Algorithm KMS solves theWrite-All AS
(n, p, f) problem with write concur-

rencyω ≤ f , read concurrencyρ ≤ 7 f log n and work

S = O

(

n + p log2 n
log2 p

log(p/f)

)

whenf ≤ p

log p
, and
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S = O

(

n + p log2 n
log2 p

log log p

)

when
p

log p
< f < p.

Proof: The bounds onω andρ are obtained from Theorem 6.6 (see [66]). We now show the

bounds onS. The bounds are derived by combining the cost of tolerating failures and the cost

implementing load-balancing. We consider two cases:

Case 1: p < n
log n log p . Here the number of leaves in the progress tree isu =

n/ log n log p. Combining Lemmas 6.10 and 6.11 we getS = O(σ1 · (u + p) + σ2 ·

p log n/ log(p/f)) = O((log n log p) · n/(log n log p) + (log n log2 p) · p log n/ log(p/f)) =

O(n + p log2 n log2 p/ log(p/f)) when f ≤ p/ log p and similarly S = O(n +

p log2 n log2 p/ log log p) whenf > p/ log p.

Case 2: n
log n log p ≤ p ≤ n. Here the number of leaves in the progress tree isu = p. Combining

Lemmas 6.10 and 6.11 we haveS = O(σ1 ·(u+p)+σ2 ·p log n/ log(p/f)) = O((log n log p)·

p + (log n log2 p) · p log n/ log(p/f)) = O(p log2 n log2 p/ log(p/f)) whenf ≤ p/ log p and

similarly S = O(p log2 n log2 p/ log log p) whenf > p/ log p.

The result is obtained by combining Case 1 and Case 2. 2

This analysis establishes the following processor ranges for which algorithm KMS be-

comes optimal.

Corollary 6.13 Algorithms KMS is work-optimal ifp = O(n log(n/f)/ log4 n), whenf ≤

p/ log p, and ifp = O(n log log n/ log4 n)), whenf > p/ log p.

Theorem 6.6 teaches that algorithm KMS becomes optimal ifp = O(n log log n/ log4 n),

for all f < p. Corollary 6.13 shows that our failure-sensitive analysisextends the range of

optimality of the algorithm whenf ≤ p/ log p.
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6.2.3 Iterative Write-All and Parallel Algorithm Simulati ons

Using algorithm KMS and its new analysis, we obtain new failure-sensitive bounds for the

iterative Write-All problem with controlled read and write memory access concurrency.

Theorem 6.14 The r-Write-AllAS
(n, p, f) problem can be solved onp synchronous crash-

prone processors with write concurrencyω ≤ f , read concurrencyρ ≤ f log n and work

S = O

(

r ·
(

n + p log2 n
log2 p

log(pr/f)

))

whenf ≤ pr

log p
, and

S = O

(

r ·
(

n + p log2 n
log2 p

log log p

))

when
pr

log p
< f < p.

Proof: We solver-Write-AllAS
(n, p, f) by running algorithm KMSr times, once for each

Write-All instance. We enumerate ther instances ofWrite-All using numbers1, . . . , r, and

we refer to instancei as theround i. For roundi, let pi be the number of active processors at

the beginning of the round andfi be the number of crashes during the round. Note thatp1 = p,

and thatpi ≤ p.

We first establish the bounds on the memory access concurrency. Letωi andρi be the write

and read memory access concurrency accrued in roundi, respectively. Then,ω =
∑r

i=1 ωi

andρ =
∑r

i=1 ρi. Using Theorem 6.12 for each round, we have thatωi ≤ fi andρi ≤ fi log n.

Therefore,

ω =
r∑

i=1

ωi ≤
r∑

i=1

fi = f, and ρ =
r∑

i=1

ρi ≤ log n
r∑

i=1

fi = f log n,

as desired.

Observe that the choice of eachfi does not affect the bounds on the memory access concur-

rency. However, in order to establish the bounds on work we need to determine the values of

thefis that maximize the overall work ofr-Write-AllAS
(n, p, f). The work analysis is done as

in the proof of Theorem 4.11. In the current context we base our work complexity arguments

on the result of Theorem 6.12. 2
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Theorem 6.14 enables us to obtain a tighter bound on work whenalgorithm KMS is it-

eratively used to obtain efficient parallel algorithm simulations on crash-prone processors (as

opposed to the bound of Theorem 6.7).

Theorem 6.15 Any n processor,r-time exclusive-read, exclusive-write parallel (EREW

PRAM) algorithm can be simulated onp synchronous crash-prone processors with work

S = O

(

r ·
(

n + p log2 n
log2 p

log(pr/f)

))

whenf ≤ pr

log p
, and

S = O

(

r ·
(

n + p log2 n
log2 p

log log p

))

when
pr

log p
< f < p,

so that the write concurrency of the simulation isω ≤ f and the read concurrency isρ ≤

7f log n.

Proof: The complexity of simulating a single parallel step ofn ideal processors onp failure-

prone processors does not exceed the complexity of solving asingleWrite-All AS
(n, p, f) in-

stance [72, 104]. The result then follows from Theorem 6.14. 2

Note that this last result can be extended to otherPRAM variants, such as concurrent-read,

exclusive-write (CREW) and concurrent-read, concurrent-write (CRCW), however in these

cases the read and write concurrency bounds depend on the actual read and write concur-

rency of the simulated algorithm. Another way is to convert the simulated algorithm into an

equivalentEREWalgorithm (using the standardPRAM conversion techniques [69]). Then, the

simulation obtains the same concurrency bounds as in Theorem 6.15 at the expense of increas-

ing the work by a logarithmic factor (the overhead is due to the cost of the conversion).



Chapter 7

Omni-Do in Partitionable Networks

In the settings where network partitions may interfere withthe progress of computation,

the challenge is to maintain efficiency in performing the tasks and learning the results of the

tasks (solvingOmni-Do), despite the dynamically changing group connectivity. However, no

amount of algorithmic sophistication can compensate for the possibility of groups of processors

or even individual processors becoming disconnected during the computation. In general, an

adversary that is able to partition the network intog components will cause any task-performing

algorithm to have workΩ(n · g) even if each group of processors performs no more than the

optimal number ofΘ(n) tasks. In the extreme case where all processors are isolatedfrom the

beginning, the work of any algorithm isΩ(n · p).

Even given the pessimistic lower bounds on work for partitionable networks, it is desirable

to design and analyze efficient algorithmic approaches thatcan be shown to be better than

the oblivious approach where each processor or each group performs all tasks. In Section 7.1

we extend the work of Dolev, Segala, and Shvartsman [32]. We present an asynchronous

Omni-Do algorithm, called AX, and we show that it is optimal in terms of worst case task-

oriented work, under fragmentations and merges (as opposedto the algorithm in [32] that
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deals only with fragmentations). The algorithm uses a groupcommunication service [95] to

provide membership and communication services.

An Omni-Doalgorithm and its efficiency can only be partially understood through its worst

case work analysis. This is because the resulting worst casebound might depend on unusual

or extreme patterns of regroupings. In such cases, worst case work may not be the best way

to compare the efficiency of algorithms. Hence, in Section 7.2, in order to understand better

the practical implications of performing work in partitionable settings, we initiate the study

of the Omni-Do problem as an on-line problem and we pursuecompetitive analysis[105].

In particular, we study a simple randomized algorithm, called RS, and we compare its ex-

pected task-oriented work to the task-oriented work of an “off-line” algorithm that has full

knowledge of future changes in the communication medium. Weshow that algorithm RS is

“optimally-task-oriented-work-competitive” under arbitrary patterns of regroupings, including

but not limited to fragmentations and merges.

7.1 Worst Case Analysis of Omni-Do

In this section we present algorithm AX and we show that it is work-optimal under adver-

saryAFM . We assume that initially the processors belong to a single group. The algorithm

specification is done in terms ofInput/Output Automataof Lynch and Tuttle [81, 80]. In Sec-

tion 7.1.1 we give a brief introduction to Input/Output Automata. In Section 7.1.2 we present

the group communication service used for providing membership and communication services.

In Section 7.1.3 we defineview-graphsthat we use in the analysis. In Section 7.1.4 we describe

algorithm AX and we show its correctness. Finally, in Section 7.1.5 we present the complexity

analysis of the algorithm.
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7.1.1 Input/Output Automata

The algorithm specification is done in terms of Input/Outputautomata of Lynch and Tut-

tle [81, 80]. Each automaton is a state machine with states and transitions between states,

where actions are associated with sets of state transitions. There are input, output and internal

actions. A particular action is enabled if the preconditions of that action are satisfied. Input

actions are always enabled. The statements given as effectsare executed as a program started

in the existing state and atomically producing the next state as the result of the transition.

An executionξ of an Input/Output automatonAut is a finite or infinite sequence of alternat-

ing states and actions (events) ofAut starting with the initial state, i.e.,ξ = s0, e1, s1, e2, . . .,

where si’s are states (s0 is the initial state) andei’s are actions (events). We denote by

execs(Aut) the set of all executions inAut.

Consider an algorithmΛ that is specified in I/O automata and it solves a specific problem

under an adversaryA. Then, following the notation established in Section 3.2.2, execs(Λ) =

E(Λ,A).

7.1.2 A Group Communication Service

We assume a group communication service (GCS) with certain properties. The assump-

tions are basic, and they are provided by several group communication systems and specifica-

tions [23]. The service maintains group membership information and it is used to communicate

information concerning the executed tasks within each group. Each processor, at each time, has

a uniqueviewof the membership of the group. The view includes a list of theprocessors that

are members of the group. Views can change and may become different at different processors.

The GCS provides the following primitives:
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• NEWVIEW(v)i : informs processori of a new viewv = 〈id, set〉, whereid is the identifier

of the view andset is the set of processor identifiers in the group. When aNEWVIEW(v)i

primitive is invoked, we say that processori installsview v.

• GPMSND(message)i: processori multicasts a message to the group members.

• GPMRCV(message)i: processori receives multicasts from other processors.

• GP1SND(message,destination)i: processori unicasts a message to another member of

the current group.

• GP1RCV(message)i: processori receives unicasts from another processor.

To distinguish between the messages sent in different send events, we assume that each

message sent by the application is tagged with a unique message identifier.

We assume the following safety properties on any executionξ of an algorithm that uses GCSs:

1. A processor is always a member of its view ([23] Prop. 3.1).If NEWVIEW(v)i occurs in

ξ theni ∈ v.set.

2. The view identifiers of the views that each processor installs are monotonically increas-

ing ([23] Prop.3.2). If eventNEWVIEW(v1)i occurs inξ before eventNEWVIEW(v2)i,

thenv1.id < v2.id. This property implies that: (a) A processor does not install the same

view twice, and (b) if two processors install the same two views, they install these views

in the same order.

3. For every receive event, there exists a preceding send event of the same mes-

sage ([23] Prop. 4.1). IfGPMRCV(m)i (GP1RCV(m)i) occurs inξ, then there exists

GPMSND(m)j (GP1SND(m, i)j ) earlier in executionξ.
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4. Messages are not duplicated ([23] Prop. 4.2). IfGPMRCV(m1)i (GP1RCV(m1)i) and

GPMRCV(m2)i (GP1RCV(m2)i) occur inξ, thenm1 6= m2.

5. A message is delivered in the same view it was sent in ([23] Prop. 4.3). If processor

i receives messagem in view v1 and processorj (it is possible thati = j) sendsm in

view v2, thenv1 = v2.

6. In the initial states0, all processors are in the initial viewv0, such thatv0.set =

P ([23] Prop. 3.3 with [39, 88]).

We assume the following additional liveness properties on any executionξ of an algorithm

that uses GCSs (cf. [23] Section 10):

7. If a processori sends a messagem in the viewv, then for each processorj in v.set,

eitherj deliversm in v, or i installs another view (ori crashes).

8. If a new view event occurs at any processori in view v (or i crashes), then a view change

will eventually occur at all processors inv.set− {i}.

7.1.3 View-Graphs

We introduceview-graphsthat represent view changes at processors in executions andthat

are used to analyze properties of executions. View-graphs are directed graphs (digraphs) that

are defined by the states and by theNEWVIEW events of executions of algorithms that use group

communication services. Representing view changes as digraphs enables us to use common

graph analysis techniques to formally reason about the properties of executions. Our view-

graph approach to the analysis of executions is general, andwe believe it can be used to study

other properties of group communication services and algorithms for partitionable networks.
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Consider an algorithmΛ that uses a group communication service (GCS). We modify al-

gorithmΛ by introducing, for each processori, the history variablecvi that keeps track of the

current view ati as follows: In the initial state, we setcvi to bev0, the distinguished initial

view for all processorsi ∈ P. In the effects of theNEWVIEW(v)i action for processori, we in-

clude the assignmentcvi := v. From this point on (and until the end of Section 7.1) we assume

that algorithms are modified to include such history variables. We now defineview-graphsby

specifying how a view-graph is induced by an execution of an algorithm.

Definition 7.1 Given an executionξ of algorithmΛ, theview-graphΓξ = 〈V,E,L〉 is defined

to be the labeled directed graph as follows:

1. Let Vξ be the set of all viewsv that occur inNEWVIEW(v)i events inξ. The setV of

nodes ofΓξ is the setVξ ∪ {v0}. We callv0 the initial node ofΓξ.

2. The set of edgesE of Γξ is a subset ofV × V determined as follows. For each

NEWVIEW(v)i event inξ that occurs in states, the edge(s.cvi, v) is in E.

3. The edges inE are labeled byL : E → 2P , such thatL(u, v) = {i : NEWVIEW(v)i

occurs in states in ξ such thats.cvi = u}.

Observe that the definition ensures that all edges are labeled.

Example 7.1 Consider the following executionξ (we omit all events other thanNEWVIEW and

any states that do not precedeNEWVIEW events).

ξ = s0, NEWVIEW(v1)p1 , . . . , s1, NEWVIEW(v2)p2 , . . . , s2, NEWVIEW(v3)p4, . . . ,

s3, NEWVIEW(v4)p1 , . . . , s4, NEWVIEW(v1)p3 , . . . , s5, NEWVIEW(v4)p2, . . . ,

s6, NEWVIEW(v4)p3 , . . .
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Let v1.set = {p1, p3}, v2.set = {p2}, v3.set = {p4} andv4.set = {p1, p2, p3}. Additionally,

v0.set = P = {p1, p2, p3, p4}.

The view-graphΓξ = 〈V,E,L〉 is given in Figure 5. The initial node ofΓξ is v0. The

set of nodes ofV of Γξ is V = Vξ ∪ {v0} = {v0, v1, v2, v3, v4}. The set of edgesE of Γξ

is E = {(v0, v1), (v0, v2), (v0, v3), (v1, v4), (v2, v4)}, since for each of these(vk, vℓ) the event

NEWVIEW(vℓ)i occurs in statest wherest.cvi = vk for some certaini (by the definition of

the history variable). The labels of the edges areL(v0, v1) = {p1, p3}, L(v0, v2) = {p2},

L(v0, v3) = {p4}, L(v1, v4) = {p1, p3} andL(v2, v4) = {p2}, since for eachpi ∈ L(vk, vℓ)

the eventNEWVIEW(vℓ)pi occurs in statest wherest.cvpi = vk.
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Figure 5: Example of a view-graph

We now show certain properties of view-graphs. Given a graphH and a nodev of H, we

defineindegree(v,H) (outdegree(v,H)) to be the indegree (outdegree) ofv in H.

Lemma 7.1 For any executionξ, indegree(v0 ,Γξ) = 0.

Proof: In the initial states0, s0.cv is defined to bev0 for all processors inP andv0.set = P.

Assume thatindegree(v0 ,Γξ) > 0. By the construction of view-graphs, this implies that some

processori ∈ P installsv0 a second time. But this contradicts the property 2(a) of GCS.2
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Lemma 7.2 Let ξ be an execution andΓξ|i be the projection ofΓξ on the edges whose label

includesi, for somei ∈ P. Γξ|i is an elementary path andv0 is the path’s source node.

Proof: Let executionξ bes0, e1, s1, e2, . . . . Let ξ(k) be the prefix ofξ up to thekth state. i.e.,

ξ(k) = s0, e1, s1, e2, . . . , sk. Let Γk
ξ be the view-graph that is induced byξ(k). Then define

Γk
ξ |i to be the projection ofΓk

ξ on the edges whose label includesi, for somei ∈ P. For an

elementary pathπ, we defineπ.sink to be its sink node.

We prove by induction onk thatΓk
ξ |i is an elementary path, thatΓk

ξ |i.sink = sk.cvi and that

v0 is the path’s source node.

Basis: k = 0. Γ0
ξ |i has only one vertex,v0, and no edges (ξ(0) = s0). Thus,Γ0

ξ |i.sink =

s0.cvi = v0 andv0 is the source node of this path.

Inductive Hypothesis: Assume that∀n ≤ k, Γn
ξ |i is an elementary path, thatΓn

ξ |i.sink

= sn.cvi and thatv0 is the path’s source node.

Inductive Step: n = k + 1. For statesk+1 we consider two cases:

Case 1: If event ek+1 is not aNEWVIEW event involving processori, thenΓk+1
ξ |i = Γk

ξ |i.

Thus, by inductive hypothesis,Γk+1
ξ |i is an elementary path andv0 is its source node. From

statesk to statesk+1, processori did not witness any new view. By the definition of the history

variable,sk+1.cvi = sk.cvi. Thus,Γk+1
ξ |i.sink = sk.cvi = sk+1.cvi.

Case 2: If eventek+1 is aNEWVIEW(v)i event that involves processori, then by the construc-

tion of the view-graph, (sk.cvi, v) is a new edge from nodesk.cvi to nodev. By inductive

hypothesis,Γk
ξ |i.sink = sk.cvi. Since our GCS does not allow the same view to be installed

twice (property 2(a)),v 6= u for all u ∈ Γk
ξ |i. Thus,Γk+1

ξ |i is also an elementary path, withv0

its source node andΓk+1
ξ |i.sink = v. From statesk to statesk+1, processori installs the new
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view v. By the definition of the history variable,sk+1.cvi = v. Thus,Γk+1
ξ |i.sink = sk+1.cvi.

This completes the proof. 2

Theorem 7.3 Any view-graphΓξ, induced by any executionξ of algorithmΛ is a connected

graph.

Proof: The result follows from Definition 7.1(2), from the observation that all edges of the

view-graph are labeled and from Lemma 7.2 2

We now demonstrate how we can use view-graphs to represent group fragmentations and

merges. We begin with fragmentations.

Definition 7.2 For a view-graphΓξ = 〈V,E,L〉, a fragmentation subgraphis a connected

labeled subgraphH = 〈VH , EH , LH〉 of Γξ such that:

1. H contains a unique nodev such thatindegree(v,H) = 0; v is called thefragmentation

nodeof H.

2. VH = {v} ∪ V ′
H , whereV ′

H is defined to be{w : (v,w) ∈ E}.

3. EH = {(v,w) : w ∈ V ′
H}.

4. LH is the restriction ofL onEH .

5.
⋃

w∈V ′
H

(w.set) = v.set.

6. ∀u,w ∈ V ′
H such thatu 6= w, u.set ∩ w.set = ∅.

7. ∀w ∈ V ′
H , LH(v,w) = w.set.

We refer to allNEWVIEW events that collectively induce a fragmentation subgraph for a

fragmentation nodev as afragmentation.
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Example 7.2 Area A in Figure 5 (solid box) shows the fragmentation subgraph H =

〈VH , EH , LH〉 of Γξ from Example 7.1. HereVH = {v0, v1, v2, v3}, EH =

{(v0, v1), (v0, v2), (v0, v3)} and the labels are the labels ofΓξ restricted onEH . We can con-

firm thatH is a fragmentation subgraph by examining the individual items of Definition 7.2.

We continue with the representation of group merges using view-graphs.

Definition 7.3 For a view-graphΓξ = 〈V,E,L〉, a merge subgraphis a connected labeled

subgraphH = 〈VH , EH , LH〉 of Γξ such that:

1. H contains a unique nodev such thatoutdegree(v,H) = 0 and indegree(v,H) > 1; v

is called themerge nodeof H.

2. VH = {v} ∪ V ′
H , whereV ′

H is defined to be{w : (w, v) ∈ E}.

3. EH = {(w, v) : w ∈ V ′
H}.

4. LH is the restriction ofL onEH .

5.
⋃

w∈V ′
H

(w.set) = v.set.

6. ∀u,w ∈ V ′
H such thatu 6= w, u.set ∩ w.set = ∅.

7.
⋃

w∈V ′
H

LH(w, v) = v.set.

We refer to allNEWVIEW events that collectively induce a merge subgraph for a merge

nodev as amerge.

Note that a regrouping of a groupg1 to a groupg2 such thatg1.set = g2.set can be rep-

resented either as a fragmentation subgraph (fragmentation) or as a merge subgraph (merge).

Following the convention established in the definition of adversaryAFM (Section 3.2.2), we

represent it as a fragmentation subgraph by requiring thatindegree(v,H) > 1 for any merge

nodev.



155

Example 7.3 Area B in Figure 5 (dashed box) of Example 7.1 shows the merge subgraph

H = 〈VH , EH , LH〉 of Γξ, whereVH = {v1, v2, v3, v4}, EH = {(v1, v4), (v2, v4)} and the

labels are the labels ofΓξ restricted onEH . We can verify this by examining all conditions of

Definition 7.3.

We now give some additional definitions and show that any viewgraph is a directed acyclic

graph (DAG).

Definition 7.4 Given a view-graphΓξ we define:

(a) frag(Γξ) to be the set of all the distinct fragmentation nodes inΓξ,

(b) merg(Γξ) to be the set of all the distinct merge nodes inΓξ.

Definition 7.5 Given a view-graphΓξ:

(a) if all of its non-terminal nodes are infrag(Γξ), thenΓξ is called afragmentation view-

graph.

(b) if each of its non-terminal nodes is either infrag(Γξ), or it is an immediate ancestor of a

node which is inmerg(Γξ), thenΓξ is called anfm view-graph.

For Γξ in the example in Figure 5 we havev0 ∈ frag(Γξ) by Definition 7.4(a). Also,

v4 ∈ merg(Γξ) per Definition 7.4(b); additionally, the nodesv1 andv2 are immediate ancestors

of v4 ∈ merg(Γξ). By Definition 7.5(b),Γξ is an fm view-graph. Observe thatΓξ is a DAG.

This is true for all view-graphs:

Theorem 7.4 Any view-graphΓξ = 〈V,E,L〉 is a Directed Acyclic Graph (DAG).

Proof: Assume thatΓξ is not a DAG. Thus, it contains at least one cycle. Let

((v1, v2)(v2, v3) . . . (vk, v1)) be an elementary cycle ofΓξ. By the construction of view-graphs
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(Definition 7.1(3)) and by the monotonicity property (property 2) of GCS,vi.id < vi+1.id for

1 ≤ i ≤ k andvk.id < v1.id. But, by the transitivity of “<”, v1.id < vk.id, a contradiction.2

Corollary 7.5 Any fm view graph is a DAG and any fragmentation view-graph isa rooted

tree.

In the complexity analysis of our algorithm, we exploit the fact that view graphs are DAGs.

In particular we use the following fact.

Fact 7.1 In any (non-empty)DAG, there is at least one vertex, such that all of its descendants

have outdegree 0.

Remark 7.1 Consider an executionξ of algorithmΛ under adversaryAFM . In Section 3.2.2

we defined the fragmentation-numberfr(ξ|AF M
) and merge-numberfm(ξ|AF M

) of the adver-

sarial patternξ|AF M
of executionξ. We can also use view-graphs to define these quantities.

Namely,fr(ξ|AF M
) = |{w : NEWVIEW(w)i occurs inξ ∧ (v,w) ∈ E ∧ v ∈ frag(Γξ)}|, and

fm(ξ|AF M
) = |{v : NEWVIEW(v)i occurs inξ ∧ v ∈ merg(Γξ)}|, whereΓξ is the view-graph

of executionξ.

7.1.4 Algorithm AX

We present Algorithm AX, that deals with fragmentations andmerges and that relies on the

GCS as specified in Section 7.1.2, and prove its correctness.We give its complexity analysis

in Section 7.1.5.
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7.1.4.1 Description of the Algorithm

Algorithm AX uses a coordinator approach within each group view. The high level idea of

the algorithm is that each processor performs (remaining) tasks according to a load balancing

rule, and a processor completes its computation when it learns the results of all the tasks.

Task allocation. The setT of the initial tasks is known to all processors. During the exe-

cution each processori maintains a local setD of tasks already done, a local setR of the

corresponding results, and the setG of processors in the current group. (The setD may be

an underestimate of the set of tasks done globally.) The processors allocate tasks based on the

shared knowledge of the processors inG about the tasks done. For a processori, letrank(i,G)

be the rank ofi in G when processor identifiers are sorted in ascending order. Let U be the

tasks inT −D. For a tasku in U , let rank(u,U) be the rank ofu in U when task identifiers

are sorted in ascending order. Ourload balancing rulefor each processori in G is that:

• if rank(i,G) ≤ |U |, then processori performs tasku such thatrank(u,U) =

rank(i,G);

• if rank(i,G) > |U |, then processori does nothing.

Algorithm structure. The algorithm code is given in Figure 6 using Input/Output automata

notation [81]. The algorithm uses the group communication service to structure its computation

in terms ofroundsnumbered sequentially within each group view.

Initially all processors are members of the distinguished initial view v0, such thatv0.set =

P. Rounds numbered 1 correspond to the initial round either inthe original group or in a

new group upon a regrouping as notified via theNEWVIEW event. If a regrouping occurs, the

processor receives the new set of members from the group membership service and starts the
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Data types and identifiers:

T : tasks
R : results
Result : T → R
Mes: messages
P : processor ids
G : group ids
views = G × 2P : views, selectorsid andset

m ∈ Mes
i, j ∈ P
v ∈ views
Z ∈ 2T

Q ∈ 2R

round ∈ N

results ∈ 2R

States:
T ∈ 2T , the set ofn = |T | tasks
D ∈ 2T , the set of done tasks, initially∅
R ∈ 2R, the set of known results, initially∅
G ∈ 2P , current members, init.v0.set = P
X ∈ 2Mes, messages since lastNEWVIEW,

initially ∅
Rnd ∈ N, round number, initially 1
Phase ∈ {send , receive, sleep,mcast ,mrecv},

initially send

Derived variables:
U = T −D, the set of remaining tasks
Coordinator (i) : Boolean,

if i = maxj∈G{j}
thentrueelsefalse

Next(U, G), next tasku, such that
rank(u, U) = rank(i, G)

History variables:
cvi ∈ views (i ∈ P),

initially ∀i, cvi = v0.
MSGi ∈ 2Mes (i ∈ P),

initially ∀i, MSGi = ∅.

Transitions at i:

input NEWVIEW(v)i

Effect:
G← v.set
X ← ∅
Rnd← 1
Phase ← send

cv := v

output GP1SND(m, j)i

Precondition:
Coordinator(j)
Phase = send

m = 〈i, D, R, Rnd〉
Effect:

MSG := MSG∪ {m}
Phase ← receive

input GP1RCV(〈j, Z, Q, round〉)i
Effect:

X ← X ∪ {〈j, Z, Q, round〉}
R← R ∪Q
D ← D ∪ Z
if G = {j : 〈j, ∗, ∗, Rnd〉 ∈ X} then

Phase ← mcast

output GPMSND(m)i

Precondition:
Coordinator(i)
m = 〈i, D, R, Rnd〉
Phase = mcast

Effect:
MSG := MSG∪ {m}
Phase ← mrecv

input GPMRCV(〈j, Z, Q, round〉)i
Effect:

D ← D ∪ Z
R← R ∪Q
if D = T then

Phase ← sleep

else
if rank(i, G) < |U | then

R← R ∪ {Result(Next(U, G))}
D ← D ∪ {Next(U, G)}

Rnd← Rnd + 1
Phase ← send

Figure 6: Algorithm AX.
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first round of this view (NEWVIEW action). At the beginning of each round, denoted by a round

numberRnd, processori knowsG, the local setD of tasks already done, and the setR of the

results. Since all processors knowG, they “elect” the group coordinator to be the processor

which has the highest processor id (no communication is required since the coordinator is

uniquely identified). In each round each processor reportsD andR to the coordinator ofG

(GP1SND action). The coordinator receives and collates these reports (GP1RCV action) and

sends the result to the group members (GPMSNDaction). Upon the receipt of the message from

the coordinator, processors update theirD and R, and perform work according to the load

balancing rule (GPMRCV action).

For generality, we assume that the messages may be deliveredby the GCS out of order. The

set of messages within the current view is saved in the local variableX. The saved messages

are also used to determine when all messages for a given roundhave been received. Processing

continues until each member ofG knows all results (the processors enter thesleepstage).

The variablescv andMSG arehistory variablesthat do not affect the algorithm, but play a

role in its analysis.

7.1.4.2 Correctness of the Algorithm

We now show the safety of algorithm AX. We first show that no processor stops working

as long as it knows of any undone tasks.

Theorem 7.6 (Safety 1)For all states of any execution of Algorithm AX it holds that

∀i ∈ P : Di 6= T ⇒ Phase 6= sleep.

Proof: The proof follows by examination of the code of the algorithm, and more specifically

from the code of the input actionGPMRCV(〈j, Z,Q, round〉)i . 2
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Note that the implication in Theorem 7.6 cannot be replaced by iff (⇔). This is because

if Di = T , we may still havePhase 6= sleep. This is the case where processori becomes a

member of a group in which the processors do not know all the results of all the tasks.

Next we show that if some processor does not know the result ofsome task, this is because

it does not know that this task has been performed (Theorem 7.8 below). We show this using

the history variablesMSGi (i ∈ P).

We defineMSGi to be a history variable that keeps on track all the messages sent by proces-

sori ∈ P in all GP1SND andGPMSNDevents of an execution of algorithmAX. Formally, in the

effects of theGP1SND(m, j)i andGPMSND(m)i actions we include the assignmentMSGi :=

MSGi ∪ {m}. Initially, MSGi = ∅ for all i. We defineMSG to be
⋃

i∈P MSGi.

Lemma 7.7 If m is a message received by processori ∈ P in aGP1RCV(m)i or GPMRCV(m)i

event of an execution of algorithm AX, thenm ∈MSG.

Proof: Property 3 of the GCS (Section 7.1.2) requires that for everyreceive event there exists

a preceding send event of the same message (the GCS does not generate messages). Hence,

m must have been sent by some processorj ∈ P (possiblej = i) in some earlier event of

the execution. Messages can be sent only inGP1SND(m, i)j or GPMSND(m)j events. By

definition,m ∈ MSGj . Hence,m ∈MSG. 2

Theorem 7.8 (Safety 2)For all states of any execution of Algorithm AX:

(a)∀t ∈ T, ∀i ∈ P : result(t) 6∈ Ri ⇒ t 6∈ Di, and

(b) ∀t ∈ T,∀〈i,D′, R′, Rnd〉 ∈ MSG : result(t) 6∈ R′ ⇒ t 6∈ D′.

Proof: Let ξ be an execution of AX andξk be the prefix ofξ up to thekth state, i.e.,ξk =

s0, e1, s1, e2, . . . , sk. The proof is done by induction onk.
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Base Case: k = 0. In s0, ∀i ∈ P,Di = ∅, Ri = ∅ andMSG = ∅.

Inductive Hypothesis: For a statesℓ such thatℓ ≤ k, ∀t ∈ T, ∀i ∈ P : result(t) 6∈ Ri ⇒ t 6∈

Di, and∀t ∈ T,∀〈i,D′, R′, Rnd〉 ∈ MSG : result(t) 6∈ R′ ⇒ t 6∈ D′.

Inductive Step: ℓ = k + 1. Consider the following seven types of actions leading to the state

sk+1:

1. ek+1 = NEWVIEW(v′)i: The effect of this action does not affect the invariant. By the

inductive hypothesis, in statesk+1, the invariant holds.

2. ek+1 = GP1SND(m, j)i : Clearly, the effect of this action does not affect part (a) of the

invariant but it affects part (b). Sincem = 〈i,Di, Ri, Rnd〉, by the inductive hypothesis

part (a), the assignmentm ∈MSG reestablishes part (b) of the invariant. Thus, in state

sk+1, the invariant is reestablished.

3. ek+1 = GP1RCV(〈j, Z,Q, round〉)i: Processori updatesRi andDi according toQ and

Z respectively. The action is atomic, i.e., ifRi is updated, thenDi must be also updated.

By Lemma 7.7,〈j, Z,Q, round〉 ∈ MSG. Thus, by the inductive hypothesis part (b),

∀t ∈ T : result(t) 6∈ Z ⇒ t 6∈ Q. From the fact thatDi andRi are updated according to

Z andQ respectively and by the inductive hypothesis part (a), in statesk+1, the invariant

is reestablished.

4. ek+1 = GPMSND(m)i: Clearly, the effect of this action does not affect part (a) of the

invariant but it affects part (b). Sincem = 〈i,Di, Ri, Rnd〉, by the inductive hypothesis

part (a), the assignmentm ∈MSG reestablishes part (b) of the invariant. Thus, in state

sk+1, the invariant is reestablished.

5. ek+1 = GPMRCV(〈j, Z,Q, round〉)i: By Lemma 7.7,〈j, Z,Q, round〉 ∈ MSG. By the

inductive hypothesis part (b),∀t ∈ T : result(t) 6∈ Z ⇒ t 6∈ Q. Processori updatesRi

andDi according toQ andZ respectively. SinceZ andQ have the required property, by
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the inductive hypothesis part (a), the assignments toDi andRi reestablish the invariant.

In the case whereDi 6= T , processori performs a task according to the load balancing

rule. Letu ∈ T be this task. Because of the action atomicity, when processor i updates

Ri with result(u), it must also updateDi with u. Hence, in statesk+1, the invariant is

reestablished.

6. ek+1 = REQUESTq,i : The effect of this action does not affect the invariant.

7. ek+1 = REPORT(results)q,i: The effect of this action does not affect the invariant.

This completes the proof. 2

7.1.5 Analysis of Algorithm AX

Per Definition 3.6, we express the task-oriented work complexity of algorithm AX un-

der adversaryAFM as WAF M
(n, p, f) = WAF M

(n, p, fr + fm), wherefr and fm is the

fragmentation-number and merge-number, respectively, ofthe execution of algorithm AX that

maximizes work. Per Definition 3.7, the message complexity is expressed asMAF M
(n, p, f) =

MAF M
(n, p, fr + fm). Our analysis focuses on assessing the impact of the fragmentation-

numberfr and the merge-numberfm on the work and message complexity, and in the rest of

this section for clarity we letWfr,fm stand forWAF M
(n, p, fr + fm), andMfr ,fm stand for

MAF M
(n, p, fr + fm).

7.1.5.1 Work Complexity

We begin the analysis of algorithm AX by first providing definitions and then proving

several lemmas that lead to the work complexity of the algorithm.
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Definition 7.6 Let ξµ be any execution of algorithm AX in which all the processors learn the

results of all tasks and that includes a merge of groupsg1, . . . , gk into the groupµ, where the

processors inµ undergo no further view changes. We defineξ̄µ to be the execution we derive by

removing the merge fromξµ as follows: (1) We remove all states and events that correspond to

the merge of groupsg1, . . . , gk into the groupµ and all states and events for processors within

µ. (2) We add the appropriate states and events such that the processors in groupsg1, . . . , gk

undergo no further view changes and perform any remaining tasks.

Definition 7.7 Let ξϕ be any execution of algorithm AX in which all the processors learn the

results of all tasks and that includes a fragmentation of thegroupϕ to the groupsg1, . . . , gk

where the processors in these groups undergo no further viewchanges. We definēξϕ to be

the execution we derive by removing the fragmentation fromξϕ as follows: (1) We remove all

states and events that correspond to the fragmentation of the groupϕ to the groupsg1, . . . , gk

and all states and events of the processors within the groupsg1, . . . , gk. (2) We add the ap-

propriate states and events such that the processors in the group ϕ undergo no further view

changes and perform any remaining tasks.

Note: In Definitions 7.6 and 7.7, we claim that we can remove states and events from an exe-

cution and add some other states and events to it. This is possible because if the processors in

a single view installed that view and there are no further view changes, then the algorithm will

continue making computation progress. So, if we remove all states and events corresponding

to a view change, then the algorithm can always proceed as if this view change never occurred.

Lemma 7.9 In algorithm AX, for any viewv, including the initial view, if the group is not

subject to any regroupings, then the work required to complete all tasks in the view is no more
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thann −maxi∈v.set{|Di|}, whereDi is the value of the state variableD of processori at the

start of its local round 1 in viewv.

Proof: In the first round, all the processors send messages to the coordinator containingDi.

The coordinator computes∪i∈v.set{Di} and broadcasts this result to the group members. Since

the group is not subject to any regroupings, the number of tasks t, that the processors need to

perform is:t = n− | ∪i∈v.set {Di}|. In each round of the computation, by the load balancing

rule, the members of the group perform distinct tasks and no task is performed more than once.

Therefore,t is the work performed in this group. On the other hand,maxi∈v.set{|Di|} ≤

| ∪i∈v.set {Di}|, thus,t ≤ n−maxi∈v.set{|Di|}. 2

In the following lemma, groupsµ, g1, . . . , gk are defined as in Definition 7.6.

Lemma 7.10 Let ξµ be an execution of Algorithm AX as in Definition 7.6. LetW1 be the work

performed by the algorithm in the executionξµ. Let W2 be the work performed by Algorithm

AX in the executionξ̄µ. ThenW1 ≤W2.

Proof: For the executionξµ, let W ′ be the work performed by the processors inP −
⋃

1≤i≤k(gi.set) − µ.set. Observe that the work performed by the processors inP −
⋃

1≤i≤k(gi.set) in the execution̄ξµ is equal toW ′. The work that is performed by proces-

sorj in gi.set prior to theNEWVIEW(µ)j event inξµ, is the same in both executions. Call this

work Wi,j. DefineW ′′ =
∑k

i=1

∑

j∈gi.set
Wi,j. DefineWs = W ′ + W ′′. Thus,Ws is the

same in both executions,ξµ andξ̄µ. DefineWµ to be the work performed by all processors in

µ.set in executionξµ. For each processorj in gi.set, let Dj be the value of the state variable

D just prior to theNEWVIEW(µ)j event inξµ. For eachgi, define:di = |⋃j∈gi.set
Dj|. Thus

there are at leastn− di tasks that remain to be done in eachgi.
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In executionξ̄µ, the processors in each groupgi proceed and complete these remaining

tasks. This requires work at leastn − di. Define this work asWgi . Thus,Wgi ≥ (n − di).

In executionξµ, groupsg1, . . . , gk merge into groupµ. The number of tasks that need to be

performed by the members ofµ is at mostn − dj , wheredj = maxi{di} for somej. By

Lemma 7.9,Wµ ≤ n− dj . Observe that:

W1 = Ws + Wµ ≤Ws + n− dj ≤Ws +
k∑

i=1

(n− di) ≤Ws +
k∑

i=1

Wgi = W2,

as desired. 2

In the following lemma, groupsϕ, g1, . . . , gk are defined as in Definition 7.7.

Lemma 7.11 Let ξϕ be an execution of Algorithm AX as in Definition 7.7. LetW1 be the

work performed by the algorithm in the executionξϕ. Let W2 be the worked performed by

Algorithm AX in the execution̄ξϕ. ThenW1 ≤ W2 + W3, whereW3 is the work performed

by all processors in
⋃

1≤i≤k(gi.set) in the executionξϕ.

Proof: Let W ′ be the work performed by all processors inP − ⋃1≤i≤k(gi.set) − ϕ.set in

the executionξϕ. Observe that the work performed by all processors inP − ϕ.set in the

executionξ̄ϕ is equal toW ′. The work that is performed by processorj in ϕ.set prior to

the NEWVIEW(gi)j event inξϕ, is the same in both executions. Call this workWϕ,j. Define

W ′′ =
∑

j∈ϕ.set Wϕ,j. DefineWs = W ′ + W ′′. Thus,Ws is the same in both executions,ξϕ

and ξ̄ϕ. DefineWϕ to be the work performed by all processors inϕ.set in executionξ̄ϕ. Let

W ′′′ = Wϕ −W ′′. Observe that:

W1 = Ws + W3 ≤Ws + W3 + W ′′′ = W2 + W3,

as desired. 2

Lemma 7.12Wfr ,fm ≤ n · p.
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Proof: By the construction of algorithm AX, when processors are notable to exchange in-

formation about task execution due to regroupings, in the worst case, each processor has to

perform alln tasks by itself. Since we can have at mostp processors doing that the result

follows. 2

Lemma 7.13Wfr ,fm ≤ n · fr + n.

Proof: By induction on the number of views, denoted byℓ, occurring in an execution. For a

specific executionξℓ with ℓ views, letfr(ξℓ) = f
(ℓ)
r be the fragmentation-number andfm(ξℓ) =

f
(ℓ)
m the merge-number.

Base Case: ℓ = 0. Sincef
(ℓ)
r andf

(ℓ)
m must also be0, the base case follows from Lemma 7.9.

Inductive Hypothesis: Assume that for allℓ ≤ k,W
f
(ℓ)
r ,f

(ℓ)
m
≤ n · f (ℓ)

r + n.

Inductive Step: Need to show that forℓ = k + 1,W
f
(k+1)
r ,f

(k+1)
m

≤ n · f (k+1)
r + n.

Consider a specific executionξk+1 with ℓ = k + 1. Let Γξk+1
be the view-graph induced by

this execution. The view-graph has at least one vertex such that all of its descendants are sinks

(Fact 7.1). Letν be such a vertex. We consider two cases:

Case 1: Vertexν has a descendantµ that corresponds to a merge in the execution. Therefore all

ancestors ofµ in Γξk+1
have outdegree1. Sinceµ is a sink vertex, the group that corresponds

to µ performs all the remaining (if any) tasks and does not perform any additional work. Let

ξk = ξ̄µ
k+1 (per Definition 7.6) be an execution in which this merge does not occur. In execution

ξk, the number of views isk. Also, f
(k+1)
r = f

(k)
r andf

(k+1)
m = f

(k)
m + 1. By inductive

hypothesis,W
f
(k)
r ,f

(k)
m
≤ n · f (k)

r + n. By Lemma 7.10, the work performed in executionξk+1,

is no worse than the work performed in executionξk. Hence, the total work complexity is:

W
f
(k+1)
r ,f

(k+1)
m

≤ W
f
(k)
r ,f

(k)
m
≤ n · f (k)

r + n = n · f (k+1)
r + n.
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Case 2: Vertexν has no descendants that correspond to a merge in the execution. Therefore,

the group that corresponds toν must fragment, say intoq groups. These groups correspond to

sink vertices inΓξk+1
, thus they perform all the remaining (if any) tasks and do notperform

any additional work. Letξk+1−q = ξ̄ν
k+1 (per Definition 7.7) be an execution in which the

fragmentation does not occur. In executionξk+1−q, the number of views isk+1−q ≤ k. Also,

f
(k+1−q)
r = f

(k+1)
r −q andf

(k+1−q)
m = f

(k+1)
m . By inductive hypothesis,W

f
(k+1−q)
r ,f

(k+1−q)
m

≤

n · f (k+1−q)
r + n. From Lemma 7.9, the work performed in each new group caused by the

fragmentation is no more thann. Let Wσ be the total work performed in allq groups. Thus,

Wσ ≤ qn. By Lemma 7.11, the work performed in executionξk+1, is no worse than the work

performed in executionξk+1−q and the work performed in allq groups. Hence, the total work

complexity is:

W
f
(k+1)
r ,f

(k+1)
m

≤ W
f
(k+1−q)
r ,f

(k+1−q)
m

+ Wσ ≤ n · f (k+1−q)
r + n + Wσ

= n ·
(

f
(k+1)
r − q

)

+ n + Wσ ≤ n ·
(

f
(k+1)
r − q

)

+ n + qn

= nf
(k+1)
r − qn + n + qn = n · f (k+1)

r + n.

This completes the inductive proof. 2

Note that it is not difficult to see that iff ≥ p, then there exists an adversarial strategy

that can cause anyOmni-Do algorithm to have task-oriented workΩ(n · p) (the adversary

can arrange so that all processors work in isolation for the entire computation). Similarly, if

f < p, then there exists an adversarial strategy that can cause any Omni-Do algorithm to have

task-oriented workΩ(n · f + n) (the adversary partitions the processors inf groups at the

beginning of the computation, and then lets thef groups to run in isolation for the remainder

of the computation). Therefore,Ω(min{n · f +n, n · p}) is a lower bound on the task-oriented

work for Omni-Do. We now show that algorithm AX isoptimalunder adversaryAFM .
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Theorem 7.14 Algorithm AX solves the asynchronousOmni-DoAF M
(n, p, f) problem with

task-oriented work

Wfr,fm ≤ min{n · fr + n, n · p}.

Proof: It follows directly from Lemmas 7.12 and 7.13. 2

Observe thatWfr,fm does not depend onfm (this of course does not imply that for any

given execution, the work does not depend on merges). This observation substantiates the

intuition that merges lead to a more efficient computation.

7.1.5.2 Message Complexity

We start by showing several lemmas that lead to the message complexity of the algorithm.

Lemma 7.15 For algorithm AX, in any viewv, including the initial view, if the group is not

subject to any regroupings, and for each processori ∈ v.set, Di is the value of the state

variableD at the start of its local round 1 in viewv, then the number of messagesM that are

sent until all tasks are completed is2(n − d) ≤ M < 2(q + n − d) whereq = |v.set|, and

d = |⋃i∈v.set Di|.

Proof: By the load balancing rule, the algorithm needs⌈n−d
q ⌉ rounds to complete all tasks. In

each round each processor sends one message to the coordinator and the coordinator responds

with a single message to each processor. Thus,M = 2q · (⌈n−d
q ⌉). Using the properties of the

ceiling, we get:2(n − d) ≤M < 2(q + n− d). 2

In the following lemma, groupsµ, g1, . . . , gk are defined as in Definition 7.6.

Lemma 7.16 Let ξµ be an execution of Algorithm AX as in Definition 7.6. LetM1 be the

message cost of the algorithm in the executionξµ. Let M2 be the message cost of Algorithm

AX in the executionξ̄µ. ThenM1 < M2 + 2p.
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Proof: For the executionξµ, let M ′ be the number of messages sent by the processors in

P −⋃1≤i≤k(gi.set) − µ.set. Observe that the number of messages sent by the processors in

P −⋃1≤i≤k(gi.set) in the execution̄ξµ is equal toM ′.

The number of messages sent by any processorj in gi.set prior to the NEWVIEW(µ)j

event inξµ, is the same in both executions. Call this message costMi,j . DefineM ′′ =

∑k
i=1

∑

j∈gi.set
Mi,j. DefineMs = M ′ + M ′′. Thus,Ms is the same in both executions,ξµ

andξ̄µ. DefineMµ to be the number of messages sent by all processors inµ.set in execution

ξµ. For each processorj in gi.set, let Dj be the value of the state variableD just prior to the

NEWVIEW(µ)j event inξµ. For eachgi, definedi = |⋃j∈gi.set
Dj|. Thus there are at least

n− di tasks that remain to be done in eachgi.

In executionξ̄µ, the processors in each groupgi proceed and complete these remaining

tasks. LetMgi be the number of messages sent by all processors ingi.set in order to complete

the remaining tasks. By Lemma 7.15,Mgi ≥ 2(n − di). In executionξµ, groupsg1, . . . , gk

merge into groupµ. The number of tasks that need to be performed by the members of µ is at

mostn− dj , wheredj = maxi{di} for somej. By Lemma 7.15,Mµ < 2(q + n− dj), where

q = |µ.set|. Observe that:

M1 = Ms + Mµ < Ms + 2(q + n− dj)

≤ Ms + 2q + 2
∑k

i=1(n− di) ≤ Ms + 2q +
∑k

i=1 Mgi

= M2 + 2q ≤ M2 + 2p,

as desired. 2

In the following lemma, groupsϕ, g1, . . . , gk are defined as in Definition 7.7.

Lemma 7.17 Let ξϕ be an execution of Algorithm AX as in Definition 7.7. LetM1 be the

message cost of the algorithm in the executionξϕ. Let M2 be the message cost of Algorithm
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AX in the executionξ̄ϕ. ThenM1 ≤M2 + M3, whereM3 is the number of messages sent by

all processors in
⋃

1≤i≤k(gi.set) in the executionξϕ.

Proof: For the executionξϕ, let M ′ be the number of messages sent by the processors in

P −⋃1≤i≤k(gi.set)− ϕ.set. Observe that the number of messages sent by the processors in

P − ϕ.set in the execution̄ξϕ is equal toM ′. The number of messages sent by processorj in

ϕ.set prior to theNEWVIEW(gi)j event inξϕ, is the same in both executions. Call this message

costMϕ,j . DefineM ′′ =
∑

j∈ϕ.set Mϕ,j. DefineMs = M ′ + M ′′. Thus,Ms is the same in

both executions,ξϕ andξ̄ϕ. DefineMϕ to be the number of messages sent by all processors in

ϕ.set in executionξ̄ϕ. Let M ′′′ = Mϕ −M ′′. Observe that:

M1 = Ms + M3 ≤Ms + M3 + M ′′′ = M2 + M3,

as desired 2

We now give the message complexity of algorithm AX.

Theorem 7.18 Algorithm AX solves the asynchronousOmni-DoAF M
(n, p, f) problem with

message complexity
Mfr,fm < 4 (n · fr + n + p · fm) .

Proof: By induction on the number of views, denoted byℓ, occurring in any execution. For a

specific executionξℓ with ℓ views, letfr(ξℓ) = f
(ℓ)
r be the fragmentation-number andfm(ξℓ) =

f
(ℓ)
m be the merge-number.

Base Case: ℓ = 0. Sincef
(ℓ)
r andf

(ℓ)
m must also be0, the base case follows from Lemma 7.15.

Inductive Hypothesis: Assume that for allℓ ≤ k,M
f
(ℓ)
r ,f

(ℓ)
m

< 4(n · f (ℓ)
r + n + p · f (ℓ)

m ).

Inductive Step: Need to show that forℓ = k+1,M
f
(k+1)
r ,f

(k+1)
m

< 4(n·f (k+1)
r +n+p·f (k+1)

m ).

Consider a specific executionξk+1 with ℓ = k + 1. Let Γξk+1
be the view-graph induced by
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this execution. The view-graph has at least one vertex such that all of its descendants are sinks

(Fact 7.1). Letν be such a vertex. We consider two cases:

Case 1: Vertexν has a descendantµ that corresponds to a merge in the execution. Therefore all

ancestors ofµ in Γξk+1
have outdegree1. Sinceµ is a sink vertex, the group that corresponds

to µ performs all the remaining (if any) tasks and no further messages are sent. Letξk = ξ̄µ
k+1

(per Definition 7.6) be an execution in which this merge does not occur. In executionξk,

the number of new views isk. Also, f
(k+1)
r = f

(k)
r andf

(k+1)
m = f

(k)
m + 1. By inductive

hypothesis,M
f
(k)
r ,f

(k)
m

< 4(n · f (k)
r + n + p · f (k)

m ). Hence, the message complexity, using

Lemma 7.16 is:

M
f
(k+1)
r ,f

(k+1)
m

<M
f
(k)
r ,f

(k)
m

+ 2p

< 4(n · f (k)
r + n + p · f (k)

m ) + 2p

= 4(n · f (k+1)
r + n + p · f (k+1)

m − p) + 2p

= 4nf (k+1)
r + 4n + 4pf (k+1)

m − 4p + 2p

≤ 4(n · f (k+1)
r + n + p · f (k+1)

m ).

Case 2: Vertexν has no descendants that correspond to a merge in the execution. Therefore,

the group that corresponds toν must fragment, say intoq groups. These groups correspond

to sink vertices inΓξk+1
, thus they perform all of the remaining (if any) tasks and do not

send any additional messages. Letξk+1−q = ξ̄ν
k+1 (per Definition 7.7) be an execution in

which the fragmentation does not occur. In the executionξk+1−q, the number of new views is

k+1−q ≤ k. Also,f (k+1−q)
r = f

(k+1)
r −q andf

(k+1−q)
m = f

(k+1)
m . By inductive hypothesis,

M
f
(k+1−q)
r ,f

(k+1−q)
m

< 4(n ·f (k+1−q)
r +n+p ·f (k+1−q)

m ). From Lemma 7.15, the message cost

in each new group caused by a fragmentation is no more than4n. Let Mσ be the total number

of messages sent in allq groups. Thus,Mσ ≤ 4qn. By Lemma 7.17, the number of messages
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sent in executionξk+1, is less than the number of messages sent in executionξk+1−q and the

number of messages sent in allq groups. Hence, the message complexity is:

M
f
(k+1)
r ,f

(k+1)
m

≤M
f
(k+1−q)
r ,f

(k+1−q)
m

+ Mσ

< 4(n · f (k+1−q)
r + n + p · f (k+1−q)

m ) + Mσ

= 4(n · f (k+1)
r − qn + n + p · f (k+1)

m ) + Mσ

≤ 4nf (k+1)
r − 4qn + 4n + 4pf (k+1)

m + 4qn

= 4(n · f (k+1)
r + n + p · f (k+1)

m ).

This completes the proof. 2

7.1.5.3 Analysis Under AdversaryAF

Algorithm AX solves theOmni-Do problem also under patterns of only fragmentations.

Observe thatf = fr andfm = 0 for adversaryAF . The following corollary is derived from

Theorems 7.14 and 7.18.

Corollary 7.19 Algorithm AX solves the asynchronousOmni-DoAF
(n, p, f) problem with

task-oriented work complexityWAF
(n, p, f) ≤ min{n ·f +n, n ·p} and message complexity

MAF
(n, p, f) < 4(n · f + n).

The adversary considered in [32] was not allowed to “fragment” a group into a single group

with the same membership. Such fragmentation is allowed by our definition ofAF . In order

to compare our results with the results of [32], we define a more restricted adversaryA′
F that

is constrained to fragmenting each group into at least2 groups. ClearlyAF is more powerful

thanA′
F , and from Corollary 7.19 we have the following.

Corollary 7.20 Algorithm AX solves the asynchronousOmni-DoA′
F
(n, p, f) problem with

WA′
F
(n, p, f) = O(n · f + n) andMA′

F
(n, p, f) = O(n · f + n).
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In the rest of this section we deal with adversaryA′
F . Our definition of the fragmentation-

numberf is slightly different from the definition of the fragmentation-numberf ′ in [32]. When

a group fragments intok groups,f is defined to be equal tok, butf ′ is defined to be equal to

k − 1. The next Lemma relatesf andf ′.

Lemma 7.21 f ′ < f < 2f ′.

Proof: Assume thatk fragmentations occur. Enumerate the fragmentations arbitrarily. Let the

number of the new views in theith fragmentation befi. By the definition off ′
i , f ′

i = fi − 1.

Thus,f ′
i +1 = fi which implies thatfi < f ′

i +f ′
i = 2f ′

i . Butf ′ =
∑k

i=1 f ′
i andf =

∑k
i=1 fi.

Hence,f < 2f ′. Now observe that,f ′ =
∑k

i=1 f ′
i =

∑k
i=1(fi − 1) =

∑k
i=1 fi − k = f − k.

Thereforef > f ′. 2

In [32] the work is counted in terms of the rounds executed by the processors. In our

analysis we count only the number of task executions (including redundancies). However in our

algorithm, for as long as any tasks remain undone in a given group, the processors perform the

tasks in rounds, except for the last round. Therefore the difference in work complexity for these

two algorithms is at mostf · n. Thus the different definitions off , f ′ and work are subsumed

in the big-oh analysis, and without substantial variation in the constants. On the other hand,

the message complexity of our algorithm, as shown in Corollary 7.20, is substantially better

than the at least quadratic message complexity of the algorithm from [32].
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7.2 Competitive Analysis of Omni-Do

Given that no algorithm is able to maintain low total work in the presence of network

reconfigurations, we pursue competitive analysis of theOmni-Do problem. We consider asyn-

chronous message-passing processors under arbitrary regroupings; in particular, we consider

theOmni-Do problem under adversaryAGR (presented in Section 3.2.2).

Processors in the same group can share their knowledge of completed tasks and, while

they remain connected, avoid doing redundant work. The challenge is to avoid redundant work

“globally”, in the sense that processors should be performing tasks with anticipation of future

changes in the network topology. An optimal algorithm, withfull knowledge of the future

regroupings, can schedule the execution of the tasks in eachgroup in such a way that the overall

task-oriented work is the smallest possible, given the particular sequence of regroupings.

As an example, consider the scenario with3 processors which, starting from isolation,

are permitted to proceed synchronously until each has completedn/2 tasks; at this point an

adversary chooses a pair of processors to merge into a group.It is easy to show that ifN1, N2,

andN3 are subsets of[n] of sizen/2, then there is a pair(Ni, Nj) (wherei 6= j) so that|Ni ∩

Nj | ≥ n/6: in particular, foranyscheduling algorithm, there is a pair of processors which, if

merged at this point, will haven/6 duplicated tasks; this pair alone must then expendn + n/6

task-oriented work to complete alln tasks. The optimal off-line algorithm that schedules tasks

with full knowledge of future merges, of course, accrues only n task-oriented work for the

merged pair, as it can arrange for zero overlap. Furthermore, if the adversary partitions the two

merged processors immediately after the merge (after allowing the processors to exchanged

information about task executions), then the task-oriented work performed by the merged and
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then partitioned pair isn + n/3; the task-oriented work performed by the optimal algorithm

remains unchanged, since it terminates at the merge.

To focus on scheduling issues, we assume that processors in asingle group work as a

single virtual unit; indeed, we treat them as a single asynchronous processor. To this respect,

we assume that communication within groups is instantaneous and reliable. We note that the

above assumptions can be approximated by group communication services [95], however the

task-oriented work ofOmni-Do algorithms can be negatively affected in large scale wide-area

networks [64].

In this section we formulate a simple randomized algorithm,called algorithm RS, and we

compare its expected task-oriented work to the task-oriented work of an optimal off-line algo-

rithm which may schedule tasks with full knowledge of futureregroupings. In Section 7.2.1 we

formally define the notion of competitiveness and we presentterminology borrowed from set

theory and graph theory that we use in the remainder sections. In Section 7.2.2 we present al-

gorithm RS and in Section 7.2.3 its analysis. Finally, in Section 7.2.4 we present lower bounds

on the competitiveness ofOmni-Do algorithms that show the optimality of algorithm RS.

7.2.1 Preliminaries

As we already mentioned, we consider adversaryAGR. That is, we consider computational

topologiesC that can be expressed as a(p)-DAG (see Section 3.2.2). For the purpose of

the analysis of our randomized algorithm (Section 7.2.3) and to provide lower bound results

(Section 7.2.4), we require that adversaryAGR also determines the number of tasks that each

group is allowed to complete, before it is involved in another regrouping. To this respect,

we annotate the number of tasks that the adversary allows to each group to perform on the
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(p)-DAGs. In particular, we augment a given(p)-DAG C = (V,E) with a weight function

h : V → N, so thath(v), v ∈ V , is the number of tasks allowed by the adversary for the

processors in groupγ(v) to performed before the next regrouping (recall thatγ is a labeling

function fromV to 2[p] \ {∅}— see “AdversaryAGR” in Section 3.2.2). Functionh respects

the following two conditions: (a)∀v ∈ V, h(v) ≤ n, and (b) for any maximal path(v1, . . . , vk)

in C,
∑

h(vi) ≥ n. We refer to each “annotated”(p)-DAG as a(p, n)-DAG. Note that a given

(p)-DAG may derive several different(p, n)-DAGs.

To facilitate for a better understanding of the materials presented in the remainder subsec-

tions, we give the definition of a(p, n)-DAG along with an example of a(p, n)-DAG.

Definition 7.8 A (p, n)-DAG is a directed acyclic graphC = (V,E) augmented with a weight

functionh : V → N and a labelingγ : V → 2[p] \ {∅} so that:

1. ∀v ∈ V , h(v) ≤ n and for any maximal path(v1, . . . , vk) in C,
∑

h(vi) ≥ n. (This

guarantees that any algorithm terminates during the computation described by the DAG.)

2. γ possesses the following “initial conditions”:[p] =
⋃̇

v: indegree(v)=0

γ(v).

3. γ respects the following “conservation law”: there is a function φ : E → 2[p] \ {∅} so

that for eachv ∈ V with indegree(v) > 0, γ(v) =
⋃̇

(u,v)∈E

φ
(
(u, v)

)
,

and for eachv ∈ V with outdegree(v) > 0, γ(v) =
⋃̇

(v,u)∈E

φ
(
(v, u)

)
.

Here∪̇ denotes disjoint union. Finally, for two verticesu, v ∈ V , we writeu ≤ v if there is a

directed path fromu to v; we then writeu < v if u ≤ v andu andv are distinct.

Example 7.4 Consider the(12, n)-DAG shown on Figure 7. Here we haveg1 = {p1}, g2 =

{p2, p3, p4}, g3 = {p5, p6}, g4 = {p7}, g5 = {p8, p9, p10, p11, p12}, g6 = {p1, p2, p3, p4, p6},
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g7 = {p8, p10}, g8 = {p9, p11, p12}, g9 = {p1, p2, p3, p4, p6, p8, p10}, g10 = {p5, p11}, and

g11 = {p9, p12}.
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Figure 7: An example of a(12, n)-DAG.

This computation template models all (asynchronous) computations with the following

behavior: (i ) The processors in groupsg1 andg2 and processorp6 of groupg3 are regrouped

during some regrouping to form groupg6. Processorp5 of groupg3 becomes a member of

groupg10 during the same regrouping (see below). Prior to this regrouping, processorp1 (the

singleton groupg1) has performed exactly5 tasks, the processors ing2 have cooperatively

performed exactly3 tasks and the processors ing3 have cooperatively performed exactly8

tasks (assuming thatn > 8). (ii ) Groupg5 is partitioned during some regrouping into two new

groups,g7 andg8. Prior to this regrouping, the processors ing5 have performed exactly2 tasks.

(iii ) Groupsg6 andg7 merge during some regrouping and form groupg9. Prior to this merge,

the processors ing6 have performed exactly4 tasks (counting only the ones performed after

the formation ofg6 and assuming that there are at least4 tasks remaining to be done) and the

processors ing7 have performed exactly5 tasks. (iv ) The processors in groupg8 and processor

p5 of groupg3 are regrouped during some regrouping into groupsg10 andg11. Prior to this

regrouping, the processors in groupg8 have performed exactly6 tasks (assuming that there are
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at least6 tasks remaining, otherwise they would have performed the remaining tasks). (v) The

processors ing9, g10, andg11 run until completion with no further regroupings. (vi ) Processor

p7 (the singleton groupg4) runs in isolation for the entire computation.

Before we formally define the notion of competitiveness, we introduce some terminology.

Let D be a deterministic algorithm forOmni-Do andC a computation template. We let

WD(C) denote the task-oriented work expended by algorithm D, where regroupings are deter-

mined according to the computation templateC. That is, if ξ ∈ E(D,AGR) is the resulting

execution of algorithm D under computation templateC, thenWD(C) is the task-oriented

work of executionξ. We let OPT denote the optimal (off-line) algorithm. Specifically, for each

C we defineWOPT(C) = minD WD(C).

We treat randomized algorithms as distributions over deterministic algorithms; for a setZ

and a family of deterministic algorithms{Dζ | ζ ∈ Z} we let R= R({Dζ | ζ ∈ Z}) denote

the randomized algorithm whereζ is selected uniformly at random fromZ and scheduling is

done according toDζ . For a real-valued random variableX, we letE[X] denote its expected

value. Then,

Definition 7.9 Let α be a real valued function defined on the set of all(p, n)-DAGs (for all p

andn). A randomized algorithm R isα-competitive if for all computation templatesC,

E[WDζ
(C)] ≤ α(C)WOPT(C),

this expectation being taken over uniform choice ofζ ∈ Z.

Note that usuallyα is fixed for all inputs; we shall see that this would be meaningless in our

model. Presently, we use a functionα that depends on a certain parameter (see Definition 7.13)

of the graph structure ofC.



179

We conclude this subsection with some terminology that we use in the remainder of Sec-

tion 7.2.

Definition 7.10 A partially ordered setor posetis a pair(P,≤) whereP is a set and≤ is a

binary relation onP for which (i) for all x ∈ P , x ≤ x, (ii) if x ≤ y andy ≤ x, thenx = y,

and(iii) if x ≤ y andy ≤ z, thenx ≤ z. For a poset(P,≤) we overload the symbolP , letting

it denote both the set and the poset.

Definition 7.11 Let P be a poset. We say that two elementsx andy of P arecomparableif

x ≤ y or y ≤ x; otherwisex andy areincomparable. A chain is a subset ofP such that any

two elements of this subset are comparable. Anantichain is a subset ofP such that any two

distinct elements of this subset are incomparable. Thewidth of P , denotedw(P ), is the size

of the largest antichain ofP .

Associated with any directed acyclic graph (DAG)C = (V,E) is the naturalvertex poset

(V,≤) whereu ≤ v if and only if there is a directed path fromu to v. Then thewidth ofC,

denotedw(C), is the width of the poset(V,≤).

Definition 7.12 Given a DAGC = (V,E) and a vertexv ∈ V , we define thepredecessor

graph atv, denotedPC(v), to be the subgraph ofC that is formed by the union of all paths in

C terminating atv. Likewise, thesuccessor graph atv, denotedSC(v), is the subgraph ofC

that is formed by the union of all the paths inC originating atv.

In Section 3.2.2 we informally defined the notion of thecomputation widthof a computa-

tion template (that is, of a(p, n)-DAG)). We now give its formal definition.

Definition 7.13 Thecomputation widthof a DAGC = (V,E), denotedcw(C), is defined as

cw(C) = max
v∈V

w(SC(v)).
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Note that the processors that comprise a group formed duringa computation templateC

may be involved in many different groups at later stages of the computation, but no more than

cw(C) of these groups can be computing in ignorance of each other’sprogress.

Example 7.5 In the(12, n)-DAG of Figure 7, the maximum width among all successor graphs

is 3: w(S((g5, 2))) = 3. Therefore, the computation width of this DAG is3. Note that

the width of the DAG is6 (nodes(g1, 5), (g2, 3), (g3, 8), (g4, n), (g7, 5) and (g8, 6) form an

antichain of maximum size).

7.2.2 Description of Algorithm RS

We consider the natural randomized algorithm RS where a processor (or group) with

knowledge that the tasksτ in a setK ⊂ [n] have been completed selects to next complete

a task at random from the set[n] \ K. (Recall that we treat randomized alorithms as distri-

butions over deterministic algorithms.) More formally, let Π = (π1, . . . , πp) be ap-tuple of

permutations, where eachπi is a permutation of[n]. We describe a deterministic algorithm DΠ

so that
RS= R

(
{DΠ | Π ∈ (Sn)p}

)
;

hereSn is the collection of permutations on[n]. Let G be a group of processors andq ∈ G

the processor inG with the lowest processor identifier. Then the deterministic algorithm DΠ

specifies that the groupG, should it know that the tasks inK ⊂ [n] have been completed, next

completes the first task in the sequenceπq(1), . . . , πq(n) which is not inK.

7.2.3 Analysis of Algorithm RS

We now analyze the competitive ratio (in terms of task-oriented work) of algorithm RS.

For algorithm RS subjected to a computation templateC we write WRS(C) = E [WRS(C)],



181

this expectation taken over the random choices of the algorithm. WhereC can be inferred from

context, we simply writeWRS andWOPT.

We first recall Dilworth’s Lemma [29], a duality theorem for posets:

Lemma 7.22 [29] The width of a posetP is equal to the minimum number of chains needed

to coverP . (A family of nonempty subsets of a setQ is said tocoverQ if their union isQ.)

We will also use a generalized degree-counting argument:

Lemma 7.23 Let G = (U, V,E) be an undirected bipartite graph with no isolated vertices

and h : V → R a non-negative weight function onG. For a vertexv, let Γ(v) denote

the vertices adjacent tov. Suppose that for someB1 > 0 and for each vertexu ∈ U we

have
∑

v∈Γ(u) h(v) ≤ B1 and that for someB2 > 0 and for each vertexv ∈ V we have

∑

u∈Γ(v) h(u) ≥ B2, then

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
.

Proof: We compute the quantity
∑

(u,v)∈E h(u)h(v) by expanding according to each side of

the bipartition:

B1

∑

u∈U

h(u)≥
∑

u∈U

(

h(u)·
∑

v∈Γ(u)

h(v)
)

=
∑

(u,v)∈E

h(u)h(v)=
∑

v∈V

(

h(v)·
∑

u∈Γ(v)

h(u)
)

≥B2

∑

v∈V

h(v).

As B1 > 0 and
∑

v h(v) ≥ B2 > 0, we conclude that

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
, as desired. 2

We now establish an upper bound on the competitive ratio of the algorithm RS.

Theorem 7.24 Algorithm RS is(1 + cw(C)/e)-competitive for any(p, n)-DAG C = (V,E).

Proof: Let C be a(p, n)-DAG; recall that associated withC are the two functionsh : V → N

andγ : V → 2[p] \ {∅}. For a subgraphC ′ = (V ′, E′) of C, we letH(C ′) =
∑

v∈V ′ h(v).

Recall thatPC(v) andSC(v) denote the predecessor and successor graphs ofC at v. Then,



182

we say that a vertexv ∈ V is saturatedif H(PC(v)) ≤ n; otherwise,v is unsaturated.

Note that if v is saturated, then the groupγ(v) must completeh(v) tasksregardless of the

scheduling algorithm used. Along these same lines, ifv is an unsaturated vertex for which

n >
∑

u<v h(u), the groupγ(v) must complete at leastmax(h(v), n −∑u<v h(u)) tasks

under any scheduling algorithm. As these portions ofC which correspond to computation

which must be performed by any algorithm will play a special role in the analysis, it will be

convenient for us to rearrange the DAG so that all such work appears on saturated vertices. To

achieve this, note that ifv is an unsaturated vertex for which
∑

u<v h(u) < n, we may replace

v with a pair of vertices,vs andvu, where all edges directed intov are redirected tovs, all

edges directed out ofv are changed to originate atvu, the edge(vs, vu) is added toE, andh is

redefined so that

h(vs) = n−
∑

u<v

h(u) and h(vu) = h(v)− h(vs).

Note that the graphC ′ obtained by alteringC in this way corresponds to the same computation,

in the sense thatWD(C) = WD(C ′) for any algorithm D. For the remainder of the proof we

will assume that this alteration has been made at every relevant vertex, so that the graphC

satisfies the condition

v unsaturated⇒
∑

u<v

h(u) ≥ n. (2)

Finally, for a vertexv, we let Tv be the random variable equal to the number of tasks that

RS completes at vertexv. Note that ifv is saturated, thenTv = h(v). Let S andU denote

the sets of saturated and unsaturated vertices, respectively. Given the above definitions, we

immediately have
WOPT≥

∑

s∈S

h(s)

and, by linearity of expectation,

WRS = E

[∑

v

Tv

]

=
∑

s∈S

h(s) +
∑

u∈U

E[Tu] ≤WOPT +
∑

u∈U

E[Tu]. (3)
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Our goal is to conclude that for some appropriateβ,

E

[
∑

u∈U

Tu

]

≤ β ·
∑

s∈S

h(s) ≤ β ·WOPT

and hence that RS is1+ β competitive. We will obtain such a bound by applying Lemma 7.23

to an appropriate bipartite graph, constructed next.

GivenC = (V,E) construct the (undirected) bipartite graphG = (S,U , EG) whereEG =

{(s, u) | s < u}. As in Lemma 7.23, for a vertexv, we letΓ(v) denote the set of vertices

adjacent tov. Now assign weights to the vertices ofG according to the ruleh∗(v) = E[Tv].

Note that fors ∈ S, h∗(s) = h(s) and hence by condition (2) above, we immediately have the

bound
∀u ∈ U ,

∑

s∈Γ(u)

h∗(s) ≥ n. (4)

We now show that∀s ∈ S,
∑

u∈Γ(s)

h∗(u) ≤ cw(C) · n
e
. (5)

Before proceeding to establish this bound, note that equations (4) and (5), together with

Lemma 7.23 imply that

WRS(C) ≤
∑

s∈S

h(s) +
∑

u∈U

h∗(u) ≤
(

1 +
cw(C)

e

)∑

s∈S

h(s) ≤
(

1 +
cw(C)

e

)

WOPT(C),

as desired.

Returning now to equation (5), lets ∈ S be a saturated vertex and consider the successor

graph (ofC) at s, SC(s). By Lemma 7.22 (Dilworth’s Lemma), there existw , w(SC(s)) ≤

cw(C) paths inSC(s), P1, P2, . . . Pw so that their union coversSC(s). Let Xi be the random

variable whose value is the number of tasks performed by RS onthe portion of the pathPi

consisting of unsaturated vertices. Note that ifu ∈ V is unsaturated andu ≤ v, thenv is

unsaturated and hence, for each pathPi, there is a first unsaturated vertexu0
i after which every

vertex ofPi is unsaturated. Note now that for a fixed individual taskτ , conditioned upon the
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event thatτ is not yet complete, the probability thatτ is not chosen by RS for completion at

a given selection point inPC(u0
i ) is no more than(1 − 1/n). Let Li be the random variable

whose value is the set of tasks left incomplete by RS at the formation of the groupγ(u0
i ). As

u0
i is unsaturated,

∑

v<u0
i
h(v) ≥ n by condition (2) and hence, for eachi,

Pr[τ ∈ Li] ≤ (1− 1/n)n ≤ 1/e.

As there are a total ofn tasks,

E[|Li|] ≤ n/e.

Of course, since RS completes a new task at each step,Xi ≤ |Li| so thatE[Xi] ≤ n/e and by

the linearity of expectation

E

[∑

i

Xi

]

≤ w · n/e.

Now every unsaturated vertex inSC(s) appears in somePi and hence
∑

u∈Γ(s)

h∗(u) ≤ E

[∑

i

Xi

]

≤ wn/e ≤ cw(C) · n/e,

as desired. 2

7.2.4 Lower Bounds

We now show that the competitive ratio achieved by algorithmRS is tight. We begin with

a lower bound fordeterministicalgorithms. This is then applied to give a lower bound for

randomized algorithms in Corollary 7.26.

Theorem 7.25 Let a : N → R and D be a deterministic algorithm forOmni-Do so that

D is a(cw(·))-competitive (that is D isα-competitive, for a functionα = a ◦ cw)). Then

a(c) ≥ 1 + c/e.

Proof: Fix k ∈ N. Consider the case whenn = p = g ≫ k andn mod k = 0, g being

the number of initial groups. We consider a computation templateCG determined by a tuple

G = (G1, . . . , Gn/k) where eachGi ⊂ [n] is a set of sizek and
⋃

i Gi = [n]. Initially, the
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computation templateCG has the processors synchronously proceed until each has completed

n/k tasks; at this point, the processors inGi are merged and allowed to exchange information

about task executions. EachGi is then immediately partitioned intoc groups. Note that the off-

line optimal algorithm accrues exactlyn2/k work for this computation template (it terminates

prior to the partitions of theGi).

We will show that for any D, there is a selection of theGi so that

WD(CG) ≥ n2/k

[

1 + c(1− 1

k
)k − o(1)

]

,

and hence thata(c) ≥ 1 + c/e. Consider the behavior of D when theG is selected at random,

uniformly among all such tuples. LetPi ⊂ [n] be the subset ofn/k tasks completed by

processori before the merges take place; these sets are determined by the algorithm D. We

begin by bounding

E
G





∣
∣
∣

⋃

i∈G1

Pi

∣
∣
∣



 .

To this end, consider an experiment where we selectk setsQ1, . . . , Qk, eachQi selected

independently and uniformly from the set{Pi}. Now, for a specific taskτ , let pτ = PrQ1[τ 6∈

Q1], so thatPrQi [τ 6∈ ⋃i Qi] = pk
τ . As theQi are selected independently,

E
Qi

[∣
∣[n]−

⋃

i

Qi

∣
∣

]

=
∑

τ

pk
τ .

Observe now that
∑

τ

(1− pτ ) =
∑

τ

Pr
Q1

[τ ∈ Q1] = E
Q1

[|Q1|] = n/k

and hence
∑

τ pτ = n(1 − 1/k). As the functionx 7→ xk is convex on[0,∞),
∑

τ pk
τ is

minimized when thepτ are equal and we must have

E
Qi

[∣
∣[n]−

⋃

i

Qi

∣
∣

]

≥ n ·
(

1− 1

k

)k

.

Now observe that, conditioned on theQi being distinct, the distribution of(Q1, . . . , Qk) is

identical to that of(Pg1
1
, . . . , Pg1

k
) where the random variableG1 = {g1

1 , . . . , g1
k}. Considering
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thatPr[∃i 6= j,Qi = Qj] ≤ k2/n, we have

E
Qi

[∣
∣[n]−

⋃

i

Qi

∣
∣

]

≤
(

1− k2

n

)

E
G

[

n−
∣
∣
⋃

i∈G1

Pi

∣
∣

]

+ 1 · k
2

n

and hence asn→∞ we see that the expected number of tasks remaining for those processors

in groupG1 is

E
G



n−
∣
∣
∣

⋃

i∈G1

Pi

∣
∣
∣



 ≥ n(1− 1/k)k − o(1).

Of course, the distribution of eachGi is the same, so that

E
G





n/k
∑

i=1

(

n−
∣
∣
⋃

j∈Gi

Pj

∣
∣

)



 = [1− o(1)]
(n

k

)

· n
(

1− 1

k

)k

.

In particular, there must exist a specific selection ofG = (G1, . . . , Gn/k) which achieves this

bound. Recall that everyGi is partitioned intoc groups. Therefore, for suchG, the total work

is at least
n2

k
·
(

1 + [1− o(1)] · c · (1− 1

k
)k
)

.

As limk→∞(1− 1
k )k = 1

e , this completes the proof. 2

As the above stochastic computation templateCG is independent of the deterministic al-

gorithm D, this immediately gives rise to a lower bound for randomized algorithms:

Corollary 7.26 Let a : N → R andR
(
{Dζ | ζ ∈ Z}

)
be a randomized algorithm forOmni-

Do that is(a ◦ cw)-competitive. Thena(c) ≥ 1 + c/e.

Proof: Assume for contradiction that for somec, a(c) < 1 + c/e and letk be large enough so

that(1− 1
k )k > a(c)−1. For thisk we proceed as in the proof above, considering a randomG

and the computation templateCG with n = g = p congruent to0 mod k, g being the number

of initial groups. Then, as above,

E
G

[

E
ζ

[
WDζ

(CG)
]
]

= E
ζ

[

E
G

[
WDζ

(CG)
]
]

≥ min
ζ

[

E
G

[
WDζ

(CG)
]
]

≥ n2

k
·
(

1 + [1− o(1)] · c · (1− 1

k
)k
)

.
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Hence there exists aG so thatEζ

[
WDζ

(CG)
]
≥ n2

k ·
(
1 + [1− o(1)] c

e

)
, which completes the

proof. 2

The above result yields the optimality of algorithm RS. Specifically, RS achieves the op-

timal competitive ratio over the set of all computation templates with a given computation

width.



Chapter 8

Conclusions and Future Work

This thesis studies the impact of the adverse environment onthe efficiency of distributed

cooperative computing. In particular, the thesis considers theDo-All problem wherep pro-

cessors must cooperatively performn tasks in the presence of adversity, and develops upper

and lower bound results that demonstrate precisely how adversity affectsDo-All solutions. We

summarize the contributions of the thesis and discuss future research directions.

The thesis presentsDo-All lower bounds on work for synchronous crash-prone proces-

sors that capture the dependence of work not only onn andp, but also onf , the number of

crashes, for the entire range off (1 ≤ f < p). This gives the first non-trivial lower bound for

Write-All work for a moderate number of failures (f ≤ p/ log p). For the model of compu-

tation where processors are able to make perfect load-balancing decisions locally (the perfect

knowledge assumption), matching upper bounds are given. Animportant contribution of the

thesis is the definition of theiterative Do-All problem that models the repetitive use ofDo-All

algorithms, such as found in algorithm simulations, and thedevelopment of failure-sensitive

bounds forr-iterative Do-All work, that are stronger than ther-fold work complexity of a sin-

gleDo-All . The thesis introduces an approach where the analysis of specific algorithms can be
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divided into two parts: (i) the analysis of the cost of tolerating failures while assuming “free”

load-balancing, and (ii) the analysis of the cost of implementing load-balancing. The utility

and generality of this approach is demonstrated by derivingnew failure-sensitive analysis of

three known efficient algorithms: algorithm W (for the synchronous shared-memory model),

algorithm KMS (for the synchronous shared-memory model with controlled memory access

concurrency), and algorithm AN [17] (for the synchronous message-passing model). For each

of the three algorithms, substantial improvement in the analysis is recorded, especially for a

moderate number of failures (f ≤ p/ log p). Also, by iteratively using algorithms W, KMS,

and AN and using the new approach to their failure-sensitiveanalyses, we obtain tighter upper

bounds for theiterative Write-All problem in shared-memory systems, and the first non-trivial

upper bound analysis of theiterative Do-All problem in message-passing systems.

An interesting research direction is to develop failure-sensitive upper and lower bounds

on the work ofDo-All for the model with processor crashes and restarts. As mentioned in

Section 2.3, the prior bounds forDo-All under the assumption of perfect knowledge for this

setting are not failure-sensitive [68] (both upper and lower bounds are given as functions of

only n andp). Also, the bounds on work given forDo-All in the message-passing and shared-

memory models for processor crashes and restarts do not adequately show the dependence of

work on the crashes and restarts (see Sections 2.1 and 2.2). Apossible direction toward this

is to investigate whether the approach used in the model withprocessor crashes can also be

successfully applied here: given an algorithm, first analyze the cost of tolerating crashes and

restarts assuming perfect load-balancing, and then analyze the cost of implementing perfect

load-balancing based on the structure of the algorithm. Thechallenge here is to overcome the

additional complication resulted by the ability of processors to restart after crashing.



190

Another contribution of the thesis is the development of a new robust algorithm forp syn-

chronous processors that solves theDo-All problem withn tasks in the presence of any pattern

of f crashes (f < p). This algorithm achieves asymptotically better work complexity than the

algorithm of Galil, Mayer, and Yung [44] (the previously best known algorithm for this setting)

while obtaining the same message complexity. Unlike algorithm AN [17] that has comparable

work complexity (even using our new failure-sensitive analysis) but uses reliable multicast, the

new algorithm uses simple point-to-point messaging. The algorithm uses an approach where

processors share information using a new gossip algorithm.The processors decide where to

send a gossip message based on sets of permutations with special combinatorial properties

that we show to exist. This gossip algorithm achieves substantially better message complexity

than the message complexity of the previously best known gossip algorithm of Chlebus and

Kowalski [21], while obtaining the same asymptotic time complexity.

Both ourGossipandDo-All algorithms work correctly under any set of permutations, but

the complexity result can only be guaranteed under the permutations with specific combinato-

rial properties that we show only to exist. A future direction is to investigate how to efficiently

construct these permutations. Another direction is to extend the technique of using a gossip

algorithm for information sharing to the model with synchronous restartable crash-prone pro-

cessors and develop an efficient algorithm that solvesDo-All using point-to-point messaging.

(Recall that algorithm AR [17] is the only known algorithm that efficiently solvesDo-All for

synchronous restartable crash-prone processors, but it does so under the strong assumption of

reliable multicast.) This gives rise to another interesting research problem: how is theGossip

problem formulated in the presence of crashes and restarts?The challenge is to specify the

termination condition: When should the problem be considered as solved? In the presence



191

of only processor crashes, the problem is considered solvedwhen each non-faulty processor

either knows the rumor of a processor or it knows that the processor crashed. This is no longer

sufficient for the case of processor crashes and restarts.

The thesis substantially contributes to the study of theOmni-Do problem in partitionable

networks, where algorithms must deal with groups of processors that become disconnected

and reconnected during the computation. The thesis presents a new robust algorithm, called

algorithm AX, that solvesOmni-Do for asynchronous processors under group fragmentations

and merges. This extends the work of Dolev, Segala and Shvartasman [32], that considers only

group fragmentations. In addition, algorithm AX has bettermessage complexity (subquadratic

in n) than the algorithm of Dolevet al. (at least quadratic inn) and the same task-oriented

work complexity under group fragmentations. Algorithm AX relies on a group communication

service (GCS) [95] with certain properties to provide membership and communication services.

These properties are basic and are provided by several groupcommunication systems and

specifications [23]. For the analysis of the algorithm, the notion of view-graphsis introduced.

View-graphs are directed acyclic graphs used to represent the partially-ordered view evolution

history witnessed by the processors. We believe that view-graphs have the potential of serving

as a general tool for studying cooperative computing with group communication services.

A recent study performed by Jacobsen, Zhang, and Marzullo [64] demonstrated that algo-

rithm AX may not be practical in wide-area networks. In particular, they showed, via trace

analysis, that algorithm AX performs poorly with respect tothe total completion time. The au-

thors argue that the reason for this is the use of group communication services that do not scale

well in large networks, where communication is less likely to be transitive and symmetric (as

assumed by group communications). They substantiate this argument by simulating algorithm
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AX in a wide-area network and comparing its performance withthat of a simpler algorithm.

The simpler algorithm, which has much larger worst case task-oriented work complexity than

AX, appears to work much better in practice. That algorithm does not use group communica-

tion services, but instead it uses a technique that relies onleases [56]. However, as the authors

point out, group communications can be used effectively in LANs. Thus it is interesting to

evaluate the performance of AX in LANs.

Given that no algorithm is able to maintain low total worst case task-oriented work in the

presence of network partitions, the thesis initiates the study ofOmni-Do as an on-line problem

and pursues competitive analysis. Specifically, a simple randomized algorithm, called algo-

rithm RS, is introduced and analyzed under arbitrary patterns of network reconfigurations. The

thesis establishes bounds on the competitive ratio of algorithm RS and shows that for the rele-

vant gradation of the computation templates these bounds are tight, by proving lower bounds.

These results lead to a better understanding on the effectiveness ofOmni-Do computations in

partitionable networks and demonstrate precisely the impact of partitions on the efficiency of

the computation.

One outstanding problem is to derandomize the schedules used by task-performing algo-

rithms and produce task-oriented work- and message-competitive deterministicalgorithms for

Omni-Do. Another promising direction is to study the task-performing paradigm in models

of computation that combine network reconfigurations with processor failures. The goal is

to establish complexity results that show how the performance of task-performing algorithms

depends on both on the extent of the network reconfiguration and on the number of processor

failures.
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The thesis has considered theDo-All problem under the assumption that the number of

participating processorsp and the number of tasksn is fixed, bounded, and knowna priori.

It would be equally important to considerDo-All in dynamic systems, where the number of

processors and tasks are not known and are not bounded. TheDo-All problem in such settings

abstractsweb-based computing(see section 2.8), where a large number of processing elements

cooperate via the Internet in computing a large number of independent tasks (e.g., SETI [74])

that a fixed-size collection of processing machines would not be able to handle. The set of

processing elements available to the computation may dynamically change, possibly due to

processor failures or processors becoming unavailable during periods when they are required

to perform other unrelated (local) computations, or due to repaired or idle processors joining

the computation already in progress. Furthermore, tasks are generated dynamically and dif-

ferent tasks may be known to different processors. Developing algorithms forDo-All in such

dynamic systems is very challenging, since these algorithms must not only tolerate component

failures, but they must also deal with the dynamic nature of the system. TheDo-All problem

must be formulated for such settings, and new efficiency measures need to be defined, since

the established measures of efficiency assume that the number of tasks and the number of pro-

cessors are known. One approach to evaluatingDo-All algorithms in dynamic systems is to

express the measures of efficiency as functions of time. Ongoing research is attempting to for-

mulate a theoretical framework, that would enable the studyof theDo-All problem in dynamic

systems.
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