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Abstract

In this paper we explore the problem of achieving efficient packet transmission over unreliable links
with worst case occurrence of errors. In such a setup, even anomniscient offline scheduling strategy
cannot achieve stability of the packet queue, nor is it able to use up all the available bandwidth. Hence,
an important first step is to identify an appropriate metric for measuring the efficiency of scheduling
strategies in such a setting. To this end, we propose arelative throughputmetric which corresponds to
the long term competitive ratioof the algorithm with respect to the optimal. We then explorethe impact
of the error detection mechanism and feedback delay on our measure. We compare instantaneous error
feedback with deferred error feedback, that requires a faulty packet to be fully received in order to detect
the error. We propose algorithms for worst-case adversarial and stochastic packet arrival models, and
formally analyze their performance. The relative throughput achieved by these algorithms is shown to be
close to optimal by deriving lower bounds on the relative throughput of the algorithms and almost match-
ing upper bounds for any algorithm in the considered settings. Our collection of results demonstrate the
potential of using instantaneous feedback to improve the performance of communication systems in
adverse environments.

1 Introduction

Motivation. Packet scheduling [7] is one of the most fundamental problems in computer networks. As
packets arrive, the sender (or scheduler) needs to continuously make scheduling decisions. Typically, the
objective is to maximize thethroughputof the link or to achieve stability. Furthermore, the senderneeds to
take decisions without knowledge of future packet arrivals. Therefore, many times this problem is treated as
anonlinescheduling problem [3, 10] andcompetitive analysis[1, 13] is used to evaluate the performance of
proposed solutions: the worst-case performance of an online algorithm is compared with the performance
of an offline optimal algorithm that has a priori knowledge ofthe problem’s input.

In this work we focus on online packet scheduling overunreliablelinks, where packets transmitted over
the link might be corrupted by bit errors. Such errors may, for example, be caused by an increased noise
level or transient interference on the link, that in the worst case could be caused by a malicious entity or an
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TEC2011-29688-C02-01, and NSF of China grant 61020106002.

†Partially supported by FPU Grant from MECD
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Arrivals Feedback Upper Bound Lower Bound

Deferred 0 0

Adversarial Instantaneous TAlg ≤ γ/(γ + γ) TSL−Pr ≥ γ/(γ + γ)

TLL = 0, TSL ≤ 1/(γ + 1)

Deferred 0 0

Stochastic Instantaneous TAlg ≤ γ/γ TCSL−Pr ≥ γ/(γ + γ), if λpℓmin ≤ γ/(2γ)

TAlg ≤ max {λpℓmin, γ/(γ + γ)}, if p < q TCSL−Pr ≥ min {λpℓmin, γ/γ}, otherwise

TLL = 0, TSL ≤ 1/(γ + 1)

Table 1: Summary of results presented. The results for deferred feedback are for one packet length, while
the results for instantaneous feedback are for 2 packet lengths ℓmin andℓmax. Note thatγ = ℓmax/ℓmin,
γ = ⌊γ⌋, λp is the arrival rate ofℓmin packets, andp andq = 1 − p are the proportions ofℓmin andℓmax

packets, respectively.

attacker. In the case of an error the affected packets must beretransmitted. To investigate the impact of such
errors on the scheduling problem under study and provideprovable guarantees, we consider the worst case
occurrence of errors, that is, we consider errors caused by an omniscient and adaptiveadversary[12]. The
adversary has full knowledge of the protocol and its history, and it uses this knowledge to decide whether it
will cause errors on the packets transmitted in the link at a certain time or not. Within this general framework,
the packet arrival is continuous and can either be controlled by the adversary or be stochastic.

Contributions. Packet scheduling performance is often evaluated using throughput, measured in absolute
terms (e.g., in bits per second) or normalized with respect to the bandwidth (maximum transmission capac-
ity) of the link. This throughput metric makes sense for a link without errors or with random errors, where
the full capacity of the link can be achieved under certain conditions. However, if adversarial bit errors
can occur during the transmission of packets, the full capacity is usually not achievable by any protocol,
unless restrictions are imposed on the adversary [2, 12]. Moreover, since a bit error renders a whole packet
unusable (unless costly techniques like PPR [4] are used), athroughput equal to the capacity minus the bits
with errors is not achievable either. As a consequence, in a link with adversarial bit errors, a fair comparison
should compare the throughput of a specific algorithm to the maximum achievable amount of traffic thatany
protocol could send across the link. This introduces the challenge of identifying an appropriate metric to
measure the throughput of a protocol over a link with adversarial errors.

Relative throughput:Our first contribution is the proposal of arelative throughputmetric for packet schedul-
ing algorithms under unreliable links (Section 2). This metric is a variation of the competitive ratio typically
considered in online scheduling. Instead of considering the ratio of the performance of a given algorithm
over that of the optimal offline algorithm, we consider the limit of this ratio as time goes to infinity. This
corresponds to thelong term competitive ratioof the algorithm with respect to the optimal.

Problem outline:We consider a sender that transmits packets to a receiver over an unreliable link, where
the errors are controlled by an adversary. Regarding packetarrivals (at the sender), we consider two models:
(a) the arrival times and their sizes follow a stochastic distribution, and (b) the arrival times and their sizes
are also controlled by an adversary. The general offline version of our scheduling problem, in which the
scheduling algorithm knows a priori when errors will occur,is NP-hard1. This further motivates the need
for devising simple and efficient online algorithms for the problem we consider.

1Some of the results are omitted due to space limitation and can be found in the Appendix.
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Feedback mechanisms:Then, moving to the online problem requires detecting the packets received with
errors, in order to retransmit them. The usual mechanism [6], which we calldeferred feedback, detects and
notifies the sender that a packet has suffered an error after the whole packet has been received by the receiver.
It can be shown that, even when the packet arrivals are stochastic and packets have the same length, no online
scheduling algorithm with deferred feedback can be competitive with respect to the offline one. Hence, we
center our study a second mechanism, which we callinstantaneous feedback. It detects and notifies the
sender of an error the moment this error occurs. This mechanism can be thought of as an abstraction of
the emerging Continuous Error Detection (CED) framework [11] that uses arithmetic coding to provide
continuous error detection. The difference between deferred and instantaneous feedback is drastic, since
for the instantaneous feedback mechanism, and for packets of the same length, it is easy to obtain optimal
relative throughput of 1, even in the case of adversarial arrivals. However, the problem becomes substantially
more challenging in the case of non-uniform packet lengths.Hence, we analyze the problem for the case of
packets with two different lengths,ℓmin andℓmax, whereℓmin < ℓmax.

Bounds for adversarial arrivals:We show (Section 3), that an online algorithm with instantaneous feedback
can achieve at most almost half the relative throughput withrespect to the offline one. It can also be shown
that two basic scheduling policies, giving priority eitherto short(SL – Shortest Length)or long(LL – Longest
Length)packets, are not efficient under adversarial errors. Therefore, we devise a new algorithm, called
SL-Preamble, and show that it achieves the optimal online relative throughput. Our algorithm, transmits
a “sufficiently” large number of short packets while making sure that long packets are transmitted from
time to time.

Bounds for stochastic arrivals:In the case of stochastic packet arrivals (Section 4), as onemight expect,
we obtain better relative throughput in some cases. The results are summarized in Table 1. We propose
and analyze an algorithm, called CSL-Preamble, that achieves relative throughput that is optimal. This
algorithm schedules packets according to SL-Preamble, giving preference to short packets depending on the
parameters of the stochastic distribution of packet arrivals1. We show that the performance of algorithm
CSL-Preamble is optimal for a wide range of parameters of stochastic distributions of packets arrivals, by
proving the matching upper bound2 for the relative throughput of any algorithm in this setting.

A note on randomization:All the proposed algorithms are deterministic. Interestingly, it can be shown
that using randomization does not improve the results; the upper bounds already discussed hold also for the
randomized case. For more details see Appendix D.

To the best of our knowledge, this is the first work that investigates in depth the impact of adversarial worst-
case link errors on the throughput of the packet scheduling problem. Collectively, our results (see Table 1)
show that instantaneous feedback can achieve a significant relative throughput under worst-case adversarial
errors (almost half the relative throughput that the offlineoptimal algorithm can achieve). Furthermore, we
observe that in some cases, stochastic arrivals allow for better performance.

Related work. A vast amount of work exists for online (packet) scheduling.Here we focus only on the
work that is most related to ours. For more information the reader can consult [9] and [10]. The work in [5]
considers the packet scheduling problem in wireless networks. Like our work, it looks at both stochastic
and adversarial arrivals. Unlike our work though, it considers onlyreliable links. Its main objective is to
achieve maximal throughput guaranteeingstabiliy, meaning bounded time from injection to delivery. The
work in [2] considers online packet scheduling over a wireless channel, where both the channel conditions
and the data arrivals are governed by an adversary. Its main objective is to design scheduling algorithms

1If the distribution is not known, then obviously one needs touse the algorithm developed for the case of adversarial arrivals
that needs no knowledge a priori.

2Analyzing algorithms yields lower bounds on the relative throughput, while analyzing adversarial strategies yields upper
bounds on the relative throughput.
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for the base-station to achieve stability in terms of the size of queues of each mobile user. Our work does
not focus on stability, as we assume errors controlled by an unbounded adversary that can always prevent
it. The work in [12] considers the problem of devising local access control protocols for wireless networks
with a single channel, that are provably robust againstadaptive adversarial jamming. At certain time steps,
the adversary can jam the communication in the channel in such a way that the wireless nodes do not receive
messages (unlike our work, where the receiver might receivea message, but it might contain bit errors).
Although the model and the objectives of this line of work is different from ours, it shares the same concept
of studying the impact of adversarial behavior on network communication.

2 Model

Network setting. We consider a sending station transmitting packets over a link. Packets arrive at the
sending station continuously and may have different lengths. Each packet that arrives is associated with a
length and its arrival time (based on the station’s local clock). We denote byℓmin andℓmax the smallest
and largest lengths, respectively, that a packet may have. We use the notationγ = ℓmax/ℓmin, γ = ⌊γ⌋
and γ̂ = ⌈γ⌉ − 1. The link is unreliable, that is, transmitted packets mightbe corrupted by bit errors. We
assume that all packets are transmitted at the same bit rate,hence the transmission time is proportional to
the packet’s length.

Arrival models. We consider two models for packet arrivals.

• Adversarial:The packets’ arrival time and length are governed by an adversary. We define an adversarial
arrival pattern as a collection of packet arrivals caused bythe adversary.

• Stochastic:We consider a probabilistic distributionDa, under which packets arrive at the sending station
and a probabilistic distributionDs, for the length of the packets. In particular, we assume packets arriving
according to a Poisson process with parameterλ > 0. When considering two packet lengths,ℓmin and
ℓmax, each packet that arrives is assigned one of the two lengths independently, with probabilitiesp > 0
andq > 0 respectively, wherep+ q = 1.

Packet bit errors. We consider an adversary that controls the bit errors of the packets transmitted over
the link. An adversarial error pattern is defined as a collection of error events on the link caused by the
adversary. More precisely, an error event at timet specifies that an instantaneous error occurs on the link
at timet, so the packet that happens to be on the link at that time is corrupted with bit errors. A corrupted
packet transmission is unsuccessful, therefore the packetneeds to be retransmitted in full. As mentioned
before, we consider aninstantaneous feedbackmechanism for the notification of the sender about the error.
The instant the packet suffers a bit error the sending station is notified (and hence it can stop transmitting
the remainder of the packet – if any).

The power of the adversary. Adversarial models are typically used to argue about the algorithm’s behav-
ior in worst-case scenarios. In this work we assume an adaptive adversary that knows the algorithm and the
history of the execution up to the current point in time. In the case of stochastic arrivals, this includes all
stochastic packet arrivals up to this point, and the length of the packets that have arrived. However it only
knows the distribution but neither the exact timing nor the length of the packets arriving beyond the current
time.

Note that in the case of deterministic algorithms, in the model of adversarial arrivals the adversary
has full knowledge of the computation, as it controls both packet arrivals and errors, and can simulate the
behavior of the algorithm in the future (there are no random bits involved in the computation). This is not the
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case in the model with stochastic arrivals, where the adversary does not control the timing of future packet
arrivals, but knows only about the packet arrival and lengthdistributions.

Efficiency metric: Relative throughput. Due to dynamic packet arrivals and adversarial errors, the real
link capacity may vary throughout the execution. Therefore, we view the problem of packet scheduling
in this setting as an online problem and we pursue long-term competitive analysis. Specifically, letA be
an arrival pattern andE an error pattern. For a given deterministic algorithm Alg, let LAlg(A,E, t) be
the total length of all the successfully transferred (i.e.,non-corrupted) packets by timet under patternsA
andE. Let OPT be the offline optimal algorithm that knows the exactarrival and error patterns before the
start of the execution. We assume that OPT devises an optimalschedule that maximizes at each timet the
successfully transferred packetsLOPT(A,E, t). Observe that, in the case of stochastic arrivals, the worst-
case adversarial error pattern may depend on stochastic injections. Therefore, we viewE as a function of
an arrival patternA and timet. In particular, for an arrival patternA we consider a functionE(A, t) that
defines errors at timet based on the behavior of a given algorithm Alg under the arrival patternA up to time
t and the values of functionE(A, t′) for t′ < t.

Let A denote a considered arrival model, i.e., a set of arrival patterns in case of adversarial, or a distri-
bution of packet injection patterns in case of stochastic, and letE denote the corresponding adversarial error
model, i.e., a set of error patterns derived by the adversary, or a set of functions defining the error event
times in response to the arrivals that already took place in case of stochastic arrivals. In case of adversar-
ial arrivals, we require that any pair of patternsA ∈ A andE ∈ E occurring in an execution must allow
non-trivial communication, i.e., the value ofLOPT(A,E, t) in the execution is unbounded witht going to
infinity. In case of stochastic arrivals, we require that anyadversarial error functionE ∈ E applied in an
execution must allow non-trivial communication for any stochastic arrival patternA ∈ A.

For arrival patternA, adversarial error functionE and time t, we define therelative throughput
TAlg(A,E, t) of a deterministic algorithm Alg by timet as:

TAlg(A,E, t) =
LAlg(A,E, t)

LOPT(A,E, t)
.

For completeness,TAlg(A,E, t) equals 1 ifLAlg(A,E, t) = LOPT(A,E, t) = 0.
We define therelative throughputof algorithm Alg in the adversarial arrival model as:

TAlg = inf
A∈A,E∈E

lim
t→∞

TAlg(A,E, t) ,

while in the stochastic arrival model it needs to take into account the random distribution of arrival patterns
in A, and is defined as follows:

TAlg = inf
E∈E

lim
t→∞

EA∈A[TAlg(A,E, t)] .

To prove lower bounds on relative throughput, we compare theperformance of a given algorithm with
that of OPT. When deriving upper bounds, it is not necessary to compare the performance of a given
algorithm with that of OPT, but instead, with the performance of some carefully chosen offline algorithm
OFF. As we demonstrate later, this approach leads to accurate upper bound results.

Finally, we considerwork conservingonline scheduling algorithms, in the following sense: as long as
there are pending packets, the sender does not cease to schedule packets. Note that it does not make any
difference whether one assumes that offline algorithms are work-conserving or not, since their throughput
is the same in both cases (a work conserving offline algorithmalways transmits, but stops the ongoing
transmission as soon as an error occurs and then continues with the next packet). Hence for simplicity we
do not assume offline algorithms to be work conserving.
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3 Adversarial Arrivals

This section focuses on adversarial packet arrivals. First, observe that it is relatively easy and efficient to
handle packets of only one length.

Proposition 1 Any work conserving online scheduling algorithm with instantaneous feedback has optimal
relative throughput of 1 when all packets have the same length.

Proof: Consider an algorithm Alg. Since it is work conserving, as long as there are pending packets,
it schedules them. If an error is reported by the feedback mechanism, the algorithm simply retransmits
another (or the same) packet. Since the notification is instantaneous, it is not difficult to see that the a priori
knowledge that the offline optimal algorithm has, does not help in transmitting more non-corrupted packets
than Alg.

3.1 Upper Bound

Let Alg be any deterministic algorithm for the considered packet scheduling problem. In order to prove
upper bounds, Alg will be competing with an offline algorithmOFF. The scenario is as follows. We
consider an infinite supply of packets of lengthℓmax and initially assume that there are no packets of length
ℓmin. We define as alink error event, the point in time when the adversary corrupts (causes an error to) any
packet that happens to be in the link at that specific time. We divide the execution inphases, defined as the
periods between two consecutive link error events. We distinguish 2 types of phases as described below and
give a description for the behavior of the adversarial modelsA andE . The adversary controls the arrivals of
packets at the sending station and error events of the link, as well as the actions of algorithm OFF. The two
types of phases are as follows:

1. a phase in which Alg starts by transmitting anℓmax packet (the first phase of the execution belongs to
this class). Immediately after Alg starts transmitting theℓmax packet, a set of̂γ ℓmin-packets arrive, that
are scheduled and transmitted by OFF. After OFF completes the transmission of these packets, a link
error occurs, so Alg cannot complete the transmission of theℓmax packet (more precisely, the packet
undergoes a bit error, so it needs to be retransmitted). Herewe use the fact that̂γ < γ.

2. a phase in which Alg starts by transmitting anℓmin packet. In this case, OFF transmits anℓmax packet.
Immediately after this transmission is completed, a link error occurs. Observe that in this phase Alg has
transmitted successfully severalℓmin packets (up toγ of them).

LetA andE be the specific adversarial arrival and error patterns in an execution of Alg. Let us consider
any timet (at the end of a phase for simplicity) in the execution. Letp1 be the number of phases of type 1
executed by timet. Similarly, letp2(j) be the number of phases of type 2 executed by timet in which Alg
transmitsj ℓmin packets, forj ∈ [1, γ]. Then, the relative throughput can be computed as follows.

TAlg(A,E, t) =
ℓmin

∑γ
j=1 jp2(j)

ℓmax
∑γ

j=1 p2(j) + ℓminγ̂p1
· (1)

From the arrival patternA, the number ofℓmin packets injected by timet is exactly γ̂p1. Hence,
∑γ

j=1 jp2(j) ≤ γ̂p1. It can be easily observed from Eq. 1 that the relative throughput increases with
the average number ofℓmin packets transmitted in the phases of type 2. Hence, the throughput would be
maximal if all theℓmin packets are used in phases of type 2 withγ packets. With the above we obtain the
following theorem.
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Theorem 1 The relative throughput of Alg under adversarial patternsA andE and up to timet is at most
γ

γ+γ ≤ 1
2 (the equality holds iffγ is an integer).

Proof: Applying the bound
∑γ

j=1 p2(j) ≥
∑γ

j=1
jp2(j)

γ in Eq (1), we get

TAlg(A,E, t) ≤
ℓmin

∑γ
j=1 jp2(j)

ℓmax

γ

∑γ
j=1 jp2(j) + ℓminγ̂p1

,

which is a function that increases with
∑γ

j=1 jp2(j). Since
∑γ

j=1 jp2(j) ≤ γ̂p1, the relative throughput can
be bounded as

TAlg(A,E, t) ≤ ℓminγγ̂p1/γ

ℓmax
γ̂p1
γ + ℓminγ̂p1

=
ℓminγ

ℓmax + ℓminγ
=

γ

γ + γ
.

3.2 Lower Bound and SL-Preamble Algorithm

Two natural scheduling policies one could consider are theShortest Length(SL) andLongest Length(LL)
algorithms; the first gives priority toℓmin packets, whereas the second gives priority to theℓmax packets.
However, these two policies are not efficient in the considered setting;LL cannot achieve a relative through-
put more than0 while SL achieves at mostT = 1

γ+1 . Therefore, we present algorithm SL-Preamble that
tries to combine, in a graceful and efficient manner, these two policies.

Algorithm description: At the beginning of the execution and whenever the sender is (immediately)
notified by the instantaneous feedback mechanism that a linkerror occurred, it checks the queue of pending
packets to see whether there are at leastγ packets of lengthℓmin available for transmission. If there are, then
it schedulesγ of them — this is called apreamble— and then the algorithm continues to schedule packets
using the LL policy. Otherwise, if there are not enoughℓmin packets available, it simply schedules packets
following the LL policy.

Algorithm analysis: We show that algorithm SL-Preamble achieves a relative throughput that matches
the upper bound shown in the previous subsection, and hence,it is optimal. Let us define two types of time
periods for the link in the executions of algorithm SL-Preamble: theactiveand theinactiveperiods. An
active period is one in which the link experiences no errors and SL-Preamble has pending packets waiting to
be transferred, whereas an inactive one is such that either the link has an error point or the queue of pending
packets is empty for SL-Preamble. In the case of inactive periods, note that, if the link has an error, neither
SL-Preamble nor OPT can make any progress in transmitting anerror-free packet. Similarly, if the queue of
pending packets is empty for SL-Preamble, it must be empty for OPT as well (otherwise it would contradict
the optimality of OPT). Hence, we look at the active periods,which we refer to asphases, and according to
the above algorithm we observe that there are four types of phases that may occur.

1. Phase starting withℓmin packet and has lengthL < γℓmin

2. Phase starting withℓmin packet and lengthL ≥ γℓmin

3. Phase starting withℓmax packet and has lengthL < ℓmax

4. Phase starting withℓmax packet and lengthL ≥ ℓmax

7



We now introduce some notation that will be used throughout the analysis. For the execution of SL-Preamble
and within theith phase, letai be the number of successfully transmittedℓmin packets not in the preambles,
bi the number of successfully transmittedℓmax packets, andci the number of successfully transmittedℓmin

packets in preambles. For the execution of OPT and within theith phase, leta∗i be the total number of
successfully transmittedℓmin packets andb∗i the total number of successfully transmittedℓmax packets. Let
Cj
A(i) andCj

O(i) denote the total amount successfully transmitted within a phasei of typej by SL-Preamble
and OPT, respectively.

Analyzing the different types of phases we make some observations. First, for phases of type 1,
SL-Preamble is not able to transmit successfully theγ ℓmin packets of the preamble, but OPT is only able
to complete at most as much work, soC1

O ≤ C1
A. For phases of type 2, we observe that the amount of work

completed by OPT minus the work completed by SL-Preamble is at mostℓmax (i.e.,C2
O − C2

A < ℓmax).
Therefore,C2

O ≤ ℓminγ
ℓmax+ℓminγ

C2
A. (Observe that ℓminγ

ℓmax+ℓminγ
≤ 1/2.) The same holds for phases of type 4

(C4
O − C4

A < ℓmax) and hence in this caseC4
O ≤ 2C4

A. In the case of phases of type 3, SL-Preamble is not
able to transmit successfully any packet, and thereforeC3

A = 0, whereas OPT might transmit up tôγℓmin

packets.
There are two cases of executions to be considered separately.
Case 1:The number of phases of type 3 is finite.
In such a case, there is a phasei∗ such that∀i > i∗ phasei is not of type 3. Then

R1 =

∑

j≤i∗
CA(j) +

∑

j>i∗
CA(j)

∑

j≤i∗
CO(j) +

∑

j>i∗
CO(j)

(2)

It is clear that the total progress completed by the end of phasei∗ by both algorithms is bounded. So we
define

∑

j≤i∗
CA(j) = A and

∑

j≤i∗
CO(j) = O and thus,

R1 =

A+
∑

j>i∗
CA(j)

O +
∑

j>i∗
CO(j)

≥
A+ ℓminγ

ℓmax+ℓminγ

∑

j>i∗
CO(j)

O +
∑

j>i∗
CO(j)

Hence, the relative throughput of SL-Preamble at the end of each phase, can be computed asT =
limt→∞R1, i.e.,

T = lim
j→∞

A+ ℓminγ
ℓmax+ℓminγ

∑

j>i∗
CO(j)

O +
∑

j>i∗
CO(j)

= lim
j→∞

(ℓmax + ℓminγ)A+ (ℓminγ)
∑

j>i∗
CO(j)

(ℓmax + ℓminγ)(O +
∑

j>i∗
CO(j))

= lim
j→∞

(
ℓminγ

ℓmax + ℓminγ
+

(ℓmax + ℓminγ)A− (ℓminγ)O

(ℓmax + ℓminγ)(O +
∑

j>i∗
CO(j))

)

=
ℓminγ

ℓmax + ℓminγ
=

γ

γ + γ

Here it is important to note that the assumptionlimt→∞CO(t) = ∞ is used, which corresponds to the
expressionlimj→∞

∑

j>i∗
CO(j) in the above equality.

8



So far, we have basically seen what is the relative throughput of SL-Preamble at the end of each phase.
It is also important to guarantee the lower bound at all timeswithin the phases. Consider any time-pointt of

phasei > i∗. ThenRi(t) =
∑

j∈(i∗,i−1] CA(j)+Xt
∑

j∈(i∗,i−1] CO(j)+Yt
, whereXt andYt is the work completed by SL-Preamble

and OPT within phasei up to timet. Using our proof above and the fact that for phases of type 1, 2and 4
CA ≥ ℓminγ

ℓmax+ℓminγ
CO, we know thatXt ≥ ℓminγ

ℓmax+ℓminγ
Yt as well. Therefore,

Ri(t) ≥
ℓminγ

ℓmax+ℓminγ

∑

j∈(i∗,i−1]CO(j) +
ℓminγ

ℓmax+ℓminγ
Yt

∑

j∈(i∗,i−1]CO(j) + Yt

=
ℓminγ

ℓmax + ℓminγ

This completes the lower bound of relative throughput for Case 1.

Case 2:The number of phases of type 3 is infinite.
In this case we must see how the number ofℓmin andℓmax packets are bounded for both SL-Preamble and
OPT.

Lemma 1 Consider the time pointt at the beginning of a phasej of type 3. Then the number ofℓmin tasks
completed byt by OPT is no more than the amount ofℓmin tasks completed by SL-Preamble plusγ− 1, i.e.,
∑

i<j a
∗
i ≤

∑

i<j(ai + ci) + (γ − 1).

Proof: Consider the beginning of phasej of type 3. At that point, we know that SL-Preamble has at most
(γ−1) ℓmin tasks in its queue of pending tasks by definition of phase type3. Therefore, the amount ofℓmin

tasks completed by OPT by the beginning of phasej is no more than the ones completed by SL-Preamble
(including theℓmin tasks in preambles) plusγ − 1.

Lemma 2 Considering all kinds of phases and the number ofℓmax tasks,
∑

i≤j
b∗i ≤

∑

i≤j
bi +

∑

i≤j

ci
γ + 2,∀j

Proof: We prove this claim by induction on phasej. For theBase Case:j = 0 the claim is trivial. We
consider theInduction Hypothesisstating that

∑

i≤j−1
b∗i ≤

∑

i≤j−1
bi+

∑

i≤j−1

ci
γ +2. For theInduction Stepwe

need to prove it up to the end of phasej. We first consider the case where during the phasej there is a time
when SL-Preamble has noℓmax tasks. Lett be the latest such time in the phase. Let us defineb∗(t) andb(t)
being the number ofℓmax tasks completed up to timet by OPT and SL-Preamble respectively. We know that
b∗(t) ≤ b(t). Let alsox∗j(t) andxj(t) be the number ofℓmax tasks completed by OPT and SL-Preamble,
respectively, after time pointt until the end of the phasej. We claim thatx∗j(t) ≤ xj(t) + 2. From our
definitions, at timet SL-Preamble is executing aℓmin task. Sincet is the last time that SL-Preamble has no
ℓmax tasks, the worst case is being at the beginning of the preamble (by inspection of the 4 types of phases).
Then, if the phase ends at timet′, we define periodI = [t, t′]:

|I| < γℓmin + (xj(t) + 1)ℓmax

≤ (xj(t) + 2)ℓmax

The +1ℓmax task is because of the crash before completing the lastℓmax scheduled task of the phase.
Observe that OPT could be executing aℓmax task at timet, completed at some point in[t, t + ℓmax] and
accounted for inx∗j (t). Therefore,

∑

i≤j

b∗i = b∗(t) + x∗j(t) ≤ b(t) + xj(t) + 2 =
∑

i≤j

bi + 2.
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Now consider the case where at all times of a phasej there areℓmax tasks in the queue of SL-Preamble.
By inspection of the 4 types of phases, the worst case is whenj is of type 2. Since there is always some
ℓmax task pending in SL-Preamble, after completing theγℓmin tasks it will keep schedulingℓmax tasks,
until a crash stops the last one scheduled, or the queue becomes empty. On the same time OPT is able to
complete at most⌊ Lj

ℓmax
⌋ ≤ bj + 1 ℓmax-tasks, whereLj is the length of the phase. Therefore, in all types

of phases,b∗j ≤
cj
γ + bj . And hence by induction the claim follows;

∑

i≤j
b∗i ≤

∑

i≤j

ci
γ +

∑

i≤j
bi + 2.

Combining the two lemmas above, Lemma 1 and 2:

R2 =

∑

i≤j
CA(i)

∑

i≤j
CO(j)

=

∑

i≤j
[(ai + ci)ℓmin + biℓmax]

∑

i≤j
[a∗i ℓmin + b∗i ℓmax]

≥

∑

i≤j
[(ai + ci)ℓmin + biℓmax]

∑

i≤j
(ai+ci)ℓmin+(γ−1)ℓmin+

∑

i≤j
(bi+

ci
γ )ℓmax+2ℓmax

≥

∑

i≤j
[(ai + ci)ℓmin + biℓmax]

∑

i≤j
[(ai + 2ci)ℓmin + biℓmax] + 3ℓmax

≥

∑

i≤j
[(ai + ci)ℓmin + biℓmax] +

3
2ℓmax − 3

2ℓmax

2
∑

i≤j
[(ai + ci)ℓmin + biℓmax] + 3ℓmax

≥ 1

2
−

3
2ℓmax

2
∑

i≤j
[(ai + ci)ℓmin + biℓmax] + 3ℓmax

Therefore,

T = lim
j→∞

R2 ≥
1

2
(3)

Theorem 2 The relative throughput of Algorithm SL-Preamble is at least γ
γ+γ .

Proof: From the analyses of Cases 1 and 2 and the fact thatγ
γ+γ ≤ 1

2 it is easy to conclude that the relative

throughput of Algorithm SL-Preamble is at leastγγ+γ as claimed.

4 Stochastic Arrivals

We now turn our attention to stochastic packet arrivals.

4.1 Upper Bounds

In order to find the upper bound of the relative throughput, weconsider again an arbitrary work conserving
algorithm Alg. Recall that we assume thatλp > 0 andλq > 0, which implies that there are in fact injections
of packets of both lengthsℓmin andℓmax (recall the definitions ofλ, p andq from Section 2). We define the
following adversarial error modelE .
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1. When Alg starts a phase by transmitting anℓmax packet then,

(a) If OFF hasℓmin packets pending, then the adversary extends the phase so that OFF can transmit
successfully as manyℓmin packets as possible, up tôγ. Then, it ends the phase so that Alg does not
complete the transmission of theℓmax packet (sincêγℓmin < ℓmax).

(b) If OFF does not have anyℓmin packets pending, then the adversary inserts a link error immediately
(say after infinitesimally small timeǫ).

2. When Alg starts a phase by transmitting anℓmin packet then,

(a) IF OFF has a packet of lengthℓmax pending, then the adversary extends the phase so OFF can transmit
anℓmax packet. By the time this packet is successfully transmitted, the adversary inserts an error and
finishes the phase. Observe that in this case Alg was able to successfully transmit up toγ packets
ℓmin.

(b) If OFF has noℓmax packets pending, then the adversary inserts an error immediately and ends the
phase.

Observe that in phases of type 1b and 2b, neither OFF nor Alg are able to transmit any packet. These
phases are just used by the adversary to wait for the conditions required by phases of type 1a and 2a to
hold. In these latter types some packets are successfully transmitted (at least by OFF). Hence we call them
productivephases. Analyzing a possible execution, in addition to the concept of phase that we have already
used, we definerounds. There is a round associated with each productive phase. Theround ends when its
corresponding productive phase ends, and starts at the end of the prior round (or at the start of the execution
if no prior round exists). Depending on the type of productive phase they contain, rounds can be classified
as type 1a or 2a.

Let us fix some (large) timet. We denote byr(j)1a the number of rounds of type 1a in whichj ≤ γ̂ packets

of lengthℓmin are sent by OFF completed by timet. The valuer(j)2a with j ≤ γ packets of lengthℓmin sent
by Alg, is defined similarly for rounds of type 2a. (Here rounding effects do not have any significant impact,
since they will be compensated by the assumption thatt is large.) We assume thatt is a time when a round
finishes. Let us denote byr the total number or rounds completed by timet, i.e.,

∑γ
j=1 r

(j)

2a+
∑γ̂

j=1 r
(j)

1a = r.
The relative throughput by timet can be computed as

TAlg(A,E, t) =
ℓmin

∑γ
j=1 j · r

(j)

2a

ℓmax
∑γ

j=1 r
(j)

2a + ℓmin
∑γ̂

j=1 j · r
(j)

1a

. (4)

From this expression, we can show the following result.

Theorem 3 No algorithm Alg has relative throughput larger thanγγ .

Proof: It can be observed in Eq. 4 that, for a fixedr, the lower the value ofr(j)1a the higher the relative

throughput. Regarding the valuesr(j)2a, the throughput increases when there are more rounds in the larger

values ofj. E.g., under the same conditions, a configuration withr
(j)

2a = k1 andr(j+1)

2a = k2, has lower

throughput than one withr(j)2a = k1 − 1 andr(j+1)

2a = k2 + 1. Then, the throughput is maximized when

r
(γ)

2a = r and the rest of valuesr(j)1a andr(j)2a are 0, which yields the bound.

To provide tighter bounds for some special cases, we prove the following lemma.
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Lemma 3 Consider any two constantsη, η′ such that0 < η < λ < η′. Then:

(a) there is a constantc > 0, dependent only onλ, p, η, such that for any timet ≥ ℓmin, the number of
packets of lengthℓmin (resp.,ℓmax) injected by timet is at leasttηp (resp.,tηq) with probability at
least1− e−ct;

(b) there is a constantc′ > 0, dependent only onλ, p, η′, such that for any timet ≥ ℓmin, the number of
packets of lengthℓmin (resp.,ℓmax) injected by timet is at mosttη′p (resp.,tη′q) with probability at
least1− e−c′t.

Proof: We first prove the statement 1(a). The Poisson process governing arrival times of packets of length
ℓmin has parameterλp. By the definition of a Poisson process, the distribution of packets of lengthℓmin

arriving to the system in the period[0, t] is the Poisson distribution with parameterλpt. Consequently, by
Chernoff bound for Poisson random variables (with parameter λpt), c.f., [8], the probability that at leastηpt
packets arrive to the system in the period[0, t] is at least

1− e−λpt (eλpt)
ηpt

(ηpt)ηpt
= 1− e−tp(λ−η ln(eλ/η)) ≥ 1− e−ct,

for some constantc > 0 dependent onλ, η, p. In the above, the argument behind the last inequality is as
follows. It is a well-known fact thatx > 1 + lnx holds for anyx > 1; in particular, forx = λ/η > 1. This
implies thatx− ln(ex) is a positive constant forx = λ/η > 1, and after multiplying it byη > 0 we obtain
another positive constant equal toλ − η ln(eλ/η) that depends only onλ andη. Finally, we multiply this
constant byp > 0 to obtain the final constantc > 0 dependent only onλ, η, p.

The same result for packets of lengthℓmax can be proved by replacingp by q = 1 − p in the above
analysis.

Statement 1(b) is proved analogously to the first one, by replacingη by η′. This is possible because the
Chernoff bound for Poisson process has the same form regardless whether the upper or the lower bound on
the Poisson value is considered, c.f., [8].

Now we can show the following result.

Theorem 4 Let p < q. Then, the relative throughput of any algorithm Alg is at most

min
{

max
{

λpℓmin,
γ

γ+γ

}

, γγ

}

.

Proof: The claim has two cases. In the first case,λpℓmin ≥ γ
γ . In this case, the upper bound ofγ

γ is

provided by Theorem 3. In the second caseλpℓmin < γ
γ . For this case, define two constantsη, η′ such that

0 < η < λ < η′ andη′p < ηq. Observe that these constants always exist. Then, we prove that the relative

throughput of any algorithm Alg in this case is at mostmax
{

η′pℓmin,
γ

γ+γ

}

.

Let us introduce some notation. We useamin
t andamax

t to denote the number ofℓmin andℓmax packets,
respectively, injected up to timet. Let rofft andsofft be the number ofℓmax andℓmin packets respectively,
successfully transmitted by OFF by timet. Similarly, letsalgt be the number ofℓmin packets transmitted by

algorithm Alg by timet. Observe thatsalgt ≥ rofft ≥ ⌊s
alg
t

γ ⌋.
Let us consider a given execution and the time instants at which the queue of OFF is empty ofℓmin

packets in the execution. We consider two cases.
Case 1: For each timet, there is a timet′ > t at which OFF has the queue empty ofℓmin packets. Let us fix
a valueδ > 0 and define time instantst0, t1, . . . as follows.t0 is the first time instant no smaller thanℓmin

at which OFF has noℓmin packet and such thatamin
t0 > ℓmax. Then, fori > 0, ti is the first time instant no
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smaller thanti−1 + δ at which OFF has noℓmin packets. The relative throughput at timeti can be bounded
as

TAlg(A,E, ti) ≤
salgti

ℓmin

roffti ℓmax + amin
ti

ℓmin

≤
salgti

ℓmin

⌊s
alg
ti

γ ⌋ℓmax + amin
ti

ℓmin

≤
salgti

ℓmin

(
salgti

γ − 1)ℓmax + amin
ti

ℓmin

.

This bound grows withsalgti
whenamin

ti > ℓmax, which leads to a bound on the relative throughput as follows.

TAlg(A,E, ti) ≤
amin
ti ℓmin

amin
ti

( ℓmax

γ + ℓmin)− ℓmax

=
amin
ti γ

amin
ti

(γ + γ)− γγ
.

Which asi goes to infinity yields a bound ofγγ+γ .
Case 2: There is a timet∗ after which OFF never has the queue empty ofℓmin packets. Recall that for any
t ≥ ℓmin, from Lemma 3, we have that the number ofℓmin packets injected by timet satisfyamin

t > η′pt
with probability at mostexp(−c′t) and the injectedmax packets satisfyamax

t < ηqt with probability at
most exp(−ct). By the assumption of the theorem and the definition ofη and η′, η′p < ηq. Let us
definet∗ = 1/(ηq − η′p). Then, for allt ≥ t∗ it holds thatamax

t ≥ amin
t + 1, with probability at least

1− exp(−c′t)− exp(−ct). If this holds, it implies that OFF will always haveℓmax packets in the queue.
Let us fix a valueδ > 0 and definet0 = max(t∗, t∗), and the sequence of instantsti = t0 + iδ, for

i = 0, 1, 2, . . .. By the definition oft0, at all timest > t0 OFF is successfully transmitting packets. Using
Lemma 3, we can also claim that in the interval(t0, ti] the probability that more thanη′piδ packetsℓmin are
injected is no more thanexp(−c′′iδ).

With the above, the relative throughput at any timeti for i ≥ 0 can be bounded as

TAlg(A,E, ti) ≤
(amin

t0 + η′p · iδ)ℓmin

rofft0 ℓmax + sofft0 ℓmin + iδ

with probability at least1 − exp(−cti) − exp(−c′ti) − exp(−c′′ti). Observe that asi goes to infinity the
above bound converges toη′pℓmin, while the probability converges exponentially fast to 1.

4.2 Lower Bound and Algorithm CSL-Preamble

In this section we consider algorithm CSL-Preamble (standsfor Conditional SL-Preamble), which builds
on algorithm SL-Preamble presented in Section 3.2, in orderto solve packet scheduling in the setting of
stochastic packet arrivals. The algorithm, depending on the arrival distribution, either follows the SL policy
(giving priority to ℓmin packets) or algorithm SL-Preamble. More precisely, algorithm CSL-Preamble acts
as follows:

If λpℓmin > γ
2γ then algorithm SL is run, otherwise algorithm SL-Preamble is executed.

Then we show the following:

Theorem 5 The relative throughput of algorithm CSL-Preamble is not smaller than γ
γ+γ for λpℓmin ≤ γ

2γ ,

and not smaller thanmin
{

λpℓmin,
γ
γ

}

otherwise.

Proof: We consider three complementary cases.
Caseλpℓmin ≤ γ

2γ . In this case algorithm CSL-Preamble runs algorithm SL-Preamble, achieving, per

Theorem 2, relative throughput of at leastγγ+γ underanyerror pattern.
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Case γ
2γ ≤ λpℓmin ≤ 1. Our goal is to prove that the relative throughput is not smaller than

min
{

ηpℓmin,
γ
γ

}

, for anyη satisfyingλ/2 < η < λ. Considering such anη we can make use of Lemma 3

with respect toλ, η, p. The relative throughput compares the behavior of algorithm CSL-Preamble, which
is simply SL in this case, with OPT for each execution. Hence,for the purpose of the analysis we introduce
the following modification in every execution: we remove allperiods in which OPT is not transmitting any
packet. By “removing” we understand that we count time afterremoving the OPT-unproductive periods
and “gluing” the remaining periods so that they form one timeline. In the remainder of the analysis of this
case we consider these modified executions with modified timelines and whenever we need to refer to the
“original” time line we use the notion ofglobal time.

For any positive integeri, we define time pointsti = i · ℓmax. Consider eventsSi, for positive integers
i, defined as follows: the number of packets arrived by timeti (on the modified time line of the considered
execution) is at leasttiηp. By Lemma 3 and the fact that timet on the modified time line cannot occur
before the global timet, there is a constantc dependent only onλ, η, p such that for anyi: the eventSi holds
with probability at least1− exp (−cti).

Consider an integerj > 1 being a square of another integer. We prove that by timetj, the relative
throughput is at least

min

{

ηpℓmin − γℓmin

tj
, (1 − 1/

√

j) · γ
γ

}

with probability at least1 − c′ exp (−ct√j), for some constantc′ > 1 dependent only onλ, η, p. To show
this, consider two complementary scenarios that may happenat timetj: there are at leastγ pending packets
of length ℓmin, or otherwise. It is sufficient to show the sought property separately in each of these two
scenarios.

Consider the first scenario, when there are at leastγ pending packets of lengthℓmin at timetj. With
probability at least1 − c′ exp (−ct√j), for every

√
j ≤ i ≤ j at leasttiηp packets arrive by timeti. This

is because of the union bound of the corresponding eventsSi and the fact that
∑

i≥
√
j exp (−cti) ≤ c′ ·

exp (−ct√j) for some constantc′ > 1 dependent onλ, η, p (note here that althoughc′ seems to depend also
on c, c′ is still dependent only onλ, η, p becausec is a function of these three parameters as well). Consider
executions in

⋃j
i=

√
j
Si. Using induction oni, if follows that for these executions for every

√
j ≤ i ≤ j

the following invariant holds: at leasttiηp − γ packets of lengthℓmin have been successfully transmitted
by timeti or in the time interval[ti, ti+1] at leastγ packets of lengthℓmin are successfully transmitted (i.e.,
these successful transmissions end in the interval[ti, ti+1]). The inductive proof of this invariant follows
directly from the specification of algorithm CSL-Preamble (recall that it simply runs algorithm SL in the
currently considered case) and from the definition of the modified execution and time line. Leti∗ denote the
largesti ∈ [

√
j, j] satisfying the following condition: there are less thanγ packets of lengthℓmin pending

in time ti; if such ani does not exist, we seti∗ = −1. Consider two sub-cases.
Sub-casei∗ ≥ √

j . If follows from the invariant and the definition ofi∗ that by timeti∗ there are at least
tiηp − γ successfully transmitted packets of lengthℓmin, and in each interval[ti, ti+1], for i∗ ≤ i < j, at
leastγ packets of lengthℓmin finish their successful transmission. Therefore, by timetj the total length of
packets (of lengthℓmin) successfully transmitted by algorithm CSL-Preamble is atleast

(ti∗ηp − γ)ℓmin +
tj − ti∗

ℓmax
· γℓmin ,

while the total length of successfully transmitted packetsby OPT by timetj is at mosttj , by the definition
of the modified execution and time line. Therefore the relative throughput is at least

(ti∗ηp− γ)ℓmin +
tj−ti∗
ℓmax

· γℓmin

tj
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≥ min

{

(tjηp− γ)ℓmin

tj
,

tj−t√j

ℓmax
· γℓmin

tj

}

= min

{

ηpℓmin − γℓmin

tj
, (1− 1/

√

j) · γ
γ

}

.

This converges tomin
{

ηpℓmin,
γ
γ

}

with j going to infinity.

Sub-casei∗ <
√
j . In this sub-case we have, by definition ofi∗ <

√
j, that at every timeti, where√

j ≤ i ≤ j, there are at leastγ pending packets of lengthℓmin. Consequently, by the specification of the
algorithm, in each interval[ti, ti+1], for

√
j ≤ i < j, at leastγ packets of lengthℓmin finish their successful

transmission. Therefore, by timetj the total length of packets (of lengthℓmin) successfully transmitted by
algorithm CSL-Preamble is at least

tj − t√j

ℓmax
· γℓmin ,

while the total length of successfully transmitted packetsby OPT by timetj is at mosttj , by the definition
of the modified execution and time line. Therefore the relative throughput is at least

tj−t√j

ℓmax
· γℓmin

tj
= (1− 1/

√

j) · γ
γ
,

and it converges toγγ with j going to infinity. This completes the analysis of the sub-cases.
Finally, it is important to notice that the final converge of the ratio, withj going to infinity, in both

sub-cases gives a valid bound on the relative throughput, since the subsequent ratios hold with probabilities
approaching1 exponentially fast (inj), i.e., with probabilities at least1− c′ exp (−ct√j), wherec andc′ are
positive constants dependent only onλ, η, p. The minimum of the two relative throughputs, coming from the

sub-cases, ismin
{

ηpℓmin,
γ
γ

}

, as desired and therefore the relative throughput is at least min
{

λpℓmin,
γ
γ

}

in this case.
Caseλpℓmin > 1. In this case we simply observe that we get at least the same relative throughput

as in caseλpℓmin = 1, because we are dealing with executions saturated with packets of lengthℓmin

with probability converging to1 exponentially fast. (Recall that we use the same algorithm SL in the
specification of CSL-Preamble, both forλpℓmin = 1 and forλpℓmin > 1.) Consequently, the relative

throughput in this case is at leastmin
{

ηpℓmin,
γ
γ

}

, for any λ/2 < η < λ, and therefore it is at least

min
{

λpℓmin,
γ
γ

}

≥ min
{

1, γγ

}

= γ
γ .

Observe that if we compare the upper bounds on relative throughput shown in the previous subsection
with the lower bounds of the above theorem, then we may conclude that in the case whereγ is an integer,
algorithm CSL-Preamble is optimal (wrt relative throughput). In the case whereγ is not an integer, there is
a small gap between the upper and lower bound results.

5 Conclusions

This work was motivated by the following observation regarding the system of dynamic packet arrivals
with errors: scheduling packets of same length is relatively easy and efficient in case of instantaneous
feedback, but extremely inefficient in case of deferred feedback. We studied scenarios with two different
packet lengths, developed efficient algorithms, and provedupper and lower bounds for relative throughput in
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average-case (i.e., stochastic) and worst-case (i.e., adversarial) online packet arrivals. These results demon-
strate that exploring instantaneous feedback mechanisms (and developing more effective implementations
of it) has the potential to significantly increase the performance of communication systems.

Several future research directions emanate from this work.Some of them concern the exploration of
variants of the model considered, for example, assuming that packets that suffer errors are not retransmitted
(which applies when Forward Error Correction [11] is used),considering packets of more than two lengths,
or assuming bounded buffers. Other lines of work deal with adding QoS requirements to the problem, such
as requiring fairness in the transmission of the packets from different flows or imposing deadlines to the
packets. In the considered adversarial setting, it is easy to see that even an omniscient offline solution can-
not achieve stability: for example, the adversary could prevent any packet from being transmitted correctly.
Therefore, an interesting extension of our work would be to study conditions (e.g., restrictions on the adver-
sary) under which an online algorithm could maintain stability, and still be efficient with respect to relative
throughput. Finally, we believe that the definition of relative throughput as proposed here can be adapted,
possibly in a different context, to other metrics and problems.
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APPENDIX

A NP-hardness

We prove the NP-hardness of the following problem, defined for a single link.
INSTANCE (Throughput Problem): SetX of packets, for each packetx ∈ X a lengthl(x) ∈ N

+, an
arrival timea(x) ∈ Z

0, a sequence of time instants0 = T0 < T1 < T2 < · · · < Tk, Ti ∈ N
0, so that the

link suffers an instantaneous error at each timeTi, i ∈ [1, k] (in other words, at each timeTi, any packet
transmitted over the link is corrupted).

QUESTION: is there a schedule ofX so that error-free packets of total lengthTk are transmitted by
timeTk over the link?

Theorem 6 The Throughput Problem is NP-hard.

Proof: We use the 3-Partition problem which is known to be an NP-hardproblem.
INSTANCE: SetA of 3m elements, a boundB ∈ N

+ and, for eacha ∈ A, a sizes(a) ∈ N
+ such that

B/4 < s(a) < B/2 and
∑

a∈A s(a) = mB.
QUESTION: canA be partitioned intom disjoint sets{A1, A2, . . . , Am} such that, for each1 ≤ i ≤ m,

∑

a∈Ai
s(a) = B?

We reduce the 3-Partition problem to the Throughput Problem, defined for a single link. The reduction
is by settingX = A, l() = s(), a() = 0, k = m, andTi = iB for i ∈ [1, k]. If the answer to 3-Partition is
affirmative, then for the Throughput Problem there is a way toschedule (and transmit) the packets inX in
subsets{X1,X2, . . . ,Xm} = {A1, A2, . . . , Am}, so that all the packets inAi can be transmitted over the
link in the interval[Ti−1, Ti]. Furthermore, since

∑

a∈Ai
s(a) =

∑

x∈Xi
l(x) = B, andTi − Ti−1 = B, the

total length of packets transmitted by timeTk is Tk.
The reverse argument is similar. If there is a way to schedulepackets so that the total packet length

transmitted by timeTk is Tk, in each interval between two error events on the link there must be exactlyB
bytes of packets transmitted. Then, the packets can be partitioned into subsets of total lengthB each. This
implies the partition ofA.

B Deferred Feedback

In this section we study the relative throughput of any algorithm under the deferred feedback mechanism.
As described in Section 1, with this mechanism the sending station is notified about a packet having been
corrupted by an error only after the transmission of the packet is completed. Here we assume that all packets
have the same lengthℓ. We show that even in this case no algorithm can achieve positive throughput.

B.1 Adversarial Arrivals

In order to prove the upper bound on throughput, the packets arrive frequently enough so that there are
always packets ready. The algorithm will then greedily senda train of packets. The adversary injects bit
errors at a distance of exactlyℓ so that each error hits a different packet, and hence the algorithm cannot
successfully complete any transmission (that is, it cannottransmit non-corrupted packets). At the same time,
an offline algorithm OFF is able to send packets in each interval of lengthℓ without errors. This argument
leads to the following theorem:

Theorem 7 No packet scheduling algorithm Alg can achieve a relative throughput larger than0 under
adversarial arrivals in the deferred feedback model, even with one packet length.
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B.2 Stochastic Arrivals

Let us consider now stochastic arrivals. We show that also inthis case the upper bound on the relative
throughput is0.

Theorem 8 No packet scheduling algorithm Alg can achieve a relative throughput larger than0 under
stochastic arrivals in the deferred feedback model, even with one packet length.

Proof: As described in Section 2, we assume that packets arrive at a rateλ. Here we assume that all packets
have the same lengthℓ. Observe that ifλℓ < 1 there are many times when there is no packet ready to be
sent and the link will be idle. In any case, the adversary can inject errors following the next rule: inject an
error in the middle point of each packet sent by Alg. Applyingthis rule, no packet sent by Alg is received
without errors. However, between two errors there is at least ℓ space (even if packets are contiguous) and
the offline algorithm OFF can send a packet. The conclusion isthat OFF is able to successfully send at least
one packet between two attempts of Alg, while Alg cannot complete successfully any transmission. This
completes the proof.

C Upper Bounds for Algorithms SL and LL

We prove upper bounds that suggest that algorithms SL (Shortest Length) and LL (Longest Length) are not
efficient. First, we show that SL cannot have relative throughput larger than 1

γ+1 under adversarial arrivals.
We then show that algorithm LL is even worse, as its relative throughput cannot be more than0 even with
stochastic arrivals.

Theorem 9 Algorithm SL cannot achieve relative throughput larger than 1
γ+1 under adversarial arrivals,

even if there is a schedule that transmits all the packets.

Proof: The scenario works as follows. At time 0 two packets arrive, one of lengthℓmax and one of length
ℓmin. SL schedules first the packet of lengthℓmin, and when it is transmitted, it schedules the packet of
lengthℓmax. Meanwhile, an offline algorithm OFF schedules first the packet of lengthℓmax. When it is
transmitted, the adversary causes an error on the link, so SLdoes not transmit successfully the packet of
length ℓmax. Now, SL only has one packet of lengthℓmax in its queue (when this scenario is repeated
will have several, but no packets of lengthℓmin). Hence, SL schedules this packet, while OFF schedules
the packet of lengthℓmin that has in its queue. When OFF completes the transmission ofthe ℓmin packet,
the adversary causes an error on the link. This scenario can be repeated forever. In each instance, OFF
transmits one packet of lengthℓmax and one of lenghtℓmin, while SL only transmits one packet of length
ℓmin. Hence, the throughput achieved isℓmin

ℓmax+ℓmin
= 1

γ+1 . Observe that at the end of each instance of the
scenario the queue of OFF is empty.

We now show that the above upper bound also holds with stochastic arrivals under specific packet arrival
rates.

Theorem 10 ∀ε > 0,∃λ, p, q such that algorithm SL cannot achieve a relative throughputlarger than
1

(1−ε)γ+1 + ε.

Proof: Consider an execution of the SL algorithm. We define intervals I1, I2, . . . , Ii as follows. The first
such interval,I1, starts with the arrival of the firstℓmin packet. Then,Ii starts as soon as anℓmin packet is in
the queue of SL after the end of intervalIi−1. The length of each interval depends on whether OFF has an
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ℓmax packet in its queue at the start of the interval or not. If it has anℓmax packet, the length of the interval
is |Ii| = ℓmin + ℓmax, and we say that we have along interval. If it does not, the length is|Ii| = ℓmin and
the interval is calledshort.

Between intervals the adversary injects frequent errors, so SL cannot transmit any packet. In every
intervalIi, SL starts by scheduling anℓmin packet. In a short interval, OFF sends anℓmin packet, followed
by an error injected by the adversary. Hence, in a short interval both SL and OFF successfully transmit one
ℓmin packet. In a long interval, OFF sends anℓmax packet, after which the adversary injects an error. (Up to
that point SL has been able to complete the transmission of one or moreℓmin packets, but noℓmax packet.)
After the error, OFF sends anℓmin packet (which is available since beginning of the interval)after which
continuous errors will be injected by the adversary until the next interval. Hence, in a long interval OFF
successfully transmits oneℓmin packet and oneℓmax packet, while SL transmits onlyℓmin packets. This
implies that in both types of intervals OFF is transmitting useful packets during the whole interval.

Let us denote bysk the total length of the intervalsI1, I2, . . . , Ik, i.e.,sk =
∑k

i=1 |Ii|. Observe that the
total number ofℓmin packets that arrive up to the end of intervalIk is bounded byk (that accounts for the
ℓmin packet in the queue of SL at the start of each interval) plus the packets that arrive in the intervals. From
Lemma 3, we know that there is a constantη′ > λ and a constantc′ > 0 which depends only onη′, λ and
p, such that the number ofℓmin packets that arrive in the intervals is at mostη′psk with probability at least
1− e−c′sk .

Let Tk be the throughput of SL at the end of intervalIk. From the above, we have thatTk is bounded as

Tk ≤ ℓmin(k + η′psk)

sk
=

ℓmink

sk
+ ℓminη

′p

with probability at leastπ1(k) = 1 − e−c′sk . Observe that in the above expression it is assumed that all
ℓmin packets that arrive by the end ofIk are successfully transmitted by SL. We provide now the following
claim.

Claim: Let us consider the firstx + 1 intervalsIi, for x > 1. The number of long intervals is at least
(1− δ)(1 − e−λqℓmin)x with probability at least1− exp(−δ2(1− e−λqℓmin)x/2), for anyδ ∈ (0, 1).
Proof of claim:Observe that if anℓmax packet arrives during intervalIi then the next intervalIi+1 is long.
We consider now the firstx intervals. Since each of these intervals has length at leastℓmin, someℓmax

packet arrives in the interval with probability at least1− e−λqℓmin (independently of what happens in other
intervals). Hence, using a Chernoff bound, the probabilityof having less than(1 − δ)(1 − e−λqℓmin)x
intervals among thex first intervals in whichℓmax packets arrive is at mostexp(−δ2(1− e−λqℓmin)x/2). ⊓⊔

From the claim, it follows that there are at least(1− δ)(1− e−λqℓmin)(k − 1) long intervals among the
first k intervals, with high probability. Hence, the value ofsk is bounded as

sk ≥ (1− δ)(1 − e−λqℓmin)(k − 1)(ℓmax + ℓmin) + (k − (1− δ)(1 − e−λqℓmin)(k − 1))ℓmin

= (1− δ)(1 − e−λqℓmin)(k − 1)ℓmax + kℓmin

with probability at leastπ2(k) = 1 − exp(−δ2(1 − e−λqℓmin)(k − 1)/2). Note thatTK cannot be larger
than 1. Hence, the expected value ofTk can be bounded as follows.

E[Tk] ≤ π1(k)π2(k)

(

ℓmink

(1− δ)(1 − e−λqℓmin)(k − 1)ℓmax + kℓmin
+ ℓminη

′p

)

+ (1− π1(k)π2(k)).
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Sinceπ1(k) andπ2(k) tend to one ask tends to infinity, we have that

lim
k→∞

E[Tk] ≤ ℓmin

(1− δ)(1 − e−λqℓmin)ℓmax + ℓmin
+ ℓminη

′p

=
1

(1− δ)(1 − e−λqℓmin)γ + 1
+ ℓminη

′p.

Hence, choosingη′, p, q, andδ appropriately, the claim of the theorem follows. (E.g., they must satisfy
ℓminη

′p ≤ ε and(1− δ)(1 − e−λqℓmin) ≥ (1− ε).)

Theorem 11 Algorithm LL cannot achieve relative throughput larger than 0, even under stochastic arrivals.

Proof: The scenario is simple. The adversary blocks all successfultransmissions (by placing errors at
distance smaller thanℓmin) until at least two packets have arrived, one of lengthℓmax and one of length
ℓmin. Algorithm LL schedules a packet of lengthℓmax, while an offline algorithm OFF schedules a packet
of length ℓmin. Once OFF completes the transmission of this packet, the adversary causes an error on
the link, and hence LL does not complete the transmission of the ℓmax packet. Then, again the adversary
blocks successful transmissions until OFF has at least oneℓmin packet pending. The scenario is repeated
for ever; while OFF will be transmitting successfully allℓmin packets, LL will be stuck on the unsuccessful
transmissions ofℓmax packets. Hence, the throughput will be0.

D Randomized Algorithms

So far we have considered deterministic solutions. In many cases, randomized solutions can obtain better
performance. As we argue in this section, this is not the casefor the problem considered in this work.

Let us first indicate how the model and the definition of relative throughput must be extended to the case
of randomized algorithms. We assume that the adversary knows the algorithm and the history of the random
choices made by the algorithm until the current point in time, but it does not know the future random choices
made by the algorithm.

Regarding the relative throughput, and following the terminology of Section 2, in the case of randomized
algorithms, an adversarial error-functionE has three arguments: an arrival patternA, a string of values of
random bitsR, and timet. The output ofE(A,R, t) is a set of errors until timet based on the execution of
a given randomized algorithm with the values of random bits taken fromR under an adversarial patternA
by roundt.

For arrival patternA, adversarial error-functionE, string of random bitsR and timet, we define the
relative throughputTAlg(A,E,R, t) of a randomized algorithm Alg by timet as follows:

TAlg(A,E,R, t) =
LAlg(A,E,R, t)

LOPT(A,E,R, t)
.

TAlg(A,E,R, t) is defined as 1 ifLAlg(A,E,R, t) = LOPT(A,E,R, t) = 0.
(Note that OPT is not randomized, but since the error-functionE depends on the random choices of the

algorithm, this has a direct effect on the performance of OPT.)
We define therelative throughputof algorithm Alg in the adversarial arrival model as follows:

TAlg = inf
A∈A,E∈E

lim
t→∞

ER∈R[TAlg(A,E,R, t)] ,
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whereA is understood as a function ofR andt, andR is a distribution of all possible strings of random
bits used by the algorithm. In the stochastic arrival model the relative throughput needs to take into account
the random distribution of arrival patterns inA (they are not functions now, as they do not depend on the
adversary), and it is defined as follows:

TAlg = inf
E∈E

lim
t→∞

EA∈A,R∈R[TAlg(A,E,R, t)] .

Now, looking at the analyses of the upper bounds for deterministic algorithms with deferred feedback
(Section B) and with instantaneous feedback (under adversarial arrivals, Section 3.1, and stochastic arrivals,
Section 4.1), it is not difficult to see that the derived bounds hold also for randomized algorithms. The main
observation that leads to this conclusion is the following:The adversarial error and arrival patterns defined
in the analyses are reactive, in the sense that the adversarythat controls them does not need to know the
future (and in particular the future random bits of the algorithm ) and makes its decisions only by looking at
the system’s history. In other words, when a given algorithmdecides in a given phase what packet length to
transmit, the adversary reacts adaptively on the specific choice, regardless of whether this choice was done
deterministically or by flipping a coin. This leads to the conclusion that randomized solutions cannot yield
better results (wrt relative throughput) for the considered packet scheduling problem.
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