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Abstract

Despite the hype about blockchains and distributed ledgers, formal abstractions of these
objects are scarce1. To face this issue, in this paper we provide a proper formulation of a
distributed ledger object. In brief, we define a ledger object as a sequence of records, and we
provide the operations and the properties that such an object should support. Implemen-
tation of a ledger object on top of multiple (possibly geographically dispersed) computing
devices gives rise to the distributed ledger object. In contrast to the centralized object, dis-
tribution allows operations to be applied concurrently on the ledger, introducing challenges
on the consistency of the ledger in each participant. We provide the definitions of three
well known consistency guarantees in terms of the operations supported by the ledger object:
(1) atomic consistency (linearizability), (2) sequential consistency, and (3) eventual consistency.
We then provide implementations of distributed ledgers on asynchronous message passing crash-
prone systems using an Atomic Broadcast service, and show that they provide eventual, sequen-
tial or atomic consistency semantics respectively. We conclude with a variation of the ledger
– the validated ledger – which requires that each record in the ledger satisfies a particular
validation rule.

1This observation was also pointed out by Maurice Herlihy in his PODC2017 keynote talk.
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1 Introduction

We are living a huge hype of the so-called crypto-currrencies, and their technological support, the
blockchain [26]. It is claimed that using crypto-currencies and public distributed ledgers (i.e., public
blockchains) will liberate stakeholder owners from centralized trusted authorities [29]. Moreover, it
is believed that there is the opportunity of becoming rich by mining coins, speculating with them,
or even launching your own coin (i.e., with an initial coin offering, ICO).

Cryptocurrencies were first introduced in 2009 by Satoshi Nakamoto [26]. In his paper, Nakamoto
introduced the first algorithm that allowed economic transactions to be accomplished between peers
without the need of a central authority. An initial analysis of the security of the protocol was pre-
sented in [26], although a more formal and thorough analysis was developed by Garay, Kiayias, and
Leonardos in [15]. In that paper the authors define and prove two fundamental properties of the
blockchain implementation behind bitcoin: (i) common-prefix, and (ii) quality of chain.

Although the recent popularity of distributed ledger technology (DLT), or blockchain, is pri-
marily due to the explosive growth of numerous crypocurrencies, there are many applications of
this core technology that are outside the financial industry. These applications arise from lever-
aging various useful features provided by distributed ledgers such as a decentralized information
management, immutable record keeping for possible audit trail, a robust and available system, and
a system that provides security and privacy. For example, one rapidly emerging area of application
of distributed ledger technology is medical and health care. At a high level, the distributed ledger
can be used as a platform to store health care data for sharing, recording, analysis, research, etc.
One of the most widely discussed approaches in adopting DLT is to implement Health Information
Exchange (HIE), for sharing information among the participants such as patients, caregivers and
other relevant parties [21]. Another interesting open-source initiative is Namecoin that uses DLT
to improve the registration and ownership transfer of internet components such as DNS [27]. Re-
cently, in the real estate space there has been some experimental study to use DLT to implement a
transparent and decentralized public ledger for managing land information, where the land registry
serves property rights and historical transactions. Moreover, such an application would benefit
from: (i) time stamping of transactions (a substitute for notarization), (ii) fault-tolerance from
individual component crashes (as the system does not rely on a single centralized system), and
(iii) non tamper-able historical transactions and registry details [32]. Another example is to apply
DLT in the management of scientific research projects to track and manage information such as
publications, funding, and analysis in a publicly available, reproducible and transparent manner [7].

In the light of these works indeed crypto-currencies and (public and private) distributed ledgers2

have the potential to impact our society deeply. However, most experts often do not clearly dif-
ferentiate between the coin, the ledger that supports it, and the service they provide. Instead,
they get very technical, talking about the cryptography involved, the mining used to maintain the
ledger, or the smart contract technology used. Moreover, when asked for details it is often the case
that there is no formal specification of the protocols, algorithms, and service provided, with a few
exceptions [34]. In many cases “the code is the spec.”

From the theoretical point of view there are many fundamental questions with the current
distributed ledger (and crypto-currency) systems that are very often not properly answered: What
is the service that must be provided by a distributed ledger? What properties must a distributed
ledger satisfy? What are the assumptions made by the protocols and algorithms on the underlying

2We will use distributed ledger from now on, instead of blockchain.
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Code 1 Ledger Object L
1: Init: S ← ∅
2: function L.get( )
3: return S
4: function L.append(r)
5: S ← S‖r
6: return

Code 2 Validated Ledger Object VL
1: Init: S ← ∅
2: function VL.get( )
3: return S
4: function VL.append(r)
5: if Valid(S‖r) then
6: S ← S‖r
7: return ack
8: else return nack

system? Does a distributed ledger require a linked crypto-currency? In his PODC 2017 keynote
address, Maurice Herlihy pointed out that, despite the hype about blockchains and distributed
ledgers, no formal abstraction of these objects has been proposed [19]. He stated that there is a
need for the formalization of the distributed systems that are at the heart of most cryptocurrency
implementations, and leverage the decades of experience in the distributed computing community in
formal specification when designing and proving various properties of such systems. In particular, he
noted that the distributed ledger can be formally described by its sequential specification. Then, by
using well-known concurrent objects, like consensus objects, come up with a universal construction
of linearizable distributed ledgers.

In this paper we provide a proper formulation of a family of ledger objects, starting from a
centralized, non-replicated ledger object, and moving to distributed, concurrent implementations
of ledger objects, subject to validation rules. In particular, we provide definitions and sample
implementations for the following types of ledger objects:

• Ledger Object (LO): We begin with a formal definition of a ledger object as a sequence
of records, supporting two basic operations: get and append. In brief, the ledger object is
captured by Code 1 (in which ‖ is the concatenation operator), where the get operation
returns the ledger as a sequence S of records, and the append operation inserts a new record
at the end of the sequence. The sequential specification of the object is then presented, to
explicitly define the expected behavior of the object when accessed sequentially by get and
append operations.

• Distributed Ledger Object (DLO): With the ledger object implemented on top of mul-
tiple (possibly geographically dispersed) computing devices or servers we obtain distributed
ledgers – the main focus of this paper. Distribution allows a (potentially very large) set
of distributed client processes to access the distributed ledger, by issuing get and append
operations concurrently. To explain the behavior of the operations during concurrency we
define three consistency semantics: (i) eventual consistency, (ii) sequential consistency, and
(iii) atomic consistency. The definitions provided are independent of the properties of the
underlying system and the failure model.

• Implementations of DLO: In light of our semantic definitions, we provide a number of
algorithms that implement DLO that satisfy the above mentioned consistency semantics, on
asynchronous message passing crash-prone systems, utilizing an Atomic Broadcast service.

• Validated (Distributed) Ledger Object (V[D]LO): We then provide a variation of the
ledger object – the validated ledger object – which requires that each record in the ledger
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satisfies a particular validation rule, expressed as a predicate Valid(). To this end, the basic
append operation of this type of ledger filters each record through the Valid() predicate before
it is appended to the ledger (see Code 2).

Other related work. A distributed ledger can be used to implement a replicated state ma-
chine [22, 31]. Paxos [24] is one the first proposals of a replicated state machine implemented
with repeated consensus instances. The Practical Byzantine Fault Tolerance solution of Castro
and Liskov [10] is proposed to be used in Byzantine-tolerant blockchains. In fact, it is used by
them to implement an asynchronous replicated state machine [9]. The recent work of Abraham
and Malkhi [2] discusses in depth the relation between BFT protocols and blockchains consensus
protocols. All these suggest that at the heart of implementing a distributed ledger object there
is a version of a consensus mechanism, which directly impacts the efficiency of the implemented
DLO. In a later section, we show that an eventually consistent DLO can be used to implement
consensus, and consensus can be used to implement an eventually consistent DLO; this reinforces
the relationship identified in the above-mentioned works.

Among the proposals for distributed ledgers, Algorand [17] is an algorithm for blockchain that
boasts much higher throughput than Bitcoin and Ethereum. This work is a new resilient optimal
Byzantine consensus algorithm targeting consortium blockchains. To this end, it first revisits the
consensus validity property by requiring that the decided value satisfies a predefined predicate,
which does not systematically exclude a value proposed only by Byzantine processes, thereby gen-
eralizing the validity properties found in the literature. Gramoli et al. [18, 13] propose blockchains
implemented using Byzantine consensus algorithms that also relax the validity property of the
commonly defined consensus problem. In fact, this generalization of the valid consensus values was
already introduced by Cachin et al. [8] as external validity.

On the most recent horizon, Linux Foundation initiated the project Hyperledger [1]. Their
focus is on developing a modular architectural framework for enterprise-class distributed ledgers.
This includes identifying common and critical components, providing a functional decomposition
of an enterprise blockchain stack into component layers and modules, standardizing interfaces
between the components, and ensuring interoperability between ledgers. The project currently
encapsulates five different distributed ledger implementations (with coding names Burrow, Fabric,
Iroha, Sawtooth, and Indy), each targeting a separate goal. It is interesting that Fabric [4], although
quite different from our work since its objective is to provide an open-source software system, does
have some similarities, like the fact that they use an atomic broadcast service, the implementation
of some level of consistency (in fact, eventual consistency), and the fact that it allows the insertion
of invalid transactions in the ledger that are filtered out at a later time (as we do in Section 4).
However, Fabric does not provide means to achieve stronger consistency, like linearizability or
sequential consistency. A number of tools are also under development that will allow interaction
with the distributed ledgers. Of interest is the use of tunable, external consensus algorithms by the
various distributed ledgers.

One of the closest works to ours is the one by Anceaume et al [3], which like our work, attempts
to connect the concept of distributed ledgers with distributed objects, although they concentrate on
Bitcoin. In particular, they first show that read-write registers do not capture Bitcoin’s behavior.
To this end, they introduce the Distributed Ledger Register (DLR), a register that builds on read-
write registers for mimicking the behavior of Bitcoin. In fact, they show the conditions under which
the Bitcoin blockchain algorithm satisfies the DLR properties. Our work, although it shares the
same spirit of formulating and connecting ledgers with concurrent objects (in the spirit of [28]),
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differs in many aspects. For example, our formulation does not focus on a specific blockchain (such
as Bitcoin), but aims to be more general, and beyond crypto-currencies. Hence, for example, instead
of using sequences of blocks (as in [3]) we talk about sequences of records. Furthermore, following
the concurrent object literature, we define the ledger object on new primitives (get and append),
instead on building on multi-writer, multi-reader R/W register primitives. We pay particular
attention on formulating the consistency semantics of the distributed ledger object and demonstrate
their versatility by presenting implementations. Nevertheless, both works, although taking different
approaches, contribute to the better understanding of the basic underlying principles of distributed
ledgers from the theoretical distributed computing point of view.

2 The Ledger Object

In this section we provide the fundamental definition of a concurrent ledger object.

2.1 Concurrent Objects and the Ledger Object

An object type T specifies (i) the set of values (or states) that any object O of type T can take,
and (ii) the set of operations that a process can use to modify or access the value of O. An object
O of type T is a concurrent object if it is a shared object accessed by multiple processes [30]. Each
operation on an object O consists of an invocation event and a response event, that must occur in
this order. A history of operations on O, denoted by HO , is a sequence of invocation and response
events, starting with an invocation event. (The sequence order of a history reflects the real time
ordering of the events.) An operation π is complete in a history HO , if HO contains both the
invocation and the matching response of π, in this order. A history HO is complete if it contains
only complete operations; otherwise it is partial [30]. An operation π1 precedes an operation π2
(or π2 succeeds π1), denoted by π1 → π2, in HO , if the response event of π1 appears before the
invocation event of π2 in HO . Two operations are concurrent if none precedes the other.

A complete history HO is sequential if it contains no concurrent operations, i.e., it is an al-
ternating sequence of matching invocation and response events, starting with an invocation and
ending with a response event. A partial history is sequential, if removing its last event (that must
be an invocation) makes it a complete sequential history. A sequential specification of an object O
describes the behavior of O when accessed sequentially. In particular, the sequential specification
of O is the set of all possible sequential histories involving solely object O [30].

A ledger L is a concurrent object that stores a totally ordered sequence L.S of records and
supports two operations (available to any process p): (i) L.getp(), and (ii) L.appendp(r). A record
is a triple r = 〈τ, p, v〉, where τ is a unique record identifier from a set T , p ∈ P is the identifier of
the process that created record r, and v is the data of the record drawn from an alphabet A. We
will use r.p to denote the id of the process that created record r; similarly we define r.τ and r.v. A
process p invokes an L.getp() operation3 to obtain the sequence L.S of records stored in the ledger
object L, and p invokes an L.appendp(r) operation to extend L.S with a new record r. Initially,
the sequence L.S is empty.

3We define only one operation to access the value of the ledger for simplicity. In practice, other operations, like
those to access individual records in the sequence, will also be available.
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process i process j

(c, Append, r)
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(c, Get)

Distributed Ledger
server server

server

Figure 1: The interaction between processes and the ledger, where r, r1, r2, . . . are records.
Left: General abstraction; Right: Distributed ledger implemented by servers

Definition 1. The sequential specification of a ledger L over the sequential history HL is defined
as follows. The value of the sequence L.S of the ledger is initially the empty sequence. If at the
invocation event of an operation π in HL the value of the sequence in ledger L is L.S = V , then:

1. if π is an L.getp() operation, then the response event of π returns V , and

2. if π is an L.appendp(r) operation, then at the response event of π, the value of the sequence
in ledger L is L.S = V ‖r (where ‖ is the concatenation operator).

2.2 Implementation of Ledgers

Processes execute operations and instructions sequentially (i.e., we make the usual well-formedess
assumption where a process invokes one operation at a time). A process p interacts with a ledger
L by invoking an operation (L.getp() or L.appendp(r)), which causes a request to be sent to the
ledger L, and a response to be sent from L to p. The response marks the end of an operation and
also carries the result of that operation4. The result for a get operation is a sequence of records,
while the result for an append operation is a confirmation (ack). This interaction from the point
of view of the process p is depicted in Code 3. A possible centralized implementation of the ledger
that processes requests sequentially is presented in Code 4 (each block receive is assumed to be
executed in mutual exclusion). Figure 1(left) abstracts the interaction between the processes and
the ledger.

3 Distributed Ledger Objects

In this section we define distributed ledger objects, and some of the levels of consistency guar-
antees that can be provided. These definitions are general and do not rely on the properties of
the underlying distributed system, unless otherwise stated. In particular, they do not make any
assumption on the types of failures that may occur. Then, we show how to implement distributed
ledger objects that satisfy these consistency levels using an atomic broadcast [14] service on an
asynchronous system with crash failures.

4We make explicit the exchange of request and responses between the process and the ledger to reveal the fact
that the ledger is concurrent, i.e., accessed by several processes.
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Code 3 External Interface (Executed by a Process
p) of a Ledger Object L
1: function L.get( )
2: send request (get) to ledger L
3: wait response (getRes, V ) from L
4: return V
5: function L.append(r)
6: send request (append, r) to ledger L
7: wait response (appendRes, res) from L
8: return res

Code 4 Ledger L (centralized)

1: Init: S ← ∅
2: receive (get) from process p
3: send response (getRes, S) to p

4: receive (append, r) from process p
5: S ← S‖r
6: send resp (appendRes, ack) to p

3.1 Distributed Ledgers and Consistency

3.1.1 Distributed Ledgers

A distributed ledger object (distributed ledger for short) is a concurrent ledger object that is imple-
mented in a distributed manner. In particular, the ledger object is implemented by (and possibly
replicated among) a set of (possibly distinct and geographically dispersed) computing devices, that
we refer as servers. We refer to the processes that invoke the get() and append() operations of the
distributed ledger as clients. Figure 1(right) depicts the interaction between the clients and the
distributed ledger, implemented by servers.

In general, servers can fail. This leads to introducing mechanisms in the algorithm that im-
plements the distributed ledger to achieve fault tolerance, like replicating the ledger. Additionally,
the interaction of the clients with the servers will have to take into account the faulty nature of
individual servers, as we discuss later in the section.

3.1.2 Consistency of Distributed Ledgers

Distribution and replication intend to ensure availability and survivability of the ledger, in case a
subset of the servers fails. At the same time, they raise the challenge of maintaining consistency
among the different views that different clients get of the distributed ledger: what is the latest value
of the ledger when multiple clients may send operation requests at different servers concurrently?
Consistency semantics need to be in place to precisely describe the allowed values that a get()
operation may return when it is executed concurrently with other get() or append() operations.
Here, as examples, we provide the properties that operations must satisfy in order to guarantee
atomic consistency (linearizability) [20], sequential consistency [23] and eventual consistency [16]
semantics. In a similar way, other consistency guarantees, such as session and causal consistencies
could be formally defined [16].

Atomicity (aka, linearizability) [6, 20] provides the illusion that the distributed ledger is accessed
sequentially respecting the real time order, even when operations are invoked concurrently. I.e., the
distributed ledger seems to be a centralized ledger like the one implemented by Code 4. Formally 5,

Definition 2. A distributed ledger L is atomic if, given any complete history HL, there exists a
permutation σ of the operations in HL such that:

1. σ follows the sequential specification of L, and

5Our formal definitions of linearizability and sequential consistency are adapted from [6].
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2. for every pair of operations π1, π2, if π1 → π2 in HL, then π1 appears before π2 in σ.

Sequential consistency [23, 6] is weaker than atomicity in the sense that it only requires that
operations respect the local ordering at each process, not the real time ordering. Formally,

Definition 3. A distributed ledger L is sequentially consistent if, given any complete history HL,
there exists a permutation σ of the operations in HL such that:

1. σ follows the sequential specification of L, and

2. for every pair of operations π1, π2 invoked by a process p, if π1 → π2 in HL, then π1 appears
before π2 in σ.

Let us finally give a definition of eventually consistent distributed ledgers. Informally speaking, a
distributed ledger is eventual consistent, if for every append(r) operation that completes, eventually
all get() operations return sequences that contain record r, and in the same position. Formally,

Definition 4. A distributed ledger L is eventually consistent if, given any complete history HL,
there exists a permutation σ of the operations in HL such that:

(a) σ follows the sequential specification of L, and

(b) there exists a complete history H ′
L that extends6 HL such that, for every complete history

H ′′
L that extends H ′

L, every complete operation L.get() in H ′′
L \ H ′

L returns a sequence that
contains r, for all L.append(r) ∈ HL.

Remark: Observe that in the above definitions we consider HL to be complete. As argued in [30],
the definitions can be extended to sequences that are not complete by reducing the problem of
determining whether a complete sequence extracted by the non complete one is consistent. That
is, given a partial history HL, if HL can be modified in such a way that every invocation of a
non complete operation is either removed or completed with a response event, and the resulting,
complete, sequence H ′

L checks for consistency, then HL also checks for consistency.

3.2 Distributed Ledger Implementations in a System with Crash Failures

In this section we provide implementations of distributed ledgers with different levels of consistency
in an asynchronous distributed system with crash failures, as a mean of illustrating the generality
and versatility of our ledger formulation. These implementations build on a generic deterministic
atomic broadcast service [14].

3.2.1 Distributed Setting

We consider an asynchronous message-passing distributed system augmented with an atomic broad-
cast service. There is an unbounded number of clients accessing the distributed ledger. There is
a set S of n servers, that emulate a ledger (c.f., Code 4) in a distributed manner. Both clients
and servers might fail by crashing. However, no more than f < n of servers might crash7. Pro-
cesses (clients and servers) interact by message passing communication over asynchronous reliable
channels.

6A sequence X extends a sequence Y when Y is a prefix of X.
7The atomic broadcast service (cf. Section 3.2.2) used in the algorithms may internally have more restrictive

requirements.
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Code 5 External Interface of a Distributed Ledger Object L Executed by a Process p

1: c← 0
2: Let L ⊆ S : |L| ≥ f + 1
3: function L.get( )
4: c← c+ 1
5: send request (c, get) to the servers in L
6: wait response (c, getRes, V ) from some

i ∈ L
7: return V

8: function L.append(r)
9: c← c+ 1

10: send request (c, append, r) to the servers in
L

11: wait response (c, appendRes, res) from
some i ∈ L

12: return res

We assume that clients are aware of the faulty nature of servers and know (an upper bound
on) the maximum number of faulty servers f . Hence, we assume they use a modified version of the
interface presented in Code 3 to deal with server unreliability. The new interface is presented in
Code 5. As can be seen there, every operation request is sent to a set L of at least f + 1 servers, to
guarantee that at least one correct server receives and processes the request (if an upper bound on
f is not known, then the clients contact all servers). Moreover, at least one such correct server will
send a response which guarantees the termination of the operations. For formalization purposes,
the first response received for an operation will be considered as the response event of the operation.
In order to differentiate from different responses, all operations (and their requests and responses)
are uniquely numbered with counter c, so duplicated responses will be identified and ignored (i.e.,
only the first one will be processed by the client).

In the remainder of the section we focus on providing the code run by the servers, i.e., the
distributed ledger emulation. The servers will take into account Code 5, and in particular the fact
that clients send the same request to multiple servers. This is important, for instance, to make
sure that the same record r is not included in the sequence of records of the ledger multiple times.
As already mentioned, our algorithms will use as a building block an atomic broadcast service.
Consequently, our algorithms’ correctness depends on the modeling assumptions of the specific
atomic broadcast implementation used. We now give the guarantees that our atomic broadcast
service need to provide.

3.2.2 Atomic Broadcast Service

The Atomic Broadcast service (aka, total order broadcast service) [14] has two operations: ABroadcast(m)
used by a server to broadcast a message m to all servers s ∈ S, and ADeliver(m) used by the atomic
broadcast service to deliver a message m to a server. The following properties are guaranteed
(adopted from [14]):

• Validity : if a correct server broadcasts a message, then it will eventually deliver it.

• Uniform Agreement : if a server delivers a message, then all correct servers will eventually
deliver that message.

• Uniform Integrity : a message is delivered by each server at most once, and only if it was
previously broadcast.

• Uniform Total Order : the messages are totally ordered; that is, if any server delivers message
m before message m′, then every server that delivers them, must do it in that order.
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Code 6 Eventually Consistent Distributed Ledger L;
Code for Server i ∈ S
1: Init: Si ← ∅
2: receive (c, get) from process p
3: send response (c, getRes, Si) to p

4: receive (c, append, r) from process p
5: ABroadcast(r)
6: send response (c, appendRes, ack) to p

7: upon (ADeliver(r)) do
8: if r /∈ Si then Si ← Si‖r

Code 7 Consensus Algorithm Using an Eventually
Consistent Ledger L
1: function propose(v)
2: L.append(v)
3: Vi ← L.get()
4: while Vi = ∅ do
5: Vi ← L.get()
6: decide the first value in Vi

Note that the Atomic Broadcast service requires at least a majority of servers not to crash (i.e.,
f < n/2).

3.2.3 Eventual Consistency and Relation with Consensus

We now use the Atomic Broadcast service to implement distributed ledgers in our set of servers S
guaranteeing different consistency semantics. We start by showing that the algorithm presented in
Code 6 implements an eventually consistent ledger, as specified in Definition 4.

Lemma 1. The combination of the algorithms presented in Code 5 and Code 6 implements an
eventually consistent distributed ledger.

Proof. The lemma follows from the properties of atomic broadcast. Considering any complete
history HL, the permutation σ that follows the sequential specification can be defined as follows.
The L.append(r) operations are sorted in σ in the order the atomic broadcast service delivers the
first copy of the corresponding records r (which is the same for all servers that receive them).
(Observe that any later delivery of r is discarded.) Then, consider any π = L.get() operation. Let
V be the sequence returned by π and r the last record in V . Then, π is placed in σ after the
operation L.append(r) and before the next append operation in σ. If V is empty, then π is placed
before any append operation. The get operations are sorted randomly between append operations.
The algorithm in Code 6 guarantees that this permutation σ follows the sequential specification.

Now, let us now consider an L.append(r) operation in HL, which by definition is completed.
From Code 5 at least one correct server i received the request (c,append, r). Then, from Code 6,
server i invoked ABroadcast(r). By validity, the record r is delivered to server i. Then, by uniform
agreement and uniform total order properties, all the correct servers receive the first copy of r in
the same order, and hence all add r in the same position in their local sequences. Any later delivery
of r to a server j is discarded (since r is already in the sequence) so r appears only once in the
server sequences. Hence, after r is included in the sequences of all correct servers and all faulty
servers have crashed, all get operations return sequences that contain r.

Let us now explore the power of any eventually consistent distributed ledger. It is known that
atomic broadcast is equivalent to consensus in a crash-prone system like the one considered here
[11]. Then, the algorithm presented in Code 6 can be implemented as soon as a consensus object
is available. What we show now is that a distributed ledger that provides the eventual consistency
can be used to solve the consensus problem, defined as follows.
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Code 8 Atomic Distributed Ledger; Code for Server i

1: Init: Si ← ∅; get pendingi ← ∅; pendingi ← ∅
2: receive (c, get) from process p
3: ABroadcast(get, p, c)
4: add (p, c) to get pendingi

5: upon (ADeliver(get, p, c)) do
6: if (p, c) ∈ get pendingi then
7: send response (c, getRes, Si) to

p
8: remove (p, c) from get pendingi

9: receive (c, append, r) from process p
10: ABroadcast(append, r)
11: add (c, r) to pendingi

12: upon (ADeliver(append, r)) do
13: if r /∈ Si then
14: Si ← Si‖r
15: if ∃(c, r) ∈ pendingi then
16: send response (c, appendRes, ack) to

r.p

17: remove (c, r) from pendingi

Consensus Problem: Consider a system with at least one non-faulty process and in which each
process pi proposes a value vi from the set V (calling a propose(vi) function), and then decides
a value oi ∈ V , called the decision. Any decision is irreversible, and the following conditions are
satisfied: (i) Agreement : All decision values are identical. (ii) Validity: If all calls to the propose
function that occur contain the same value v, then v is the only possible decision value. and (iii)
Termination: In any fair execution every non-faulty process decides a value.

Lemma 2. The algorithm presented in Code 7 solves the consensus problem if the ledger L guar-
antees eventual consistency.

Proof. A correct process p that invokes proposep(v) will complete its L.appendp(v) operation. By
eventual consistency, some L.getp() will eventually return a non-empty sequence. Condition (a)
of Definition 4 guarantees that, given any two sequences returned by L.get() operations, one is
a prefix of the other, hence guaranteeing agreement. Finally, from the same condition, the se-
quences returned by L.get() operations can only contain values appended with L.appendp(v), hence
guaranteeing validity.

Combining the above arguments and lemmas we have the following theorem.

Theorem 1. Consensus and eventually consistent distributed ledgers are equivalent in a crash-
prone distributed system.

3.2.4 Atomic Consistency

Observe that the eventual consistent implementation does not guarantee that record r has been
added to the ledger before a response AppendRes is received by the client p issuing the append(r).
This may lead to situations in which a client may complete an append() operation, and a succeeding
get() may not contain the appended record. This behavior is also apparent in Definition 4, that
allows any get() operation, that is invoked and completed in H ′

L, to return a sequence that does
not include a record r which was appended by an append(r) operation that appears in HL.

An atomic distributed ledger avoids this problem and requires that a record r appended by an
append(r) operation, is received by any succeeding get() operation, even if the two operations were
invoked at different processes. Code 8 describes the algorithm at the servers in order to implement
an atomic consistent distributed ledger. The algorithm of each client is depicted from Code 5. This
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algorithm resembles approaches used in [33] for implementing arbitrary objects, and [25, 12, 5]
for implementing consistent read/write objects. Briefly, when a server receives a get or an append
request, it adds the request in a pending set and atomically broadcasts the request to all other
servers. When an append or get message is delivered, then the server replies to the requesting
process (if it did not reply yet).

Theorem 2. The combination of the algorithms presented in Codes 5 and 8 implements an atomic
distributed ledger.

Proof. To show that atomic consistency is preserved, we need to prove that our algorithm satisfies
the properties presented in Definition 2. The underlying atomic broadcast defines the order of
events when operations are concurrent. It remains to show that operations that are separate in
time can be ordered with respect to their real time ordering. The following properties capture the
necessary conditions that must be satisfied by non-concurrent operations that appear in a history
HL:

A1 if appendp1(r1) → appendp2(r2) from processes p1 and p2, then r1 must appear before r2 in
any sequence returned by the ledger

A2 if appendp1(r1)→ getp2(), then r1 appears in the sequence returned by getp2()

A3 if π1 and π2 are two get() operations from p1 and p2, s.t. π1 → π2, that return sequences S1
and S2 respectively, then S1 must be a prefix of S2

A4 if getp1()→ appendp2(r2), then p1 returns a sequence S1 that does not contain r2

Property A1 is preserved from the fact that record r1 is atomically broadcasted and delivered
before r2 is broadcasted among the servers. In particular, let p1 be the process that invokes
π1 = appendp1(r1), and p2 the process that invokes π2 = appendp2(r2) (p1 and p2 may be the same
process). Since π1 → π2, then p1 receives a response to the π1 operation, before p2 invokes the π2
operation. Let server s be the first to respond to p1 for π1. Server s sends a response only if the
procedure ADeliver(append, r1) occurs at s. This means that the atomic broadcast service delivers
(append, r1) to s. Since π1 → π2 then no server received the append request for π2, and thus
r2 was not broadcasted before the ADeliver(append, r1) at s. Hence, by the Uniform Total Order
of the atomic broadcast, every server delivers (append, r1) before delivering (append, r2). Thus,
the ADeliver(append, r2) occurs in any server s′ after the appearance of ADeliver(append, r1) at s′.
Therefore, if s′ is the first server to reply to p2 for π2, it must be the case that s′ added r1 in his
ledger sequence before adding r2.

In similar manner we can show that property A2 is also satisfied. In particular let processes p1
and p2 (not necessarily different), invoke operations π1 = appendp1(r1) and π2 = getp2(), s.t.
π1 → π2. Since π1 completes before π2 is invoked then there exists some server s in which
ADeliver(append, r1) occurs before responding to p1. Also, since the get request from p2 is sent,
after π1 has completed, then it follows that is sent after ADeliver(append, r1) occured in s. There-
fore, (get, p2, c) is broadcasted after ADeliver(append, r1) as well. Hence by Uniform Total Order
atomic broadcast, every server delivers (append, r1) before delivering (get, p2, c). So if s′ is the first
server to reply to p2, it must be the case that s′ received (append, r1) before receiving (get, p2, c)
and hence replies with an Si to p2 that contains r1.

The proof of property A3 is slightly different. Let π1 = getp1() and π2 = getp2(), s.t. π1 → π2.
Since π1 completes before π2 is invoked then the (get, p1, c1) must be delivered to at least a server
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Code 9 Sequentially Consistent Distributed Ledger;
Code for Server i
1: Init: Si ← ∅; pendingi ← ∅; get pendingi ← ∅
2: receive (c, get, `) from process p
3: if |Si| ≥ ` then
4: send response (c, getRes, Si) to p
5: else
6: add (c, p, `) to get pendingi

7: receive (c, append, r) from process p
8: ABroadcast(c, r)
9: add (c, r) to pendingi

10: upon (ADeliver(c, r)) do
11: if r /∈ Si then Si ← Si‖r
12: if (c, r) ∈ pendingi then
13: send resp. (c, appendRes, ack, |Si|) to

r.p
14: remove (c, r) from pendingi

15: if ∃(c′, p, `) ∈ get pendingi : |Si| ≥ ` then
16: send response (c′, getRes, Si) to p
17: remove (c′, p, `) from get pendingi

Code 10 External Interface for Sequential Consis-
tency Executed by a Process p

1: c← 0; `last ← 0
2: Let L ⊆ S : |L| ≥ f + 1
3: function L.get( )
4: c← c+ 1
5: send request (c, get, `last) to the servers in

L
6: wait response (c, getRes, V ) from some

i ∈ L
7: `last ← |V |
8: return V
9: function L.append(r)

10: c← c+ 1
11: send request (c, append, r) to the servers in

L
12: wait response (c, appendRes, res, pos) from

some i ∈ L
13: `last ← pos
14: return res

s that responds to p1, before the invocation of π2, and thus the broadcast of (get, p2, c2). By
Uniform Total Order again, all servers deliver (get, p1, c1) before delivering (get, p2, c2). Let S1
be the sequence sent by s to p1. Notice that S1 contains all the records r such that (append, r)
delivered to s before the delivery of (get, p1, c1) to s. Thus, for every r in S1, ADeliver(append, r)
occurs in s before ADeliver(get, p1, c). Let s′ be the first server that responds for π2. By Uniform
Agreement, since s′ has not crashed before responding to p2, then every r in S1 that was delivered
in s, was also delivered in s′. Also, by Uniform Total Order, it must be the case that all records
in S1 will be delivered to s′ in the same order that have been delivered to s. Furthermore all the
records will be delivered to s′ before the delivery of (get, p1, c1). Thus, all records are delivered at
server s′ before (get, p2, c2) as well, and hence the sequence S2 sent by s′ to p2 is a suffix of S1.

Finally, if getp1()→ appendp2(r2) as in property A4, then trivially p1 cannot return r2, since it
has not yet been broadcasted (Uniform Integrity of the atomic broadcast).

3.2.5 Sequential Consistency

An atomic distributed ledger also satisfies sequential consistency. As sequential consistency is
weaker than atomic consistency, one may wonder whether a sequentially consistent ledger can be
implemented in a simpler way.

We propose here an implementation, depicted in Code 9, that avoids the atomic broadcast of the
get requests. Instead, it applies some changes to the client code to achieve sequential consistency, as
presented in Code 10. This implementation provides both sequential (cf. Definition 3) and eventual
consistency (cf. Definition 4) and is reminiscent to algorithms presented for registers, stacks, and
queues in [6, 5].

Theorem 3. The combination of the algorithms presented in Code 9 and Code 10 implements a
sequentially consistent distributed ledger.
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Proof. Sequential consistency is preserved if we can show that in any history HL, the following
properties are satisfied for any process p :

S1 if appendp(r1)→ appendp(r2) then r1 must appear before r2 in the sequence of the ledger.

S2 if π = getp()→ appendp(r1), then π returns a sequence Vp that does not contain r1

S3 if appendp(r1)→ getp() = π, then π returns a sequence Vp that contains r1

S4 if π1 and π2 are two getp() operations, s.t. π1 → π2, that return sequences V1 and V2
respectively, then V1 must be a prefix of V2.

Property S1 is preserved as p waits for a response to the appendp(r1) operation before invoking
the appendp(r2) operation. Let server s be the first to respond to the appendp(r1). Server s sends
a response only if (c1, r1) is delivered at s. Since r2 was not broadcasted before the ADeliver(c1, r1)
at s then by the Uniform Total Order of the atomic broadcast, every server will receive r1 before
receiving r2. Thus, the ADeliver(c2, r2) occurs in a server s′ after the appearance of ADeliver(c1, r1).
Hence, if s′ is the first server to reply to p for appendp(r2), it must be the case that s′ added r1 in
his ledger sequence before adding r2.

Property S2 is also preserved because p waits for getp() to complete before invoking appendp(r1).
Since r1 is broadcasted to the servers after getp() is completed, then by Uniform Integrity, it is
impossible that record r1 was included in the sequence returned by the getp() operation.

Property S3 holds given that a server responds to the get operation of p only if its local sequence
is longer than the position where the last record r of p was appended. In particular, from Code 10,
the appendp(r) operation completes if a server s delivers the (c, r) message and responds to p.
Within the response, s encloses the length ` of his local sequence once appended with r. When p
invokes the getp() operation, it encloses ` within its get request. Let s′ be the first server that
replies to the getp() with a sequence Vs′ . From Code 9, it follows that s′ responds to p only when
|Vs′ | ≥ `. By the Uniform Total Order it follows that all record messages are delivered in the same
order in every server (including s′). Hence, if r was appended at location ` in s, then r appears in
position ` in the sequence of s′ as well. Since |Vs′ | ≥ ` then it must be the case that Vs′ contains r
at position `. So getp() returns a sequence that contains r as needed.

Similarly, Property S4 holds as a get operation stores the length of the obtained sequence and
the next get from the same process passes this length along with its Get request. With similar
reasoning as in the proof of property S3, if π1 and π2 are two getp() operations from the same
process p, s.t. π1 → π2, and return V1 and V2 respectively, then it must be the case that |V1| ≤ |V2|.
From the Uniform Total Order the appends are received in the same order in every server, and
hence V1 is a prefix of V2.

Hence, the only pending issue is to prove that the wait instruction in Line 6 of Code 10 will
eventually terminate. This means that some server in L must return a sequence V that is longer
or equal to the latest sequence, say with length `, received at p. There are two cases to consider:
(i) either p received ` as a result of an append operation, or (ii) p received a sequence with length
` as a result of a get operation. Let server s be the one to respond to p with a length ` or with
a sequence of length `. It follows that ` records are delivered to s. By Uniform Agreement, these
records will be delivered to all correct processes. Since there will be at least a single server s′ to be
correct at any getp() operation of p, then s′ will eventually receive all the records and will respond
to p.
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Code 11 Validated Ledger VL (centralized)

1: Init: S ← ∅
2: receive (get) from process p
3: send response (getRes, S) to p

4: receive (append, r) from process p
5: if Valid(S‖r) then
6: S ← S‖r
7: send response (appendRes, ack) to p
8: else send response (appendRes, nack) to

p

Code 12 Validated Ledger VL Implemented with a
Ledger L
1: Declare L: ledger
2: receive (get) from process p
3: S ← ∅
4: V ← L.get()
5: foreach record r ∈ V do
6: If Valid(S‖r) then S ← S‖r
7: send response (getRes, S) to p

8: receive (append, r) from process p
9: res ← L.append(r)

10: send response (appendRes, res) to p

4 Validated Ledgers

A validated ledger VL is a ledger in which specific semantics are imposed on the contents of the
records stored in the ledger. For instance, if the records are (bitcoin-like) financial transactions, the
semantics should, for example, prevent double spending, or apply other transaction validation used
as part of the Bitcoin protocol [26]. The ledger preserves the semantics with a validity check in
the form of a Boolean function Valid() that takes as an input a sequence of records S and returns
true if and only if the semantics are preserved. In a validated ledger the result of an appendp(r)
operation may be nack if the validity check fails. Code 11 presents a centralized implementation
of a validated ledger VL. The Valid() function is similar to the one used to check validity in [13]
or the external validity in [8], but these latter are used in the consensus algorithm to prevent an
invalid value to be decided. In Code 11 an invalid record is locally detected and discarded.

The sequential specification of a validated ledger must take into account the possibility that an
append returns nack. To this respect, property (2) of Definition 1 must be revised as follows:

Definition 5. The sequential specification of a validated ledger VL over the sequential history
HVL is defined as follows. The value of the sequence VL.S is initially the empty sequence. If at
the invocation event of an operation π in HVL the value of the sequence in ledger VL is VL.S = V ,
then:

1. if π is a VL.getp() operation, then the response event of π returns V ,

2(a). if π is an VL.appendp(r) operation that returns ack, then Valid(V ‖r) = true and at
the response event of π, the value of the sequence in ledger VL is VL.S = V ‖r, and

2(b). if π is a VL.appendp(r) operation that returns nack, then Valid(V ‖r) = false and at
the response event of π, the value of the sequence in ledger VL is VL.S = V .

Based on this revised notion of sequential specification, one can define the eventual, sequential
and atomic consistent validated distributed ledger and design implementations in a similar manner
as in Section 3.

It is interesting to observe that a validated ledger VL can be implemented with a regular
ledger L if we are willing to waste some resources and accuracy (e.g., not rejecting invalid records).
Figure 2 illustrates this modular implementation of a validated ledger on top of a regular ledger.
In particular, processes can use a ledger L to store all the records appended, even if they make the
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Ledger

process i process j

(Append, r)

(AppendRes, ACK) (GetRes, 〈r1,r2,…〉)

(Get)

Validated Ledger

Figure 2: Modular implementation of a validated ledger, where r, r1, r2, . . . are records.

validity to be broken. Then, when the function get() is invoked, the records that make the validity
to be violated are removed, and only the valid records are returned. The algorithm is presented in
Code 12. This algorithm does not check validity in a π = append(r) operation, which hence always
returns ack, because it is not possible to know when π is processed the final position r will take in
the ledger (and hence to check its validity). Interestingly, as mentioned above, a similar approach
has been used in Hyperledger Fabric [4] for the same reason.

5 Conclusions

In this paper we formally define the concept of a distributed ledger object with and without valida-
tion. We have focused on the definition of the basic operational properties that a distributed ledger
must satisfy, and their consistency semantics, independently of the underlying system characteris-
tics and the failure model. Finally, we have explored implementations of fault-tolerant distributed
ledger objects with different types of consistency in crash-prone systems augmented with an atomic
broadcast service. Comparing the distributed ledger object and its consistency models with pop-
ular existing blockchain implementations, like Bitcoin or Ethereum, we must note that these do
not satisfy even eventual consistency. Observe that their blockchain may (temporarily) fork, and
hence two clients may see (with an operation analogous to our get) two conflicting sequences, in
which neither one is a prefix of the other. This violates the sequential specification of the ledger.
The main issue with these blockchains is that they use probabilistic consensus, with a recovery
mechanism when it fails.

As mentioned, this paper is only an attempt to formally address the many questions that were
posed in the introduction. In that sense we have only scratched the surface. There is a large
list of pending issues that can be explored. For instance, we believe that the implementations we
have can be adapted to deal with Byzantine failures if the appropriate atomic broadcast service
is used. However, dealing with Byzantine failures will require the use of cryptographic tools.
Cryptography was not needed in the implementations presented in this paper because we assumed
benign crash failures. Another extension worth exploring is how to deal with highly dynamic sets of
possibly anonymous servers in order to implement distributed ledgers, to get closer to the Bitcoin-
like ecosystem. In a more ambitious but possibly related tone, we would like to fully explore the
properties of validated ledgers and their relation with cryptocurrencies.
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