
CoVer-ability: Consistent Versioning in
Asynchronous, Fail-Prone, Message-Passing

Environments
Nicolas Nicolaou∗, Antonio Fernández Anta∗, Chryssis Georgiou†

∗ IMDEA Networks Institute, Madrid, Spain, nicolas.nicolaou@imdea.org,antonio.fernandez@imdea.org
† Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus, chryssis@cs.ucy.ac.cy

Abstract—An object type characterizes the domain space and
the operations that can be invoked on an object of that type. In
this paper we introduce a new property for concurrent objects,
we call coverability, that aims to provide precise guarantees on the
consistent evolution of the version (and thus value) of an object.
This new property is suitable for a variety of distributed objects,
including concurrent file objects, that demand operations to
manipulate the latest version of the object. To preserve the order
of versions, traditional approaches use locking, compare-and-
swap (CAS), or linked-load/conditional-store (LL/SC) primitives
to allow a single modification at a time on such objects. Such
primitives however can be used to solve consensus, and thus
are impossible to be implemented in an asynchronous, message-
passing environment with failures.

Coverability, relaxes the strong requirements imposed by
stronger primitives, and allows us to define and implement
consistent versioning in the aforementioned adversarial envi-
ronment. In particular, coverability allows multiple operations
to modify the same version of an object concurrently, leading
to a set of different versions. Given an order of operations,
coverability properties specify a single version in that set that
any subsequent operation may modify, preserving this way the
consistent evolution of the object. We first define versioned
objects and then provide the specification of coverability. We then
combine coverability with atomic guarantees to yield coverable
atomic read/write registers; we show that coverable registers
cannot be implemented by similar types of registers, such as
ranked-registers. Next, we show how coverable registers may be
implemented by modifying an existing MWMR atomic register
implementation, and we continue by showing that coverable
registers may be used to implement basic (weak) read-modify-
write and file objects.

I. INTRODUCTION

Motivation and Prior Work. A concurrent system allows
multiple processes to interact with a single object at the
same time. A long string of research work [2], [6], [15]–
[17] has been dedicated to explain the behavior of concurrent
objects, defining the order and the outcomes of operations
when those are invoked concurrently on the object. Lamport
in [16], [17] presented three different incremental semantics,

This work is supported in part by FP7-PEOPLE-2013-IEF grant
ATOMICDFS No:629088, Ministerio de Economia y Competitividad
grant TEC2014- 55713-R, Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894, co- funded by FSE & FEDER), NSF of
China grant 61520106005.

safety, regularity, and atomicity that characterize the behavior
of read/write objects (registers) when those are modified or
read concurrently by multiple processes. The strongest, and
most difficult to provide in a distributed system, is atomicity
which provides the illusion that the register is accessed se-
quentially. Herlihy and Wing presented linearizability in [15],
an extension of atomicity to general concurrent objects. More
recent developments have proposed abortable operations in the
event of concurrency [2], and ranked registers [6] that allow
operations to abort in case a higher “ranked” operation was
previously or concurrently executed in the system.

Although consistency semantics strictly specify the “place-
ment” of events on an execution trace based on their timing
characteristics, in many cases they are oblivious of the state
of the object at the point when an event takes effect. For
example, a write operation ω on a read/write register is ordered
after all the writes that completed before ω, irrespective to the
value that ω writes on the register. With the advent of cloud
computing, emerging families of more complex concurrent
objects, like files, distributed databases, and bulleting boards,
demand precise guarantees on the consistent evolution of the
object. For example, in concurrent file objects one would
expect that if a write operation ω2 is invoked after a write
operation ω1 is completed, then ω2 modifies either the version
of the file written by ω1 or a version of the file newer than
the one written by ω1. Such guarantees are easy to achieve
in systems that readily provide atomic compare-and-swap
(CAS), or linked-load/conditional-store (LL/SC) operations.
Such primitives allow modify operations to atomically obtain
the current version and value of an object, modify both, and
store the new version along with the new value of the object.
As shown by Herlihy in [14], CAS can be used to solve
consensus as it has a consensus number infinite. However, as
shown by Fischer, Lynch and Paterson [11], solving consensus
in an asynchronous, message-passing, fail-prone environment
is impossible in the existence of a single crash failure. So
the main question we will try to address is: Can we provide
versioning guarantees in an asynchronous, message-passing,
fail-prone environment using weaker primitives, like read/write
registers?

A seminal work by Attiya, Bar Noy and Dolev [3],
demonstrated that it is possible to introduce atomic read/write978-1-5090-3216-7/16/$31.00 c©2016 IEEE

registers in an asynchronous, message-passing environment
where processes may fail. As noted before, in existing atomic
read/write register implementations, write operations are al-
lowed to modify the value of the register, even when they are
unaware of the value written by the latest preceding write
operation. In systems that assume a single writer [3], [8],
[12], [13], the problem may be diminished by having the sole
writer compute the next value to be written in relation to the
previous values it wrote. The problem becomes more apparent
when multiple writers may alter the value of a single register
concurrently [9], [20]. In such cases, atomic read/write reg-
ister implementations appear unsuitable to directly implement
objects that demand evolution guarantees. Closer candidates to
build such objects are the bounded [4] and ranked [6] registers.
These objects take into account the “rank” or sequence number
of previous operations to decide whether to allow a read/write
operation to commit or abort. These approaches do not prevent,
however, the use of an arbitrarily higher rank, and thus an
arbitrarily higher version, than the previous operations. This
affects the consistent evolution of the object, as intermediate
versions of the object maybe ignored.
Contributions. In this paper we propose a formalism to extend
a concurrent object in such a way that the evolution of its
state satisfies certain guarantees. To this end, we extend an
object state with a version, and introduce the concept of
coverability, that defines how the versions of an object can
evolve (Section III).

In particular, we first introduce a new class of a concurrent
read/write register type, which we call versioned register. A
concurrent register is of a versioned type if the state of the
register, and any operation (read or write) that attempts to
modify the state of the register, are associated with a version.
An operation may modify the state and the version of the
register, or it may just retrieve its state-version pair.

Coverability defines the exact guarantees that a versioned
register provides when it is accessed concurrently by multi-
ple processes with respect to the evolution of its versions.
Coverability allows multiple operations to change a version,
generating in this way a tree with possibly multiple version
branches that can grow in parallel. This shares similarities
with fork linearizability presented in [21]. However, in contrast
to [21], coverability allows processes that change the same
version of the object to see the changes of each other in
subsequent operations. In particular, by coverability, when all
the operations that extend a particular version of the object
terminate, there is one version ver that was generated by
one of those operations, which is the ancestor of any version
extended by any subsequent operation. Thus, only a single
branch in the tree is extended and that branch denotes the
evolution of the register. The rest of the branches are discarded.
This resembles the way that the forks in a bitcoin blockchain
converge [1]. In particular, forks in a blockchain are created
when two miners generate a new block concurrently. Both
blocks are legitimate and each miner results in a different
branch, rooted from the same blockchain. Miners tend to
quickly converge on one chain and discard the other because

of profit-related motives. These discarded chains are usually
only one block long and are considered a statistical loss. In
contrast to the “profit-related” motives of the bitcoin, cover-
ability specifies which of the branches need to be discarded
based on a provable ordering of the events. Notice that the
stronger form of coverability where modify operations are
totally ordered, avoids branching of the versions. However
such primitive is equivalent with strong primitives like CAS
and LL/SC, and thus it is as powerful as consensus (details
can be found in [22]). Hence, it is challenging to implement
strong coverability in some distributed systems, and impossible
in an asynchronous system prone to failures (from the FLP
result [11]).

An interesting property of coverability is that it is defined
over a given order of events. Therefore coverability can be
defined over the ordering yielded by any consistency scheme.
In this paper we combine coverability with atomic guaran-
tees and we obtain coverable atomic read/write registers.
Coverable atomic registers have very interesting features. At
first, they provide strong atomic guarantees, i.e they surpass
weaker consistency guarantees like regularity [16], or eventual
consistency [23], and in addition provide guarantees on the
evolution of the value of the register. This allows coverable
atomic registers to be used for the implementation of more
complex objects like: (i) interesting weak read-modify-write
(RMW) objects which in turn can be used to implement (ii)
file objects (Section VI). Furthermore, we show they cannot
be implemented using similar register types such as ranked
registers (Section IV). And last but not least, they can be
implemented in message passing asynchronous distributed sys-
tems where processes can fail, with a simple modification of
existing atomic read/writer register implementations (Section
V).

II. MODEL

We consider a distributed system composed of n asyn-
chronous processes, with identifiers from a set I =
{p1, . . . , pn}, that communicate by exchanging messages. A
subset of processes in I may fail by crashing.

Processes can be modeled in terms of I/O Automata [19].
An automaton A (which combines the automata Ai for each
process pi ∈ I) is defined over a set of states and a set of
actions. An execution ξ of A is an alternating sequence of
states and actions of A. An execution fragment is a finite
prefix of an execution. We say that an execution fragment
ξ′ extends an execution fragment ξ, if ξ is a prefix of ξ′. A
history of an automaton A, denoted by Hξ, is the subsequence
of actions occurring in some execution fragment ξ of A. An
automaton A invokes an operation when an invocation action
occurs in an execution ξ, and receives a response to an action
when a response action occurs. An operation π is complete
in an execution ξ, if Hξ contains both the invocation and the
matching response actions for π; otherwise π is incomplete. A
history Hξ of the automaton Ai of a process pi is well formed
if it begins with an invocation event and alternates between
matching invocation and response events. (This demonstrates

the assumption that each process is a single thread of control.)
Each history Hξ includes a precedence relation →Hξ on its
operations. An operation π1 precedes an operation π2 (or π2
succeeds π1) in Hξ if the response of π1 appears before the
invocation of π2 in Hξ. This is denoted by π1 →Hξ π2. If
π1 6→Hξ π2 and π2 6→Hξ π1 in Hξ, then π1 and π2 are
concurrent. A process pi crashes in an execution ξ if the event
failpi appears and is the last action of pi in Hξ; otherwise pi
is correct.

III. COVERABLE ATOMIC READ/WRITE REGISTERS

In this section we define a new type of read/write (R/W)
register, the versioned register. Next we provide a new con-
sistency property for concurrent versioned registers called
coverability. We show how coverability can be combined with
atomic guarantees to yield a coverable atomic register.
Versioned register. Let Versions be a totally ordered set
of versions. A versioned register is a type of R/W register
where each value written is assigned with a version from the
set Versions . Moreover, each write operation π that attempts
to change the value of the register is also associated with
a version, say verπ , denoting that it intends to overwrite
the value of the register associated with the version verπ .
More precisely, an implementation of a R/W register offers
two operations: read and write. A process pi ∈ I invokes
a write (resp. read) operation when it issues a write(val)pi
(resp. readpi) request. The versioned variant of a R/W register
also offers two operations: (i) cvr-write(val, ver)pi , and (ii)
cvr-read()pi . A process pi invokes a cvr-write(val, ver)pi
operation when it performs a write operation that attempts
to change the value of the object. The operation returns the
value of the object and its associated version, along with a flag
informing whether the operation has successfully changed the
value of the object or failed. We say that a write is successful
if it changes the value of the register; otherwise the write
is unsuccessful. The read operation cvr-read()pi involves a
request to retrieve the value of the object. The response of
this operation is the value of the register together with the
version of the object that this value is associated with.

Read operations do not incur any change on the value of the
register, whereas write operations attempt to modify the value
of the register. More formally, let ∆T be the set of transitions
for the versioned register. Then, each δ ∈ ∆T is a tuple
〈σ, π, pi, σ′, res〉, denoting that the register moves from state
σ to state σ′, and responds with res, as a result of operation
π invoked by process pi ∈ I. The state of a versioned register
is essentially its value, drawn from a set V , and its version,
drawn from the set Versions . We assume that ∆T is total,
that is, for every π ∈ {cvr-write(val, ver)pi , cvr-read()pi},
pi ∈ I, and σ = (val, ver) ∈ V × Versions , there
exists σ′ = (val′, ver′) ∈ V × Versions and res such
that 〈σ, π, pi, σ′, res〉 ∈ ∆T . As such, the transitions of the
versioned register type can be written as follows:

1) 〈(val, ver), cvr-write(val′, verω), pi,
(val′, ver′), (val′, ver′, chg)〉, for verω = ver,

2) 〈(val, ver), cvr-write(val′, verω), pi,
(val, ver), (val, ver, unchg)〉, for verω 6= ver

3) 〈(val, ver), cvr-read(), pi, (val, ver), (val, ver)〉.
Notice that write operations may or may not modify the
value/version of the register. In the transitions above, verω
denotes the version of the register which the write operation
tries to modify. The relationship of ver with ver′ may
vary depending on the application that uses this register
(but seems natural to assume that ver′ > ver). A read
operation does not make any changes on the value or the
version of the object. To simplify notation, in the rest of
the paper we avoid any reference to the value of the reg-
ister. Additionally we only use the flag when its value is
unchg. Thus, cvr-write(v, ver)(v, ver′, chg)pi is denoted as
cvr-ω(ver)[ver′]pi , and cvr-write(v, ver)(v′, ver′, unchg)pi
is denoted as cvr-ω(ver)[ver′, unchg]pi .

We say that, a write operation revises a version ver of the
versioned register to a version ver′ (or produces ver′) in an
execution ξ, if cvr-ω(ver)[ver′]pi completes in Hξ. Let the
set of successful write operations on a history Hξ be defined
as:

Wξ,succ= {π :π = cvr-ω(ver)[ver′]pi completes in Hξ}.

The set now of produced versions in the history Hξ is defined
by:

Versionsξ={veri :cvr-ω(ver)[veri]pi∈Wξ,succ} ∪ {ver0}

where ver0 is the initial version of the object. Observe that
the elements of Versionsξ are totally ordered. In the rest of
the text we use ‘∗’ in the place of some parameter to denote
that any legal value for that parameter can be used. Now we
present the validity property which defines explicitly the set
of executions that are considered to be valid executions.

Definition 1 (Validity): An execution ξ (resp. its history
Hξ) is a valid execution (resp. history) on a versioned object,
for any pi, pj ∈ I:
• ∀cvr-ω(ver)[ver′]pi ∈ Wξ,succ, ver < ver′,
• for any operations cvr-ω(∗)[ver′]pi and cvr-ω(∗)[ver′′]pj

in Wξ,succ, ver′ 6= ver′′, and
• for each verk ∈ V ersionsξ there is a sequence of ver-

sions ver0, ver1, . . . , verk, such that cvr-ω(veri)[veri+1]
∈ Wξ,succ, for 0 ≤ i < k.

Validity makes it clear that an operation changes the version of
the object to a larger version, according to the total ordering of
the versions. Also validity specifies that versions are unique,
i.e. no two operations associate two states with the same
version. This can be easily achieved by, for example, recording
a counter and the id of the invoking process in the version of
the object. Finally, validity requires that each version we reach
in an execution is derived (through a chain of operations) from
the initial version of the register ver0. From this point onward
we fix ξ to be a valid execution and Hξ to be its valid history.
Coverability. We can now define the coverability properties
over a valid execution ξ of versioned registers with respect to
some total order >ξ on the operations of ξ.

Definition 2 (Coverability): A valid execution ξ is cover-
able with respect to a total order <ξ on operations in Wξ,succ

if:
• (Consolidation) If π1 = cvr-ω(∗)[veri], π2 =
cvr-ω(verj)[∗] ∈ Wξ,succ, and π1 →Hξ π2 in Hξ, then
veri ≤ verj and π1 <ξ π2.

• (Continuity) if π2 = cvr-ω(ver)[veri] ∈ Wξ,succ, then
there exists π1 ∈ Wξ,succ s.t. π1 = cvr-ω(∗)[ver] and
π1 <ξ π2, or ver = ver0.

• (Evolution) let ver, ver′, ver′′ ∈ V ersionsξ. If there
are sequences of versions ver′1, ver

′
2, . . . , ver

′
k and

ver′′1 , ver
′′
2 , . . . , ver

′′
` , where ver = ver′1 = ver′′1 , ver′k =

ver′, and ver′′` = ver′′ such that cvr-ω(ver′i)[ver
′
i+1]

∈ Wξ,succ, for 1 ≤ i < k, and cvr-ω(ver′′i)[ver′′i+1]
∈ Wξ,succ, for 1 ≤ i < `, and k < `, then ver′ < ver′′.

Intuitively, Consolidation specifies that write operations may
revise the register with a version larger than any version
modified by a preceding write operation, and may lead to
a version newer than any version introduced by a preceding
write operation. Continuity defines that a write operation may
revise a version that was introduced by a preceding write
operation according to the given total order. Finally, Evolution
limits the relative increment on the version of a register that
can be introduced by any operation.

By Definition 2, coverability allows multiple write opera-
tions to revise the same version veri of the register, each to
a unique version verj . Given the set of successful operations
Wξ,succ and the set of versions Versionsξ, Definitions 1 and
2 define a connected rooted tree T s.t.:
• The set of nodes of T is Versionsξ,
• The initial version ver0 of the object is the root of T ,
• A node veri is the parent of a node verj in T iff
∃π(veri)[verj] ∈ Wξ,succ,

• If π1 = cvr-ω(∗)[veri] ∈ Wξ,succ, s.t. π1 is not concurrent
with any other operation, then ∀π2 ∈ Wξ,succ, s.t. π1 →ξ

π2 and π2 = π(verz)[∗], then veri is an ancestor of verz
in T , or veri = verz (by Consolidation, Continuity, and
Validity)

• if veri is an ancestor of verj in T , then cvr-ω(∗)[veri] <ξ
cvr-ω(∗)[verj] (by Continuity).

• if veri is at level k of T and verj is at level ` of T s.t.
k < `, then veri < verj (by Evolution).

Observe that without the properties imposed by coverability,
validity allows the creation of a tree of versions and does not
prevent operations from being applied on an old version of
the register. Continuity, Consolidation, and Evolution explic-
itly specify the conditions that reduce the branching of the
generated tree, and in the case of not concurrency lead the
operations to a single path on this tree. Figure 1 provides an
illustration of a tree created from a coverable execution ξ. We
box sample instances of the execution and we indicate the
coverability properties they satisfy.
Atomic coverability. We now combine coverability with
atomic guarantees to obtain coverable atomic read/write reg-

Fig. 1: Tree Illustration from Coverable Execution

isters. A register is linearizable [15], or equivalently atomic
(as defined specifically for registers by [17], [18]) if the
following conditions are satisfied by any execution ξ of an
implementation of the object.

Definition 3 (Atomicity): [18, Section 13.4] An execution ξ
of an automaton A is atomic if every read and write operation
in ξ is complete and there is a partial ordering ≺Hξ on all
operations Π in Hξ such that: A1. For any pair of operations
π1, π2 ∈ Π, if π1 →Hξ π2 then it cannot hold that π2 ≺Hξ π1,
A2. If π ∈ Π is a write operation and π′ any operation in Π,
then either π ≺Hξ π′ or π′ ≺Hξ π, and A3. If v is the value
returned by a read ρ then v is the value written by the last
preceding write according to ≺Hξ (or the initial value v0 if
there is no such a write).

In the context of versioned registers, in Definition 3, a write
refers to a successful write (cvr-ω(∗)[∗, chg]) operation on
the versioned register. Therefore, all the write operations in
an execution ξ are the ones that appear in Wξ,succ. A read
refers to a versioned read (cvr-ρ()[∗]) or an unsuccessful write
(cvr-ω(∗)[∗, unchg]) operation that does not modify the value
(nor the version) of the register.

Definition 4 (Coverable atomic register): A versioned reg-
ister is coverable and atomic, referred as coverable atomic
register, if any execution ξ on the register satisfies: (i) atom-
icity (Definition 3), and (ii) coverability (Definition 2) with
respect to the total order imposed by A2 on Wξ,succ.
Note that in a coverable atomic register, the ordering of read
operations follows the ordering from atomicity. From this point
onward, when clear from context, we refer to a coverable
atomic register, as simply coverable register.

IV. COVERABLE ATOMIC REGISTERS VS RANKED
REGISTERS.

A type of registers that at first might resemble coverable
registers are ranked-registers [6]. As we show here, ranked-
registers are weaker than coverable registers. In particular, we

show that it is impossible to implement coverable registers us-
ing ranked-registers; we begin by providing a formal definition
of ranked-registers.

Definition 5 (Ranked-Registers [6]): Let Ranks be a to-
tally ordered set of ranks with r0 the initial rank. A ranked
register is a MWMR shared object that offers the following
operations: (i) rr-read(r), with r ∈ Ranks and returns
(r, v) ∈ Ranks × V alues, and (ii) rr-write(〈r, v〉), with
(r, v) ∈ Ranks × V alues and returns commit or abort. A
ranked register satisfies the following properties: (i) Safety.
Every rr-read operation returns a value and a rank that was
written in some rr-write invocation or (r0, v0). Additionally,
if W = rr-write(〈r1, v〉) a write operation which commits and
R = rr-read(r2) such that r2 > r1, then R returns (r, v) where
r ≥ r1. (ii) Non-Triviality. If a rr-write operation W invoked
with a rank r1 aborts, then there exists an operation with rank
r2 > r1 which returns before W is invoked, or is concurrent
with W (iii) Liveness. if an operation is invoked by a correct
process then eventually it returns.

We want to use rank-registers to implement the operations
of a coverable register. As in Section II, we denote by
cvr-ω(ver)[ver′, f lag] the coverable write operation that tries
to revise version ver, and returns version ver′ with a flag ∈
{chg, unchg}. Similarly we denote by rr-ω(r)[rh, res] a write
operation on a ranked-register that uses rank r and tries to
modify the value of the register. The rank rh is the highest
rank observed by an operation and res ∈ {abort, commit}.
In the following results we assume that a coverable register
is implemented using a set of ranked-registers. We begin with
a lemma that shows that a coverable write operation revises
the coverable register only if it invokes a write operation on
some rank register and that write operation commits. Omitted
proofs can be found in [22].

Lemma 6: Suppose there exists an algorithm A that im-
plements a coverable register using ranked-registers. In any
execution ξ of A, if a process pi invokes a coverable write
operation cvr-ω(ver)[ver′, chg]pi , then pi performs a write
rr-ω(r)[rh, commit]pi,j on some shared ranked-register j.

Next we show that if π1, π2 are two non-concurrent write
operations on the coverable register, then π2 performs a ranked
write (that commits or aborts) on at least a single ranked
register on which π1 performed a committed ranked write
operation. For the sake of the lemma Ri is the set of ranked
registers on which πi writes, and cRi a subset of them on
which the write commits.

Lemma 7: Let π1 = cvr-ω(ver)[ver1, chg]pi and π2 =
cvr-ω(ver1)[ver2, ∗]pz , i 6= z, be two write operations that ap-
pear in an execution ξ s.t. π1 →ξ π2. There exists some shared
register j ∈ R2 ∩ cR1 with a highest rank rj before the invo-
cation of π1, such that pi performs an rr-ω(r)[∗, commit]pi,j
during π1, and pz performs an rr-ω(r′)[∗, ∗]pz,j during π2.

Thus far we showed that a successful coverable write
operation needs to commit on at least a single ranked register
(Lemma 6), and two non-concurrent coverable write opera-
tions need to invoke a ranked write operation on a common
rank register (Lemma 7). Using now Lemma 7 we can show

that a coverable write operation that changes the version of the
coverable register must use a rank higher than any previously
successful coverable write operation.

Lemma 8: In any execution ξ if π1 =
cvr-ω(ver)[ver1, chg]pi and π2 = cvr-ω(ver1)[ver2, chg]pz ,
z 6= i, s.t. π1 →ξ π2, then there exists some shared register j
such that pi performs an rr-ω(r)[∗, commit]pi,j during π1,
and pz performs an rr-ω(r′)[∗, commit]pz,j during π2, and
r′ > r.

Now we prove our main result stating that a coverable
register cannot be implemented with ranked registers as those
were defined in [6].

Theorem 9: There is no algorithm that implements a cov-
erable register using a set of ranked registers.

Proof: The theorem follows from Lemmas 6, 7, and 8,
and the fact that a ranked register allows a write operation to
commit even if it uses a rank smaller than the highest rank of
the register. As by Lemma 6 a successful write must commit,
then by ranked registers it can commit with a rank smaller
than the highest rank of the accessed register. This, however,
by Lemma 8 may lead to violation of the consolidation and
continuity properties, and thus violation of coverability.

Observe that the key fact that makes ranked registers
weaker than coverable registers is that the former allow write
operations to commit even if their ranks are out of order. In
particular, note that the Non-Triviality property does not force
a write operation invoked with a rank r1 to abort, even if
there exists a completed prior operation with rank r2 > r1. As
shown in [6] non-fault-tolerant ranked registers may preserve
the total order of the ranks, and thus be used to implement
consensus. As we show in [22] such ranked registers (i.e., that
implement consensus) could be used to implement strongly
coverable registers.

V. IMPLEMENTING COVERABLE ATOMIC READ/WRITE
REGISTERS

We now show how we can implement coverable atomic
registers. We do so by enhancing the Multi-Writer version of
algorithm ABD [3], [20] (referred as MWABD) to preserve
the properties of coverability. The presented technique can
be applied to implementations of atomic R/W objects that
utilize a 〈tag, value〉 pair to order the write operations and
where each write performs two phases before completing: a
query phase to obtain the latest value of the atomic object
and a propagation phase to write the new value on the object.
We could also adopt implementations of stronger objects
like the ones presented in [4]–[7] but we preferred to show
the simplest modification in a fundamental algorithm. To
capture the semantics of a coverable atomic register we modify
the operations of algorithm MWABD to comply with the
versioned variant of the R/W register. We use cvr-write(ver, v)
and cvr-read() as the write and read operations respectively.
A cvr-write(ver, v) operation may impact differently the state
of the object, depending on the version of the shared object: it
may appear as a read, not modifying the value nor the version

of the register, or as a write, changing both the value and the
version of the register.

In brief, the original MWABD replicates an object to a set
of hosts (replicas) S ⊂ I and it uses 〈tag, value〉 pairs to
order the read and write operations. A tag consists of a non-
negative integer and a writer identifier which is used to break
the ties among concurrent write operations. Both the read and
write protocols have two phases: a query and a propagation
phase. During the query phase the invoking process broadcasts
a query message to all the replicas and waits for a majority of
them to reply with their tag-value pairs. Once those replies are
received the process discovers the largest tag-value pair among
the replies. In the second phase, a read operation propagates
the discovered tag-value pair to the majority of the replicas.
A write operation increments the largest tag, associates the
new tag with the value to be written, and propagates the new
tag-value pair to the majority of the replicas.

In the versioned MWABD, vMWABD for short, we use
the tags associated with each value to denote the version of
the register. The pseudocode of each operation of vMWABD
is described in Figure 2. The cvr-read operation is similar
to the read operation of MWABD with the difference that
it returns both the value and the version of the register. A
cvr-write operation differs from the original write by utilizing a
condition before its propagation phase and depending whether
the condition holds it changes the state of the register (value
and version) or not, as detailed in Figure 2. Note that the
version parameter of the write operation is equal to the
maximum tag that the invoking process witnessed.

Theorem 10: Algorithm vMWABD implements coverable
atomic registers.

Proof: It is clear that vMWABD still satisfies properties
A1-A3. Any write operation that is not successful can be
mapped to a read operation that performs two phases and
propagates the latest value/version to a majority of replicas
before completing. It remains to show that vMWABD also
satisfies validity and coverability.

Validity is satisfied since each tag is unique, as it is
composed by an integer ts and the id of a process wid.
The tag is monotonically incrementing at each replica, as
according to the algorithm a replica updates its local copy
only if a higher tag is received. A writer process wi discovers
the maximum tag 〈ts, wj〉 among the replicas and in the
second phase it generates a tag 〈ts + 1, wi〉. As the tag at
each replica is monotonically incrementing then each writer
never generates the same tag twice. Also, for every write
cvr-ω(tag)[tag′, chg], tag′ = 〈tag.ts+1, wid〉 ⇒ tag′ > tag.
Finally, since every tag is generated by extending the initial
tag and each write operation extends a tag that obtains during
its query phase then there is a sequence of tags leading from
the initial tag to the tag used by the write operation.

For consolidation we need to show that for two
write operations ω1 = cvr-ω(∗)[tag1, chg] and ω2 =
cvr-ω(tag2)[∗, chg], if ω1 →ξ ω2 then tag1 ≤ tag2. Accord-
ing to the algorithm ω1 propagates tag1 to the majority of
replicas before completing. In the query phase, ω2 receives

1: at each writer wi
2: Components:
3: maxP ∈ N+ ×W × V, tg ∈ N+ ×W, v ∈ V, flag ∈ {chg, unchg}
4: Initialization:
5: tg ← 〈0, wi〉, v ← ⊥,maxP ← 〈tg, v〉
6: function CVR-WRITE(val, ver)
7: send (Query) to all servers . Query Phase
8: wait until |S|+1

2 servers reply
9: maxP ← max({m.〈tg′, v′〉|m received from some server})

10: if ver = maxP.tg′ then
11: tg ← 〈maxP.tg′.ts+ 1, wi〉; v ← val; flag ← chg
12: send (Write, 〈tg, v〉) to all servers . Write Phase
13: wait until |S|+1

2 servers reply
14: else
15: tg ← maxP.tg′; v ← maxP.v′; flag ← unchg
16: send (Propagate,maxP) to all servers . Propagate Phase
17: wait until |S|+1

2 servers reply
18: end if
19: return(〈tg, v〉, flag)
20: end function

21: at each reader ri
22: Components:
23: maxP ∈ N+ ×W × V
24: function CVR-READ()
25: send (Query) to all servers . Query Phase
26: wait until |S|+1

2 servers reply
27: maxP ← max({m.〈tg′, v′〉|m received from some server})
28: send (Propagate,maxP) to all servers . Propagate Phase
29: wait until |S|+1

2 servers reply
30: return(maxP)
31: end function

32: at each server si
33: Components:
34: tg ∈ N+ ×W, v ∈ V
35: Initialization:
36: tg ← 〈0,⊥〉, v ∈ V
37: function RCV(M)q . Reception of a message from q
38: if M.type 6= Query and M.tg > tg then
39: 〈tg, v〉 ← 〈M.tg,M.v〉
40: end if
41: send(〈tg, v〉) to q
42: end function

Fig. 2: The operations of algorithm vMWABD.

messages from the majority of replicas. So there is one replica
s that received tag1 from ω1 before replying to ω2. Since
the tag in s is monotonically incrementing, then s replies to
ω2 with a tag tags ≥ tag1. So ω2 receives a maximum tag
tagmax ≥ tag1. Since ω2 also changes the value and version of
the register it means that its local tag tag2 is equal to tagmax.
This shows immediately that tag2 ≥ tag1.

Continuity is preserved as a write operation first queries the
replicas for the latest tag before proceeding to the propagation
phase to write a new value. Since the tags are generated and
propagated only by write operations then if a write changes
the value of the system then it appends a tag already written,
or the initial tag of the register.

To show that evolution is preserved, we observe that
the version of a register is given by its tag, where tags
are compared lexicographically (first the number tag.ts and
then the writer identifier to break ties). A successful write
π1 = cvr-ω(tag)[tag′] generates a new tag tag′ from tag
such that tag′.ts = tag.ts + 1. Consider sequences of
tags tag1, tag2, . . . , tagk and tag′1, tag

′
2, . . . , tag

′
` such that

tag1 = tag′1. Assume that cvr-ω(tagi)[tagi+1], for 1 ≤ i < k,
and cvr-ω(tag′i)[tag

′
i+1], for 1 ≤ i < `, are successful

writes. If tag1.ts = tag′1.ts = z, then tagk.ts = z + k and
tag′`.ts = z + `, and if k < ` then tagk < tag′`.

Supporting Large Versioned Objects. Fan and Lynch [10],
using algorithm MWABD as a building block, showed how
large atomic R/W objects can be efficiently replicated. The
main idea of their algorithm, called LDR, is to have two
distinguished sets of servers: Replicas and Directories. Replica
servers are the ones that actually store the object’s data (value),
while Directories keep track of the tags of the object and the
associated Replicas that store the data of the object. A reader
or writer first runs algorithm MWABD on the Directories to
obtain the highest tag of the object, and the identity of the
Replicas that have the associated value (aka, the most recent
value of the object). A read operation, then contacts a subset
of the Replicas to obtain the value of the object. A write sends
the new value to a majority of the Replicas, while ensuring
that Directories are updated (see [10] for details). By replacing
algorithm MWABD with algorithm vMWABD and performing
a few modifications to the Replicas, we can turn algorithm
LDR into an algorithm that can handle large versioned R/W
objects, such as large files. See [22] for the modified LDR.

VI. APPLICATIONS OF COVERABLE ATOMIC READ/WRITE
REGISTERS

Weak RMW registers. A shared object satisfies atomic read-
modify-write (RMW) semantics if a process can atomically
read and modify the value of the object using some function F ,
and then write the new value on the object. Coverable atomic
R/W registers can be used to implement a weak version of
RMW semantics. In a weak RMW object not all operations
may successfully modify the value of the object. In case that
a RMW operation is not concurrent with any other operation
then this operation satisfies the RMW semantics. In case where
two or more operations invoke RMW concurrently, at least one
of them will satisfy the RMW semantics. Finally, weak RMW
allow multiple RMW operations to modify successfully the
same value.

Figure 3 presents an implementation of a weak RMW object
using coverable atomic R/W registers. We assume that the
object offers a rmw(F) action that accepts a function and tries
to apply that function on the value of the object. The object
returns the initial value of the object and a flag indicating
whether the value of the object was modified successfully.

1: At each process i ∈ I
2: State Variables:
3: lcver ∈ Versions; oldval, lcval, newv ∈ Values;
4: flag ∈ {chg, unchg}
5: function RMW(F)
6: 〈oldval, lcver〉 ← cvr-read()
7: newv ← F(oldval)
8: 〈lcval, lcver, flag〉 ← cvr-write(lcver, newv)
9: if flag = chg then

10: return 〈lcval, success〉
11: else
12: return 〈lcval, fail〉
13: end if
14: end function

Fig. 3: Weak RMW using Coverable Atomic Registers

Theorem 11: The construction in Figure 3 implements a
weak RMW object.

Proof: Consider an execution ξ of the algorithm. We
begin the proof by studying the case where an operation
rmw(F) is not concurrent with any other operation in ξ. The
atomic nature of the register ensures that cvr-read returns the
latest value and version, say 〈ver, val〉, written on the register.
When the cvr-write operation is invoked, the write operation
tries to modify the value associated with version ver. As there
is no concurrent operation, the version of the register remains
ver and thus according to consolidation and continuity, the
write operation successfully writes the new value completing
the RMW operation.

Consider now the case of two operations, π1 and π2,
invoking rmw concurrently. Each of these operations involve
a cvr-read followed by a cvr-write operation. Let ρπi (resp.
ωπi) denote the read (resp. write) operation invoked during
πi, for i ∈ [1, 2]. We have the following cases wrt the order
of these operations: (i) ωπ1

→ ρπ2
, (ii) ωπ2

→ ρπ1
, (iii)

ρπ2
→ ωπ1

→ ωπ2
, (iv) ρπ1

→ ωπ2
→ ωπ1

, or (v) ωπ1

is concurrent with ωπ2
. In case (i), both read and write

operations of π1 complete before the read and write operations
of π2 are invoked. In this case notice that the version of the
object remains the same from the read to the write operation
of both operations. Thus, according to consolidation and
continuity, both write operations will successfully change the
value of the register. The same holds for case (ii), where
π2’s ops complete before the invocation of π1’s ops. In case
(iii) the write operation of π1 completes before the write
operation of π2. Let ρπ2

in this case complete before ωπ1
. Both

read operations ρπ1
and ρπ2

discover by atomicity the same
version, say ver. So both write operations will be invoked as
cvr-write(ver, v). Since no operation changes the version of
the register before ωπ1 is invoked, then by consolidation and
continuity, ωπ1

changes the version of the object to, say, verπ1
.

Notice that by validity, verπ1
> ver. When ωπ2

is invoked
it fails by consolidation to change the value of the object as
ωπ1
→ ωπ2

and it tries to change the version ver < verπ1
(the

version of ωπ1). Hence, only π1 will manage to preserve RMW
semantics. Similarly, we can show that only π2 will preserve
RMW semantics in case (iv). Finally, in case (v) if both writes
try to change the version ver, both may succeed and preserve
RMW semantics. Since, however, their versions are unique and
comparable, then by consolidation any subsequent operation
will RMW the highest of the two versions. So in all cases
at least a single operation satisfies the RMW semantics, as
desired.

From the proof we can extract that coverable registers may
allow multiple writes to change the same version of the reg-
ister, but consolidation ensures that at least one write satisfies
RMW semantics for each version. Finally, consolidation and
continuity ensure that eventually RMW operations diverge in
a single path in the constructed tree.
Concurrent File Objects. A file object can be implemented
directly using RMW semantics since one can retrieve, revise,
and write back the new version of the file. As RMW semantics
can be used to solve consensus [14], they are impossible to be
implemented in an asynchronous system with a single crash

1: At each process i ∈ I
2: State Variables:
3: lcver ∈ Versions
4: lcval ∈ Values
5: flag ∈ {chg, unchg}
6: Initialization:
7: lcver ← ver0; lcval← ⊥
8: function GET()
9: 〈lcval, lcver〉 ← cvr-read()

10: return 〈lcval, lcver〉
11: end function

12: function REVISE(v, ver)
13: 〈lcval, lcver, flag〉 ←
14: cvr-write(ver, v)
15: if flag = chg then
16: return OK
17: end if
18: return 〈lcval, lcver〉
19: end function

Fig. 4: File Object using Coverable Atomic Registers

failure. Therefore, we consider file objects that comply to the
weak RMW semantics as those were given in the paragraph
above. In particular, we consider concurrent file objects that
allow two fundamental operations, revise and get to be invoked
concurrently by multiple processes. The revise operation is
used to change the contents of the file object, whereas the
get action is analogous to a read operation and facilitates the
retrieval of the contents of the file. Semantically, a file object
requires that a revise operation is applied on the latest version
of the file and a get operation returns the file associated with
the latest written version. Depending on the implementation,
the values written and returned by these operations can be
the complete file object, a fragment of the file object, or just
the journal containing the operations to be applied on a file
(similar to a journaled file system).

Figure 4 presents the algorithm that implements the two
operations. The revise operation specifies the version of the file
to be revised along with the new value of the shared object.
The cvr-write operation attempts to perform the write with
the given version and returns the value and version of the
register, and whether the write succeeded or not. If the write
succeeded then the operation informs the application for the
proper completion of the revise operation; otherwise the latest
discovered value-version pair is returned. From Theorem 11
and Figure 4 we may conclude the following theorem.

Theorem 12: The construction in Figure 4 implements a file
object.

VII. CONCLUSION

In this paper we have introduced versioned registers and
a new property for concurrent versioned registers, we call
coverability. A versioned register associates a version with
its value, and with each operation that wants to modify its
value. An operation may modify the value and the version
of the register, or it may just retrieve its value-version pair.
Coverability defines the exact guarantees that a versioned
register provides when it is accessed concurrently by multiple
processes with respect to the evolution of its versions, over a
total order of its operations.

We combine coverability with atomicity to obtain coverable
atomic registers. The successful writes on the register follow

the total order of atomicity, while preserving the properties
required by coverability. We note that a different total ordering
could be used with coverability to obtain other types of
“coverable objects”. In fact, we believe it would be interesting
to investigate further the use of coverable objects for the
introduction of distributed algorithms for various applications.
The fact that each operation is enhanced by the version of the
object provides the flexibility to manipulate the effect of an
operation under some conditions on the version of the object
with respect to the version of the operation.

REFERENCES

[1] What is bitcoin fork? http://blog.cex.io/bitcoin-dictionary/
what-is-bitcoin-fork-14622. Accessed: 2016-05-05.

[2] Aguilera, M. K., and Horn, S. L. Abortable and query-abortable objects
and their efficient implementation. In Proc. of PODC 2007, pp. 23–32.

[3] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in
message passing systems. Journal of the ACM 42(1) (1996), 124–142.

[4] Boichat, R., Dutta, P., Frølund, S., Guerraoui, R. Deconstructing paxos.
SIGACT News 34, 1 (2003), 47–67.

[5] Chockler, G., Dobre, D., and Shraer, A. Brief announcement: Consis-
tency and complexity tradeoffs for highly-available multi-cloud store. In
Proc. of DISC 2013.

[6] Chockler, G., and Malkhi, D. Active disk paxos with infinitely many
processes. Distributed Computing 18, 1 (2005), 73–84.

[7] Dobre, D., Viotti, P., and Vukolić, M. Hybris: Robust hybrid cloud
storage. In Proc. of SOCC 2014.

[8] Dutta, P., Guerraoui, R., Levy, R. R., and Chakraborty, A. How fast can
a distributed atomic read be? In Proc. of PODC 2004,

[9] Englert, B., Georgiou, C., Musial, P. M., Nicolaou, N., and Shvartsman,
A. A. On the efficiency of atomic multi-reader, multi-writer distributed
memory. In Proc. of OPODIS 2009, pp. 240–254.

[10] Fan, R., and Lynch, N. Efficient replication of large data objects. In
Proc. of DISC 2003, pp. 75–91.

[11] Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of
distributed consensus with one faulty process. Journal of ACM 32, 2
(1985), 374–382.

[12] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. On the robustness
of (semi) fast quorum-based implementations of atomic shared memory.
In Proc. of DISC 2008, pp. 289–304.

[13] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. Fault-tolerant
semifast implementations of atomic read/write registers. Journal of
Parallel and Distributed Computing 69, 1 (2009), 62–79.

[14] Herlihy, M. Wait-free synchronization. ACM Trans. Program. Lang.
Syst. 13, 1 (1991), 124–149.

[15] Herlihy, M. P., and Wing, J. M. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990),
463–492.

[16] Lamport, L. How to make a multiprocessor computer that correctly
executes multiprocess progranm. IEEE Trans. Comput. 28, 9 (1979),
690–691.

[17] Lamport, L. On interprocess communication, part I: Basic formalism.
Distributed Computing 1, 2 (1986), 77–85.

[18] Lynch, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[19] Lynch, N., and Tuttle, M. An introduction to input/output automata.

CWI-Quarterly (1989), 219–246.
[20] Lynch, N. A., and Shvartsman, A. A. Robust emulation of shared

memory using dynamic quorum-acknowledged broadcasts. In Proc. of
FTC 1997, pp. 272–281.

[21] Mazières, D., and Shasha, D. Building secure file systems out of
byzantine storage. In Proc. of PODC 2002, pp. 108–117.

[22] Nicolaou, N., Fernández Anta, A., and Georgiou, C. Cover-ability:
Consistent versioning for concurrent objects. CoRR abs/1601.07352
(2016).

[23] Vogels, W. Eventually consistent. Commun. ACM 52, 1 (Jan. 2009),
40–44.

