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ABSTRACT

We study the problem of selfish routing in the presence of incomplete network information. Our model
consists of a number of users who wish to route their traffic on a network ofm parallel links with the
objective of minimizing their latency. However, in doing so, they face the challenge of lack of precise
information on the capacity of the network links. This uncertainty is modeled via a set of probability
distributions over all the possibilities, one for each user. The resulting model is an amalgamation of
the KP-model of [14] and the congestion games with user-specific functions of [22]. We embark on
a study ofNash equilibriaand theprice of anarchyin this new model. In particular, we propose
polynomial-time algorithms (w.r.t. our model’s parameters) for computing some special cases of pure
Nash equilibria and we show that negative results of [22], for the non-existence of pure Nash equilibria
in the case of three users, do not apply to our model. Consequently, we propose an interesting open
problem, that of the existence of pure Nash equilibria in the general case of our model. Furthermore,
we consider appropriate notions for the social cost and the price of anarchy and obtain upper bounds
for the latter. With respect to fully mixed Nash equilibria, we show that when they exist, they are
unique. Finally, we prove that the fully mixed Nash equilibrium is the worst equilibrium.

Keywords: Selfish routing, Incomplete information, User-specific cost, Nash Equilibrium.

1. Introduction

In their pioneering work, Koutsoupias and Papadimitriou [14] introduce a non-cooperative
weighted congestion game(named in the literature as the KP-model) wheren selfish users
wish to route their unsplittable traffic ontom parallel links from a source to a destination.
In this class of games, each link has a certain capacity representing the rate at which the
link processes traffic, and users have complete knowledge of the system’s parameters such
as the link capacities and the traffic induced by other users. Furthermore, users choose
how to route their traffic based on a common payoff function, which essentially captures
the delay to be experienced on each link. However, modern non-cooperative systems, such
as computer networks and the Internet, which have motivated the study of games such
as that of [14], present incomplete information on various aspects of their behavior. For
example, it is often the case that network users have incomplete information regarding the
link capacities. Such uncertainty may be caused if the network links are complex paths
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created by routers which are constructed differently on separate occasions according to
the presence of congestion or link failures. In mobile wireless networks, uncertainty may
also arise due to changes to the network connectivity caused by user mobility. Several
techniques have been proposed in the literature for capturing probabilistically this network
uncertainty via analysis of the mobility models and by profiling of mobile users [16, 27]
leading to the development of probabilistic routing algorithms [15, 18].

In this paper we introduce an extension of the KP-model that captures these more re-
alistic network scenarios. We consider a model where the network links may present a
number of different capacities and each user’s uncertainty about the capacity of the links
is modeled via a probability distribution over all the possibilities. We assume that users
may have different sources of information regarding the network and, therefore, take their
probability distributions to be distinct from one another. This gives rise to a model with
user-specific payoff functions. We may see that our model subsumes the KP-model since,
in the case of users assigning probability one to the same capacity for each link, the two
models coincide. Moreover, our model turns out to be an instance ofweighted congestion
games with user-specific functionsstudied by Milchtaich in [22].

We are interested in algorithmic problems related toNash equilibriafor the routing
game we consider, that is, steady states in the game where no user has an incentive to uni-
laterally change its strategy. For example, we are interested in deciding whether and when
Nash equilibria exist in our model, and, if so, determine efficiently the users’ strategies that
give rise to these equilibria. Furthermore, we study a notion for thesocial costof the game,
defined as the sum of the latencies experienced by each of the users, and an associated
notion for theprice of anarchyor coordination ratio[14] which captures the performance
degradation in the game due to the lack of coordination among the users.

Prior and Related Work. Congestion games were first introduced by Rosenthal [26] and
studied extensively thereafter. Rosenthal showed that these games admit pure Nash equilib-
ria by using the notion ofpotential functions. Subsequent related work (e.g. [23]) charac-
terized games that admit potential functions aspotential games. The problem of computing
pure Nash equilibria was studied for congestion games in [4] and for weighted congestion
games in [1]. TheKP-Model[14] and its Nash equilibria were studied extensively in the last
years; see, for example, [3, 7, 13, 19, 21] and [5] for a survey. Fully mixed Nash equilibria
for the KP-model were first studied in [21]. The fully mixed Nash equilibrium conjecture,
stating that the fully mixed Nash equilibrium has the worst social cost among all Nash
equilibria, was first formulated in [8] and it was verified in [17] for a social cost defined as
the sum of the users latencies. Fischer and Berthold in [6] disproved the conjecture for a
social cost defined as the expected maximum over the user latencies.

The notion of the price of anarchy was first introduced and studied in the KP-
Model [14]. Subsequently, tight bounds were proposed for it in [3, 13] for identical links,
in [3] for related links, and in [2] for congestion games with linear latency functions.

Gairing et al. [9] were the first to consider an extension of the KP-model with incom-
plete information. Their model considers a game of parallel links with incomplete infor-
mation on the traffics of the users, which makes it complementary to our work (as we
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consider incomplete information on network capacities). The payoff functions employed
by the users, which are universal and not user specific, take into account probabilistic in-
formation on the user traffics. Based on the seminal work by Harsanyi [12], the authors
show that their model always admits a pure Nash equilibrium and propose an algorithm
for computing such equilibria for some special cases. Also they show that the fully mixed
Nash equilibrium maximizes the social cost for special cases of their model and that, in the
general case, more than one fully mixed Nash equilibrium may exist. Finally, they show
asymptotically-tight upper bounds on the coordination ratio.

Milchtaich [22] studied congestion games in which the payoff function associated with
each user is not universal but user-specific. He shows that these games do not admit a pure
Nash equilibrium in the general case, but are guaranteed to exhibit such equilibria in special
cases, such as the case of unweighted users. Our work is closely related to [22] since our
game is an instance of that model. Thus we inherit the positive results obtained therein.
However, we show that the negative results of [22] do not necessarily apply for our model.

Recently, Gairing et al. [10] studied unweighted and weighted network congestion
games with player-specific linear latency functions for both splittable and unsplittable traf-
fic. Of specific interest to us is a result that establishes (via a counter-example with3 players
and11 links) that weighted congestion games on parallel links with player-specific linear
latency functions do not possess thefinite improvement property[23], and thus, are not
potential games[23]. This result also applies to our model. In a subsequent work, Mavron-
icolas et al. [20] introduced and studied weighted congestion games withplayer-specific
constants, where each player-specific latency function is composed (by means of an abelian
group operation) of a resource-specific delay function and a player-specific constant. In that
respect, our model can be viewed as a congestion game with player-specific multiplicative
constants and identity delay function.

Contributions. The contributions of our work are summarized as follows:

• We present an interesting new model that captures the idea of the uncertainty of the
network state. Furthermore, we show that our routing game with incomplete information
can be transformed into a complete information routing game with user-specific latency
functions (Section 2).

• We propose polynomial-time algorithms (w.r.t. our model’s parameters) for computing
some special cases of pure Nash equilibria (Section 3). For one of our algorithms we intro-
duce the notion oftolerancethat measures the traffic a user can tolerate on a certain link
before it decides to deviate from the specific link. We believe that this notion can be gener-
alized and used in other related work dealing with selfish routing. We also demonstrate that
the counter-example presented in [22], showing that pure Nash equilibria do not exist in the
general case, does not apply in our model. Thus, we identify an interesting open problem
in this area, that of existence of pure Nash equilibria in our model.

• We identify and employ an expression for the social cost (the sum of the users’ latencies)
and the associated notion for the price of anarchy. We obtain upper bounds for the latter in
the general case and a special case (Section 4).

• We compute the fully mixed Nash equilibrium and show that when it exists, it is unique.
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Also we show that, for certain instances of the game, a fully mixed Nash equilibrium always
exists and it assigns all users to all links equiprobably. Finally, we verify the fully-mixed
NE conjecture in our model, by proving that the fully mixed Nash equilibrium minimizes
the social welfare (Section 4).

2. Model and Definitions

In this section we present the model and definitions we use throughout the paper. For all
k ∈ N, denote[k] = {1, 2, . . . , k}. We consider anetworkconsisting of a set ofm parallel
links 1, 2, . . . ,m, or simply links, from a source to a destination, andn network users
1, 2, . . . , n, or simply users, who wish to route their traffic along a single link from the
source to the destination. We assume thatn > 1 andm > 1. (Throughout, we will be using
subscripts for users and superscripts for links.) We denote bywi > 0 the traffic of user
i ∈ [n]. We definew as then× 1 vector containing the traffics of all users.

In our model, we assume that there exists uncertainty regarding the capacity of the
network links. Thus, we define astateto be anm×1 vector,〈c1, c2, . . . , cm〉 where, for all
` ∈ [m], c` > 0 represents the capacity of link`. Thestate spaceof the network, denoted
by Φ, is defined as the set containing all the possible states the network may realize. We let
φ range overΦ and we writec`

φ for the capacity of link̀ according to stateφ.
Each user, based on some private knowledge, may have a differentbeliefregarding the

capacity of the network links. We assume that this knowledge isprobabilisticand it has the
form of a probability distribution function over the set of all states. In general, we write
b ∈ ∆(Φ) to denote a belief probability distribution over all states, andbi for the belief of
useri ∈ [n]. Furthermore, we writeb(φ) for the probability assigned to stateφ by belief
b. We define thebelief profileB(Φ) to be then × 1 vector〈b1, b2, . . . , bn〉 containing the
beliefs of all users. From this point onwards, we fixΦ and we writeB instead ofB(Φ).

We consider the routing gameG = (n, m, w, B) wheren is the number of users,m
is the number of links,w is a traffic vector andB a belief profile. The KP-model [14] is a
special instance of this model if we set for someφ ∈ Φ, bi(φ) = 1 for all i ∈ [n].

For the remainder of the section let us fix a gameG = (n, m, w, B). A pure strategyfor
a useri ∈ [n] is the selection of some link̀∈ [m]. A pure strategies profileis ann-tuple
〈`1, `2, . . . , `n〉 ∈ [m]n of pure actions, one for each user, where`i is the selection of user
i ∈ [n]. A mixed strategyfor a useri ∈ [n] is a probability distribution∆([m]) over pure
strategies, that is, over the set of links. We denote the probability assigned by useri ∈ [n]
to link ` ∈ [m] by p`

i . A mixed strategies profileis ann × m probability matrixP, where
P[i, `] = p`

i is the probability that useri chooses link̀ and
∑m

`=1 p`
i = 1, for all i ∈ [n]. A

mixed strategies profile is said to befully mixedif p`
i > 0, for all i ∈ [n] and` ∈ [m].

For a pure strategies profileσ = 〈`1, `2, . . . , `n〉, the latency costλi,φ(σ) of user

i ∈ [n] in stateφ is

∑
k:`k=`i

wk

c`i

φ

. On the other hand, theexpected latency costλi,bi
(σ)

over all states of useri ∈ [n] with belief bi is
∑
φ∈Φ

bi(φ) · λi,φ(σ) .

For a mixed strategies profileP, denoteW ` theexpected trafficon link ` ∈ [m], W ` =
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∑n
i=1 p`

i ·wi. DenoteW as them× 1 matrix containing the expected traffics on each link.
Furthermore, theexpected latency costfor useri ∈ [n] with belief bi on link ` ∈ [m],
denoted byλ`

i,bi
(P), is the expectation over all possible states and over all random choices

of the remaining users, of the latency cost for useri when its traffic is assigned tò. Thus,

λ`
i,bi

(P) =
∑
φ∈Φ

bi(φ) ·
wi +

∑n
k=1,k 6=i p`

kwk

c`
φ

=
∑
φ∈Φ

bi(φ) · (1− p`
i)wi + W `

c`
φ

.

For useri ∈ [n], with belief bi, theminimum expected latency costλi,bi
(P) is the mini-

mum, over all links̀ ∈ [m], of the expected latency cost for useri of belief bi on `:

λi,bi
(P) = min

`∈[m]
λ`

i,bi
(P) (1)

WhenP is inferred from the context we simply writeλ`
i,bi

, λi,bi
.

By settingc`
i =

1∑
φ∈Φ

bi(φ)

c`
φ

the expected latency cost of useri can be written as

λ`
i,bi

=
(1− p`

i)wi + W `

c`
i

. (2)

Observe that the resulting payoff function does not display the bayesian nature of our
game. In fact, by embedding this information in the parameterc`

i , our game isrecasted
as a complete information routing game withuser-specificlatency functions. To imple-
ment this transformation, one needs to compute the pseudo-capacitiesc`

i for every user
i ∈ [n] and every link̀ ∈ [m]. Therefore, the transformation cost depends on the size of
setΦ. If |Φ| ∈ O(1) then the transformation can be achieved in time O(n). On the other
hand, if we assume that each linki may assume values from a setCi of constant size, then
|Φ| = |C1| · . . . · |Cm| ∈ O(2m). Although we do not take a specific design decision on this
issue, we point out that the size of setΦ is important in determining the time complexity of
our algorithms for computing pure Nash equilibria presented in the next section.

Finally, note that by solving forp`
i , in the above equation forλ`

i,bi
, we have that for

every useri ∈ [n] and link` ∈ [m]

p`
i =

W ` + wi − c`
iλ

`
i,bi

wi
. (3)

The notion of a Nash equilibrium [24, 25] is defined for our model in the usual way.
Specifically, a probability matrixP is aNash equilibrium(often abbreviated asNE), if, for
all usersi ∈ [n] and for all links` ∈ [m]:

λ`
i,bi

{
= λi,bi

, if p`
i > 0

≥ λi,bi
, if p`

i = 0
(4)

Thus, each user assigns its traffic with positive probability only to links for which its ex-
pected latency cost is minimized. This implies that there is no incentive for a user to unilat-
erally deviate from its strategy to improve its expected latency cost. We refer to probabilities
in a Nash equilibrium asNash probabilities.

Associated with a routing gameG and a pure Nash equilibriumP is theSocial Costde-
noted by SC(G, P). Since every user’s belief for the capacities of the network differs, there
is no objective value for the latency of a link or for the exact congestion of the network.
Thus, we are forced todepart from the standard definition of the social costemployed in
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the literature (the expected maximum congestion), and we consider a social cost definition
that takes into account the subjective user beliefs; the sum of their individual cost:

SC (G, P) =
n∑

i=1

λi,bi
(P) .

Analogously, we define theSocial Optimum, or simply theOptimum, associated with a
routing gameG = (n, m, w, B), denoted by OPT(G), as the minimum over all pure as-

signments of the sum of their individual cost:OPT (G) = min
σ∈[m]n

n∑
i=1

λi,bi
(σ).

The definition ofCoordination Ratio(Price of Anarchy) for our model follows naturally:

CR = max
G,P

SC(G, P)
OPT (G)

.

3. Pure Nash Equilibria

In this section we consider the existence of pure Nash equilibria for our model. It is well
known ([26, 4]) that any unweighted congestion game has a pure Nash equilibium and,
in the case of the KP-model, they can be efficiently computed [7]. In contrast, in [22] it is
shown that weighted congestion games with user-specific functions do not always possess a
pure NE by a counter-example using three users and three resources (links). Further, in [10],
pure NE are shown to exist for unweighted games with user-specific linear latency functions
using potential function arguments. For our model, a special case of the games of [22] and
an extension of [14], we inherit the positive results of [22]. However, the counter-example
of [22] is not valid: we show that for games with three users pure NE always exist. In
addition, we present polynomial-time algorithms for computing pure NE for a number of
special cases and we conjecture that pure NE exist in the general case.
3.1. Polynomial-Time Algorithms for Special Cases

3.1.1. The case ofm = 2 links

First we consider the case of an arbitrary number of users and2 links. Our algorithm solves
the more general problem of finding a pure NE for games where the links have some initial
traffic 〈t1, t2〉, wheretj is the initial traffic of linkj ∈ [2]. We begin with a useful definition.

Definition 3.1. Consider a gameG = (n, 2, w, B) with initial traffic t = 〈t1, t2〉. We
define thetolerance of useri for link j as the valueαj

i which satisfies
tj + αj

i

cj
i

=
t�j + W − αj

i + wi

c�j
i

whereW =
∑

i∈[n] wi and�z = 3− z.

Thus, given a two-link game with an associated loadW to be assigned on the two links,
the tolerance of useri for a link j, αj

i , is the maximum fragment of the loadW the user
can tolerate on linkj while routing its traffic on it. This implies that, for a pure strategy
profile 〈`1, . . . , `n〉, if `i = j and linkj has load≤ αj

i (and consequently link�j has load
≥ W − αj

i ), useri has no incentive to change its strategy. We proof this as follows:
Lemma 3.1. Consider a pure strategy profile〈`1, . . . , `n〉 in the gameG = (n, 2, w, B)
with initial traffic t = 〈t1, t2〉 and supposè1 = 1. Then, user1 satisfies the NE condition
t1 +

∑
`i=1 wi

c1
1

≤
t2 +

∑
`i=2 wi + w1

c2
1

if and only if
∑

`i=1 wi ≤ α1
1.
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Proof. First suppose that
∑

`i=1 wi ≤ α1
1. We have

t1 +
∑

`i=1 wi

c1
1

≤ t1 + α1
1

c1
1

=
t2 +

∑
i∈[n] wi − α1

1 + w1

c2
1

≤
t2 +

∑
i∈[n] wi −

∑
`i=1 wi + w1

c2
1

=
t2 +

∑
`i=2 wi + w1

c2
1

as required. To prove the other way round, suppose
∑

`i=1 wi > α1
1. We have

t1 +
∑

`i=1 wi

c1
1

>
t1 + α1

1

c1
1

=
t2 +

∑
i∈[n] wi − α1

1 + w1

c2
1

>
t2 +

∑
i∈[n] wi −

∑
`i=1 wi + w1

c2
1

=
t2 +

∑
`i=2 wi + w1

c2
1

which completes the proof.

Algorithm Atwolinks(G, t)

INPUT: A gameG = (n, 2, w, B) and a traffic vectort = 〈t1, t2〉
OUTPUT: A pure NEσ

(1) Letσ = 〈0, . . . , 0〉, U = [n], andW =
∑

k∈[n] wk

(2) Compute c`
i for every user i ∈ [n] and every link ` ∈ [2]

(3) while U 6= ∅ do:

(a) For every user u ∈ U and every link j ∈ [2]:

Compute αj
u =

c1uc2u
c1u+c2u

(
t�j+W+wu

c
�j
u

− tj

c
j
u

)
(b) Choose k ∈ U and `k ∈ [2] such that α

`k
k = maxu∈U,j∈[2] αj

u

(c) Set σ[k] = `k, U = U − {k}, W = W − wk and t`k = t`k + wk

(4) Return σ

Fig. 1. AlgorithmAtwolinks

Figure 1 presents our algorithm which, given a game and an initial traffic vector, com-
putes a pure NEσ. It begins by initializingσ to 〈0, . . . , 0〉 signifying that no user has been
assigned to a link as yet, and it behaves greedily by selecting the user,k, with the highest
tolerance over the two links, and assigningk on the specific link,̀ k. It then proceeds to
construct an assignment for the remaining users in the same network, but where the initial
load on link`k is increased bywk. Thus, the algorithm decides the strategies of the players
sequentially and irrevocably. We proceed to prove the correctness of the algorithm.

Theorem 1. For any gameG = (n, 2, w, B), the algorithmAtwolinks computes a pure
Nash equilibrium in timeO(n2 + n · |Φ|).

Proof. We prove the correctness of the algorithm by induction onn. Clearly, forn = 1
the claim holds. Assume that the claim holds for any game withn = ν. Consider the
execution of the algorithm with input a gameG = (n, 2, w, B) with n = ν + 1, and an
initial traffic vectort. The algorithm initially selects the userk with the highest tolerance
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over both links, i.e. withα`k

k = maxi∈[n],j∈[2] α
j
i . Without loss of generality, let us assume

that`k = 1. Consequently, the algorithm proceeds to compute a strategy profileσ′ for the
ν-user gameG′ of the remaining users with initial vectort′ = 〈t1 + wk, t2〉 and return the
strategy profileσ, whereσ[i] = `k for i = k andσ[i] = σ′[i] otherwise. By the induction
hypothesisσ′ is a NE for theν-user gameG′ and initial traffic vectort′. We have to show
thatσ is also a pure NE for the initial gameG and initial vectort. First note that all users
i 6= k satisfy the NE condition for gameG and initial vectort. It remains to show that this
assignment is also acceptable for userk. Let N1, N2 be the sets of users on links1 and
2, respectively, in strategy profileσ′. Two cases exist. IfN1 = ∅, then the claim follows
trivially by observing that the tolerance of userk for link 1 within gameG must be such
thata1

k ≥ wk, and by Lemma 3.1. On the other hand, ifN1 6= ∅ andj ∈ N1

t1 + wk +
∑

u∈N1 wu

c1
j

≤
t2 +

∑
u∈N2 wu + wj

c2
j

,

which implies, by Lemma 3.1, that the tolerance of userj for link 1 within gameG satisfies
α1

j ≥
∑

u∈N1 wu + wk. Sinceα1
k ≥ α1

j , by Lemma 3.1,

t1 + wk +
∑

u∈N1 wu

c1
k

≤
t2 +

∑
u∈N2 wu + wk

c2
k

which completes the proof thatσ is a pure Nash equilibrium.
The complexity of the algorithm isO(n2 +n·|Φ|), whereO(n2) is the time required to

for steps (1) and (3) andO(n·|Φ|) the time required to compute the valuesc`
i (step (2)).

3.1.2. The case of symmetric users

In this section we consider the case ofsymmetric users, that is, the case where all users
have identical traffics, and we provide anO(nm(n2 + |Φ|)) algorithm for finding a pure
NE for the model. Our algorithm,Asymmetric, shown in Figure 2, follows along the lines
of the constructive proof of [22] for the same problem, for user-specific congestion games.

Algorithm Asymmetric

INPUT: A gameG = (n, m, 〈w, . . . , w〉, B)

OUTPUT: A pure NEσ

(1) Let |N`| = 0 for all ` ∈ [m] andσ = 〈0, . . . , 0〉

(2) Computec`
i for every useri ∈ [n] and every link̀ ∈ [m]

(3) For every user i ∈ [n] do:

(a) Let ` ∈ [m] be a link such that |N`|+1

c`
i

≤ |Nj |+1

c
j
i

, ∀j 6= `

(b) Set σ[i] = ` and |N`| = |N`| + 1
(c) while there exists user k with `k = ` and

`′ ∈ [m] such that (
|N`|
c`

k

>
|N`′ |+1

c`′
k

) do:

Set σ[k] = `′, |N`| = |N`| − 1,|N`′ | = |N`′ | + 1 and ` = `′

Fig. 2. AlgorithmAsymmetric
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The contribution of our work is a simplification in the correctness proof. We will be using
the following definitions and notations.

• Given a strategy profileσ = 〈`1, . . . , `n〉, `i ∈ [m], we define thestate induced by the
strategy profileass = 〈N1, . . . , Nm〉, whereN j = {i ∈ [n] | `i = j} is the set of
users assigned to linkj by σ.

• A user is adefecting userin a states if he does not satisfy the NE property ins.
• We define thegame graphof a game as the graph whose nodes are all possible states

of the game and there exists an edge between statess ands′ if s = 〈N1, . . . , Nm〉 and
s′ = 〈N1, . . . , N i − {u}, . . . N j ∪ {u}, . . . , Nm〉, whereu is a defecting user ins but
not in s′. We writes u−→ s′.

To prove the correctness of the algorithm we use the following lemma:

Lemma 3.2. Consider state〈N1, . . . , Nm〉 wherei ∈ N j and suppose that useri sat-

isfies the NE property, that is, for allk 6= j:
|N j |
cj
i

≤ |Nk|+ 1
ck
i

. Then, for any state

〈L1, . . . , Lm〉 satisfying|Lk| ≥ |Nk| for k 6= j and |Lj | ≤ |N j |, user i continues to
satisfy the NE property.

Proof. We have for anyk 6= j:
|Lj |
cj
i

≤ |N j |
cj
i

≤ |Nk|+ 1
ck
i

≤ |Lk|+ 1
ck
i

, as desired.

We now proceed to prove the correctness of the algorithm.

Theorem 2. Given a gameG = (n, m, 〈w, . . . , w〉, B), the algorithmAsymmetric com-
putes a pure Nash equilibrium in timeO(n3m + nm|Φ|).

Proof. Without loss of generality, we assume thatwi = 1, for all i ∈ [n]. We will prove the
correctness of the algorithm by induction onn. Clearly, forn = 1 the claim holds. Assume
that the claim holds forn = ν − 1. We will show that it holds forn = ν. By the induction
hypothesis, at the end of the(ν−1)th iteration,ν−1 users have been assigned on links and
the assignment induced for this game, sayσν−1, is a Nash equilibrium. In theνth iteration,
userν assigns its traffic on linkj which minimizes its latency (step3(b)). Then one or more
users may wish to deviate from linkj to another link. To prove the claim we will show that
σν−1 can be transformed into a NE inO(ν) moves (step3(c)).

Let s0 = 〈N1, . . . , Nm〉 be the state induced byσν−1. Suppose that, given this
state, userPν chooses to route its traffic on link1, giving rise to states1 = 〈N1 ∪
{ν}, N2, . . . , Nm〉. Suppose that this placement results in a sequence of movess1

u2−→
s2

u3−→ s3
u4−→ . . . wheresi = 〈N1

i , N2
i , . . . , Nm

i 〉. We may prove that for alli, there
existsji such that

(1) |N ji

i | = |N ji |+ 1, and|N j
i | = |N j |, for j 6= ji,

(2) the defecting userui+1 ∈ N ji

i , and
(3) all u ∈ N j

i , j 6= ji, satisfy the NE criterion.

We prove this by induction oni. For the base case consideri = 1. Clearly,s1 satisfies
property (1), withj1 = 1. While all users in{ν}∪N2∪. . .∪Nm can be seen to continue to
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Algorithm Auniform(G, t)

INPUT: A gameG = (n, m, w, B) and a traffic vectort = 〈t1, . . . , tm〉
OUTPUT: A pure NEσ

(1) Computeci = c1i (= c`
i , for all `) for every useri ∈ [n]

(2) Letσ = 〈0, . . . , 0〉

(3) Sort the users in decreasing order of traffics

(4) For every user i ∈ [n] do:

(a) Let `k be a link such that wk+t`k

ck
≤ wk+tj

ck
, ∀j 6= `k

(b) Set σ[k] = `k and let t`k = t`k + wk.

Fig. 3. AlgorithmAuniform

satisfy the NE criterion in this new state, it is possible that some useru ∈ N1
1 is no longer

satisfied, that is the defecting user, if one exists, is someu ∈ N1
1 .

Suppose now that the claim holds fori = k and consideri = k +1. We observe, by the
induction hypothesis, that, if we pickjk+1 to be the new strategy of the defecting player
uk+1, sk+1 satisfies property (1). In addition, useruk+1 is satisfied insk+1, and so are all
users inNq

k+1, q 6= jk+1, which completes the induction.
Now consider usersu1 = ν, u2, . . ., in the execution above. We may see that, since user

ui satisfies the NE criterion in statesi, by Lemma 3.2, he will continue to satisfy it in every
subsequent step. Thus, userui, will not defect in any of the moves following statesi, which
implies that any user may defect at most once. In other words, the execution is finite and
will converge to a NE in at mostν steps. This completes the proof thatσν is a pure NE.

We may see that the complexity of the algorithm is inO(n3m + nm|Φ|). In particular,
we note that in theith iteration of the algorithm there may be at mosti− 1 defecting users,
which amounts to a total ofO(n2) defecting steps. The candidate users for defection may
be identified in a single pass over all users, proceeding Step3(c), in timeO(nm). As before
the termnm|Φ| is obtained due to the calculation of the valuesc`

i .

3.1.3. The case of uniform user beliefs

We now turn to themodel of uniform user beliefs, that is, games where each user believes
all links to have equal capacity (∀i ∈ [n], ∃ci : ∀` ∈ [m] c`

i = ci). We present an algorithm
that computes a pure NE for the model in the case where the links have some initial traffic
t = 〈t1, . . . , tm〉, wheretj is the initial traffic of link j ∈ [m]. The algorithm,Auniform,
presented in Figure 3, is essentially the algorithm of [7] (which in turn can be viewed as a
variant of Graham’s Longest Processing Time (LPT) algorithm [11]) proceeded by a step
that calculates the values of thec`

i . Essentially, the algorithm constructs a pure NE in a
greedy fashion by processing the users in decreasing order of their traffics, and, for each
userk, it assigns the user on its preferred link`k and proceeds with the remaining users in
the network where the initial load of link̀k has increased bywk.

We may prove the following for our algorithm.

Theorem 3. Given a gameG = (n, m, w, B) under the model of uniform user beliefs, the
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Algorithm Auniform computes a pure Nash equilibrium in timeO(n(log n + m + |Φ|)).

Proof. The correctness of our algorithm can be proved by induction onn similarly to [11].
It is easy to see that the complexity of the algorithm is inO(n(log n + m + |Φ|)).

3.1.4. The case ofn = 3

Here we show that any game with three users has a pure NE. Recall that the game graph
of a game is the graph whose nodes are all possible states of the game and there exists
an edge between two states if they differ only with respect to a single defecting player.
The proof employs the notion of abest-response cyclewhich is a cycle in the game graph
of a game. Specifically, it has been shown in [23] that, if the game graph of a game has
no best-response cycles, then the game possesses at least one pure NE. Based on this, our
proof establishes in an exhaustive manner that any game with three users possesses no
best-response cycles, which implies that a pure NE exists. We begin with a lemma:

Lemma 3.3. For any gameG = (2,m, w, B) and initial traffic t a pure NE exists.

Proof. We may construct a pure NE for the game in at most three steps as follows. Place
playerP1 on his preferred link,j1, of the initial network. Place playerP2 on his preferred
link, j2, on the network resulting by the above placement. Ifj1 6= j2, 〈j1, j2〉 is trivially a
NE. On the other hand, ifj1 = j2 andP1 is a defecting player, the state resulting from the
defecting move ofP1 is trivially a NE.

Theorem 4. For any gameG = (3,m, w, B), the game graph ofG contains no best-
response cycles, and henceG has a pure NE.

Proof. For simplicity, in this proof, we useσ
u−→ σ′ to denote that strategiesσ andσ′ in-

duce statess ands′, respectively, wheres u−→ s′. Consider a pure NE,σ, for the subgame
of G, G′ = (2,m, {w1, w2}, B). Two cases exist:

• Suppose that the strategies of playersP1 andP2 in σ are distinct. Without loss of gen-
erality we may assume thatσ = 〈1, 2〉. Let us place playerP3 on his preferred link,j. If
j = 3, thenσ′ = 〈1, 2, 3〉 is clearly a NE and the proof follows. Otherwise, supposej = 1
and that a best-response cycle exists:

〈1, 2, 1〉 1−→ 〈2, 2, 1〉 2−→ 〈2, 1, 1〉 3−→ 〈2, 1, 2〉 1−→ 〈1, 1, 2〉 2−→ 〈1, 2, 2〉 3−→ 〈1, 2, 1〉

Note that this is the only possible best-response cycle from the initial state considered. Any
valid, alternative step from the cycle’s states leads to a NE. In particular, from each state
there can be at most one defecting player, which is the player on whose link a move has
been made, and, if this player moves to link3, the resulting state is a NE. So let us consider
the above cycle. By the moves of playerP1 we obtain the following inequalities:

w1 + w3

c1
1

>
w1 + w2

c2
1

and
w1 + w3

c2
1

>
w1 + w2

c1
1

By algebraic manipulation of the above we conclude thatw3 > w2. Similarly, by consid-
ering the moves of playersP2 andP3, we obtain thatw1 > w3 andw2 > w1, respectively.
The three inequalities give a contradiction and the claim follows.
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• Suppose that the two first players play on the same link. Without loss of generality,
suppose thatσ = 〈1, 1〉. Let us place playerP3 on his preferred link,j. If j 6= 1, thenσ′ =
〈1, 1, j〉 is clearly a NE and the proof follows. Otherwise, supposej = 1. This implies that
for any strategy〈j1, j2, 1〉 playerP3 does not wish to change his strategy. Consequently,
this scenario reduces to the problem of finding a NE for the gameG′ = (2,m, {w1, w2}, B)
with initial traffic t = 〈0, w3, 0, . . .〉. By Lemma 3.3 the result follows.

We remark that Mavronicolas et al. [20, Corollary 3] extended the above result for
weighted congestion games with player-specific constants and 3 players on parallel links.

3.2. Existence of Pure Nash Equilibria (Conjecture)

The existence of pure Nash equilibria for this model in the general case remains open. Work
for answering this question has been carried out in various directions. It is easy to show that
our game is not anexact potential game[23] and therefore it does not admit an exact poten-
tial function. Further, our game is not anordinal potential game, since it has been shown by
Gairing, Monien and Tiemann [10] that the state space of an instance of the game contains
a cycle. Therefore, potential functions [23], a popular and powerful method for proving
NE existence, cannot be used for our model. Our efforts to apply graph-theoretic methods
and inductive arguments have also not been successful for proving pure NE existence in
our model. The arguments end up failing mainly due to the arbitrary relation between the
different user beliefs on the capacity of the network links (unlike the special cases pre-
sented before where beliefs are related or additional information is present). Naturally, and
given the non-existence result on weighted congestion games with user specific payoff-
functions [22], we attempted to disprove the existence of NE in our model. Typically, sim-
ple counter-examples considering a small number of resources (links) and users are used
for such purposes (for example, in [22], the counter-example involves 3 users and 3 re-
sources). This appears not to be the case in our model: we have seen that for games with
three users (and arbitrary number of links) pure NE always exist; also simulations ran on
numerous instances of the game (dealing with small number of users and links) suggest
the existence of pure NE. Given the lack of a simple counter-example, the polynomial-time
algorithms for special cases, and our intuition, we conjecture that:

Conjecture. For any gameG = (n, m, w, B) there is at least one pure Nash equilibrium.

4. Fully Mixed Nash Equilibria

4.1. Existence and Uniqueness of Fully Mixed Nash Equilibria.

In this section we study fully mixed Nash equilibria for our model and we compute the
probabilities that yield such equilibria. Furthermore, we illustrate that if a fully-mixed NE
exists in some game, it is unique and it maximizes the social cost.

By employing techniques similar to [21] we may obtain the follows lemmas:

Lemma 4.1. Consider a gameG and an associated fully mixed Nash equilibriumP. Then,
for all usersi ∈ [n] and links` ∈ [m] we have
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p`
i = 1− (m− 1)c`

i∑m
j=1 cj

i

− 1
n− 1

1
wi

[(
1−

n∑
k=1

c`
k∑m

j=1 cj
k

+
(n− 1)c`

i∑m
j=1 cj

i

)
n∑

k=1

wk

−(m− 1)
n∑

k=1

c`
k∑m

j=1 cj
k

wk

]
.

Lemma 4.2. If for everyi ∈ [n] and everỳ ∈ [m]

p`
i = 1 − (m− 1)c`

i∑m
j=1 cj

i

− 1
n− 1

1
wi

[(
1−

n∑
k=1

c`
k∑m

j=1 cj
k

+
(n− 1)c`

i∑m
j=1 cj

i

)
n∑

k=1

wk

− (m− 1)
n∑

k=1

c`
k∑m

j=1 cj
k

wk

]
∈ (0, 1),

then these probabilities constitute a fully mixed Nash equilibrium.

By Lemma 4.1 and Lemma 4.2 we establish:

Theorem 5. (Existence and Uniqueness of Nash Equilibria)Consider the fully mixed
case. Then for every useri ∈ [n] and every link̀ ∈ [m],

p`
i = 1 − (m− 1)c`

i∑m
j=1 cj

i

− 1
n− 1

1
wi

[(
1−

n∑
k=1

c`
k∑m

j=1 cj
k

+
(n− 1)c`

i∑m
j=1 cj

i

)
n∑

k=1

wk

− (m− 1)
n∑

k=1

c`
k∑m

j=1 cj
k

wk

]
∈ (0, 1)

if and only if there exist a Nash equilibrium which must be unique and thep`
i ’s are its

associated Nash probabilities.

Theorem 5 implies the following.

Corollary 4.1. The fully mixed Nash equilibrium when it exists can be calculated in
O(nm + nm|Φ|) = O(nm|Φ|) time, wherenm|Φ| is the time needed for all usersi ∈ [n]
to compute eachc`

i for every` ∈ [m].

From Theorem 5, Lemma 4.1 and algebraic manipulation of the NE probabilities we get
the following result for the model of uniform user beliefs (∀i ∈ [n], ∃ci : ∀` ∈ [m] c`

i = ci).

Theorem 6. In the model of uniform user beliefs, for any gameG there exists a fully
mixed Nash equilibrium. Additionally, for any useri ∈ [n] and any link̀ ∈ [m], p`

i = 1
m .

4.2. Worst Case Equilibrium and Price of Anarchy

We show that the fully mixed Nash equilibrium maximizes the social cost. Since the social
cost is based on the individual costs of every useri ∈ [n], we first extend a known relation
previously shown in other related models [17, 9].
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Lemma 4.3. Take any gameG, a (mixed) Nash equilibriumP and the fully mixed Nash
equilibriumF. Then for any useri ∈ [n], λi,bi

(P) ≤ λi,bi
(F)

Proof. Let p`
k and f `

k for every userk ∈ [n] and for every link ` ∈ [m], be
the probabilities of the mixed and fully mixed Nash equilibrium respectively. Then

since
∑m

`=1

(∑n
k=1,k 6=i p`

kwk

)
=

∑n
k=1,k 6=i

(
wk

∑m
`=1 p`

k

)
=

∑n
k=1,k 6=i wk and∑m

`=1

(∑n
k=1,k 6=i f `

kwk

)
=
∑n

k=1,k 6=i

(
wk

∑m
`=1 f `

k

)
=
∑n

k=1,k 6=i wk it follows that

m∑
`=1

 n∑
k=1,k 6=i

p`
kwk

 =
m∑

`=1

 n∑
k=1,k 6=i

f `
kwk

 . (5)

Therefore, there exists a link̀0 ∈ [m] such that
∑n

k=1,k 6=i p`0
k wk ≤

∑n
k=1,k 6=i f `0

k wk.

By addingwi on both sides and by dividing with the believed capacityc`0
i of useri for

link `0 we get thatλ`0
i,bi

(P) ≤ λ`0
i,bi

(F). By definition ofλi,bi
(P) (sinceλi,bi

(P) is the

minimum of allλ`
i,bi

(P)) we get thatλi,bi
(P) ≤ λ`0

i,bi
(P) ≤ λ`0

i,bi
(F) = λi,bi

(F) (sinceF
is a Nash equilibrium) as needed.

The following theorem follows from Lemma 4.3 and the definition of the social cost.

Theorem 7. The fully mixed Nash equilibrium maximizes the social costSC (G, F).

Theorems 6 and 7 lead to the following two theorems (the first for the model of uniform
user beliefs and the second for the general case):

Theorem 8. Take any gameG and any Nash equilibriumP in the model of uniform user
beliefs, then

SC (G, P)
OPT (G)

≤
(

cmax

cmin

)
m + n− 1

m
,

wherecmax = max
i∈[n], `∈[m]

c`
i , andcmin = min

i∈[n], `∈[m]
c`
i .

Proof. By Theorem 6, we have that a fully mixed Nash equilibrium exists for the model,
with p`

i = 1
m for every useri ∈ [n] and link` ∈ [m]. Furthermore, by Theorem 7 we know

thatSC (G, P) ≤ SC (G, F) whereF is the fully mixed Nash equilibrium. Then,

SC (G, P) ≤ SC (G, F) ≤
n∑

i=1

wi +
∑n

k=1,k 6=i
1
mwk

cmin
=

1
cmin

(
m + n− 1

m

) n∑
k=1

wk.

SinceOPT (G) is the least possible maximum over all pure strategies of the individual cost
of all users,

OPT (G) ≥
n∑

i=1

∑n
k=1:`k=`i

wk

cmax
≥ 1

cmax

n∑
k=1

wk.

By combining the two inequalities the desired upper bound follows.

Theorem 9. Take any gameG and any Nash equilibriumP, then
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SC (G, P)
OPT (G)

≤ (cmax)2

cmin

1∑m
j=1 cj

min

(m + n− 1),

wherecmax = max
i∈[n], `∈[m]

c`
i , cmin = min

i∈[n], `∈[m]
c`
i , andc`

min = min
i∈[n]

c`
i , ` ∈ [m].

Proof. Consider the valuesp`
i produced by Lemma 4.1. As it is shown in the proof of

Lemma 4.2, these values, even if not in the range(0, 1), satisfy
∑

i∈[n] p
`
i = 1 and, when

substituted in eq. (2) forλ`
i,b, yield λ`

i,b = λi,b. If additionally we letF be the matrix
containing these values, i.e.F[i, `] = p`

i , for all i ∈ [n], ` ∈ [m], we may verify that all
steps of Lemma 4.3 continue to hold, thus boundingλi,bi(P) by λi,bi(F) for any i ∈ [n]
and any Nash equilibriumP.

Furthermore, sinceλi,bi
(F) = λ`

i,bi
(F) ≥ λ`

i,bi
(P) ≥ 0 for all i ∈ [n] and all` ∈ [m],

SC (G, F) =
n∑

i=1

wi +
∑n

k=1,k 6=i p`
kwk

c`
i

≤
n∑

i=1

wi +
∑n

k=1,k 6=i p`
kwk

c`
min

=
1

c`
min

n∑
i=1

wi +
n∑

k=1,k 6=i

p`
kwk

 =
1

c`
min

(
n∑

i=1

wi + (n− 1)
n∑

i=1

p`
iwi

)
.

From equations (3), (4) and algebraic manipulation we get that for any link` ∈ [m]

W` =
1

n− 1

n∑
i=1

(
(m− 1)

c`
i∑m

j=1 cj
i

+
n∑

k=1

c`
k∑m

j=1 cj
k

− 1

)
wi

=
1

n− 1

(
(m− 1)

n∑
i=1

c`
i∑m

j=1 cj
i

wi +
n∑

k=1

c`
k∑m

j=1 cj
k

n∑
i=1

wi −
n∑

i=1

wi

)
. (6)

By substituting(6) on the above upper bound of the social cost we get

SC (G, P) ≤ 1
c`
min

(
n∑

i=1

wi + (m− 1)
n∑

i=1

c`
i∑m

j=1 cj
i

wi +
n∑

k=1

c`
k∑m

j=1 cj
k

n∑
i=1

wi −
n∑

i=1

wi

)

≤ 1
cmin

cmax∑m
j=1 cj

min

(m + n− 1)
n∑

i=1

wi.

On the other handOPT (G) is the least possible maximum over all pure strategies of the
individual cost of all users, thus for any useri ∈ [n],

OPT (G) = min
(`1,`2,...,`n)∈[m]n

n∑
i=1

∑n
k=1:`k=`i

wk

c`i
i

≥ min
(`1,`2,...,`n)∈[m]n

n∑
i=1

∑n
k=1:`k=`i

wk

c`i
max

≥ 1
cmax

n∑
i=1

wi.

By combining the two inequalities the desired upper bound is obtained.

Remark 4.1. The above bounds presented for the price of anarchy are loose. In particular, a triv-
ial lower bound for the price of anarchy for the model of uniform user beliefs ism+n−1

m . This is
computed by considering the following setting:cmax = cmin = c, n = m andwi = 1 ∀i ∈ [n].
Then,λi,bi

(F) = 1
c

(
1 + 1

m (n− 1)
)

= 1
cm (m + n − 1), for all i ∈ [n]. Hence,SC (G, P) =

1
cm

∑n
i=1(m + n− 1) = m+n−1

cm . From the fact thatOPT(G) = 1
c the claimed lower bound fol-

lows. This lower bound, for the case ofm = n is tight within a cmax
cmin

factor for the upper bound for
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the uniform user belief case. However, the general upper bound presented is much looser. Improving
these bounds is a challenging task, which we leave for future work.

Remark 4.2. We note that in [10] a tight bound on the price of anarchy is presented that when
applied to our model in the case of symmetric users (otherwise the social cost considered in [10] is
different from ours) it improves linearly (w.r.t.n) the upper bound of Theorem 9. In particular, we

get
SC(G,P)
OPT(G)

≤ ∆+2+
√

∆(∆+4)
2 , where∆ = cmax

cmin
.
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