
Cooperative Computing with
Fragmentable and Mergeable Groups

CHRYSSIS GEORGIOU,Computer Science and
Engineering,University of Connecticut, Storrs, CT 06269,USA.
Email: cg2@cse.uconn.edu

ALEX A. SHVARTSMAN, Computer Science and Engineering,
University of Connecticut, Storrs, CT 06269, USA and Laboratory for
Computer Science, Massachusetts Institute of Technology,Cambridge,
MA 02139, USA. Email: alex@theory.lcs.mit.edu

ABSTRACT:This work considers the problem of performing a set ofN tasks on a set ofP coop-
erating message-passing processors(P ≤ N). The processors use a group communication ser-
vice (GCS) to coordinate their activity in the setting wheredynamic changes in the underlying
network topology cause the processor groups to change over time. GCSs have been recognized
as effective building blocks for fault-tolerant applications in such settings. Our results explore
the efficiency of fault-tolerant cooperative computation using GCSs. The original investigation
of this area by Dolevet al. [8] focused on competitive lower bounds, non-redundant task allo-
cation schemes and work-efficient algorithms in the presence of fragmentation regroupings. In
this work we investigatework-efficientandmessage-efficientalgorithms forfragmentationand
mergeregroupings. We present an algorithm that uses GCSs and implements a coordinator-
based strategy. For the analysis of our algorithm we introduce the notion ofview-graphsthat
represent the partially-ordered view evolution history witnessed by the processors. For frag-
mentationsand merges, the work of the algorithm (defined as the worst case total number of
task executions counting multiplicities) is not more thanmin{N · f + N, N · P}, and the
message complexity is no worse than4(N ·f +N +P ·m), wheref andm denote the number
of new groups created by fragmentations and merges respectively. Note that the constants are
very small and that, interestingly, while the work efficiency depends on the number of groups
f created as the result of fragmentations, work doesnot depend on the number of groupsm
created as the result of merges.

Keywords: Distributed algorithms, group communication, work, communication, complexity.

1 Introduction

The problem of cooperatively performing a set of tasks in a decentralized setting
where the computing medium is subject to failures is one of the fundamental problems
in distributed computing. Variations on this problem have been studied in a variety of
settings, e.g., in message-passing models [9, 6] and in shared-memory models [15].
This problem was also studied in the setting of processor groups in partitionable net-
works [8]. In this setting, the computation can take advantage of group communication

c©

2 Journal of Discrete Algorithms

services [4], and the processors must perform the tasks and must learn the results of
the tasks efficiently, despite the dynamically changing group memberships.

Group communication services (GCS) can be used as effectivebuilding blocks for
constructing fault-tolerant distributed applications. These services enable the applica-
tion components at different processors to operate collectively as a group, using the
service to multicast messages. The basis of a group communication service is agroup
membership service. Each processor, at each time, has a uniqueviewof the member-
ship of the group. The view includes a list of the processors that are members of the
group. Views can change and may become different at different processors. There is a
substantial amount of research dealing with specification and implementation of GCSs
and group-oriented applications, e.g., [1, 2, 14, 7, 10, 17,21, 23], and verification of
GCSs and group-oriented systems, e.g., [5, 16, 11].

When developing group-oriented, and especially partition-aware applications, it is
also important to understand the effectiveness of group communication services [25]
and the efficiency benefits that can be expected when using group communication
services [8]. One of the features of GCSs is their group management facilities that
map a variety of failures in the underlying computing mediumto changes in group
memberships. Faulty communication links can partition thesystem into several con-
nected components. Failures and recoveries trigger group membership activity that
aims to establish a group for every connected component. An adversary that causes
frequent and arbitrary failures may prevent applications from making steady compu-
tational progress. Thus, it is interesting to study restricted, yet realistic, models of
adversaries for which efficient specific algorithms can be developed with the help of
common group communication services. Studying the problemof performing a set of
tasks on a set of processors in the group-oriented setting provides a convenient and
powerful abstraction for understanding the efficiency of cooperative computation. A
work-efficient algorithm is presented for this problem by Dolev et al. in [8], along
with a lower bound and a scheduling strategy that minimizes redundant work. That
algorithm is tolerant of arbitrary sequences of group fragmentations. In this work we
present the study of algorithms that are work-efficient and message-efficient, and that
are able to deal with more general changes in group memberships.

Following [8], we investigate an approach whose goal is to utilize the resources
of every componentof the system during the entire computation. The problem we
consider has the following setting:a set ofN independent and idempotent tasks must
be performed byP processors in a distributed system, where each processor must
learn all results. Group communication is used to coordinate the execution ofthe
tasks. Our distributed system model, in addition to the processors and the network,
includes a set of input/output ports accessible to the processors. In this model we
enable any client of the required computation to query any processor for the results.
This makes it mandatory, even for isolated processors, to beable to provide the results
of the computation regardless of whether any other processors may already have the
results. Thus, it is not sufficient to know that each of the tasks have been performed
somewhere. It is also necessary for each processor to learn the results. We refer to this
problem as theOMNI-DO problem.

Note that any algorithm that solves the problem in a way wherein any group the

Cooperative Computing with Fragmentable and Mergeable Groups 3

processors perform no more thanΘ(N) tasks (counting multiplicities), will have work
complexity ofO(r·N), wherer is the total number of new views installed. This makes
it not very interesting to study the problem for adversariesthat impose arbitrary view
changes. Our major goal is to developpreciseupper bounds that describe the work
and messaging efficiency of solvingOMNI-DO as functions of the number of tasksN ,
the number of processorsP , and the numbers of distinct group views ofspecifictypes
(fragmentations and merges in this work) installed by the group membership services.

We present an algorithm for theOMNI-DO problem forN tasks andP message-
passing processors (P ≤ N) that are interconnected by a network, which is subject
to dynamic group fragmentations and merges. We assume a group communication
service that provides group management and view-oriented messaging service (Sec-
tion 2.2). The main complexity result is for the adversary that is restricted to causing
fragmentations of groups and merges of groups. This extendsthe results in [8], which
consider only the fragmentation adversary. Our analysis for the fragmentation-and-
merge adversary yields analysis for the fragmentations-only adversary as a corollary.

For the fragmentation-and-merge adversary, we distinguish between the views that
are installed as the result of fragmentations and the views installed as the result of
merges. Ifr is the total number of views installed, then for the fragmentation-and-
merge adversary we have thatr = f + m, wheref is the number of views due to
fragmentations andm is the number of views due to merges. It is also not difficult to
see thatm < f when all processors initially start in a single group.

The fragmentation-and-merge adversary is more powerful than the fragmentation
adversary of [8] and it can cause the degradation of computation efficiency, e.g., by
merging groups it can increase the message cost (as implied by our results) and it
can cause more numerous fragmentations (in the fragmentations-only model there can
be at mostP − 1 fragmentations). Intuitively it is reasonable to expect that while
merges may not degrade work efficiency, they may increase themessaging due to the
additional coordination overhead. Our analysis confirms this intuition.

We now summarize our results.

• We present a new algorithm, called algorithmAX, that solves theOMNI-DO prob-
lem and we analyze it for the fragmentation-and-merge adversary. The algorithm
employs a coordinator-based approach and relies on the underlying group com-
munication service. The algorithm is specified in Section 4.

• We introduce the notion ofview-graphsthat represent the partially-ordered view
evolution history collectively witnessed by the processors (Section 3). We show
that these digraphs are acyclic for the fragmentation-and-merge adversary and we
use these view-graphs in the complexity analysis of the algorithm. We believe that
view-graphs have the potential of serving as a general tool for studying cooperative
computing with group communication services.

• For any pattern of fragmentations and merges, the workW of the algorithm is no
more thanmin{N · f + N, N · P}, and the message complexityM is no worse
than4(N · f + N + P · m). Note thatf ≤ r and here it is significant that we are
expressing the upper bounds using explicit constants instead of the big-oh notation.
Both complexity results depend onf , but only the message complexity depends

4 Journal of Discrete Algorithms

on m. These facts substantiate the intuition that merges lead toa more efficient
computation, but require additional coordination. This analysis is presented in
Sections 5.1 and 5.2.

• For any pattern of fragmentations (i.e., whenm = 0) our algorithm achieves work
complexity ofO(min{N · f + N, N · P}). This result is essentially the same
as the result in [8]. However, our algorithm achieves substantially bettermessage
complexityO(N ·f +N) as compared to the at least quadratic message complexity
of the algorithm in [8]. Message optimization was outside ofthe scope of [8], yet
this improvement was one of our goals. The improvement is largely due to our use
of the coordinator-based strategy. These results are in Section 5.3.

Note that it is not difficult to see that iff ≥ P , then it is always possible to produce
an execution such thatW = Ω(N · P), and if f < P , then it is possible to produce
an execution such thatW = Ω(N · f). Thus,W = Ω(min{N · f, N · P}) is a
lower bound forOMNI-DO. This makes our algorithm work-optimal with respect to
the adversaries we consider. Considering optimality for the message complexity is less
interesting, since the problem can be solved without any communication (cf. [20]).

Related work. The problem of efficiently performing a set of tasks using a network
of processors in the setting where the network is subject to dynamic changes was con-
sidered by Dolev, Segala and Shvartsman [8]. For theN -processor,N -task problem
defined in that work, it was shown that for dynamic changes thetermination time of
any on-line task algorithm can be greater than the termination time of an off-line algo-
rithm by a factor linear inN . An algorithm was also presented in [8] that for arbitrary
fragmentations has workO(N · f ′ + N), wheref ′ is the increase in the number of
groups due to fragmentations. In comparing our result with the result in [8], we note
that our definition off is slightly different from the definition of fragmentation fail-
uresf ′ in [8]. In order to compare our complexity results with thosein [8], we show in
this paper that for any pattern of fragmentations allowed by[8] we havef ′ < f < 2f ′.
In [8] the work is counted in terms of the rounds executed by the processors. In our
analysis we count only the number of task executions (including redundancies). How-
ever in our algorithm, for as long as any tasks remain undone in a given group, the
processors perform the tasks in rounds, except for the last round. Therefore the differ-
ence in work complexity for these two algorithms is at mostf · N . Thus the different
definitions off andf ′ and of work can be subsumed in the big-oh analysis without
substantial variation in the constants.

Group communication services (GCS) have become important as building blocks
for fault-tolerant distributed systems. Such services enable processors located in a
fault-prone network to operate collectively as a group, using the services to multi-
cast messages to group members. Examples of GCS include Isis[2], Transis [7],
Totem [21], Newtop [10], Relacs [1], Horus [23] and Ensemble[14]. Examples of
recent work dealing with primary groups are [5, 17]. An example of an application
using a GCS for load balancing is by Fekete, Khazan and Lynch [16]. To evaluate the
effectiveness of partitionable GCSs, Sussman and Marzulo [25] proposed the measure
(cushion) precipitated by a simple partition-aware application.

Our definition of work follows that of Dwork, Halpern and Waarts [9]. Our frag-

Cooperative Computing with Fragmentable and Mergeable Groups 5

mentation model creates a setting, within each fragment, that is similar to the setting in
which the network does not fragment but the processors are subject to crash failures.
Performing a set of tasks in such settings is the subject of several works [3, 6, 9, 12],
however the analysis is quite different when work in all fragments has to be consid-
ered.

Our distributed problem has an analogous counterpart in theshared-memory model
of computation, called thecollect problem. The collect problem was originally ab-
stracted by Saks, Shavit and Woll [24] (it also appears in Shavit’s Ph.D. thesis). Al-
though the algorithmic techniques are different, the goal of having all processors to
learn a set of values is similar.

The rest of the paper is structured as follows. In Section 2 wedescribe models, as-
sumptions and complexity measures. In Section 3 we introduce and define view graphs
and the adversary models. In Section 4 we describe AlgorithmAX and in Section 5
we give its complexity analysis. We conclude in Section 6 with a discussion.

A preliminary version of this paper appeared as [13].

2 Definition and Models

We begin by presenting the system model, the group communication service proper-
ties, and work and communication complexity measures.

2.1 The System Model and theOMNI -DO Problem

The distributed system consists ofP processors connected by communication links.
Each processor has a unique identifier from the setP = {1, 2, . . . , P}.

We define ataskto be any computation that can be performed by a single processor
in constant time. We assume that the tasks are independent and idempotent. Our
distributed system is charged with the responsibility of performing a set ofN tasks
that are initially known to all processors. Each task has a unique identifier from the
setT .

To require that all processors acquire the results of all tasks, our system also in-
cludes a set of input/output ports. These ports are only usedby the clients of the
system to query individual processors for computation results. We do not make any
failure assumptions about the input/output ports, in particular, our algorithm does not
depend on the failure status of these ports, or the requests from them.

DEFINITION 2.1
The problem of performing a set ofN independent tasks on a set ofP message passing
processors, where each processor must learn the results of all N tasks, is called the
OMNI-DO problem.

The algorithm specification in this paper is done in terms of I/O automata of Lynch
and Tuttle [18, 19]. Each automaton models a state machine with states and transitions
between states, where actions are associated with sets of state transitions. There are
input, output and internal actions. A particular action is enabled if the preconditions

6 Journal of Discrete Algorithms

of that action are satisfied. The statements given as effectsare executed as a program
started in the existing state and atomically producing the next state as the result of the
transition.

An executionα of an I/O automatonAut is a finite or infinite sequence of alter-
nating states and actions (events) ofAut starting with the initial state, i.e.,α =
s0, e1, s1, e2, . . ., wheresi’s are states (s0 is the initial state) andei’s are actions
(events). We denote byexecs(Aut) the set of all executions inAut.

We next state our assumptions about the group communicationservices and define
the work and message complexity measures.

2.2 Group Communication Service

We assume a group communication service (GCS) with certain properties. The as-
sumptions are basic, and they are provided by several group communication systems
and specifications [26]. The service maintains group membership information and it
is used to communicate information concerning the executedtasks within each group.
The GCS provides the following primitives:

• NEWVIEW(v)p: informs processorp of a new viewv = 〈id, set〉, whereid is the
identifier of the view andset is the set of processor identifiers in the group. When
a NEWVIEW(v)p primitive is invoked, we say that processorp installsview v.

• GPMSND(message)p: processorp multicasts a message to the group members.

• GPMRCV(message)p: processorp receives multicasts from other processors.

• GP1SND(message,destination)p: processorp unicasts a message to another mem-
ber of the current group.

• GP1RCV(message)p: processorp receives unicasts from another processor.

To distinguish between the messages sent in different send events, we assume that
each message sent by the application is tagged with a unique message identifier.
We assume the following safety properties on any executionα of an algorithm that
uses GCSs:

1. A processor is always a member of its view ([26] Prop. 3.1).If NEWVIEW(v)p

occurs inα thenp ∈ v.set.

2. The view identifiers of the views that each processor installs are monotonically
increasing ([26] Prop. 3.2). If eventNEWVIEW(v1)p occurs inα before event
NEWVIEW(v2)p, thenv1.id < v2.id. This property implies that:
(a) A processor does not install the same view twice.
(b) If two processors install the same two views, they install these views in the
same order.

3. For every receive event, there exists a preceding send event of the same mes-
sage ([26] Prop. 4.1). IfGPMRCV(m)p (GP1RCV(m)p) occurs inα, then there
existsGPMSND(m)q (GP1SND(m, p)q) earlier in executionα.

4. Messages are not duplicated ([26] Prop. 4.2). IfGPMRCV(m1)p (GP1RCV(m1)p)
andGPMRCV(m2)p (GP1RCV(m2)p) occur inα, thenm1 6= m2.

Cooperative Computing with Fragmentable and Mergeable Groups 7

5. A message is delivered in the same view it was sent in ([26] Prop. 4.3). If processor
p receives messagem in view v1 and processorq (it is possible thatp = q) sends
m in view v2, thenv1 = v2.

6. In the initial states0, all processors are in the initial viewv0, such thatv0.set =
P ([26] Prop. 3.3 with [11, 22]).

We assume the following additional liveness properties on any executionα of an
algorithm that uses GCSs (cf. [26] Section 10):

7. If a processorp sends a messagem in the viewv, then for each processorq in
v.set, eitherq deliversm in v, or p installs another view.

8. If a new view event occurs at any processorp in view v, then a view change will
eventually occur at all processors inv.set − {p}.

2.3 Regrouping-Numbers and Measures of Efficiency

In this section we define regrouping-numbers and complexitymeasures. We define
theregrouping-numberr of an execution to be the number ofNEWVIEW events with
distinct view identifiers. (Note that if the same view is installed at multiple processors,
this counts for a single regrouping.)

DEFINITION 2.2
Given an executionα, we define theregrouping-numberrα as:

rα = |{v : NEWVIEW(v)p occurs inα}|.

When it is clear from the context, we user instead ofrα to denote the regrouping-
number of executionα.

We defineadversary models, in the context of a specific algorithm, in terms of the
collections of executions in the presence of an adversary.

DEFINITION 2.3
For an algorithmA, let FR(A) be the adversary model that includes all possible ex-
ecutions ofA, i.e.,FR(A) = execs(A), and letF∅(A) be the adversary model that
does not cause anyNEWVIEW events, i.e.,F∅(A) = {α : α ∈ execs(A) ∧ rα = 0}.

When it is clear from the context, we useF∅ instead ofF∅(A) andFR instead of
FR(A). It is easy to see thatF∅ ⊆ FR. Let F be some adversary model such that
F∅ ⊆ F ⊆ FR. In the following definitions we formalize the measures of work and
message complexity for the specificF . Our definition of work follows that of Dwork,
Halpern and Waarts [9].

DEFINITION 2.4
Thework Wα(N, P) of an executionα of algorithmA in the adversary modelF , is
defined to be

∑
i∈P W i

α, whereW i
α is the number of tasks performed by processori.

Thework complexityWF (N, P, r) is defined as:

WF (N, P, r) = max
α∈F ,rα≤r

{Wα(N, P)}.

8 Journal of Discrete Algorithms

DEFINITION 2.5
The message costMα(N, P) of an executionα of algorithm A in the adversary
modelF , is defined to be

∑
i∈P M i

α, whereM i
α is the number of messages sent

by processori. Themessage complexityMF(N, P, r) is defined as:

MF(N, P, r) = max
α∈F ,rα≤r

{Mα(N, P)}.

3 View-Graphs and Specific Adversary Models

This section introducesview-graphsthat represent view changes at processors in ex-
ecutions and that are used to analyze properties of executions. View-graphs are di-
rected graphs (digraphs) that are defined by the states and bytheNEWVIEW events of
executions of algorithms that use group communication services. Representing view
changes as digraphs enables us to use common graph analysis techniques to formally
reason about the properties of executions. In this paper we deal with adversary models
that cause group fragmentations and merges. Although the meaning of such reconfig-
urations seems very intuitive, it is necessary to carefullydefine them to enable formal
reasoning. Our view-graph approach to the analysis of executions is general, and we
believe it can be used to study other properties of group communication services and
algorithms for different adversary models.

3.1 Executions and View-Graphs

Consider an algorithmA that uses a group communication service (GCS). We modify
algorithmA by introducing, for each processori, the history variablecvi that keeps
track of the current view ati as follows: In the initial state, we setcvi to bev0, the
distinguished initial view for all processorsi ∈ P . In the effects of theNEWVIEW(v)i

action for processori, we include the assignmentcvi := v. In the rest of the paper,
we assume that algorithms are modified to include such history variables. We now
defineview-graphsby specifying how a view-graph is induced by an execution of an
algorithm.

DEFINITION 3.1
Given an executionα of algorithmA, theview-graphΓα = 〈V, E, L〉 is defined to be
the labeled directed graph as follows:

1. LetVα be the set of all viewsv that occur inNEWVIEW(v)i events inα. The set
V of nodes ofΓα is the setVα ∪ {v0}. We callv0 the initial node ofΓα.

2. The set of edgesE of Γα is a subset ofV × V determined as follows. For each
NEWVIEW(v)i event inα that occurs in states, the edge(s.cvi, v) is in E.

3. The edges inE are labeled byL : E → 2P , such thatL(u, v) = {i : NEWVIEW(v)i

occurs in states in α such thats.cvi = u}.

Observe that the definition ensures that all edges inE of Γα are labeled.

EXAMPLE 3.2
Consider the following executionα (we omit all events other thanNEWVIEW and any
states that do not precedeNEWVIEW events):

Cooperative Computing with Fragmentable and Mergeable Groups 9

α = s0, NEWVIEW(v1)p1
, . . . , s1, NEWVIEW(v2)p2

, . . . , s2, NEWVIEW(v3)p4
, . . . ,

s3, NEWVIEW(v4)p1
, . . . , s4, NEWVIEW(v1)p3

, . . . , s5, NEWVIEW(v4)p2
, . . . ,

s6, NEWVIEW(v4)p3
, . . . ,

wherev1.set = {p1, p3}, v2.set = {p2}, v3.set = {p4} andv4.set = {p1, p2, p3}.
Additionally,v0.set = P = {p1, p2, p3, p4}.

The view-graphΓα = 〈V, E, L〉 is given in Figure 1. The initial node ofΓα is v0.
The set of nodes ofV of Γα is V = Vα ∪ {v0} = {v0, v1, v2, v3, v4}. The set of
edgesE of Γα is E = {(v0, v1), (v0, v2), (v0, v3), (v1, v4), (v2, v4)}, since for each
of these(vj , vk) the eventNEWVIEW(vk)p occurs in statesℓ wheresℓ.cvp = vj for
some certainp (by the definition of the history variable). The labels of theedges are
L(v0, v1) = {p1, p3}, L(v0, v2) = {p2}, L(v0, v3) = {p4}, L(v1, v4) = {p1, p3}
andL(v2, v4) = {p2}, since for eachpi ∈ L(vj , vk) the eventNEWVIEW(vk)i occurs
in statesℓ wheresℓ.cvpi

= vj .

vv00

vv00.set == {{pp11, p22, p33, p44}}

vv11

vv11.set == {{pp11, p33}}
vv22

vv22.set == {{pp22}}

vv33

vv33.set == {{pp44}}

vv44

vv44.set = {pp11, p22, p33}}

LL((vv00,v11)) == {{pp11, p33}} LL((vv00,v33)) == {{pp44}}

LL((vv11,v44)) == {{pp11, p33}} LL((vv22,v44)) == {{pp22}}

LL((vv00,v22)) == {{pp22}}

BB

AA

FIG. 1. Example of a view-graph

Given a graphS and a nodev of S, we defineindegree(v, S) (outdegree(v, S)) to
be the indegree (outdegree) ofv in S.

LEMMA 3.3
For any executionα, indegree(v0, Γα) = 0.

PROOF. In the initial states0, s0.cv is defined to bev0 for all processors inP and
v0.set = P . Assume thatindegree(v0, Γα) > 0. By the construction of view-graphs,
this implies that some processori ∈ P installsv0 a second time. But this contradicts
the property 2(a) of GCS.

LEMMA 3.4
Let α be an execution andΓα|i be the projection ofΓα on the edges whose label
includesi, for somei ∈ P . Γα|i is an elementary path andv0 is the path’s source
node.

PROOF. Let executionα bes0, e1, s1, e2, Letα(k) be the prefix ofα up to thekth

state. i.e.,α(k) = s0, e1, s1, e2, . . . , sk. Let Γk
α be the view-graph that is induced by

α(k). Then defineΓk
α|i to be the projection ofΓk

α on the edges whose label includesi,
for somei ∈ P . For an elementary pathπ, we defineπ.sink to be its sink node.

10 Journal of Discrete Algorithms

We prove by induction onk thatΓk
α|i is an elementary path, thatΓk

α|i.sink = sk.cvi

and thatv0 is the path’s source node.
Basis: k = 0. Γ0

α|i has only one vertex,v0, and no edges (α(0) = s0). Thus,
Γ0

α|i.sink = s0.cvi = v0 andv0 is the source node of this path.

Inductive Hypothesis: Assume that∀n ≤ k, Γn
α|i is an elementary path, thatΓn

α|i.sink

= sn.cvi and thatv0 is the path’s source node.

Inductive Step: n = k + 1. For statesk+1 we consider two cases:

Case 1: If eventek+1 is not aNEWVIEW event involving processori, thenΓk+1
α |i =

Γk
α|i. Thus, by inductive hypothesis,Γk+1

α |i is an elementary path andv0 is its source
node. From statesk to statesk+1, processori did not witness any new view. By the
definition of the history variable,sk+1.cvi = sk.cvi. Thus,Γk+1

α |i.sink = sk.cvi =
sk+1.cvi.

Case 2: If eventek+1 is a NEWVIEW(v)i event that involves processori, then by the
construction of the view-graph, (sk.cvi, v) is a new edge from nodesk.cvi to nodev.
By inductive hypothesis,Γk

α|i.sink = sk.cvi. Since our GCS does not allow the same
view to be installed twice (property 2(a)),v 6= u for all u ∈ Γk

α|i. Thus,Γk+1
α |i is

also an elementary path, withv0 its source node andΓk+1
α |i.sink = v. From state

sk to statesk+1, processori installs the new viewv. By the definition of the history
variable,sk+1.cvi = v. Thus,Γk+1

α |i.sink = sk+1.cvi. This completes the proof.

THEOREM 3.5
Any view-graphΓα, induced by any executionα of algorithmA is a connected graph.

PROOF. The result follows from Definition 3.1(2), from the observation that all edges
of the view-graph are labeled and from Lemma 3.4

DEFINITION 3.6
For a view-graphΓα = 〈V, E, L〉, a fragmentation subgraphis a connected labeled
subgraphS = 〈VS , ES , LS〉 of Γα such that:

1. S contains a unique nodev such thatindegree(v, S) = 0; v is called thefragmen-
tation nodeof S.

2. VS = {v} ∪ V ′
S , whereV ′

S is defined to be{w : (v, w) ∈ E}.

3. ES = {(v, w) : w ∈ V ′
S}.

4. LS is the restriction ofL onES .

5.
⋃

w∈V ′

S
(w.set) = v.set.

6. ∀u, w ∈ V ′
S such thatu 6= w, u.set ∩ w.set = ∅.

7. ∀w ∈ V ′
S , LS(v, w) = w.set.

In the analysis of algorithms, we are going to be referring toall NEWVIEW events
that collectively induce a fragmentation subgraph for a fragmentation nodev as a
fragmentation.

EXAMPLE 3.7
The shaded area A in Figure 1 shows the fragmentation subgraph S = 〈VS , ES , LS〉
of Γα from Example 3.2. HereVS = {v0, v1, v2, v3}, ES = {(v0, v1), (v0, v2),

Cooperative Computing with Fragmentable and Mergeable Groups 11

(v0, v3)} and the labels are the labels ofΓα restricted onES . We can confirm thatS
is a fragmentation subgraph by examining the individual items of Definition 3.6.

DEFINITION 3.8
For a view-graphΓα = 〈V, E, L〉, amerge subgraphis a connected labeled subgraph
S = 〈VS , ES , LS〉 of Γα such that:

1. S contains a unique nodev such thatoutdegree(v, S) = 0 andindegree(v, S) > 1;
v is called themerge nodeof S.

2. VS = {v} ∪ V ′
S , whereV ′

S is defined to be{w : (w, v) ∈ E}.

3. ES = {(w, v) : w ∈ V ′
S}.

4. LS is the restriction ofL onES .

5.
⋃

w∈V ′

S
(w.set) = v.set.

6. ∀u, w ∈ V ′
S such thatu 6= w, u.set ∩ w.set = ∅.

7.
⋃

w∈V ′

S
LS(w, v) = v.set.

A regrouping of a groupg1 to a groupg2 such thatg1.set = g2.set can be represented
either as a fragmentation subgraph or as a merge subgraph. Inthis paper we choose to
represent it as a fragmentation subgraph by requiring thatindegree(v, S) > 1 for any
merge nodev.

In the analysis of algorithms, we are going to be referring toall NEWVIEW events
that collectively induce a merge subgraph for a merge nodev as amerge.

EXAMPLE 3.9
The area B in Figure 1 of Example 3.2 shows the merge subgraphS = 〈VS , ES , LS〉
of Γα, whereVS = {v1, v2, v3, v4}, ES = {(v1, v4), (v2, v4)} and the labels are
the labels ofΓα restricted onES . We can verify this by examining all conditions of
Definition 3.8.

DEFINITION 3.10
Given a view-graphΓα we define:

(a) frag(Γα) to be the set of all the distinct fragmentation nodes inΓα,

(b) merg(Γα) to be the set of all the distinct merge nodes inΓα.

DEFINITION 3.11
Given a view-graphΓα:

(a) if all of its non-terminal nodes are infrag(Γα), thenΓα is called afragmentation
view-graph.

(b) if each of its non-terminal nodes is either infrag(Γα), or it is an immediate ances-
tor of a node which is inmerg(Γα), thenΓα is called anfm view-graph.

For Γα in the example in Figure 1 we havev0 ∈ frag(Γα) by Definition 3.10(a).
Also, v4 ∈ merg(Γα) per Definition 3.10(b); additionally, the nodesv1 andv2 are
immediate ancestors ofv4 ∈ merg(Γα). By Definition 3.11(b),Γα is an fm view-
graph. Observe thatΓα is aDAG. This is true for all view-graphs:

12 Journal of Discrete Algorithms

THEOREM 3.12
Any view-graphΓα = 〈V, E, L〉 is a Directed Acyclic Graph (DAG).

PROOF. Assume thatΓα is not a DAG. Thus, it contains at least one cycle. Let
((v1, v2)(v2, v3) . . . (vk, v1)) be an elementary cycle ofΓα. By the construction of
view-graphs (Definition 3.1(3)) and by the monotonicity property (property 2) of GCS,
vi.id < vi+1.id for 1 ≤ i ≤ k andvk.id < v1.id. But, by the transitivity of “<”,
v1.id < vk.id, a contradiction.

COROLLARY 3.13
Any fm view graph is aDAG and any fragmentation view-graph is a rooted tree.

In the complexity analysis we use the following fact.

FACT 3.14
In any (non-empty)DAG, there is at least one vertex, such that all of its descendants
have outdegree 0.

3.2 Adversary Models

Let A be an algorithm that uses GCS, as presented in Section 2.2. Wenow define
two adversary models that are more restrictive thanFR(A), but less restrictive than
F∅(A).

DEFINITION 3.15
For any algorithmA thefragmentation adversaryFF (A) is the set of all executions of
A, such that each execution induces a fragmentation view-graph. Thefragmentation-
and-merge adversaryFFM(A) is the set of all executions ofA, such that each execu-
tion induces an fm view-graph.

It is easy to see thatF∅(A) ⊆ FF (A) ⊆ FFM(A) ⊆ FR(A).

DEFINITION 3.16
Given an executionα of algorithmA, andΓα = 〈V, E, L〉, we define:

1. thefragmentation-numberfα = |{w : NEWVIEW(w)p occurs inα ∧ (v, w) ∈
E ∧ v ∈ frag(Γα)}|,

2. themerge-numbermα = |{v : NEWVIEW(v)p occurs inα ∧ v ∈ merg(Γα)}|.

Note that for an algorithmA and for an executionα ∈ FFM(A), by Definitions 2.2
and 3.16,rα = fα + mα. Also, by Definitions 3.10 and 3.16,fα > mα. Observe that
in the adversary modelFF , rα = fα andmα = 0.

4 Algorithm AX

We now present the algorithm, called algorithmAX, that deals withregroupingsand
that relies on a GCS as specified in Section 2.2. The analysis of the algorithm is in
Section 5.

Cooperative Computing with Fragmentable and Mergeable Groups 13

Algorithm AX uses a coordinator approach within each group view. The highlevel
idea of the algorithm is that each processor performs (remaining) tasks according to
a load balancing rule, and a processor completes its computation when it learns the
results of all the tasks.
Task allocation. The setT of the initial tasks is known to all processors. During the
execution each processori maintains a local setD of tasks already done, a local setR

of the corresponding results, and the setG of processors in the current group. (The set
D may be an underestimate of the set of tasks done globally.) The processors allocate
tasks based on the shared knowledge of the processors inG about the tasks done. For
a processori, letrank(i, G) be the rank ofi in G when processor identifiers are sorted
in ascending order. LetU be the tasks inT − D. For a tasku in U , let rank(u, U)
be the rank ofu in U when task identifiers are sorted in ascending order. Ourload
balancing rulefor each processori in G is that:

• if rank(i, G) ≤ |U |, then processori performs tasku such thatrank(u, U) =
rank(i, G);

• if rank(i, G) > |U |, then processori does nothing.

Algorithm structure. The algorithm code is given in Figure 2 using I/O automata
notation [19]. The algorithm uses the group communication service to structure its
computation in terms ofroundsnumbered sequentially within each group view.

Initially all processors are members of the distinguished initial view v0, such that
v0.set = P . Rounds numbered 1 correspond to the initial round either inthe original
group or in a new group upon a regrouping as notified via theNEWVIEW event. If
a regrouping occurs, the processor receives the new set of members from the group
membership service and starts the first round of this view (NEWVIEW action). At the
beginning of each round, denoted by a round numberRnd, processori knowsG,
the local setD of tasks already done, and the setR of the results. Since all proces-
sors knowG, they “elect” the group coordinator to be the processor which has the
highest processor id (no communication is required since the coordinator is uniquely
identified). In each round each processor reportsD andR to the coordinator ofG
(GP1SND action). The coordinator receives and collates these reports (GP1RCV ac-
tion) and sends the result to the group members (GPMSND action). Upon the receipt
of the message from the coordinator, processors update their D andR, and perform
work according to the load balancing rule (GPMRCV action).

For generality, we assume that the messages may be deliveredby the GCS out of
order. The set of messages within the current view is saved inthe local variableA.
The saved messages are also used to determine when all messages for a given round
have been received. Processing continues until each memberof G knows all results
(the processors enter thesleepstage). When requests for computation results arrive
from a portq (REQUESTaction), each processor keeps track of this in a local vari-
ablerequests, and, when all results are known, sends the results to the port (REPORT

action).
The variablescv andMSG arehistory variablesthat do not affect the algorithm, but

play a role in its analysis.

Correctness: We now show the safety of algorithmAX . We first show that no pro-

14 Journal of Discrete Algorithms

Data types and identifiers:
T : tasks
R : results
Result : T → R
Mes: messages
P : processor ids
G : group ids
views = G × 2P : views, selectorsid andset
IO : input/output ports

m ∈ Mes
i, j ∈ P
v ∈ views
H ∈ 2T

Q ∈ 2R

round ∈ N

results ∈ 2R

q ∈ IO

States:
T ∈ 2T , the set ofN = |T | tasks
D ∈ 2T , the set of done tasks, initially∅
R ∈ 2R, the set of known results, initially∅
G ∈ 2P , current members, init.v0.set = P
A ∈ 2Mes, messages since lastNEWVIEW,

initially ∅
Rnd ∈ N, round number, initially 1
requests ∈ 2IO , set of ports, initially∅
Phase ∈ {send , receive, sleep, mcast , mrecv},

initially send

Derived variables:
U = T −D, the set of remaining tasks
Coordinator (i) : Boolean,

if i = maxj∈G{j}
thentrue elsefalse

Next(U, G), next tasku, such that
rank(u, U) = rank(i, G)

History variables:
cvi ∈ views (i ∈ P),

initially ∀i, cvi = v0.
MSGi ∈ 2Mes (i ∈ P),

initially ∀i, MSGi = ∅.

Transitions at i:
input REQUESTq,i

Effect:
requests ← requests ∪ {q}

input NEWVIEW(v)i

Effect:
G← v.set

A← ∅
Rnd← 1
Phase ← send

cv := v

output GP1SND(m,j)i

Precondition:
Coordinator(j)
Phase = send

m = 〈i, D, R, Rnd〉
Effect:

MSG := MSG∪ {m}
Phase ← receive

input GP1RCV(〈j,H, Q, round〉)i
Effect:

A← A ∪ {〈j, H, Q, round〉}
R← R ∪Q

D← D ∪H

if G = {j : 〈j, ∗, ∗, Rnd〉 ∈ A}
then

Phase ← mcast

output GPMSND(m)i

Precondition:
Coordinator(i)
m = 〈i, D, R, Rnd〉
Phase = mcast

Effect:
MSG := MSG∪ {m}
Phase ← mrecv

input GPMRCV(〈j,H, Q, round〉)i
Effect:

D ← D ∪H

R← R ∪Q

if D = T then
Phase ← sleep

else
if rank(i, G) < |U | then

R← R ∪ {Result(Next(U, G))}
D ← D ∪ {Next(U, G)}

Rnd← Rnd + 1
Phase ← send

output REPORT(results)q,i

Precondition:
T = D ∧ q ∈ requests

results = R

Effect:
requests ← requests − {q}

FIG. 2. AlgorithmAX.

Cooperative Computing with Fragmentable and Mergeable Groups 15

cessor stops working as long as it knows of any undone tasks.

THEOREM 4.1
(Safety 1)For all states of any execution of AlgorithmAX it holds that

∀i ∈ P : Di 6= T ⇒ Phase 6= sleep.

PROOF. The proof follows by examination of the code of the algorithm, and more
specifically from the code of the input actionGPMRCV(〈j, H, Q, round〉)i.

Note that the implication in Theorem 4.1 cannot be replaced by iff (⇔). This is
because ifDi = T , we may still havePhase 6= sleep. This is the case where
processori becomes a member of a group in which the processors do not knowall the
results of all the tasks.

Next we show that if some processor does not know the result ofsome task, this is
because it does not know that this task has been performed (Theorem 4.3 below). We
show this using the history variablesMSGi (i ∈ P).

We defineMSGi to be a history variable that keeps on track all the messages sent by
processori ∈ P in all GP1SND andGPMSNDevents of an execution of algorithmAX .
Formally, in the effects of theGP1SND(m, j)i andGPMSND(m)i actions we include
the assignmentMSGi := MSGi ∪ {m}. Initially, MSGi = ∅ for all i. We defineMSG
to be∪i∈P MSGi.

LEMMA 4.2
If m is a message received by processori ∈ P in a GP1RCV(m)i or GPMRCV(m)i

event of an execution of algorithmAX, thenm ∈ MSG.

PROOF. Property 3 of theGCS(Section 2.2) requires that for every receive event there
exists a preceding send event of the same message (theGCS does not generate mes-
sages). Hence,m must have been sent by some processorq ∈ P (possibleq = i) in
some earlier event of the execution. Messages can be sent only in GP1SND(m, i)q or
GPMSND(m)q events. By definition,m ∈ MSGq. Hence,m ∈ MSG.

THEOREM 4.3
(Safety 2)For all states of any execution of AlgorithmAX:

(a)∀t ∈ T, ∀i ∈ P : result(t) 6∈ Ri ⇒ t 6∈ Di, and
(b) ∀t ∈ T, ∀〈i, D′, R′, Rnd〉 ∈ MSG : result(t) 6∈ R′ ⇒ t 6∈ D′.

PROOF. Letα be an execution ofAXandαk be the prefix ofα up to thekth state, i.e.,
αk = s0, e1, s1, e2, . . . , sk. The proof is done by induction onk.
Basis:k = 0. In s0, ∀i ∈ P , Di = ∅, Ri = ∅ andMSG = ∅.
Inductive hypothesis: For a statesn such thatn ≤ k, ∀t ∈ T, ∀i ∈ P : result(t) 6∈
Ri ⇒ t 6∈ Di, and∀t ∈ T, ∀〈i, D′, R′, Rnd〉 ∈ MSG : result(t) 6∈ R′ ⇒ t 6∈ D′.
Inductive step:n = k + 1. Consider the following seven types of actions leading to
the statesk+1:

1. ek+1 = NEWVIEW(v′)i: The effect of this action does not affect the invariant. By
the inductive hypothesis, in statesk+1, the invariant holds.

2. ek+1 = GP1SND(m, j)i: Clearly, the effect of this action does not affect part
(a) of the invariant but it affects part (b). Sincem = 〈i, Di, Ri, Rnd〉, by the

16 Journal of Discrete Algorithms

inductive hypothesis part (a), the assignmentm ∈ MSG reestablishes part (b) of
the invariant. Thus, in statesk+1, the invariant is reestablished.

3. ek+1 = GP1RCV(〈j, H, Q, round〉)i: Processori updatesRi andDi according to
Q andH respectively. The action is atomic, i.e., ifRi is updated, thenDi must be
also updated. By Lemma 4.2,〈j, H, Q, round〉 ∈ MSG. Thus, by the inductive
hypothesis part (b),∀t ∈ T : result(t) 6∈ H ⇒ t 6∈ Q. From the fact thatDi and
Ri are updated according toH andQ respectively and by the inductive hypothesis
part (a), in statesk+1, the invariant is reestablished.

4. ek+1 = GPMSND(m)i: Clearly, the effect of this action does not affect part (a)
of the invariant but it affects part (b). Sincem = 〈i, Di, Ri, Rnd〉, by the induc-
tive hypothesis part (a), the assignmentm ∈ MSG reestablishes part (b) of the
invariant. Thus, in statesk+1, the invariant is reestablished.

5. ek+1 = GPMRCV(〈j, H, Q, round〉)i: By Lemma 4.2,〈j, H, Q, round〉 ∈ MSG.
By the inductive hypothesis part (b),∀t ∈ T : result(t) 6∈ H ⇒ t 6∈ Q. Processor
i updatesRi andDi according toQ andH respectively. SinceH andQ have the
required property, by the inductive hypothesis part (a), the assignments toDi and
Ri reestablish the invariant.
In the case whereDi 6= T , processori performs a task according to the load
balancing rule. Letu ∈ T be this task. Because of the action atomicity, when
processori updatesRi with result(u), it must also updateDi with u. Hence, in
statesk+1, the invariant is reestablished.

6. ek+1 = REQUESTq,i: The effect of this action does not affect the invariant.

7. ek+1 = REPORT(results)q,i: The effect of this action does not affect the invariant.

This completes the proof.

5 Analysis of Algorithm AX

We express the work complexity of algorithmAX in the modelFFM asWFFM
(N, P, r)

= WFFM
(N, P, f + m). The message complexity is expressed asMFFM

(N, P, r) =
MFFM

(N, P, f + m). Our analysis focuses on assessing the impact of the fragmen-
tation numberf and the merge numberm on the work and message complexity, and
in the rest of this section for clarity we letWf,m stand forWFFM

(N, P, f + m), and
Mf,m stand forMFFM

(N, P, f + m).

5.1 Work Complexity

In this section we show the following result:

THEOREM 5.1
Wf,m ≤ min{ N · f + N, N · P }.

Observe thatWf,m does not depend onm (this of course does not imply that for any
given execution, the work does not depend on merges). This observation substantiates
the intuition that merges lead to a more efficient computation. We begin by providing
definitions and proving several lemmas that lead to the aboveresult.

Cooperative Computing with Fragmentable and Mergeable Groups 17

DEFINITION 5.2
Let αµ be any execution of algorithmAX in which all the processors learn the results
of all tasks and that includes a merge of groupsg1, . . . , gk into the groupµ, where the
processors inµ undergo no further view changes. We defineᾱµ to be the execution
we derive by removing the merge fromαµ as follows:
(1) We remove all states and events that correspond to the merge of groupsg1, . . . , gk

into the groupµ and all states and events for processors withinµ.
(2) We add the appropriate states and events such that the processors in groupsg1, . . . ,

gk undergo no further view changes and perform any remaining tasks.

DEFINITION 5.3
Let αϕ be any execution of algorithmAX in which all the processors learn the results
of all tasks and that includes a fragmentation of the groupϕ to the groupsg1, . . . , gk

where the processors in these groups undergo no further viewchanges. We definēαϕ

to be the execution we derive by removing the fragmentation fromαϕ as follows:
(1) We remove all states and events that correspond to the fragmentation of the group
ϕ to the groupsg1, . . . , gk and all states and events of the processors within the groups
g1, . . . , gk.
(2) We add the appropriate states and events such that the processors in the groupϕ
undergo no further view changes and perform any remaining tasks.

Note: In Definitions 5.2 and 5.3, we claim that we can remove states and events from
an execution and add some other states and events to it. This is possible because if the
processors in a single view installed that view and there areno further view changes,
then the algorithm will continue making computation progress. So, if we remove
all states and events corresponding to a view change, then the algorithm can always
proceed as if this view change never occurred.

LEMMA 5.4
In algorithmAX, for any viewv, including the initial view, if the group is not subject
to any regroupings, then the work required to complete all tasks in the view is no more
thanN −maxi∈v.set{|Di|}, whereDi is the value of the state variableD of processor
i at the start of its local round 1 in viewv.

PROOF. In the first round, all the processors send messages to the coordinator con-
tainingDi. The coordinator computes∪i∈v.set{Di} and broadcasts this result to the
group members. Since the group is not subject to any regroupings, the number of
tasks,t, that the processors need to perform is:t = N − | ∪i∈v.set {Di}|. In each
round of the computation, by the load balancing rule, the members of the group per-
form distinct tasks and no task is performed more than once. Therefore,t is the work
performed in this group. On the other hand,maxi∈v.set{|Di|} ≤ | ∪i∈v.set {Di}|,
thus,t ≤ N − maxi∈v.set{|Di|}.

In the following lemma, groupsµ, g1, . . . , gk are defined as in Definition 5.2.

LEMMA 5.5
Let αµ be an execution of AlgorithmAX as in Definition 5.2. LetW1 be the work
performed by the algorithm in the executionαµ. Let W2 be the work performed by
Algorithm AX in the execution̄αµ. ThenW1 ≤ W2.

18 Journal of Discrete Algorithms

PROOF. For the executionαµ, let W ′ be the work performed by the processors in
P −

⋃
1≤i≤k(gi.set) − µ.set. Observe that the work performed by the processors in

P −
⋃

1≤i≤k(gi.set) in the execution̄αµ is equal toW ′. The work that is performed
by processorj in gi.set prior to theNEWVIEW(µ)j event inαµ, is the same in both
executions. Call this workWi,j . DefineW ′′ =

∑k
i=1

∑
j∈gi.set Wi,j . DefineW =

W ′ + W ′′. Thus,W is the same in both executions,αµ andᾱµ. DefineWµ to be the
work performed by all processors inµ.set in executionαµ.

For each processorj in gi.set, let Dj be the value of the state variableD just prior
to theNEWVIEW(µ)j event inαµ. For eachgi, define:di = |

⋃
j∈gi.set Dj|. Thus

there are at leastN − di tasks that remain to be done in eachgi.
In executionᾱµ, the processors in each groupgi proceed and complete these re-

maining tasks. This requires work at leastN − di. Define this work asWgi
. Thus,

Wgi
≥ (N − di).

In executionαµ, groupsg1, . . . , gk merge into groupµ. The number of tasks that
need to be performed by the members ofµ is at mostN − dj , wheredj = maxi{di}
for somej. By Lemma 5.4,Wµ ≤ N − dj . Observe that:

W1 = W + Wµ ≤ W + N − dj ≤ W +

k∑

i=1

(N − di) ≤ W +

k∑

i=1

Wgi
= W2.

In the following lemma, groupsϕ, g1, . . . , gk are defined as in Definition 5.3.

LEMMA 5.6
Let αϕ be an execution of AlgorithmAX as in Definition 5.3. LetW1 be the work
performed by the algorithm in the executionαϕ. Let W2 be the worked performed
by AlgorithmAX in the execution̄αϕ. ThenW1 ≤ W2 + W3, whereW3 is the work
performed by all processors in

⋃
1≤i≤k(gi.set) in the executionαϕ.

PROOF. Let W ′ be the work performed by all processors inP −
⋃

1≤i≤k(gi.set) −
ϕ.set in the executionαϕ. Observe that the work performed by all processors in
P−ϕ.set in the execution̄αϕ is equal toW ′. The work that is performed by processor
j in ϕ.set prior to theNEWVIEW(gi)j event inαϕ, is the same in both executions. Call
this workWϕ,j . DefineW ′′ =

∑
j∈ϕ.set Wϕ,j. DefineW = W ′ + W ′′. Thus,W is

the same in both executions,αϕ andᾱϕ. DefineWϕ to be the work performed by all
processors inϕ.set in executionᾱϕ. Let W ′′′ = Wϕ − W ′′. Observe that:

W1 = W + W3 ≤ W + W3 + W ′′′ = W2 + W3.

LEMMA 5.7
Wf,m ≤ N · P.

PROOF. By the construction of algorithmAX, when processors are not able to ex-
change information about task execution due to regroupings, in the worst case, each
processor has to perform allN tasks by itself. Since we can have at mostP processors
doing that, the work is:Wf,m ≤ N · P .

LEMMA 5.8
Wf,m ≤ N · f + N .

Cooperative Computing with Fragmentable and Mergeable Groups 19

PROOF. By induction on the number of views, denoted byr, occurring in an execution.
For a specific executionαr with r views, letfr be the fragmentation-number andmr

the merge-number.
Basis: r = 0. Sincefr andmr must also be 0, the basis follows from Lemma 5.4.

Inductive hypothesis: Assume that for allr ≤ k, Wfr ,mr
≤ N · fr + N .

Inductive step: Need to show that forr = k + 1, Wfk+1,mk+1
≤ N · fk+1 + N .

Consider a specific executionαk+1 with r = k + 1. Let Γαk+1
be the view-graph

induced by this execution. The view-graph has at least one vertex such that all of its
descendants are sinks (Fact 3.14). Letν be such a vertex. We consider two cases.

Case 1:ν has a descendantµ that corresponds to a merge in the execution. Therefore
all ancestors ofµ in Γαk+1

have outdegree 1. Sinceµ is a sink vertex, the group that
corresponds toµ performs all the remaining (if any) tasks and does not perform any
additional work.

Let αk = ᾱ
µ
k+1 (per Definition 5.2) be an execution in which this merge does

not occur. In executionαk, the number of views isk. Also, fk+1 = fk andmk+1 =
mk + 1. By inductive hypothesis,Wfk,mk

≤ N · fk + N . By Lemma 5.5, the work
performed in executionαk+1, is no worse than the work performed in executionαk.
The total work complexity is:

Wfk+1,mk+1
≤ Wfk,mk

≤ N · fk + N = N · fk+1 + N.

Case 2:ν has no descendants that correspond to a merge in the execution. Therefore,
the group that corresponds toν must fragment, say intoq groups. These groups corre-
spond to sink vertices inΓαk+1

, thus they perform all the remaining (if any) tasks and
do not perform any additional work.

Let αk+1−q = ᾱν
k+1 (per Definition 5.3) be an execution in which the frag-

mentation does not occur. In executionαk+1−q, the number of views isk + 1 −
q ≤ k. Also, fk+1−q = fk+1 − q andmk+1−q = mk+1. By inductive hypothesis,
Wfk+1−q,mk+1−q

≤ N · fk+1−q + N . From Lemma 5.4, the work performed in each
new group caused by the fragmentation is no more thanN . Let Wσ be the total work
performed in allq groups. Thus,Wσ ≤ qN . By Lemma 5.6, the work performed in
executionαk+1, is no worse than the work performed in executionαk+1−q and the
work performed in allq groups. The total work complexity is:

Wfk+1,mk+1
≤ Wfk+1−q ,mk+1−q

+ Wσ ≤ N · fk+1−q + N + Wσ

= N · (fk+1 − q) + N + Wσ ≤ N · (fk+1 − q) + N + qN

= Nfk+1 − qN + N + qN = N · fk+1 + N.

The main result in Theorem 5.1 follows directly from Lemmas 5.7 and 5.8.

5.2 Message Complexity

In this section we show the following result:

THEOREM 5.9
Mf,m < 4(N · f + N + P · m)

We start by showing several lemmas that lead to the message complexity result.

20 Journal of Discrete Algorithms

LEMMA 5.10
For algorithmAX, in any viewv, including the initial view, if the group is not subject
to any regroupings, and for each processori ∈ v.set, Di is the value of the state
variableD at the start of its local round 1 in viewv, then the number of messagesM

that are sent until all tasks are completed is2(N − d) ≤ M < 2(p + N − d) where
p = |v.set|, andd = |

⋃
i∈v.set Di|.

PROOF. By the load balancing rule, the algorithm needs⌈N−d
p

⌉ rounds to complete
all tasks. In each round each processor sends one message to the coordinator and
the coordinator responds with a single message to each processor. Thus,M = 2p ·
(⌈N−d

p
⌉). Using the properties of theceiling, we get:2(N − d)≤M<2(p+N−d).

In the following lemma, groupsµ, g1, . . . , gk are defined as in Definition 5.2.

LEMMA 5.11
Let αµ be an execution of AlgorithmAX as in Definition 5.2. LetM1 be the message
cost of the algorithm in the executionαµ. Let M2 be the message cost of Algorithm
AX in the execution̄αµ. ThenM1 < M2 + 2P .

PROOF. For the executionαµ, let M ′ be the number of messages sent by the proces-
sors inP −

⋃
1≤i≤k(gi.set) − µ.set. Observe that the number of messages sent by

the processors inP −
⋃

1≤i≤k(gi.set) in the execution̄αµ is equal toM ′.
The number of messages sent by any processorj in gi.set prior to theNEWVIEW(µ)j

event inαµ, is the same in both executions. Call this message costMi,j . Define
M ′′ =

∑k

i=1

∑
j∈gi.set Mi,j . DefineM = M ′ + M ′′. Thus,M is the same in

both executions,αµ and ᾱµ. DefineMµ to be the number of messages sent by all
processors inµ.set in executionαµ.

For each processorj in gi.set, let Dj be the value of the state variableD just prior
to theNEWVIEW(µ)j event inαµ. For eachgi, define:di = |

⋃
j∈gi.set Dj|. Thus

there are at leastN − di tasks that remain to be done in eachgi.
In executionᾱµ, the processors in each groupgi proceed and complete these re-

maining tasks. LetMgi
be the number of messages sent by all processors ingi.set in

order to complete the remaining tasks. By Lemma 5.10,Mgi
≥ 2(N − di).

In executionαµ, groupsg1, . . . , gk merge into groupµ. The number of tasks that
need to be performed by the members ofµ is at mostN − dj , wheredj = maxi{di}
for somej. By Lemma 5.10,Mµ < 2(p + N − dj), wherep = |µ.set|. Observe that:

M1 = M + Mµ < M + 2(p + N − dj)

≤ M + 2p + 2
∑k

i=1(N − di) ≤ M + 2p +
∑k

i=1 Mgi

= M2 + 2p ≤ M2 + 2P.

In the following lemma, groupsϕ, g1, . . . , gk are defined as in Definition 5.3.

LEMMA 5.12
Let αϕ be an execution of AlgorithmAXas in Definition 5.3. LetM1 be the message
cost of the algorithm in the executionαϕ. Let M2 be the message cost of Algorithm
AX in the execution̄αϕ. ThenM1 ≤ M2 + M3, whereM3 is the number of messages
sent by all processors in

⋃
1≤i≤k(gi.set) in the executionαϕ.

Cooperative Computing with Fragmentable and Mergeable Groups 21

PROOF. Fir the executionαϕ, letM ′ be the number of messages sent by the processors
in P −

⋃
1≤i≤k(gi.set) − ϕ.set. Observe that the number of messages sent by the

processors inP − ϕ.set in the execution̄αϕ is equal toM ′.
The number of messages sent by processorj in ϕ.set prior to theNEWVIEW(gi)j event
in αϕ, is the same in both executions. Call this message costMϕ,j. DefineM ′′ =∑

j∈ϕ.set Mϕ,j. DefineM = M ′ + M ′′. Thus,M is the same in both executions,αϕ

andᾱϕ. DefineMϕ to be the number of messages sent by all processors inϕ.set in
executionᾱϕ. Let M ′′′ = Mϕ − M ′′. Observe that:

M1 = M + M3 ≤ M + M3 + M ′′′ = M2 + M3.

We now give the proof of Theorem 5.9. This is done by induction, similarly to the
proof of Lemma 5.8.

PROOF. (For Theorem 5.9.) By induction on the number of views, denoted by r,
occurring in any execution. For a specific executionαr with r views, letfr be the
fragmentation number andmr be the merge-number.

Basis: r = 0. Sincefr andmr must also be 0, the basis follows from Lemma 5.10.

Inductive hypothesis: Assume that for allr ≤ k, Mfr,mr
< 4(N · fr + N + P ·mr).

Inductive step: Need to show that forr = k + 1, Mfk+1,mk+1
< 4(N · fk+1 + N +

P · mk+1). Consider a specific executionαk+1 with r = k + 1. Let Γαk+1
be the

view-graph induced by this execution. The view-graph has atleast one vertex such
that all of its descendants are sinks (Fact 3.14). Letν be such a vertex.
We consider two cases.

Case 1:ν has a descendantµ that corresponds to a merge in the execution. Therefore
all ancestors ofµ in Γαk+1

have outdegree 1. Sinceµ is a sink vertex, the group that
corresponds toµ performs all the remaining (if any) tasks and no further messages are
sent.

Let αk = ᾱ
µ
k+1 (per Definition 5.2) be an execution in which this merge does

not occur. In executionαk, the number of new views isk. Also, fk+1 = fk and
mk+1 = mk + 1. By inductive hypothesis,Mfk,mk

< 4(N · fk + N + P ·mk). The
total message complexity, using Lemma 5.11 is:

Mfk+1,mk+1
< Mfk,mk

+ 2P

< 4(N · fk + N + P · mk) + 2P

= 4(N · fk+1 + N + P · mk+1 − P) + 2P

= 4Nfk+1 + 4N + 4Pmk+1 − 4P + 2P

≤ 4(N · fk+1 + N + P · mk+1).

Case 2:ν has no descendants that correspond to a merge in the execution. Therefore,
the group that corresponds toν must fragment, say intoq groups. These groups corre-
spond to sink vertices inΓαk+1, thus they perform all of the remaining (if any) tasks
and do not send any additional messages.

Let αk+1−q = ᾱν
k+1 (per Definition 5.3) be an execution in which the frag-

mentation does not occur. In the executionαk+1−q , the number of new views is

22 Journal of Discrete Algorithms

k + 1 − q ≤ k. Also, fk+1−q = fk+1 − q andmk+1−q = mk+1. By inductive
hypothesis,Mfk+1−q,mk+1−q

< 4(N ·fk+1−q+N+P ·mk+1−q). From Lemma 5.10,
the message cost in each new group caused by a fragmentation is no more than4N .
Let Mσ be the total number of messages sent in allq groups. Thus,Mσ ≤ 4qN . By
Lemma 5.12, the number of messages sent in executionαk+1, is less than the num-
ber of messages sent in executionαk+1−q and the number of messages sent in allq

groups. The total message complexity is:

Mfk+1,mk+1
≤ Mfk+1−q,mk+1−q

+ Mσ

< 4(N · fk+1−q + N + P · mk+1−q) + Mσ

= 4(N · fk+1 − qN + N + P · mk+1) + Mσ

≤ 4Nfk+1 − 4qN + 4N + 4Pmk+1 + 4qN

= 4(N · fk+1 + N + P · mk+1).

5.3 Analysis for the Fragmentation Adversary

We express the work complexity of algorithmAX in the modelFF asWFF
(N, P, r) =

Wf and the message complexity asMFF
(N, P, r) = Mf (note thatr = f for FF).

The following corollary is derived from Theorems 5.1 and 5.9.

COROLLARY 5.13
Wf ≤ min{N · f + N, N · P} andMf < 4(N · f + N).

In the failure model of [8] a group is not allowed to “fragment” into a single group
with the same membership. Such fragmentation is allowed by our definition ofFF .
In order to compare our results with the results of [8], we define a more restricted
adversaryF ′

F that requires that any group may only fragment into 2 or more other
groups. ClearlyF ′

F ⊆ FF , and from Corollary 5.13 we have the following.

COROLLARY 5.14
WF ′

F
(N, P, f)=O(N · f + N) andMF ′

F
(N, P, f)=O(N · f + N).

In the rest of this section we deal with the modelF ′
F . Our definition of the

fragmentation-numberf is slightly different from the definition of fragmentation fail-
uresf ′ in [8]. When a group fragments intok groups,f is defined to be equal tok,
butf ′ is defined to be equal tok − 1. The next Lemma relatesf andf ′.

LEMMA 5.15
If f is the fragmentation-number andf ′ the number of fragmentation failures as de-
fined in [8], thenf ′ < f < 2f ′.

PROOF. Assume thatk fragmentations occur. Enumerate the fragmentations arbitrar-
ily. Let the number of the new views in theith fragmentation befi. By the definition
of f ′

i , f ′
i = fi − 1. Thus,f ′

i + 1 = fi which implies thatfi < f ′
i + f ′

i = 2f ′
i .

But f ′ =
∑k

i=1 f ′
i andf =

∑k

i=1 fi. Hence,f < 2f ′. Now observe that,f ′ =∑k
i=1 f ′

i =
∑k

i=1(fi − 1) =
∑k

i=1 fi − k = f − k. Thereforef > f ′.

In [8] the work is counted in terms of the rounds executed by the processors. In
our analysis we count only the number of task executions (including redundancies).

Cooperative Computing with Fragmentable and Mergeable Groups 23

However in our algorithm, for as long as any tasks remain undone in a given group,
the processors perform the tasks in rounds, except for the last round. Therefore the
difference in work complexity for these two algorithms is atmostf · N . Thus the
different definitions off , f ′ and work are subsumed in the big-oh analysis, and with-
out substantial variation in the constants. On the other hand, the message complexity
of our algorithm, as shown in Corollary 5.14, is substantially better than the at least
quadratic message complexity of the algorithm from [8].

6 Conclusion

We have considered the problem of performing a set ofN tasks on a set ofP coop-
erating message-passing processors, where the processorsmust perform all tasks and
learn the results of the tasks, subject to dynamically changing group memberships.
To analyze our algorithm we introduced view-graphs – digraphs that we use to rep-
resent and analyze changes of processors’ views in executions. We believe that our
view-graph approach is general and that it can be used to study other dynamic group
reconfiguration patterns and related problems.

Acknowledgements: We thank Idit Keidar for several helpful discussions and the
anonymous referees for their comments that helped us improve the quality of the pre-
sentation.

This work was in part supported by the NSF Grant 9988304, the NSF ITR Grant
0121277 and a grant from AFOSR; the second author was also supported by a NSF
CAREER Award 9984778.

References
[1] O. Babaoglu, R. Davoli, L. Giachini and M. Baker, “Relacs: A Communication Infrastructure for Con-

structing Reliable Applications in Large-Scale Distributed Systems”, inProc. of Hawaii International
Conference on Computer and System Science, volume II, pp 612–621, 1995.

[2] K.P. Birman and R. van Renesse,Reliable Distributed Computing with the Isis Toolkit, IEEE Computer
Society Press, Los Alamitos, CA, 1994.

[3] B. Chlebus, R. De Prisco and A. Shvartsman, “Performing tasks on restartable message-passing pro-
cessors”, inDistributed Computing, vol. 14, pp. 49-64, 2001.

[4] Comm. of the ACM, Special Issue on Group Communication Services, vol. 39, no. 4, 1996.
[5] R. De Prisco, A. Fekete, N. Lynch and A. Shvartsman, “A Dynamic View-Oriented Group Communi-

cation Service”, inProc. of 16th ACM Symp. on Principles of Distributed Computing, 1998.
[6] R. De Prisco, A. Mayer, and M. Yung, “Time-Optimal Message-Efficient Work Performance in the

Presence of Faults”, inProc. 13th ACM Symp. on Principles of Distributed Comp., pp. 161–172, 1994.
[7] D. Dolev and D. Malki, “The Transis Approach to High Availability Cluster Communications”,Comm.

of the ACM, vol. 39, no. 4, pp. 64–70, 1996.
[8] S. Dolev, R. Segala and A. Shvartsman, “Dynamic Load Balancing with Group Communication”, in

Proc. of the 6th International Colloquium on Structural Information and Communication Complexity,
1999.

[9] C. Dwork, J. Halpern, O. Waarts, “Performing Work Efficiently in the Presence of Faults”,SIAM
Journal on Computing, vol. 27, no. 5, pp. 1457–1491, 1998.

[10] P. Ezhilchelvan, R. Macedo and S. Shrivastava “Newtop:A Fault-Tolerant Group Communication
Protocol”, inProc. of IEEE Int-l Conference on Distributed Computing Systems, pp 296–306, 1995.

24 Journal of Discrete Algorithms

[11] A. Fekete, N. Lynch, and A.A. Shvartsman, “Specifying and Using a Group Communication Service”,
ACM Transactions on Computer Systems, vol. 19, pp. 171–216, 2001.

[12] Z. Galil, A. Mayer, and M. Yung, “Resolving Message Complexity of Byzantine Agreement and
Beyond”, inProc. 36th IEEE Symposium on Foundations of Computer Science, pp. 724–733, 1995.

[13] C. Georgiou and A. Shvartsman,“Cooperative Computingwith Fragmentable and Mergeable Groups”,
in Proc. of 7th International Colloquium on Structural Information and Communication Complexity,
pp. 141–156, 2000.

[14] M. Hayden, Doctoral Thesis,The Ensemble System, TR98-1662, Cornell University, 1998.
[15] P. Kanellakis and A. Shvartsman,Fault-Tolerant Parallel Computation, Kluwer Academic Publishers,

ISBN 0-7923-9922-6, 1997.
[16] R. Khazan, A. Fekete and N. Lynch, “Group Communicationas a base for a Load-Balancing, Repli-

cated Data Service”, inProc. of the 12th International Symposium on Distributed Computing, 1998.
[17] E. Y. Lotem, I. Keidar, and Danny Dolev, “Dynamic Votingfor Consistent Primary Components”,

Proc. of the 16th Annual ACM Symp. on Principles of Distributed Computing, pp. 63–71, 1997.
[18] N.A. Lynch,Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.
[19] N.A. Lynch and M.R. Tuttle, “An Introduction to Input/Output Automata”,CWI Quarterly, vol.2, no.

3, pp. 219–246, 1989.
[20] G. Malewicz, A. Russell and A.A. Shvartsman, “Distributed Cooperation During the Absence of Com-

munication”, inProc. 14th International Conference on Distributed Computing, LNCS Vol. 1914, pp.
119–133, 2000. (Preliminary version: Brief announcement.19th ACM Symposium on Principles of
Distributed Computing, 2000.)

[21] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia and C.A. Lingley-Papadopolous,
“Totem: A Fault-Tolerant Multicast Group Communication System”, Comm. of the ACM, vol. 39,
no. 4, pp. 54–63, 1996.

[22] S. Mishra, L.L. Peterson and R.D. Schlichting, “Consul: A Communication Substrate for Fault-
Tolerant Distributed Programs”, TR 91-32, dept. of Computer Science, University of Arizona, 1991.

[23] R. van Renesse, K.P. Birman and S. Maffeis, “Horus: A Flexible Group Communication System”,
Comm. of the ACM, vol. 39, no. 4, pp. 76–83, 1996.

[24] M. Saks, N. Shavit and H. Woll, “Optimal time randomizedconsensus – making resilient algorithms
fast in practice”, inProc. of the 2nd ACM-SIAM Symp. on Discrete Algorithms, pp. 351–362, 1991.

[25] J. Sussman and K. Marzullo, “The Bancomat Problem: An Example of Resource Allocation in a
Partitionable Asynchronous System”, inProc of 12th Int-l Symp. on Distributed Computing, 1998.

[26] R. Vitenberg, I. Keidar, G. V. Chockler and D. Dolev, “Group Communication Specifications: A Com-
prehensive Study”, Technical Report CS99-31, Institute ofComputer Science, The Hebrew University
of Jerusalem, September 1999. (Also Technical Report MIT-LCS-TR-790, Laboratory for Computer
Science, M.I.T., and Technical Report CS0964, Computer Science Department, the Technion, Haifa,
Israel.)

