Cooperative Computing with
Fragmentable and Mergeable Groups

CHRYSSIS GEORGIOUComputer Science and
Engineering,University of Connecticut, Storrs, CT 0628SA.
Email: cg2@cse.uconn.edu

ALEX A. SHVARTSMAN, Computer Science and Engineering,
University of Connecticut, Storrs, CT 06269, USA and Labmwafor
Computer Science, Massachusetts Institute of TechndBaggbridge,
MA 02139, USA. Email: alex@theory.lcs.mit.edu

ABSTRACT:This work considers the problem of performing a seiofasks on a set aP coop-
erating message-passing proces$éts< V). The processors use a group communication ser-
vice (GCS) to coordinate their activity in the setting whdymamic changes in the underlying
network topology cause the processor groups to changeiover &CSs have been recognized
as effective building blocks for fault-tolerant applicats in such settings. Our results explore
the efficiency of fault-tolerant cooperative computati@ing GCSs. The original investigation
of this area by Dolet al. [8] focused on competitive lower bounds, non-redundark &die-
cation schemes and work-efficient algorithms in the presefidragmentation regroupings. In
this work we investigatevork-efficientandmessage-efficieraigorithms forfragmentatiorand
mergeregroupings. We present an algorithm that uses GCSs aneérimepits a coordinator-
based strategy. For the analysis of our algorithm we intedtie notion ofview-graphsthat
represent the partially-ordered view evolution historgn@ssed by the processors. For frag-
mentationsand merges, the work of the algorithm (defined as the worst casé famber of
task executions counting multiplicities) is not more tham{N - f + N, N - P}, and the
message complexity is no worse thdV - f + N + P-m), wheref andm denote the number
of new groups created by fragmentations and merges reggigctNote that the constants are
very small and that, interestingly, while the work efficigridepends on the number of groups
f created as the result of fragmentations, work deesdepend on the number of groups
created as the result of merges.

Keywords Distributed algorithms, group communication, work, coomitation, complexity.

1 Introduction

The problem of cooperatively performing a set of tasks in eed&alized setting
where the computing medium is subject to failures is one@ftindamental problems
in distributed computing. Variations on this problem haegeibstudied in a variety of
settings, e.g., in message-passing models [9, 6] and irdimmemory models [15].
This problem was also studied in the setting of processarggdn partitionable net-
works [8]. In this setting, the computation can take advg@ts group communication

2 Journal of Discrete Algorithms

services [4], and the processors must perform the tasks astllearn the results of
the tasks efficiently, despite the dynamically changingiggnmemberships.

Group communication services (GCS) can be used as effdmtilging blocks for
constructing fault-tolerant distributed applicationtiee services enable the applica-
tion components at different processors to operate coldgtas a group, using the
service to multicast messages. The basis of a group comatioriservice is group
membership servic&Each processor, at each time, has a unigee of the member-
ship of the group. The view includes a list of the procesduas are members of the
group. Views can change and may become different at diffgmecessors. There is a
substantial amount of research dealing with specificatimhi@plementation of GCSs
and group-oriented applications, e.g., [1, 2, 14, 7, 10217 23], and verification of
GCSs and group-oriented systems, e.g., [5, 16, 11].

When developing group-oriented, and especially partiimare applications, it is
also important to understand the effectiveness of groupaanication services [25]
and the efficiency benefits that can be expected when usingpgrommunication
services [8]. One of the features of GCSs is their group mamaat facilities that
map a variety of failures in the underlying computing meditarchanges in group
memberships. Faulty communication links can partitiongygtem into several con-
nected components. Failures and recoveries trigger gramlrarship activity that
aims to establish a group for every connected component.d&araary that causes
frequent and arbitrary failures may prevent applicationsnfmaking steady compu-
tational progress. Thus, it is interesting to study retdc yet realistic, models of
adversaries for which efficient specific algorithms can besttged with the help of
common group communication services. Studying the prolofeperforming a set of
tasks on a set of processors in the group-oriented settiogjdas a convenient and
powerful abstraction for understanding the efficiency aderative computation. A
work-efficient algorithm is presented for this problem byl®oet al. in [8], along
with a lower bound and a scheduling strategy that minimizesindant work. That
algorithm is tolerant of arbitrary sequences of group fragtations. In this work we
present the study of algorithms that are work-efficient aedsage-efficient, and that
are able to deal with more general changes in group memipstshi

Following [8], we investigate an approach whose goal is ttizatthe resources
of every componertf the system during the entire computation. The problem we
consider has the following setting:set of N independent and idempotent tasks must
be performed by processors in a distributed system, where each processst mu
learn all results Group communication is used to coordinate the executiomhef
tasks. Our distributed system model, in addition to the @ssors and the network,
includes a set of input/output ports accessible to the smrs. In this model we
enable any client of the required computation to query awggssor for the results.
This makes it mandatory, even for isolated processors, &bleeto provide the results
of the computation regardless of whether any other processay already have the
results. Thus, it is not sufficient to know that each of thégsdsave been performed
somewhere. Itis also necessary for each processor to learadults. We refer to this
problem as th@mNiI-DO problem.

Note that any algorithm that solves the problem in a way wiwny group the

Cooperative Computing with Fragmentable and Mergeableupso 3

processors perform no more th@(.V) tasks (counting multiplicities), will have work
complexity ofO(r- N'), wherer is the total number of new views installed. This makes
it not very interesting to study the problem for adversatiied impose arbitrary view
changes. Our major goal is to develpgeciseupper bounds that describe the work
and messaging efficiency of solvimgNI-DO as functions of the number of taskg

the number of processof and the numbers of distinct group viewsspkcifictypes
(fragmentations and merges in this work) installed by trrigmembership services.

We present an algorithm for themNI-DO problem for NV tasks andP message-
passing processor®(< N) that are interconnected by a network, which is subject
to dynamic group fragmentations and merges. We assume @ gmumunication
service that provides group management and view-orienestaging service (Sec-
tion 2.2). The main complexity result is for the adversamttis restricted to causing
fragmentations of groups and merges of groups. This extied®sults in [8], which
consider only the fragmentation adversary. Our analysishfe fragmentation-and-
merge adversary yields analysis for the fragmentatiogamiversary as a corollary.

For the fragmentation-and-merge adversary, we distitigugdween the views that
are installed as the result of fragmentations and the viestalied as the result of
merges. Ifr is the total number of views installed, then for the fragraénh-and-
merge adversary we have that= f + m, wheref is the number of views due to
fragmentations anth is the number of views due to merges. It is also not difficult to
see thain < f when all processors initially start in a single group.

The fragmentation-and-merge adversary is more poweréul the fragmentation
adversary of [8] and it can cause the degradation of compatefficiency, e.g., by
merging groups it can increase the message cost (as implieditbresults) and it
can cause more numerous fragmentations (in the fragmemsatinly model there can
be at mostP — 1 fragmentations). Intuitively it is reasonable to expedttivhile
merges may not degrade work efficiency, they may increasm#®saging due to the
additional coordination overhead. Our analysis confirnssittuition.

We now summarize our results.

e We present a new algorithm, called algoritiX, that solves th@mNI-DO prob-
lem and we analyze it for the fragmentation-and-merge adwgr The algorithm
employs a coordinator-based approach and relies on thelyimdegroup com-
munication service. The algorithm is specified in Section 4.

We introduce the notion ofiew-graphghat represent the partially-ordered view
evolution history collectively witnessed by the process@ection 3). We show
that these digraphs are acyclic for the fragmentationfaedye adversary and we
use these view-graphs in the complexity analysis of therdlgn. We believe that
view-graphs have the potential of serving as a general tostfidying cooperative
computing with group communication services.

For any pattern of fragmentations and merges, the Wirkf the algorithm is no
more thanmin{N - f + N, N - P}, and the message complexity is no worse
thand(N - f + N + P -m). Note thatf < r and here it is significant that we are
expressing the upper bounds using explicit constantsadstethe big-oh notation.
Both complexity results depend gf) but only the message complexity depends

4 Journal of Discrete Algorithms

onm. These facts substantiate the intuition that merges leadnore efficient
computation, but require additional coordination. Thislgsis is presented in
Sections 5.1 and 5.2.

e For any pattern of fragmentations (i.e., whan= 0) our algorithm achieves work
complexity of O(min{N - f + N, N - P}). This result is essentially the same
as the result in [8]. However, our algorithm achieves sutighy bettermessage
complexityO(N - f4+ N) as compared to the at least quadratic message complexity
of the algorithm in [8]. Message optimization was outsidéhaf scope of [8], yet
this improvementwas one of our goals. The improvementgglgirdue to our use
of the coordinator-based strategy. These results are &€ 3.

Note that it is not difficult to see that jf > P, then it is always possible to produce
an execution such thd = Q(N - P), and if f < P, then it is possible to produce
an execution such that’ = Q(N - f). Thus,W = Q(min{N - f, N - P})is a
lower bound foromNI-DO. This makes our algorithm work-optimal with respect to
the adversaries we consider. Considering optimality fentiessage complexity is less
interesting, since the problem can be solved without anynsomcation (cf. [20]).

Related work. The problem of efficiently performing a set of tasks using awvoek

of processors in the setting where the network is subjectaihic changes was con-
sidered by Dolev, Segala and Shvartsman [8]. ForNhprocessorN-task problem
defined in that work, it was shown that for dynamic changegeahmination time of
any on-line task algorithm can be greater than the terntnaitme of an off-line algo-
rithm by a factor linear inV. An algorithm was also presented in [8] that for arbitrary
fragmentations has woR(N - f' + N), wheref’ is the increase in the number of
groups due to fragmentations. In comparing our result viighresult in [8], we note
that our definition off is slightly different from the definition of fragmentatioaif
uresf’ in [8]. In order to compare our complexity results with thasg], we show in
this paper that for any pattern of fragmentations allowefBpwe havef’ < f < 2.

In [8] the work is counted in terms of the rounds executed leygfocessors. In our
analysis we count only the number of task executions (inotyucedundancies). How-
ever in our algorithm, for as long as any tasks remain undorediven group, the
processors perform the tasks in rounds, except for thedasik. Therefore the differ-
ence in work complexity for these two algorithms is at mpstV. Thus the different
definitions of f and f’ and of work can be subsumed in the big-oh analysis without
substantial variation in the constants.

Group communication services (GCS) have become importabtigding blocks
for fault-tolerant distributed systems. Such servicesbé&nprocessors located in a
fault-prone network to operate collectively as a groupngghe services to multi-
cast messages to group members. Examples of GCS includR]sisransis [7],
Totem [21], Newtop [10], Relacs [1], Horus [23] and Ensenié]. Examples of
recent work dealing with primary groups are [5, 17]. An exé&mgf an application
using a GCS for load balancing is by Fekete, Khazan and Lyb@h [To evaluate the
effectiveness of partitionable GCSs, Sussman and Mar28lqroposed the measure
(cushion) precipitated by a simple partition-aware application.

Our definition of work follows that of Dwork, Halpern and W&af9]. Our frag-

Cooperative Computing with Fragmentable and Mergeableupso 5

mentation model creates a setting, within each fragmeattjgisimilar to the setting in
which the network does not fragment but the processors &jecto crash failures.
Performing a set of tasks in such settings is the subjectvafrabworks [3, 6, 9, 12],
however the analysis is quite different when work in all freants has to be consid-
ered.

Our distributed problem has an analogous counterpart ialttaeed-memory model
of computation, called theollect problem. The collect problem was originally ab-
stracted by Saks, Shavit and Woll [24] (it also appears ivBe&h.D. thesis). Al-
though the algorithmic techniques are different, the gddlaving all processors to
learn a set of values is similar.

The rest of the paper is structured as follows. In Section Zescribe models, as-
sumptions and complexity measures. In Section 3 we intr@elnd define view graphs
and the adversary models. In Section 4 we describe Algorand in Section 5
we give its complexity analysis. We conclude in Section éwitdiscussion.

A preliminary version of this paper appeared as [13].

2 Definition and Models

We begin by presenting the system model, the group commtioricservice proper-
ties, and work and communication complexity measures.

2.1 The System Model and tB&NI-Do Problem

The distributed system consists Bfprocessors connected by communication links.
Each processor has a unique identifier from thefset {1, 2, ..., P}.

We define daskto be any computation that can be performed by a single psoces
in constant time. We assume that the tasks are independérid@mpotent. Our
distributed system is charged with the responsibility af@ening a set of NV tasks
that are initially known to all processors. Each task hasigueidentifier from the
set7.

To require that all processors acquire the results of akstasur system also in-
cludes a set of input/output ports. These ports are only bygeithe clients of the
system to query individual processors for computationltesie do not make any
failure assumptions about the input/output ports, in paldir, our algorithm does not
depend on the failure status of these ports, or the requeststhem.

DEFINITION 2.1

The problem of performing a set 8f independenttasks on a setldfnessage passing
processors, where each processor must learn the resulisigftasks, is called the
OMNI-DO problem.

The algorithm specification in this paper is done in termg©fdutomata of Lynch
and Tuttle [18, 19]. Each automaton models a state machihestates and transitions
between states, where actions are associated with se@tefisinsitions. There are
input, output and internal actions. A particular actionngleled if the preconditions

6 Journal of Discrete Algorithms

of that action are satisfied. The statements given as effieetexecuted as a program
started in the existing state and atomically producing e state as the result of the
transition.

An executiona of an 1/0 automatoriut is a finite or infinite sequence of alter-
nating states and actions (events) Aoft starting with the initial state, i.eq =
S0, €1, 81, €2, ..., Wheres;'s are statesy, is the initial state) and;’s are actions
(events). We denote IBxec$Aut) the set of all executions idut.

We next state our assumptions about the group communicsgimices and define
the work and message complexity measures.

2.2 Group Communication Service

We assume a group communication service (GCS) with certaipepties. The as-
sumptions are basic, and they are provided by several grmmpncinication systems
and specifications [26]. The service maintains group mesttyginformation and it
is used to communicate information concerning the exedatgd within each group.
The GCS provides the following primitives:

e NEWVIEW(v),: informs processop of a new viewv = (id, set), whereid is the
identifier of the view andet is the set of processor identifiers in the group. When
aNEWVIEW(v), primitive is invoked, we say that procesgoinstallsview v.

e GPMSND(messag,: processop multicasts a message to the group members.

e GPMRCV(messag,: processop receives multicasts from other processors.

e GP1sND(message,destinatifyn processop unicasts a message to another mem-
ber of the current group.

e GP1RCV(messagk,: processop receives unicasts from another processor.

To distinguish between the messages sent in different sesrds we assume that
each message sent by the application is tagged with a unigesage identifier.
We assume the following safety properties on any executiaf an algorithm that
uses GCSs:

1. A processor is always a member of its view ([26] Prop. 3ILNEWVIEW(v),
occurs ina thenp € v.set.

2. The view identifiers of the views that each processor lissésie monotonically
increasing ([26] Prop. 3.2). If evemEwWVIEW(v1), Occurs ina before event
NEWVIEW(v2),, thenv,.id < vq.id. This property implies that:

(a) A processor does not install the same view twice.
(b) If two processors install the same two views, they imdtase views in the
same order.

3. For every receive event, there exists a preceding sentt e¥é¢he same mes-
sage ([26] Prop. 4.1). I6PMRCV(m), (GPLRCV(m),) occurs ina, then there
existsGPMSND(m), (GP1SND(m, p),) earlier in execution.

4. Messages are not duplicated ([26] Prop. 4.2EAMRCV(m4), (GPIRCV(m1),)
andGPMRCV(mg), (GP1IRCV(m2),) Ooccur ina, thenmy # mo.

Cooperative Computing with Fragmentable and Mergeableupso 7

5. Amessage is delivered in the same view it was sent in ([&f).P4.3). If processor
p receives message in view v; and processoy (it is possible thap = ¢) sends
m in view vy, thenv; = vs.

6. In the initial statesy, all processors are in the initial views, such thatyy.set =
P ([26] Prop. 3.3 with [11, 22]).

We assume the following additional liveness properties mnexecutionx of an
algorithm that uses GCSs (cf. [26] Section 10):

7. If a processop sends a message in the vieww, then for each processgrin
v.set, eitherq deliversm in v, or p installs another view.

8. If a new view event occurs at any procesgam view v, then a view change will
eventually occur at all processorsitset — {p}.

2.3 Regrouping-Numbers and Measures of Efficiency

In this section we define regrouping-numbers and complerigasures. We define
theregrouping-number of an execution to be the numberwEwviEw events with
distinct view identifiers. (Note that if the same view is ai#d at multiple processors,
this counts for a single regrouping.)

DEFINITION 2.2
Given an execution, we define theegrouping-number,, as:

re = [{v : NEWVIEW(v), OCCUrS ina}|.

When it is clear from the context, we usenstead ofr, to denote the regrouping-
number of execution.

We defineadversary mode]sn the context of a specific algorithm, in terms of the
collections of executions in the presence of an adversary.

DEFINITION 2.3

For an algorithmA, let 7z (A) be the adversary model that includes all possible ex-
ecutions of4, i.e., Fr(A) = execs(A), and letFy(A) be the adversary model that
does not cause ameWVIEW events, i.e.Fp(A) = {a: a € execs(A) Ar, = 0}.

When it is clear from the context, we ugg instead ofF;(A) andFx instead of
Fr(A). ltis easy to see thaty C Fr. Let F be some adversary model such that
Fp € F C Fg. Inthe following definitions we formalize the measures ofkvand
message complexity for the specific Our definition of work follows that of Dwork,
Halpern and Waarts [9].

DEFINITION 2.4
Thework W, (N, P) of an executior of algorithm A in the adversary mode¥, is
definedto b, _» W}, whereW is the number of tasks performed by processor
Thework complexityV=(N, P, r) is defined as:

Wg(N,P,r) = max {W,(N,P)}.

acF ,rq<r

8 Journal of Discrete Algorithms

DEFINITION 2.5
The message cost/,, (N, P) of an execution of algorithm A in the adversary
model F, is defined to be)",_, M, where M, is the number of messages sent
by processoi. Themessage complexify (N, P, r) is defined as:

Mgz(N,P,r) = max {M,(N,P)}.

acF ,rq<r

3 View-Graphs and Specific Adversary Models

This section introducegiew-graphghat represent view changes at processors in ex-
ecutions and that are used to analyze properties of exesutidiew-graphs are di-
rected graphs (digraphs) that are defined by the states atie kgwvIEW events of
executions of algorithms that use group communicationisesv Representing view
changes as digraphs enables us to use common graph anedysigjties to formally
reason about the properties of executions. In this papeeakbndth adversary models
that cause group fragmentations and merges. Although tlaaimgof such reconfig-
urations seems very intuitive, it is necessary to carefigiiine them to enable formal
reasoning. Our view-graph approach to the analysis of éxawiis general, and we
believe it can be used to study other properties of group comication services and
algorithms for different adversary models.

3.1 Executions and View-Graphs

Consider an algorithml that uses a group communication service (GCS). We modify
algorithm A by introducing, for each processqrthe history variablewv; that keeps
track of the current view at as follows: In the initial state, we set; to bevg, the
distinguished initial view for all processois P. In the effects of thelewviEw (v);
action for processot, we include the assignmeat; := v. In the rest of the paper,
we assume that algorithms are modified to include such Kistariables. We now
defineview-graphdy specifying how a view-graph is induced by an executionrof a
algorithm.

DEFINITION 3.1

Given an execution of algorithm A, theview-graphl', = (V, E, L) is defined to be
the labeled directed graph as follows:

1. LetV,, be the set of all views that occur iInNEWVIEW(v); events ina. The set
V of nodes of",, is the sefl/, U {vo}. We callvg the initial node of",,.

2. The set of edge® of I, is a subset o/ x V determined as follows. For each
NEWVIEW(v),; event ina that occurs in state, the edgés.cv;,v) isin E.

3. The edgesik are labeled by, : E — 2%, such that.(u, v) = {i : NEWVIEW(v);
occurs in state in « such that.cv; = u}.

Observe that the definition ensures that all edgds of I, are labeled.

EXAMPLE 3.2
Consider the following execution (we omit all events other thamkewview and any
states that do not precedewview events):

Cooperative Computing with Fragmentable and Mergeableupso 9

Q= S0, NEWVIEW(U1)py ;- - -, S1, NEWVIEW(V2)ps , - - -, S2, NEWVIEW(V3)p,, - - -
S3, NEWVIEW(U4) py s - - - , S4, NEWVIEW(V1) pg s - - -, S5, NEWVIEW(V4)y s - - - 5
56, NEWVIEW(V4) sy - - -
wherev;.set = {p1,ps}, va.set = {pa}, vs.set = {ps} andvy.set = {p1,p2,p3}.
Additionally, vg.5€t =P = {p1,p2,p3,p4}.

The view-grapi’,, = (V, E, L) is given in Figure 1. The initial node af, is vo.
The set of nodes o¥ of T, isV = V, U {vg} = {wvo,v1,v2,v3,04}. The set of
edgesE of T, is E = {(vp,v1), (vo, v2), (vo, v3), (v1,v4), (v2,v4)}, Since for each
of these(v;, v;) the eventvewview(vy), occurs in states, wheres,.cv, = v, for
some certairp (by the definition of the history variable). The labels of #uges are
L(vo,v1) = {p1,ps}, L(vo,v2) = {p2}, L(vo,v3) = {pa}, L(v1,va) = {p1,p3}
andL(va,v4) = {p2}, since for eachy; € L(v;,vs) the evenivewview(vy); occurs
in states, wheres,.cv,, = v;.

L0oV2) = Py P3 L(VeVy) = {pF

Z X
v, v,
v,-set = {p,, p} v,-set = {p}
L(v,.v) = {p,, p;} L(v,v,) = {p;}
V4
B

FiG. 1. Example of a view-graph

Given a grapht and a node of S, we definendegregv, S) (outdegre¢v, S)) to
be the indegree (outdegree)win S.

LEMMA 3.3
For any executiow, indegreévy, I'y,) = 0.

PROOF In the initial statesy, so.cv is defined to bey, for all processors irP and
vo.set = P. Assume thaindegreévy,I',) > 0. By the construction of view-graphs,
this implies that some processoe P installsvg a second time. But this contradicts
the property 2(a) of GCS. [|

LEMMA 3.4

Let o be an execution anfl,,|; be the projection of’, on the edges whose label
includesi, for somei € P. T',|; is an elementary path and is the path’s source
node.

PROOF. Let executiony besg, e1, s1,es, Leta®) be the prefix ofv up to thek?”
state. i.e.n(®) = s, e1,51,¢€2,...,s, LetTk be the view-graph that is induced by
o®), Then defind % |; to be the projection of* on the edges whose label includes
for somei € P. For an elementary path we definer.sink to be its sink node.

10 Journal of Discrete Algorithms

We prove by induction ot thatF’;|l- is an elementary path, thE(§|i.sink = 8.CV;
and thaty, is the path’s source node.

Basis k = 0. I'%|; has only one vertexyo, and no edgesa(® = s¢). Thus,
I'9|;.sink = sg.cv; = vy anduy is the source node of this path.

Inductive HypothesisAssume that'n < k, T'?|; is an elementary path, thBf |;.sink
= s,.cv; and thaty is the path’s source node.

Inductive Stepn = k + 1. For states;; we consider two cases:

Case 1: If eveng41 is not aNEWVIEW event involving processar thenF§+1|i =
I'¥|;. Thus, by inductive hypothesiEX*?|; is an elementary path ang is its source
node. From state;, to states;1, processoi did not witness any new view. By the
definition of the history variablesy1.cv; = sg.cv;. Thus,F§+1|i.sz‘nk = Si.CU; =
Sk+1-CU;.

Case 2: If event,1 IS aNEWVIEW(v); event that involves processarthen by the
construction of the view-graphs{.cv;, v) is a new edge from nods,.cv; to nodev.
By inductive hypothesid |;.sink = s;.cv;. Since our GCS does not allow the same
view to be installed twice (property 2(a)),# u for all u € T¥|;. Thus,T5+!|; is
also an elementary path, with its source node anb**!|;.sink = v. From state
sy, to statesy 1, processoi installs the new view. By the definition of the history
variable,sy 1.cv; = v. Thus,I' 1|, sink = s 1.cv;. This completes the proofl

THEOREM 3.5
Any view-graphl’,,, induced by any executiam of algorithmA is a connected graph.

PrRoOOF The result follows from Definition 3.1(2), from the obsetiva that all edges
of the view-graph are labeled and from Lemma 3.4 [|

DEFINITION 3.6
For a view-grapil', = (V, E, L), afragmentation subgrapls a connected labeled
subgrapht = (Vs, Eg, Lg) of T, such that:

1. S contains a unique nodesuch thatindegree(v, S) = 0; v is called thefragmen-
tation nodeof S.

2. Vg ={v} U V{, whereV{ is defined to bdw : (v, w) € E}.
3. Eg ={(v,w) : w e V§}.
4. Lg is the restriction ofL on Eg.
5. Uwevs/ (w.set) = v.set.
6. Vu,w € V¢ such thatu # w, u.set Nw.set = 0.
7.Yw € V¢, Ls(v,w) = w.set.
In the analysis of algorithms, we are going to be referringlt?vewview events

that collectively induce a fragmentation subgraph for aifnantation node as a
fragmentation

EXAMPLE 3.7
The shaded area A in Figure 1 shows the fragmentation subgtap (Vs, Es, Ls)
of T, from Example 3.2. Her&s = {vg, v1,v2,v3}, Es = {(vo,v1), (vo, v2),

Cooperative Computing with Fragmentable and Mergeableu@so 11

(vo,vs)} and the labels are the labelsof restricted onE's. We can confirm thas
is a fragmentation subgraph by examining the individuahgeof Definition 3.6.

DEFINITION 3.8
For a view-grapi’, = (V, E, L), amerge subgrapls a connected labeled subgraph
S = (Vs, Eg, Lg) of T',, such that:

1. S contains a unique nodesuch thabutdegreév, S) = 0 andindegregv, S) > 1;
v is called themerge nodef S.

2. Vs = {v} U V{, whereVy is defined to bdw : (w,v) € E}.

3. Eg = {(w,v) : w € V§}.

4. Lg is the restriction ofL on Eg.

5. Uwevs’ (w.set) = v.set.

6. Vu,w € V¢ such thatw # w, u.set Nw.set = ().

7. Uwevs’ Ls(w,v) = v.set.

A regrouping of a group; to a groupy, such thay;.set = g,.set can be represented
either as a fragmentation subgraph or as a merge subgratfiis paper we choose to
represent it as a fragmentation subgraph by requiringtidegreév, S) > 1 for any
merge node.

In the analysis of algorithms, we are going to be referringltavewview events
that collectively induce a merge subgraph for a merge noateamerge

EXAMPLE 3.9

The area B in Figure 1 of Example 3.2 shows the merge subdfaphVs, Es, Ls)

of Ty, whereVs = {v1,va,v3,04}, Es = {(v1,v4), (v2,v4)} and the labels are
the labels ofl",, restricted onk's. We can verify this by examining all conditions of
Definition 3.8.

DEFINITION 3.10
Given a view-graph’', we define:

(a)frag(T',,) to be the set of all the distinct fragmentation nodeB in
(b) mergT,,) to be the set of all the distinct merge node§'in

DEFINITION 3.11
Given a view-grapit',:

(a) if all of its non-terminal nodes are frag(T',,), thenT',, is called afragmentation
view-graph

(b) if each of its non-terminal nodes is eitherfiag(T',,), or it is an immediate ances-
tor of a node which is imergT',,), thenT',, is called arfm view-graph

ForT',, in the example in Figure 1 we havg € frag(T,) by Definition 3.10(a).
Also, vy € merg(T',) per Definition 3.10(b); additionally, the nodes andv, are
immediate ancestors ef, € merg(T',). By Definition 3.11(b),I',, is an fm view-
graph. Observe that, is aDAG. This is true for all view-graphs:

12 Journal of Discrete Algorithms

THEOREM3.12
Any view-graphl’, = (V, E, L) is a Directed Acyclic GraphoaG).

PROOF Assume thafl',, is not aDAG. Thus, it contains at least one cycle. Let
((v1,v2)(ve,v3) ... (vk,v1)) be an elementary cycle @f,. By the construction of
view-graphs (Definition 3.1(3)) and by the monotonicityjpeaty (property 2) of GCS,
v.id < vipq.d for 1 < i < k andwvg.id < vi.id. But, by the transitivity of <”,
v1.4d < vg.id, a contradiction.

COROLLARY 3.13
Any fm view graph is &bAG and any fragmentation view-graph is a rooted tree.

In the complexity analysis we use the following fact.

FacT 3.14
In any (non-emptypAG, there is at least one vertex, such that all of its descesdant
have outdegree 0.

3.2 Adversary Models

Let A be an algorithm that uses GCS, as presented in Section 2.noWaelefine
two adversary models that are more restrictive tifay{A), but less restrictive than

Fo(A).

DEFINITION 3.15

For any algorithmd thefragmentation adversarf(A) is the set of all executions of
A, such that each execution induces a fragmentation viephgrhefragmentation-
and-merge adversar§ s (A) is the set of all executions of, such that each execu-
tion induces an fm view-graph.

Itis easy to see thay(A) C Fr(A) C Frm(A) C Fr(A).
DEFINITION 3.16

Given an execution of algorithmA, andl', = (V, E, L), we define:

1. thefragmentation-numbef, = [{w : NEWVIEW(w), occurs ine A (v,w) €
E A wve frag(To)},
2. themerge-numbem, = |[{v : NEWVIEW(v), occursina A v € merg(T'a)}|.

Note that for an algorithral and for an execution € Fpys(A), by Definitions 2.2
and 3.16y, = fo + me. Also, by Definitions 3.10 and 3.16,, > m,. Observe that
in the adversary modéty, r, = f, andm, = 0.

4 Algorithm AX

We now present the algorithm, called algoriti#X, that deals withregroupingsand
that relies on a GCS as specified in Section 2.2. The analf$ieealgorithm is in
Section 5.

Cooperative Computing with Fragmentable and Mergeableupso 13

Algorithm AX uses a coordinator approach within each group view. The leigh
idea of the algorithm is that each processor performs (neimg) tasks according to
a load balancing rule, and a processor completes its comtnutgahen it learns the
results of all the tasks.

Task allocation. The setl” of the initial tasks is known to all processors. During the
execution each processomaintains a local seb of tasks already done, a local det

of the corresponding results, and theGeadf processors in the current group. (The set
D may be an underestimate of the set of tasks done globallg pfticessors allocate
tasks based on the shared knowledge of the process@rabout the tasks done. For
aprocessot, letrank(i, G) be the rank of in G when processor identifiers are sorted
in ascending order. L&Y be the tasks if" — D. For a tasku in U, letrank(u,U)

be the rank ofu in U when task identifiers are sorted in ascending order. |Gaot
balancing rulefor each processarin G is that:

o if rank(i,G) < |U|, then processor performs task: such thatrank(u,U) =
rank(i, G);
e if rank(i, G) > |U|, then processardoes nothing.

Algorithm structure. The algorithm code is given in Figure 2 using I/O automata
notation [19]. The algorithm uses the group communicatinvise to structure its
computation in terms abundsnumbered sequentially within each group view.

Initially all processors are members of the distinguishrétial view vy, such that
vg.set = P. Rounds numbered 1 correspond to the initial round eith#rdroriginal
group or in a new group upon a regrouping as notified vianbe/vIEW event. If
a regrouping occurs, the processor receives the new setrabers from the group
membership service and starts the first round of this viemw(vIEW action). At the
beginning of each round, denoted by a round nhumBed, processot knows G,
the local setD of tasks already done, and the gebf the results. Since all proces-
sors knowG, they “elect” the group coordinator to be the processor tvias the
highest processor id (no communication is required sineetiordinator is uniquely
identified). In each round each processor repértand R to the coordinator of7
(GPlsND action). The coordinator receives and collates these tef®pPlRCV ac-
tion) and sends the result to the group membermv(sND action). Upon the receipt
of the message from the coordinator, processors updatelthand R, and perform
work according to the load balancing ruleAMRCV action).

For generality, we assume that the messages may be delbetbeé GCS out of
order. The set of messages within the current view is savéideitocal variableA.
The saved messages are also used to determine when all eefsiag given round
have been received. Processing continues until each meshiléeknows all results
(the processors enter tiséeepstage). When requests for computation results arrive
from a portq (REQUESTaction), each processor keeps track of this in a local vari-
ablerequestsand, when all results are known, sends the results to thepePORT
action).

The variables:v andMsG arehistory variableghat do not affect the algorithm, but
play a role in its analysis.

Correctness: We now show the safety of algorithaX. We first show that no pro-

14 Journal of Discrete Algorithms

Data types and identifiers:
T : tasks
R : results
Result : T — R
Mes: messages
‘P : processor ids
G : group ids
views = G x 2P : views, selectorgd andset
ZO : input/output ports
States:
T € 27, the set ofN = |T'| tasks
D € 27, the set of done tasks, initially
R € 2R, the set of known results, initiall§
G € 2P, current members, initg.set = P
A € 2Mes messages since lasEwviEw,
initially
Rnd € N, round number, initially 1
requests € 29 set of ports, initiallyd

Phase € {send, receive, sleep, mcast, mrecv},

initially send

Transitions at %:
input REQUEST, ;
Effect:
requests — requests U {q}

input NEWVIEW(v);
Effect:
G «— v.set
A—10
Rnd «— 1
Phase «— send
cvi=wv

output GPLSND(m, j);
Precondition:
Coordinator(j)
Phase = send
m = (i, D, R, Rnd)
Effect:
MSG:= MSGU {m}
Phase — receive

input GPIRCV((j, H, @, round));
Effect:
A—AU{{4, H,Q,round)}
R— RUQ
D~ DUH
if G={j: (J,*, * Rnd) € A}
then
Phase <+ mcast

m € Mes

i,j €P

v € views
He2?

Qe2R

round € N
results € 2R
qeIO

Derived variables:

U =T — D, the set of remaining tasks
Coordinator (i) : Boolean,
if i = maxjca{j}
thentrue elsefalse
Nezt(U, G), next tasku, such that
rank(u,U) = rank(i, G)
History variables:
cv; € views (i € P),
initially Vi, cv; = vo.
MSG; € 2Mes (5 € P),
initially Vi, MsG; = (.

output GPMSND(m);
Precondition:
Coordinator (i)
m = (i, D, R, Rnd)
Phase = mcast
Effect:
MSG:= MSGU {m}
Phase «— mrecv

input GPMRCV((j, H, Q, round));
Effect:
D+~ DUH
R— RUQ
if D =T then
Phase «— sleep
else
if rank(i, G) < |U| then
R — RU{Result(Next(U,G))}
D «— D U {Nexzt(U,G)}
Rnd «— Rnd +1
Phase «+— send

output REPORT(results),, ;
Precondition:
T = D A q € requests
results = R
Effect:
requests «— requests — {q}

FIG. 2. AlgorithmAX

Cooperative Computing with Fragmentable and Mergeableupso 15

cessor stops working as long as it knows of any undone tasks.

THEOREM4.1
(Safety 1)For all states of any execution of AlgorithAX it holds that
Vi€ P:D; #T = Phase # sleep.

PrROOF The proof follows by examination of the code of the algarithand more
specifically from the code of the input actie®MRCV((j, H, Q, round));. [|

Note that the implication in Theorem 4.1 cannot be replagedfl{ <). This is
because ifD;, = T, we may still havePhase # sleep. This is the case where
processoi becomes a member of a group in which the processors do not &ihtve
results of all the tasks.

Next we show that if some processor does not know the resstiog task, this is
because it does not know that this task has been performea(@im 4.3 below). We
show this using the history variablesé; (i € P).

We definemsG,; to be a history variable that keeps on track all the messaye by
processoi € P in all GPLSND andGPMSNDevents of an execution of algorithAlX .
Formally, in the effects of thepPlsND(m, j); andGPMSND(m); actions we include
the assignmeniisG; := MSG; U {m}. Initially, MsG; = () for all ;. We defineMSG
to beU;cp MSG;.

LEMMA 4.2
If m is a message received by processa P in a GPLRCV(m); or GPMRCV(m);
event of an execution of algorith&X, thenm € MSG.

PROOF Property 3 of thescs(Section 2.2) requires that for every receive event there
exists a preceding send event of the same message¢thdoes not generate mes-
sages). Hencep must have been sent by some procegsarP (possibleg = 1) in
some earlier event of the execution. Messages can be sgnnosP1SND(m, i), Of
GPMSND(m), events. By definitiomn € MSG,. Hencen € MSG. i

THEOREM4.3

(Safety 2)For all states of any execution of AlgorithAX:
@)VvteT, VieP: resultt) ¢ R, =t ¢ D,;,and
(b)Vt € T,V(i, D', R', Rnd) € MSG : result(t) ¢ R' =t ¢ D'.

PROOF. Leta be an execution oAX anda* be the prefix ofy up to thek?” state, i.e.,

af = sg,e1,51,ea,...,5,. The proofis done by induction dn

Basis:k =0.Insg, Vi € P,D; =0, R; = 0 andMSG = 0.

Inductive hypothesis: For a statg such thain < k, Vt € T, Vi € P : result(t) ¢

R, =t ¢ D;,andvt € T,V(i, D', R', Rnd) € MSG : result(t) ¢ R =t ¢ D'.
Inductive steprn = k + 1. Consider the following seven types of actions leading to
the statesy.1:

1. ex+1 = NEWVIEW(v');: The effect of this action does not affect the invariant. By
the inductive hypothesis, in statg, 1, the invariant holds.

2.ex+1 = GPISND(m,j);: Clearly, the effect of this action does not affect part
(a) of the invariant but it affects part (b). Sinee = (i, D;, R;, Rnd), by the

16 Journal of Discrete Algorithms

inductive hypothesis part (a), the assignment MSG reestablishes part (b) of
the invariant. Thus, in state,, 1, the invariant is reestablished.

3. ex+1 = GPIRCV({j, H, Q, round)),: Processof updatesk; andD; according to
@ andH respectively. The action is atomic, i.e. Af is updated, thei®; must be
also updated. By Lemma 4.2}, H, Q, round) € MSG. Thus, by the inductive
hypothesis part (b)yt € T : result(t) € H = t ¢ Q. From the fact thaD; and
R, are updated according 6 and@ respectively and by the inductive hypothesis
part (a), in state;. 1, the invariant is reestablished.

4.e+1 = GPMSND(m);: Clearly, the effect of this action does not affect part (a)
of the invariant but it affects part (b). Sinee = (i, D;, R;, Rnd), by the induc-
tive hypothesis part (a), the assignmente MSG reestablishes part (b) of the
invariant. Thus, in state, 1, the invariant is reestablished.

5. ex+1 = GPMRCV({j, H, @, round));: By Lemma4.2{j, H,Q,round) € MSG.
By the inductive hypothesis part (b, € T : result(t) € H = t ¢ Q. Processor
i updatesR; and D, according ta) and H respectively. Sincé/ and@ have the
required property, by the inductive hypothesis part (8 ,absignments t®; and
R; reestablish the invariant.
In the case wherd; # T, processor performs a task according to the load
balancing rule. Lets € T be this task. Because of the action atomicity, when
processoi updatesR; with result(u), it must also updat®; with u. Hence, in
statesy 1, the invariant is reestablished.

6. ex+1 = REQUEST,;: The effect of this action does not affect the invariant.
7.ep+1 = REPORT(results)q,;: The effect of this action does not affect the invariant.

This completes the proof. [|

5 Analysis of Algorithm AX

We express the work complexity of algorithhXin the modelFry; asWx,,, (N, P, r)

= Wg, (N, P, f +m). The message complexity is expressedass,,, (N, P,r) =
Mz, (N, P, f +m). Our analysis focuses on assessing the impact of the fragmen
tation numberf and the merge numbet on the work and message complexity, and
in the rest of this section for clarity we &V ,,, stand forlWx,,, (N, P, f +m), and
My, stand forM £, (N, P, f +m).

5.1 Work Complexity

In this section we show the following result:

THEOREMS5.1
Wim < min{ N-f+N, N-P}.

Observe thatVy ,,, does not depend an (this of course does not imply that for any
given execution, the work does not depend on merges). Thisreation substantiates
the intuition that merges lead to a more efficient computatie begin by providing
definitions and proving several lemmas that lead to the abemudt.

Cooperative Computing with Fragmentable and Mergeableu@so 17

DEFINITION 5.2

Let o be any execution of algorith#X in which all the processors learn the results
of all tasks and that includes a merge of groyps . ., g into the groupu, where the
processors in. undergo no further view changes. We defirteto be the execution
we derive by removing the merge front as follows:

(1) We remove all states and events that correspond to thgenoégroupsys, - - -, gk
into the groupu and all states and events for processors within

(2) We add the appropriate states and events such that tbessiars in groupg, - - .,

g undergo no further view changes and perform any remainsigta

DEFINITION 5.3

Let ¥ be any execution of algorith#X in which all the processors learn the results
of all tasks and that includes a fragmentation of the grpup the groupg, . .., g
where the processors in these groups undergo no furtherchienges. We defing®

to be the execution we derive by removing the fragmentatiomf* as follows:

(1) We remove all states and events that correspond to tgmératation of the group

p to the groupg, . . ., g, and all states and events of the processors within the groups
91,5 9k-

(2) We add the appropriate states and events such that tbegsars in the group
undergo no further view changes and perform any remaingigta

Note: In Definitions 5.2 and 5.3, we claim that we can remove statdsaents from
an execution and add some other states and events to it.sTgussible because if the
processors in a single view installed that view and therenariirther view changes,
then the algorithm will continue making computation pragge So, if we remove
all states and events corresponding to a view change, tleealgorithm can always
proceed as if this view change never occurred.

LEMMA 5.4

In algorithmAX; for any vieww, including the initial view, if the group is not subject
to any regroupings, then the work required to complete skgdn the view is no more
thanN — max;e, set{|Di|}, whereD; is the value of the state variableof processor

1 at the start of its local round 1 in view

PROOF In the first round, all the processors send messages to trdinator con-
taining D;. The coordinator computes,c, ;.:{D;} and broadcasts this result to the
group members. Since the group is not subject to any regngapthe number of
tasks,t, that the processors need to performtis= N — | Uiy set {D;}]. In each
round of the computation, by the load balancing rule, the benof the group per-
form distinct tasks and no task is performed more than onberéfore¢ is the work
performed in this group. On the other hamthx;cy.set{|Di|} < | Uicw.set {Dil}l,
thus,t <N — maxie”set{|Di|}. l

In the following lemma, groups, g1, . . . , gx are defined as in Definition 5.2.

LEMMA 5.5

Let o* be an execution of AlgorithnAX as in Definition 5.2. Lel¥; be the work
performed by the algorithm in the executia#t. Let W5 be the work performed by
Algorithm AXin the executiorm*. ThenW; < Ws.

18 Journal of Discrete Algorithms

PrROOF. For the executiom, let W’ be the work performed by the processors in
P — U;<i<k(gi-set) — p.set. Observe that the work performed by the processors in
P — U, <;<x(g:.set) in the executiom is equal tolV’. The work that is performed
by processoy in g;.set prior to theNEWVIEW(u); event ina*, is the same in both
executions. Call this workV; ;. DefineW” = Zle > icgi.set Wi j- Definel =
W'+ W". Thus,I¥ is the same in both executionsg; anda*. DefineW,, to be the
work performed by all processors jinset in executionn*.

For each processgtrin g;.set, let D; be the value of the state variahlgjust prior
to theNEWVIEW(); event ina#. For eachy;, define:d; = ||J Dj|. Thus
there are at leasVy — d; tasks that remain to be done in eagh

In executiona*, the processors in each groypproceed and complete these re-
maining tasks. This requires work at leaét— d;. Define this work asV,,. Thus,
ng 2 (N - dl)

In executiona*, groupsg, . . . , g Merge into group:. The number of tasks that
need to be performed by the memberg:.a$ at mostN — d;, whered; = max;{d;}
for somej. By Lemma 5.4/, < N — d;. Observe that:

k

jE€g;.set

k
Wi=WH+W, <WH+N-d; <W+Y (N—di) <W+> W, =W, i

i=1 i=1
In the following lemma, groups, g1, . . ., gx are defined as in Definition 5.3.

LEMMA 5.6

Let o¥ be an execution of AlgorithrAX as in Definition 5.3. Lefl; be the work
performed by the algorithm in the executioff. Let W, be the worked performed
by Algorithm AXin the executio®®. ThenW; < Wy + W3, wherelWs is the work
performed by all processors|y, ;. (¢:.set) in the execution?.

PROOF. Let W' be the work performed by all processorsin- J; ., <, (gi.set) —
p.set in the executiom®. Observe that the work performed by all processors in
P —p.set in the executiom? is equal to’. The work that is performed by processor
J in @.set prior to theNEwWVIEW(g;); eventina?, is the same in both executions. Call
this workW,, ;. DefineW” = %", ., W, ;. DefineW = W’ + W”". Thus,W is

the same in both executions? anda¥. DefineW,, to be the work performed by all
processors igp.set in executiom?. LetW"” = W, — W”. Observe that:

W1:W+W3§W+W3+W”/:W2+W3. [|

LEMMA 5.7
Wiem < N-P.

PROOF By the construction of algorithmAX, when processors are not able to ex-
change information about task execution due to regroupingbe worst case, each
processor has to perform &l tasks by itself. Since we can have at mBgtrocessors
doing that, the work isWy.,, < N - P. |

LEMMA 5.8
Wem < N-f+N.

Cooperative Computing with Fragmentable and Mergeableu@so 19

PrROOF By induction on the number of views, denotediwccurring in an execution.
For a specific execution, with r views, letf,. be the fragmentation-number and.
the merge-number.

Basis r = 0. Sincef,. andm,. must also be 0, the basis follows from Lemma 5.4.

Inductive hypothesisAssume that for alt < k, Wy ., < N - f. + N.

Inductive stepNeed to show that for = k + 1, Wy, | mu.y < N - frp1 + N.
Consider a specific executien, 1 with » = k + 1. LetI,,, be the view-graph
induced by this execution. The view-graph has at least ortexsuch that all of its
descendants are sinks (Fact 3.14). k. &k such a vertex. We consider two cases.

Case 1w has a descendaptthat corresponds to a merge in the execution. Therefore
all ancestors of: in I',,, ,, have outdegree 1. Singeis a sink vertex, the group that
corresponds tee performs all the remaining (if any) tasks and does not parfany
additional work.

Let ap = 5‘5:+1 (per Definition 5.2) be an execution in which this merge does
not occur. In executiony, the number of views i&. Also, fr+1 = fr andmgy =
my, + 1. By inductive hypothesisyy, ., < N - fi + N. By Lemma 5.5, the work
performed in executiony1, is no worse than the work performed in execution
The total work complexity is:

Wfk+1;mk+1 < Wflmmk <N-fx+N = N-frp1 +N.

Case 2w has no descendants that correspond to a merge in the execlitierefore,
the group that corresponds#anust fragment, say intpgroups. These groups corre-
spond to sink vertices ifi,, . , , thus they perform all the remaining (if any) tasks and
do not perform any additional work.

Let apy1-q = @y, (per Definition 5.3) be an execution in which the frag-
mentation does not occur. In execution,i_,, the number of views i + 1 —
g < k. Also, fit1—¢g = frr1 — g andmpyi—q = my41. By inductive hypothesis,
Whiiigmisroqg < N - fry1-q + N. From Lemma 5.4, the work performed in each
new group caused by the fragmentation is no more fliahet W, be the total work
performed in ally groups. Thusi, < ¢N. By Lemma 5.6, the work performed in
executionay41, is no worse than the work performed in executian.;—, and the
work performed in all; groups. The total work complexity is:

Wfk+17mk+1 < Wfk+1—q7mk+lfq + Ws <N-. fk-l-l—q + N+ W,
=N -(fis1 =) +N+W, <N-(frp41—q) +N+gN
=Nfer1—-gN+N+qgN =N-:fr1+N. [|

The main result in Theorem 5.1 follows directly from Lemmas &nd 5.8.

5.2 Message Complexity

In this section we show the following result:

THEOREMS5.9
Mim < 4N-f+N+P-m)

We start by showing several lemmas that lead to the messaggexity result.

20 Journal of Discrete Algorithms

LEMMA 5.10

For algorithmAX, in any vieww, including the initial view, if the group is not subject
to any regroupings, and for each process@ v.set, D; is the value of the state
variableD at the start of its local round 1 in view then the number of messagks
that are sent until all tasks are complete@(® — d) < M < 2(p + N — d) where
p = |v.set], andd = [, ¢, sor Dil-

PROOF By the load balancing rule, the algorithm neéd%;—d} rounds to complete
all tasks. In each round each processor sends one message ¢odrdinator and
the coordinator responds with a single message to eachgsamcerhusM = 2p -
((%1). Using the properties of theeiling, we get:2(N — d) < M<2(p+N —d).li

In the following lemma, groups, g1, . . . , gx are defined as in Definition 5.2.

LEMMA 5.11

Let o* be an execution of AlgorithrAX as in Definition 5.2. Lef\/; be the message
cost of the algorithm in the executier’. Let M5 be the message cost of Algorithm
AXin the executiom*. ThenM; < My + 2P.

PrROOF. For the execution*, let M’ be the number of messages sent by the proces-
sors inP — U, <;<,(gi-set) — p.set. Observe that the number of messages sent by
the processors i® — | J, ., (g:.set) in the executiom* is equal to)/’.

The number of messages sent by any procesisny;. set prior to theNEwVIEW (1) ;
event ina*, is the same in both executions. Call this message &st Define
M" = Y8 | Y icor st Mij. DefineM = M’ + M". Thus,M is the same in
both executionse* anda*. Define M, to be the number of messages sent by all
processors im.set in execution*.

For each processgtrin g;.set, let D; be the value of the state variahlgjust prior
to theNEWVIEW(1); event ina#. For eachy;, define:d; = ||J Dj|. Thus
there are at leasV¥ — d; tasks that remain to be done in eagh

In executiona*, the processors in each groypproceed and complete these re-
maining tasks. Leb/,, be the number of messages sent by all processaysser in
order to complete the remaining tasks. By Lemma 50, > 2(N — d;).

In executiona*, groupsg, . . . , g Merge into group:. The number of tasks that
need to be performed by the memberg:.aé at mostN — d;, whered; = max;{d;}
for somej. By Lemma5.10M,, < 2(p+ N —d;), wherep = |u.set|. Observe that:

jE€g;.set

My =M+ M, <M+2(p+ N —dj)
<M+2p+2YF (N—d) <M+2p+XF M,
= My +2p < My + 2P. .
In the following lemma, groups, g1, - . ., gx are defined as in Definition 5.3.
LEMMA 5.12

Let a¥ be an execution of AlgorithmAX as in Definition 5.3. Lef\/; be the message
cost of the algorithm in the executier?. Let M, be the message cost of Algorithm
AXin the executiom?”. ThenM; < M, + M3, whereMs is the number of messages
sent by all processors (1), -, . (¢:-set) in the execution®.

Cooperative Computing with Fragmentable and Mergeableu@so 21

PROOF. Firthe executiom?, let M’ be the number of messages sent by the processors
iNP — U;<;<x(9i-set) — p.set. Observe that the number of messages sent by the
processors iP — ¢.set in the execution” is equal to)’.

The number of messages sent by procegsop. set prior to theNEwVIEW(g;) ; event

in o, is the same in both executions. Call this message kfys}. DefineM” =

Y jcp.set My, ;. DefineM = M’ + M". Thus,M is the same in both executions?
anda¥. Define M, to be the number of messages sent by all processasssitt in
executiom?. Let M"" = M, — M". Observe that:

My =M+ Ms <M+ Ms+ M" = My + Ms. [|

We now give the proof of Theorem 5.9. This is done by induct&milarly to the
proof of Lemma 5.8.

PrROOF (For Theorem 5.9.) By induction on the number of views, deddy r,
occurring in any execution. For a specific executignwith r views, let f,. be the
fragmentation number and,. be the merge-number.

Basis r = 0. Sincef,. andm,. must also be 0, the basis follows from Lemma 5.10.
Inductive hypothesisAssume that for alt < k, My, . <4(N - fr + N+ P-m,).

Inductive stepNeed to show that for = & + 1, My, ., <4(N - fry1 + N +
P -my1). Consider a specific execution, ; with » = k + 1. Letl',, ., be the
view-graph induced by this execution. The view-graph hdeasgt one vertex such
that all of its descendants are sinks (Fact 3.14)..Le¢ such a vertex.

We consider two cases.

Case 1w has a descendaptthat corresponds to a merge in the execution. Therefore
all ancestors ofi in I',, ,, have outdegree 1. Singeis a sink vertex, the group that
corresponds t@ performs all the remaining (if any) tasks and no further rages are
sent.

Letay = &), (per Definition 5.2) be an execution in which this merge does
not occur. In executioly, the number of new views i8. Also, fx+1 = fr and
m+1 = my + 1. By inductive hypothesisMy, .., < 4(N - fx + N + P -my). The
total message complexity, using Lemma 5.11 is:

My mies < Mymy, + 2P
<4(N - fr+ N+ P-my)+2P
=4(N - fx41+ N+ P -mp41 — P)+2P
= 4N fr41 + 4N + 4Pmy4q — 4P + 2P
<A4(N - fry1+ N+ P-mpy1).

Case 2 has no descendants that correspond to a merge in the execlitierefore,
the group that corresponds#anust fragment, say intpgroups. These groups corre-
spond to sink vertices ifia 11, thus they perform all of the remaining (if any) tasks
and do not send any additional messages.

Let ax+1-4 = aj,, (per Definition 5.3) be an execution in which the frag-
mentation does not occur. In the executiop,;_,, the number of new views is

22 Journal of Discrete Algorithms

k+1—q < k. Also, fiy1—g = fre+1 — g andmyp41—¢ = mp4+1. By inductive
hypothesisMy, . m1 g < 4(N-fry1-q+N+P-mpy1-4). FromLemma5.10,
the message cost in each new group caused by a fragmentatiomiore than V.
Let M, be the total number of messages sent ig@toups. ThusM, < 4¢N. By
Lemma 5.12, the number of messages sent in executiqn, is less than the num-
ber of messages sent in execution,;—, and the number of messages sent ingall
groups. The total message complexity is:

Mipprmi S Mg gmia—, + Mo
<A(N - fry1-qg + N+ P-mpi1-g) + My
=4(N - fr41 —gN + N+ P -myq1) + M,
< AN fry1 — 4N + 4N + 4Pmy 1 + 4gN
=4(N - fy41+ N+ P -mpy1). [|

5.3 Analysis for the Fragmentation Adversary

We express the work complexity of algorithhXin the modelFr asWg, (N, P,r) =
Wy and the message complexity &6, (N, P,r) = M; (note that- = f for Fr).
The following corollary is derived from Theorems 5.1 and.5.9

COROLLARY 5.13
Wy < min{N-f+ N, N-P}andM; < 4(N-f+N).

In the failure model of [8] a group is not allowed to “fragm&imto a single group
with the same membership. Such fragmentation is allowedunydefinition of .
In order to compare our results with the results of [8], werdefa more restricted
adversaryF}. that requires that any group may only fragment into 2 or mdhero
groups. Clearlyri. C Fr, and from Corollary 5.13 we have the following.

COROLLARY 5.14
WH(N, P, f)=O(N - f+ N) ande/F(N, P, f)=O(N - f+ N).

In the rest of this section we deal with the modgl. Our definition of the
fragmentation-numbef is slightly different from the definition of fragmentatioailF
uresf’ in [8]. When a group fragments intogroups,f is defined to be equal tb,
but f/ is defined to be equal to— 1. The next Lemma relatesand f’.

LEMMA 5.15
If f is the fragmentation-number arfd the number of fragmentation failures as de-
finedin [8], thenf’ < f < 2f'.

PrROOF Assume thak fragmentations occur. Enumerate the fragmentationsrarbit
ily. Let the number of the new views in th& fragmentation bef;. By the definition
of f/, f/ = fi — 1. Thus, f/ + 1 = f; which implies thatf, < f/ + f/ = 2f/.
But /' = Zlefi’ and f = Zle fi. Hence,f < 2f’. Now observe thatf’ =
S A= (-1 =F . fi —k=f— k. Thereforef > f'. |
In [8] the work is counted in terms of the rounds executed leyghocessors. In
our analysis we count only the number of task executionsuitieg redundancies).

Cooperative Computing with Fragmentable and Mergeableupso 23

However in our algorithm, for as long as any tasks remain nedn a given group,
the processors perform the tasks in rounds, except for tedand. Therefore the
difference in work complexity for these two algorithms isnadst f - N. Thus the
different definitions off, f/ and work are subsumed in the big-oh analysis, and with-
out substantial variation in the constants. On the othed hre message complexity
of our algorithm, as shown in Corollary 5.14, is substahtibktter than the at least
quadratic message complexity of the algorithm from [8].

6 Conclusion

We have considered the problem of performing a se¥dhsks on a set of coop-
erating message-passing processors, where the processstrperform all tasks and
learn the results of the tasks, subject to dynamically clmgngroup memberships.
To analyze our algorithm we introduced view-graphs — digsajinat we use to rep-
resent and analyze changes of processors’ views in exasutiée believe that our
view-graph approach is general and that it can be used tg sthér dynamic group
reconfiguration patterns and related problems.

Acknowledgements: We thank Idit Keidar for several helpful discussions and the
anonymous referees for their comments that helped us ireghevquality of the pre-
sentation.

This work was in part supported by the NSF Grant 9988304, t88 NR Grant
0121277 and a grant from AFOSR,; the second author was algmged by a NSF
CAREER Award 9984778.

References

[1] O. Babaoglu, R. Davoli, L. Giachini and M. Baker, “RelaédsCommunication Infrastructure for Con-
structing Reliable Applications in Large-Scale DistribthtSystems”, ifProc. of Hawaii International
Conference on Computer and System Scievaeme I, pp 612—-621, 1995.

[2] K.P. Birman and R. van Reness$tgliable Distributed Computing with the Isis ToolkEEE Computer
Society Press, Los Alamitos, CA, 1994.

[3] B. Chlebus, R. De Prisco and A. Shvartsman, “Performagks$ on restartable message-passing pro-
cessors”, iDistributed Computingvol. 14, pp. 49-64, 2001.

[4] Comm. of the ACMSpecial Issue on Group Communication Services, vol. 39%4nb996.

[5] R. De Prisco, A. Fekete, N. Lynch and A. Shvartsman, “A Byric View-Oriented Group Communi-
cation Service”, irProc. of 16th ACM Symp. on Principles of Distributed CommytL998.

[6] R. De Prisco, A. Mayer, and M. Yung, “Time-Optimal Messafficient Work Performance in the
Presence of Faults”, iRroc. 13th ACM Symp. on Principles of Distributed Conpp. 161-172, 1994.

[7] D. Dolev and D. Malki, “The Transis Approach to High Avalilility Cluster CommunicationsComm.
of the ACM vol. 39, no. 4, pp. 64-70, 1996.

[8] S. Dolev, R. Segala and A. Shvartsman, “Dynamic Load Bafey with Group Communication”, in
Proc. of the 6th International Colloquium on Structuraldnination and Communication Complexity
1999.

[9] C. Dwork, J. Halpern, O. Waarts, “Performing Work Effictly in the Presence of Faults$IAM
Journal on Computingvol. 27, no. 5, pp. 1457-1491, 1998.

[10] P. Ezhilchelvan, R. Macedo and S. Shrivastava “NewtApFault-Tolerant Group Communication
Protocol”, inProc. of IEEE Int-I Conference on Distributed Computingt8yss pp 296306, 1995.

24 Journal of Discrete Algorithms

[11] A. Fekete, N. Lynch, and A.A. Shvartsman, “SpecifyimgldJsing a Group Communication Service”,
ACM Transactions on Computer Systerd. 19, pp. 171-216, 2001.

[12] z. Galil, A. Mayer, and M. Yung, “Resolving Message Cdexity of Byzantine Agreement and
Beyond”, inProc. 36th IEEE Symposium on Foundations of Computer Sgigpc 724—733, 1995.

[13] C. Georgiou and A. Shvartsman,“Cooperative Compuiith Fragmentable and Mergeable Groups”,
in Proc. of 7th International Colloquium on Structural Infoation and Communication Complexity
pp. 141-156, 2000.

[14] M. Hayden, Doctoral Thesighe Ensemble SysteifR98-1662, Cornell University, 1998.

[15] P. Kanellakis and A. Shvartsmafault-Tolerant Parallel Computatigrkluwer Academic Publishers,
ISBN 0-7923-9922-6, 1997.

[16] R. Khazan, A. Fekete and N. Lynch, “Group Communicatsna base for a Load-Balancing, Repli-
cated Data Service”, iRroc. of the 12th International Symposium on Distributedrpating 1998.

[17] E. Y. Lotem, |. Keidar, and Danny Dolev, “Dynamic Votirfgr Consistent Primary Components”,
Proc. of the 16th Annual ACM Symp. on Principles of Distrésl€omputingpp. 63—71, 1997.

[18] N.A. Lynch, Distributed AlgorithmsMorgan Kaufmann Publishers, San Mateo, CA, 1996.

[19] N.A. Lynch and M.R. Tuttle, “An Introduction to Inputi@put Automata”, CWI Quarterly vol.2, no.

3, pp. 219-246, 1989.

[20] G. Malewicz, A. Russell and A.A. Shvartsman, “Distried Cooperation During the Absence of Com-
munication”, inProc. 14th International Conference on Distributed ConmpmitLNCS Vol. 1914, pp.
119-133, 2000. (Preliminary version: Brief announcemé&ath ACM Symposium on Principles of
Distributed Computing2000.)

[21] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Bhia and C.A. Lingley-Papadopolous,
“Totem: A Fault-Tolerant Multicast Group Communicationsism”, Comm. of the ACMvol. 39,
no. 4, pp. 54-63, 1996.

[22] S. Mishra, L.L. Peterson and R.D. Schlichting, “Cons& Communication Substrate for Fault-
Tolerant Distributed Programs”, TR 91-32, dept. of Comp&e&ence, University of Arizona, 1991.

[23] R. van Renesse, K.P. Birman and S. Maffeis, “Horus: AxiBle Group Communication System”,
Comm. of the ACIWvol. 39, no. 4, pp. 76—83, 1996.

[24] M. Saks, N. Shavit and H. Woll, “Optimal time randomizednsensus — making resilient algorithms
fast in practice”, inProc. of the 2nd ACM-SIAM Symp. on Discrete Algorithpps 351-362, 1991.

[25] J. Sussman and K. Marzullo, “The Bancomat Problem: AmrEgle of Resource Allocation in a
Partitionable Asynchronous System”,Rmoc of 12th Int-l Symp. on Distributed Computjri98.

[26] R. Vitenberg, |. Keidar, G. V. Chockler and D. Dolev, ‘@ip Communication Specifications: A Com-
prehensive Study”, Technical Report CS99-31, Institut€aputer Science, The Hebrew University
of Jerusalem, September 1999. (Also Technical Report MTBATR-790, Laboratory for Computer
Science, M.I.T., and Technical Report CS0964, Computegrgei Department, the Technion, Haifa,
Israel.)

