
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 4, pp. 848–862

WORK-COMPETITIVE SCHEDULING FOR
COOPERATIVE COMPUTING WITH DYNAMIC GROUPS∗

CHRYSSIS GEORGIOU† , ALEXANDER RUSSELL‡ , AND ALEXANDER A. SHVARTSMAN§

Abstract. The problem of cooperatively performing a set of t tasks in a decentralized computing
environment subject to failures is one of the fundamental problems in distributed computing. The
setting with partitionable networks is especially challenging, as algorithmic solutions must accom-
modate the possibility that groups of processors become disconnected (and, perhaps, reconnected)
during the computation. The efficiency of task-performing algorithms is often assessed in terms of
work : the total number of tasks, counting multiplicities, performed by all of the processors during the
computation. In general, the scenario where the processors are partitioned into g disconnected com-
ponents causes any task-performing algorithm to have work Ω(t · g) even if each group of processors
performs no more than the optimal number of Θ(t) tasks.

Given that such pessimistic lower bounds apply to any scheduling algorithm, we pursue a com-
petitive analysis. Specifically, this paper studies a simple randomized scheduling algorithm for p
asynchronous processors, connected by a dynamically changing communication medium, to com-
plete t known tasks. The performance of this algorithm is compared against that of an omniscient
off-line algorithm with full knowledge of the future changes in the communication medium. The paper
describes a notion of computation width, which associates a natural number with a history of changes
in the communication medium, and shows both upper and lower bounds on work-competitiveness
in terms of this quantity. Specifically, it is shown that the simple randomized algorithm obtains the
competitive ratio (1 + cw/e), where cw is the computation width and e is the base of the natural
logarithm (e = 2.7182 . . .); this competitive ratio is then shown to be tight.

Key words. on-line algorithms, competitive analysis, partitionable networks, distributed com-
putation, independent tasks, randomized algorithms, work complexity

AMS subject classifications. 68W15, 68W20, 68W40, 68Q25, 68Q85

DOI. 10.1137/S0097539704440442

1. Introduction. The problem of cooperatively performing a known set of tasks
in a decentralized computing environment subject to failures is one of the fundamental
problems in distributed computing. Variations on this problem have been studied in
a variety of different settings, including, for example, message-passing models [7, 8,
11], shared-memory models [18, 17, 2, 21, 19], and partitionable network models [10,
20]. In the settings where network partitions may interfere with the progress of
computation, the challenge is to maintain efficiency despite dynamically changing
processor connectivity.

This problem is normally abstracted in terms of a set of t tasks that must be per-
formed in a distributed environment consisting of p processors, subject to processor
failures and communication disruptions. Algorithmic solutions for this problem are

∗Received by the editors February 2, 2004; accepted for publication (in revised form) December 8,
2004; published electronically May 12, 2005. This research was supported in part by NSF grant
0311368.

http://www.siam.org/journals/sicomp/34-4/44044.html
†Department of Computer Science, University of Cyprus, Nicosia, Cyprus (chryssis@ucy.ac.cy).

This work was performed in part while this author was at the University of Connecticut.
‡Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269

(acr@cse.uconn.edu). The work of this author was supported in part by NSF Career Award 0093065
and by NSF grants 0220264 and 0218443.

§Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269,
and Laboratory for Computer Science and Artificial Intelligence, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139 (alex@theory.csail.mit.edu). The work of this author was supported
in part by NSF Career Award 9984778 and by NSF grants 9988304 and 0121277.

848

COMPETITIVE SCHEDULING FOR COMPUTING WITH GROUPS 849

typically evaluated by bounding their worst-case work : the total number of compu-
tation steps performed by all processors during the computation. We consider the
situation where the tasks are similar, that is, completion of each task requires the
same number of computation steps, and where task-oriented work dominates local
bookkeeping. In this case the work incurred by an algorithm is simply the total
number of tasks, counting multiplicities, completed by the processors.

The details of the computation model naturally have a dramatic impact on the
existence of efficient (or even interesting) algorithms for the problem. In this paper,
we consider the partitionable network scenario consisting of p asynchronous processors
with a communication medium that is subject to arbitrary partitions during the life
of the computation. This model is motivated by the abstraction provided by a typical
group communication scheme; see, for example, the surveys in [23]. Specifically, at
each point of the computation, the communication medium effectively partitions the
processors into nonoverlapping groups: communication within a group is instanta-
neous and reliable, communication across groups is impossible. Naturally, processors
in the same group can share their knowledge of completed tasks and, while they re-
main connected, avoid doing redundant work. For the remainder of the paper we refer
to a transition from one network partition to another as a reconfiguration.

We do not charge for coordination within a group, simply treating grouped proces-
sors as a single (virtual) asynchronous processor. In particular, if a group of processors
performs a set of t tasks during the lifetime of that group, we charge this group t units
of work, ignoring, for example, partially completed tasks which may remain at the
group’s demise or the cost of synchronizing processors’ knowledge during the group’s
inception. Each processor may cease executing tasks only when it knows the results
of all tasks. While processors are asynchronous, they do not crash.

An algorithm in this model is a rule which, given a group of processors and a
set of tasks known by this group to be completed, determines a task for the group
to complete next. In the case where all processors are disconnected during the en-
tire computation, any algorithm must incur Ω(t · p) work. On the other hand, any
reasonable algorithm should attain O(t) work in the case where all processors remain
connected during the computation. Considering that every algorithm performs poorly
in the totally disconnected case, it seems reasonable to treat the problem as an on-line
problem and pursue competitive analysis.

Fix, for the moment, an algorithm A. For expository purposes, let us treat
both the processors’ asynchrony and the dynamics of the network as if they were
determined by an adversary A. The adversary determines an initial partition P1 of
the processors into groups and determines how many tasks each group of this partition
P1 completes before the next reconfiguration; while the number of tasks completed
by each group is determined by the adversary, the actual subset of tasks (that is,
the identity of the tasks) completed by each group is determined by the algorithm
A. The adversary then determines a reconfiguration of the processors, giving rise to
a new partition P2, and, as before, determines how many tasks each of the newly
created groups of P2 completes before the next reconfiguration. Any group created
during such a reconfiguration is assumed to have the combined knowledge of all its
members: any task known to be completed by a processor of the group G is known to
be completed by all processors of G. This process of reconfiguration and computation
continues until every processor is aware of the outcome of every task. Groups with
knowledge of the outcome of all tasks cause no work: in effect, they may “idle” until
the next reconfiguration. Note that for this algorithm A, the work caused by the

850 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

adversary A is completely determined by (i) the collection of groups that existed
during the computation, (ii) the number of tasks A permits each group to perform,
and (iii) for each group G, the identities of all those groups in which processors of
G have previously been members. (Note that the initial knowledge of the group G
is determined in part by (iii).) These characteristics can be captured by a certain
directed acyclic graph, to which we refer as a computation pattern. This is formally
defined in the next section. Note that different sequences of reconfigurations can in
fact give rise to the same computation pattern.

As an example, consider the scenario with 3 processors which, starting from iso-
lation, are permitted to proceed synchronously until each has completed t/2 tasks; at
this point an adversary chooses a pair of processors to merge into a group. It is easy
to show that if T1, T2, and T3 are subsets of [t] of size t/2, then there is a pair (Ti, Tj)
(where i �= j) so that |Ti ∩ Tj | ≥ t/6: in particular, for any scheduling algorithm,
there is a pair of processors which, if merged at this point, will have t/6 duplicated
tasks; this pair alone must then expend t + t/6 work to complete all t tasks. The
optimal off-line algorithm that schedules tasks with full knowledge of future merges,
of course, accrues only t work for the merged pair, as it can arrange for zero overlap.
Furthermore, if the adversary partitions the two merged processors immediately after
the merge (after allowing the processors to exchanged information about task execu-
tions), then the work performed by the merged and then partitioned pair is t + t/3;
the work performed by the optimal algorithm remains unchanged, since it terminates
at the merge.

Contributions. We study upper and lower bounds on the competitiveness of
scheduling algorithms for the task-performing problem in partitionable networks. We
analyze the natural randomized algorithm for p processors and t tasks, called random

select (RS), in which each processor (or group) determines the next task to complete
by randomly selecting the task from the subset of tasks this group does not know to
be completed. We compare the expected work of this algorithm to the work of an
optimal off-line algorithm, which may schedule tasks with full knowledge of future
partitions.

In order to precisely state the results of the paper, we pause to introduce some
notation. In the literature, groups of processors are given structured names, such that
a group G is a pair 〈G.id,G.set〉, where G.id is the unique identifier of G and G.set
is the set of processor identifiers in [p] that determine the members of the group. To
reduce notational clutter, given a group named G, we use G to stand for G.set in this
paper (e.g., if two, possibly distinct, groups G and G′ have identical membership, we
express this by G = G′).

As discussed previously, an adversary determines a computation pattern C in a
natural way; this is a directed acyclic graph (DAG), each vertex corresponding to
a group of processors that exists during some point of the computation; a directed
edge is placed from group G to group G′ if G ∩ G′ �= ∅ and G′ was formed by a
reconfiguration involving processors in G (this is discussed and formally defined in
section 2). We say that two groups G and G′ are independent if there is no directed
path connecting one to the other. For such a pattern C, the computation width of
C, denoted cw(C), is the maximum number of independent groups reachable (along
directed paths) in this DAG from any vertex. We show the following:

• (Upper bound.) For any computation pattern C, the randomized algorithm
RS discussed above is (1 + cw(C)/e)-work competitive.

• (Lower bound.) For any scheduling algorithm A(p, t), any ε > 0, and any

COMPETITIVE SCHEDULING FOR COMPUTING WITH GROUPS 851

nonzero k ∈ N, there exist p, t, and a computation pattern C so that cw(C) =
k and the work performed by algorithm A(p, t) is at least (1 + k/e− ε) times
that of the off-line algorithm.

In particular, RS achieves the optimal competitive ratio over the set of all computation
patterns with a given computation width.

Prior and related work; motivation. The problem of distributed coopera-
tion for message-passing models was introduced and studied by Dwork, Halpern, and
Waarts [11], who defined the notion of (task-oriented) work. The current problem of
cooperation in partitionable networks has been the subject of active research. How-
ever, known solutions address narrow special cases, or provide substantially weaker
bounds. Dolev, Segala, and Shvartsman [10] performed the first study of the problem
in the partitionable setting. They model reconfiguration patterns for which the termi-
nation time of any on-line task-performing algorithm is greater than the termination
time of an off-line task-performing algorithm by a factor linear in p. Malewicz, Russell,
and Shvartsman [20] introduced the notion of h-waste that measures the worst-case
redundant work performed by h groups (or processors) when started in isolation and
merged into a single group at some later time. While these results are deterministic,
they only adequately describe such computation to the point of the first reconfigura-
tion, where the reconfiguration is further assumed to simply merge groups together.
Georgiou and Shvartsman [16] give upper bounds on work for an algorithm that per-
forms work in the presence of network fragmentations and merges (i.e., limited pat-
terns of reconfigurations) using a group communication service where processors ini-
tially start in a single group. They establish an upper bound of O(min(t·p, t+t·g(C))),
where g(C) is the total number of new groups formed during the computation pattern
C. Note that cw(C) ≤ g(C), and there can be an arbitrary gap between cw(C) and
g(C).

Thus prior work established reasonably tight (in the length of the processor sched-
ule) results for a single first merge [20], illustrated the fact that on-line algorithms
subject to diverging reconfiguration patterns incur linear (in p) overhead relative to
an off-line algorithm [10], and showed an upper bound for an algorithm using group
communication services for a limited pattern of reconfigurations starting with a single
group [16].

The problem of cooperation on a common set of tasks in distributed settings has
been studied in message-passing models [7, 8, 11]. These studies present various load-
balancing techniques for structuring the work for computing devices that are able
to communicate by means of point-to-point messages. The studies of Georgiades,
Mavronicolas, and Spirakis [13] and Papadimitriou and Yannakakis [22] investigated
the impact of communication topology on the effectiveness of load-balancing.

The notion of competitiveness was introduced by Sleator and Tarjan [26] (see also
Bartal, Fiat, and Rabani [5], Awerbuch, Kutten, and Peleg [3], and Ajtai et al. [1]).

Group communication services have become important as building blocks for
fault-tolerant distributed systems. Such services enable processors located in a failure-
prone network to operate collectively as a group, using the services to multicast mes-
sages to group members (see the special issue [23]). To evaluate the effectiveness of
partitionable group communication services, Sussman and Marzullo [27] proposed a
measure (cushion) precipitated by a simple partition-aware application. Babaoglu
et al. [4] studied systematic support for partition awareness based on group com-
munication services in a wide range of application areas. As we mentioned earlier,
cooperation on a common set of tasks has also been studied for algorithms using group

852 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

communications [10, 16].

A related problem, referred to as Write-All, has been studied in the shared-
memory model. Early work in this area was reported by Kanellakis and Shvarts-
man [18], Martel and Subramonian [21], Kedem, Palem, and Spirakis [19], and An-
derson and Woll [2]. In this setting the processors cooperate on updating locations
in shared memory. The algorithmic techniques and analysis found there are quite
different from the ones we present in this paper. Another related shared-memory
problem, called Collect, requires that each processor learn the private values of all
other processors. This problem was introduced by Shavit [25] and studied by Saks,
Shavit, and Woll [24].

The structure of this paper is as follows. In section 2 we define the problem and
model of computation. In section 3 we present and analyze the randomized algorithm
RS. In section 4 we prove a lower bound for the problem. We conclude in section 5.

Abstracts describing preliminary versions of the results in this paper appear in [14,
15].

2. Model and definitions. We consider a distributed system consisting of p
asynchronous processors connected by communication links; each processor has a
unique identifier from the set [p] = {1, 2, . . . , p}; the value p is known to all processors.
The problem is then defined in terms of t tasks with unique identifiers, initially known
to all processors. The tasks are independent and idempotent—multiple executions
of the same task have the same effect as a single execution. Processors may cease
executing tasks only when they know the results of all tasks. This general problem is
often referred to as Do-All.

The model is complicated by subjecting the processors to dynamic changes in
the communication medium. In particular, at each instant of time, the network is
partitioned into a collection of groups. Communication between processors in the
same group is instantaneous and reliable, so that grouped processors may perfectly
cooperate to complete tasks; communication across groups, however, is not possible.
We consider the dynamic case where communication can be arbitrarily lost and re-
established. In particular, the computation of the processors is punctuated by a
sequence of reconfigurations; each reconfiguration may induce an arbitrary change in
the partition of the processors into groups. We shall assume that task executions are
atomic with respect to reconfigurations. That is, a reconfiguration does not occur
when some tasks are “halfway” through execution.

In order to focus on scheduling issues, we assume that processors in a single group
work as a single virtual unit; indeed, we will treat them as a single asynchronous
processor. In particular, upon the establishment of a new group by a reconfiguration,
the processors in the group share their knowledge (of completed tasks) before they
continue processing. A deterministic algorithm D in this model is a rule which, given
a processor (or group of processors) and a collection of tasks known to be completed,
determines the next task for this processor (or group) to complete. Specifically, an
algorithm is a function D : 2[p] × 2[t] → [t]; we note that the lower bounds proved
in this paper actually apply to a wider class of algorithms that may in fact take into
account the entire history of the computation of the group in question. For simplicity,
we assume that ∀P ⊂ [p],∀T � [t], D(P, T) �∈ T , which is to say that the algorithm
never chooses to complete a task it already knows to be completed. Our goal will be to
design algorithms that schedule the execution of the tasks to minimize the total work,
where work is defined to be the number of tasks executed by all the processors during
the entire computation (counting multiplicities). Ideally, the sets of tasks completed

COMPETITIVE SCHEDULING FOR COMPUTING WITH GROUPS 853

by two groups of processors when these groups are merged should be disjoint to avoid
wasted effort. This is impossible in general, as processors must schedule their work in
ignorance of future reconfigurations and, moreover, circumstances where two groups
of processors merge that have collectively completed more than t tasks will necessitate
wasted work. A processor may cease executing tasks only when it knows the results
of all tasks. We refer to this version of the Do-All problem as Omni-Do.

We will consider the behavior of an algorithm in the face of an adversary (which
is oblivious in the sense of [6]) that determines both the sequence of reconfigurations
and the number of tasks completed by each group before it is involved in another
reconfiguration. Taken together, this information determines a computation pattern:
this is a DAG, each vertex of which corresponds to a group G of processors that
existed during the computation; a directed edge is placed from G1 to G2 if G2 was
created by a reconfiguration involving G1. We label each vertex of the DAG with the
group of processors associated with that vertex and the total number of tasks that the
adversary allows the group of processors to perform before the next reconfiguration
occurs. As mentioned before, different adversaries (causing different sequences of
reconfigurations) may give rise to the same computation pattern; the work caused by
an adversary, however, depends only on the computation pattern determined by that
adversary.

Specifically, if t is the number of tasks and p the number of processors, then such
a computation pattern is a labeled and weighted DAG, which we call a (p, t)-DAG.

Definition 2.1. A (p, t)-DAG is a DAG C = (V,E) augmented with a weight
function h : V → [t] ∪ {0} and a labeling g : V → 2[p] \ {∅} so that the following hold.

• For any maximal path P = (v1, . . . , vk) in C,
∑

h(vi) ≥ t. (This guarantees
that any algorithm terminates during the computation described by the DAG.)

• g possesses the following “initial conditions”:

[p] =
⋃̇

v: in(v)=0
g(v).

• g respects the following “conservation law”:
there is a function φ : E → 2[p] \ {∅} so that for each v ∈ V with in(v) > 0,

g(v) =
⋃̇

(u,v)∈E
φ
(
(u, v)

)
,

and for each v ∈ V with out(v) > 0,

g(v) =
⋃̇

(v,u)∈E
φ
(
(v, u)

)
.

In the above definition, ∪̇ denotes disjoint union, and in(v) and out(v) denote
the in-degree and out-degree of v, respectively. Finally, for two vertices u, v ∈ V , we
write u ≤ v if there is a directed path from u to v; we then write u < v if u ≤ v and
u and v are distinct.

Example. As an example, consider the (12, t)-DAG shown on Figure 2.1. Here we
have g1 = {p1}, g2 = {p2, p3, p4}, g3 = {p5, p6}, g4 = {p7}, g5 = {p8, p9, p10, p11, p12},
g6 = {p1, p2, p3, p4, p6}, g7 = {p8, p10}, g8 = {p9, p11, p12}, g9 = {p1, p2, p3, p4,
p6, p8, p10}, g10 = {p5, p11}, and g11 = {p9, p12}.

This computation pattern models all asynchronous computations (adversaries)
with the following behavior: (i) The processors in groups g1 and g2 and processor p6 of
group g3 are regrouped during some reconfiguration to form group g6. Processor p5 of

854 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

��
��

��
��

��
��

��
��
g1, 5 g3, 8 g4, t g5, 2��

��
g2, 3

��
��
g6, 4 ��

��
g7, 5 ��

��
g8, 6

��
��
g10, t ��

��
g11, t��

��
g9, t

�

��� � �

� 	
 �

Fig. 2.1. An example of a (12, t)-DAG.

group g3 becomes a member of group g10 during the same reconfiguration (see below).
Prior to this reconfiguration, processor p1 (the singleton group g1) has performed
exactly 5 tasks, the processors in g2 have cooperatively performed exactly 3 tasks,
and the processors in g3 have cooperatively performed exactly 8 tasks (assuming that
t > 8). (ii) Group g5 is partitioned during some reconfiguration into two new groups,
g7 and g8. Prior to this reconfiguration, the processors in g5 have performed exactly
2 tasks. (iii) Groups g6 and g7 merge during some reconfiguration and form group
g9. Prior to this merge, the processors in g6 have performed exactly 4 tasks (counting
only the ones performed after the formation of g6 and assuming that there are at
least 4 tasks remaining to be done) and the processors in g7 have performed exactly
5 tasks. (iv) The processors in group g8 and processor p5 of group g3 are regrouped
during some reconfiguration into groups g10 and g11. Prior to this reconfiguration, the
processors in group g8 have performed exactly 6 tasks (assuming that there are at least
6 tasks remaining, otherwise they would have performed the remaining tasks). (v) The
processors in g9, g10, and g11 run until completion with no further reconfigurations.
(vi) Processor p7 (the singleton group g4) runs in isolation for the entire computation.

Let D be a deterministic algorithm for Omni-Do and C a computation pattern.
We then let WD(C) denote the total work expended by algorithm D, where recon-
figurations are determined according to the computation pattern C. WD is formally
defined as follows.

Definition 2.2. Let C be a (p, t)-DAG and D a deterministic algorithm for
Omni-Do. WD(C) is defined inductively as follows.

• For a vertex v of C with in(v) = 0, define Lv to be the set containing the first
h(v) tasks completed by group g(v) according to D.

• Otherwise, in(v) > 0; in this case, let Ľv =
⋃

u<v Lu denote the collection of
all tasks known to be complete at the inception of group g(v). Then let Lv

be the first h(v) tasks completed by group g(v) according to D starting with
knowledge Ľv. If h(v) > t− |Ľv|, define Lv = [t] \ Ľv.

Then WD(C) =
∑

v∈C |Lv|.
We treat randomized algorithms as distributions over deterministic algorithms;

for a set Ω and a family of deterministic algorithms {Dr | r ∈ Ω} we let R = R({Dr |
r ∈ Ω}) denote the randomized algorithm where r is selected uniformly at random
from Ω and scheduling is done according to Dr. For a real-valued random variable
X, we let E[X] denote its expected value. We let OPT denote the optimal (off-line)

COMPETITIVE SCHEDULING FOR COMPUTING WITH GROUPS 855

algorithm. Specifically, for each C we define WOPT(C) = minD WD(C).
Definition 2.3 (see [26, 12, 6]). Let α be a real-valued function defined on the

set of all (p, t)-DAGs (∀ p and t). A randomized algorithm R is α-competitive if for
all computation patterns C,

E[WDr
(C)] ≤ α(C)WOPT(C),

this expectation being taken over uniform choice of r ∈ Ω.
Presently, we will introduce a function α that depends on a certain parameter

(see Definition 2.7) of the graph structure of C. We note that, by definition, α ≥ 1.
We pause to develop some terminology that we will use in the rest of the paper.
Definition 2.4. A partially ordered set, or poset, is a pair (P,≤), where P is

a set and ≤ is a binary relation on P for which (i) ∀x ∈ P , x ≤ x; (ii) if x ≤ y and
y ≤ x, then x = y; and (iii) if x ≤ y and y ≤ z, then x ≤ z. For a poset (P,≤) we
overload the symbol P , letting it denote both the set and the poset.

Definition 2.5. Let P be a poset. We say that two elements x and y of P are
comparable if x ≤ y or y ≤ x; otherwise x and y are incomparable. A chain is a
subset H of P such that any two elements of H are comparable. An antichain is a
subset A of P such that any two distinct elements of A are incomparable. The width
of P , denoted w(P), is the size of the largest antichain of P .

Associated with any DAG C = (V,E) is the natural vertex poset (V,≤), where
u ≤ v if and only if there is a directed path from u to v. Then the width of C, denoted
w(C), is the width of the poset (V,≤).

Definition 2.6. Given a DAG C = (V,E) and a vertex v ∈ V , we define the
predecessor graph at v, denoted PC(v) (or P (v) when C is implied), to be the subgraph
of C that is formed by the union of all paths in C terminating at v. Likewise, the
successor graph at v, denoted SC(v) (or S(v) when C is implied), is the subgraph of
C that is formed by the union of all the paths in C originating at v.

Definition 2.7. The computation width of a DAG C = (V,E), denoted cw(C),
is defined as

cw(C) = max
v∈V

w(S(v)).

Note that the processors that comprise a group formed during a computation
pattern C may be involved in many different groups at later stages of the computation,
but no more than cw(C) of these groups will be forced to compute in ignorance of
each other’s progress.

In the (12, t)-DAG of Figure 2.1, the maximum width among all successor graphs
is 3: w(S((g5, 2))) = 3. Hence, the computational width of this DAG is 3. Note that
the width of the DAG is 6 (nodes (g1, 5), (g2, 3), (g3, 8), (g4, t), (g7, 5), and (g8, 6)
form an antichain of maximum size).

3. Algorithm RS and its analysis. In this section we present the random

select (RS) algorithm and its analysis.

3.1. Description of algorithm RS. We consider the natural randomized al-
gorithm RS, where a processor (or group), with knowledge that the tasks in a set
K ⊂ [t] have been completed, selects to next complete a task at random from the set
[t] \K. More formally, let Π = (π1, . . . , πp) be a p-tuple of permutations, where each
πi is a permutation of [t]. We describe a deterministic algorithm DΠ so that

RS = R
(
{DΠ | Π ∈ (St)

p}
)
;

856 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

here St is the collection of permutations on [t]. Let G be a group of processors and
γ ∈ G the processor in G with the lowest processor identifier. Then the deterministic
algorithm DΠ specifies that the group G, should it know that the tasks in K ⊂ [t]
have been completed, next completes the first task in the sequence πγ(1), . . . , πγ(t)
which is not in K.

3.2. Analysis of algorithm RS. We now analyze the competitive ratio (in
terms of work) of algorithm RS. We write WRS(C) = E [WRS(C)], this expectation
taken over the random choices of the algorithm. Where C can be inferred from
context, we simply write WRS and WOPT.

We first recall Dilworth’s lemma [9], a duality theorem for posets.
Lemma 3.1 (see [9]). The width of a poset P is equal to the minimum number of

chains needed to cover P . (A family of nonempty subsets of a given set S is said to
cover S if their union is S.)

We will also use a generalized degree-counting argument.
Lemma 3.2. Let G = (U, V,E) be an undirected bipartite graph with no isolated

vertices and h : V → R a nonnegative weight function on G. For a vertex v, let Γ(v)
denote the vertices adjacent to v. Suppose that for some A > 0 and for every vertex
u ∈ U we have

∑
v∈Γ(u) h(v) ≤ A and that for some B > 0 and for every vertex v ∈ V

we have
∑

u∈Γ(v) h(u) ≥ B. Then

∑
u∈U h(u)∑
v∈V h(v)

≥ B

A
.

Proof. We compute the quantity
∑

(u,v)∈E h(u)h(v) by expanding according to
each side of the bipartition:

A
∑
u∈U

h(u) ≥
∑
u∈U

(
h(u) ·

∑
v∈Γ(u)

h(v)
)

=
∑

(u,v)∈E

h(u)h(v)

=
∑
v∈V

(
h(v) ·

∑
u∈Γ(v)

h(u)
)
≥ B

∑
v∈V

h(v).

As A > 0 and
∑

v h(v) ≥ B > 0, we conclude that∑
u∈U h(u)∑
v∈V h(v)

≥ B

A
,

as desired.
We now establish an upper bound on the competitive ratio of algorithm RS.
Theorem 3.3. Algorithm RS is (1 + cw(C)/e)-competitive for any (p, t)-DAG

C = (V,E).
Proof. Let C be a (p, t)-DAG; recall that associated with C are the two functions

h : V → [t] ∪ {0} and g : V → 2[p] \ {∅}. For a subgraph C ′ = (V ′, E′) of C,
we let H(C ′) =

∑
v∈V ′ h(v). Recall that PC(v) and SC(v) denote the predecessor

and successor graphs of C at v. Then we say that a vertex v ∈ V is saturated if
H(PC(v)) ≤ t; otherwise, v is unsaturated. Note that if v is saturated, then the group
g(v) must complete h(v) tasks regardless of the scheduling algorithm used. Along these
same lines, if v is an unsaturated vertex for which t >

∑
u<v h(u), the group g(v) must

complete at least max(h(v), t−
∑

u<v h(u)) tasks under any scheduling algorithm. As
these portions of C which correspond to computation that must be performed by

COMPETITIVE SCHEDULING FOR COMPUTING WITH GROUPS 857

any algorithm will play a special role in the analysis, it will be convenient for us to
rearrange the DAG so that all such work appears on saturated vertices. To achieve
this, note that if v is an unsaturated vertex for which

∑
u<v h(u) < t, we may replace

v with a pair of vertices, vs and vu, where all edges directed into v are redirected to
vs, all edges directed out of v are changed to originate at vu, the edge (vs, vu) is added
to E, and h is redefined so that

h(vs) = t−
∑
u<v

h(u) and h(vu) = h(v) − h(vs).

Note that the graph C ′ obtained by altering C in this way corresponds to the same
computation, in the sense that WD(C) = WD(C ′) for any algorithm D. For the
remainder of the proof we will assume that this alteration has been made at every
relevant vertex, so that the graph C satisfies the condition

v unsaturated ⇒
∑
u<v

h(u) ≥ t.(3.1)

Finally, for a vertex v, we let Tv be the random variable equal to the number of tasks
that RS completes at vertex v. Note that if v is saturated, then Tv = h(v). Let S
and U denote the sets of saturated and unsaturated vertices, respectively. Given the
above definitions, we immediately have

WOPT ≥
∑
s∈S

h(s)

and, by linearity of expectation,

WRS = E
[∑

v

Tv

]
=

∑
s∈S

h(s) +
∑
u∈U

E[Tu] ≤ WOPT +
∑
u∈U

E[Tu].(3.2)

Our goal is to conclude that for some appropriate β,

E

[∑
u∈U

Tu

]
≤ β ·

∑
s∈S

h(s) ≤ β ·WOPT

and hence that RS is 1 + β competitive. We will obtain such a bound by applying
Lemma 3.2 to an appropriate bipartite graph, constructed next.

Given C = (V,E), construct the (undirected) bipartite graph G = (S,U , EG),
where EG = {(s, u) | s < u}. As in Lemma 3.2, for a vertex v, we let Γ(v) denote the
set of vertices adjacent to v. Now assign weights to the vertices of G according to the
rule h∗(v) = E[Tv]. Note that for s ∈ S, h∗(s) = h(s) and hence by condition (3.1)
above, we immediately have the bound

∀u ∈ U ,
∑

s∈Γ(u)

h∗(s) ≥ t.(3.3)

We now show that ∀s ∈ S,
∑

u∈Γ(s)

h∗(u) ≤ cw(C) · t
e
.(3.4)

858 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

Before proceeding to establish this bound, note that (3.3) and (3.4), together with
Lemma 3.2, imply that

WRS(C) ≤
∑
s∈S

h(s) +
∑
u∈U

h∗(u) ≤
(
1 +

cw(C)

e

)∑
s∈S

h(s)

≤
(
1 +

cw(C)

e

)
WOPT(C),

as desired.
Returning now to (3.4), let s ∈ S be a saturated vertex and consider the suc-

cessor graph (of C) at s, SC(s). By Lemma 3.1 (Dilworth’s lemma), there exist
w � w(SC(s)) ≤ cw(C) paths in SC(s), P1, P2, . . . , Pw, so that their union covers
SC(s). Let Xi be the random variable whose value is the number of tasks performed
by RS on the portion of the path Pi consisting of unsaturated vertices. Note that if
u ∈ V is unsaturated and u ≤ v, then v is unsaturated and hence, for each path Pi,
there is a first unsaturated vertex u0

i after which every vertex of Pi is unsaturated.
Note now that for a fixed individual task τ , conditioned upon the event that τ is not
yet complete, the probability that τ is not chosen by RS for completion at a given
selection point in PC(u0

i) is no more than (1 − 1/t). Let Li be the random variable
whose value is the set of tasks left incomplete by RS at the formation of the group
g(u0

i). As u0
i is unsaturated,

∑
v<u0

i
h(v) ≥ t by condition (3.1) and hence, for each i,

Pr[τ ∈ Li] ≤ (1 − 1/t)t ≤ 1/e.

As there are a total of t tasks,

E[|Li|] ≤ t/e.

Of course, since RS completes a new task at each step, Xi ≤ |Li| so that E[Xi] ≤ t/e,
and by linearity of expectation

E
[∑

i

Xi

]
≤ w · t/e.

Now every unsaturated vertex in SC(s) appears in some Pi and hence∑
u∈Γ(s)

h∗(u) ≤ E
[∑

i

Xi

]
≤ wt/e ≤ cw(C) · t/e,

as desired.
Theorem 3.3 implies a constant upper bound for patterns that consist entirely

of merges (that is, where all reconfigurations are given by taking unions of existing
groups). This subsumes the results reported in [14].

Corollary 3.4. Algorithm RS is
(
1 + 1

e

)
-competitive for any (p, t)-DAG C with

cw(C) = 1.
Remark. The proof of Theorem 3.3 can be slightly modified to yield an interesting

result for deterministic scheduling algorithms. Let D be a deterministic scheduling
algorithm for Omni-Do. In the proof of Theorem 3.3, h∗(v) was defined as the ex-
pected number of tasks performed by algorithm RS at node v. For algorithm D,
if we define h∗(v) to be the actual number of tasks performed by the algorithm at
node v, then it is not difficult to see that (3.4) becomes

∑
u∈Γ(s) h

∗(u) ≤ cw(C) · t
(provided that no processor in D performs a task that already knows its result). This
leads to the conclusion that any (nontrivial) deterministic algorithm for Omni-Do is
(1 + cw(C))-competitive for any computation pattern C.

COMPETITIVE SCHEDULING FOR COMPUTING WITH GROUPS 859

4. A lower bound. We begin with a lower bound for deterministic algorithms.
This is then applied to give a lower bound for randomized algorithms in Corollary 4.2.

Theorem 4.1. Let a : N → R and D be a deterministic scheduling algorithm
for Omni-Do so that D is a(cw(·))-competitive (that is, D is α-competitive, for a
function α = a ◦ cw)). Then a(c) ≥ 1 + c/e.

Proof. Fix k ∈ N. Consider the case when t = p = g � k and t mod k = 0, g being
the number of initial groups. We consider a computation pattern CG determined by
a tuple G = (G1, . . . , Gt/k), where each Gi ⊂ [t] is a set of size k and

⋃
i Gi = [t].

Initially, the computation pattern CG has the processors synchronously proceed until
each has completed t/k tasks; at this point, the processors in Gi are merged and
allowed to exchange information about task executions. Each Gi is then immediately
partitioned into c groups (this establishes that the computation width is c). Note that
the off-line optimal algorithm accrues exactly t2/k work for this computation history
(it terminates prior to the partitions of the Gi).

We will show that for any scheduling deterministic Omni-Do algorithm D, there
is a selection of the Gi so that

WD(CG) ≥ t2/k

[
1 + c

(
1 − 1

k

)k

− o(1)

]
,

and hence that a(c) ≥ 1 + c/e. Consider the behavior of D when G is selected at
random, uniformly among all such tuples. Let Pi ⊂ [t] be the subset of t/k tasks
completed by processor i before the merges take place; these sets are determined by
the algorithm D. We begin by bounding

EG

[∣∣∣ ⋃
i∈G1

Pi

∣∣∣
]
.

To this end, consider an experiment where we select k sets Q1, . . . , Qk, each Qi selected
independently and uniformly from the set {Pi}. Now, for a specific task τ , let pτ =
PrQ1 [τ �∈ Q1], so that PrQi [τ �∈

⋃
i Qi] = pkτ . As the Qi are selected independently,

EQi

[∣∣∣[t] −⋃
i

Qi

∣∣∣
]

=
∑
τ

pkτ .

Observe now that ∑
τ

(1 − pτ) =
∑
τ

Pr
Q1

[τ ∈ Q1] = EQ1 [|Q1|] = t/k

and hence
∑

τ pτ = t(1− 1/k). As the function x �→ xk is convex on [0,∞),
∑

τ p
k
τ is

minimized when the pτ are equal, and we must have

EQi

[∣∣∣[t] −⋃
i

Qi

∣∣∣
]
≥ t ·

(
1 − 1

k

)k

.

Now observe that, conditioned on the Qi being distinct, the distribution of
(Q1, . . . , Qk) is identical to that of (Pg1

1
, . . . , Pg1

k
), where the random variable G1 =

{g1
1 , . . . , g

1
k}. Considering that Pr[∃i �= j,Qi = Qj] ≤ k2/t, we have

EQi

[∣∣∣[t] −⋃
i

Qi

∣∣∣
]
≤

(
1 − k2

t

)
EG

[
t−

∣∣∣ ⋃
i∈G1

Pi

∣∣∣
]

+ 1 · k
2

t
,

860 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

and hence as t → ∞, we see that the expected number of tasks remaining for those
processors in group G1 is

EG

[
t−

∣∣∣ ⋃
i∈G1

Pi

∣∣∣
]
≥ t(1 − 1/k)k − o(1).

Of course, the distribution of each Gi is the same, so that

EG

⎡
⎣ t/k∑

i=1

⎛
⎝t−

∣∣∣ ⋃
j∈Gi

Pj

∣∣∣
⎞
⎠
⎤
⎦ = [1 − o(1)]

(
t

k

)
· t

(
1 − 1

k

)k

.

In particular, there must exist a specific selection of G = (G1, . . . , Gt/k) which
achieves this bound. Recall that every Gi is partitioned into c groups. Therefore,
for such G, the total work is at least

t2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)
.

As limk→∞(1 − 1
k)k = 1

e , this completes the proof.
As the above stochastic computation pattern CG is independent of the deter-

ministic algorithm D, this immediately gives rise to a lower bound for randomized
algorithms.

Corollary 4.2. Let R
(
{Dr | r ∈ Ω}

)
be a randomized scheduling algorithm for

Omni-Do that is (a ◦ cw)-competitive. Then a(c) ≥ 1 + c/e.
Proof. Assume for contradiction that for some c, a(c) < 1 + c/e, and let k be

large enough so that (1− 1
k)k > a(c)− 1. For this k we proceed as in the proof above,

considering a random G and the computation pattern CG with t = g = p congruent
to 0 mod k, g being the number of initial groups. Then, as above,

EG [Er [WDr (CG)]] = Er [EG [WDr (CG)]]

≥ min
r

[EG [WDr (CG)]]

≥ t2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)
.

Hence there exists a G so that Er [WDr
(CG)] ≥ t2

k ·
(
1 + [1 − o(1)] ce

)
, which completes

the proof.

5. Conclusions and open problems. We established bounds on the competi-
tive ratio of a natural randomized algorithm for scheduling in partitionable networks
and show, furthermore, that for the relevant gradation of computation patterns these
bounds are tight. We showed how to characterize algorithm competitiveness in terms
of computation width, a precise property of a DAG that describes the computation
history. These results lead to a better understanding of the effectiveness of compu-
tation in group communication schemes, a widely used paradigm for computing in
distributed environments.

One outstanding open question is how to derandomize the schedules used by task-
performing algorithms in this work. Specifically, we would like to construct determin-
istic scheduling algorithms that are (1 + cw(C)/e)-competitive for any computation

COMPETITIVE SCHEDULING FOR COMPUTING WITH GROUPS 861

pattern C. Another promising direction is to study the task-performing paradigm
in the models of computation that combine network reconfigurations with processor
failures. The goal is to establish complexity results that show how performance of
task-performing algorithms depends both on the extent of the network reconfiguration
and on the number of processor failures.

REFERENCES

[1] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts, A theory of competitive analysis for dis-
tributed algorithms, in Proceedings of the 35th Symposium on Foundations of Computer
Science (FOCS 1994), IEEE, Los Alamitos, CA, 1994, pp. 401–411.

[2] R. J. Anderson and H. Woll, Algorithms for the certified write-all problem, SIAM J. Com-
put., 26 (1997), pp. 1277–1283.

[3] B. Awerbuch, S. Kutten, and D. Peleg, Competitive distributed job scheduling, in Proceed-
ings of the 24th ACM Symposium on Theory of Computing (STOC 1992), ACM, New
York, 1992, pp. 571–580.

[4] O. Babaoglu, R. Davoli, A. Montresor, and R. Segala, System support for partition-
aware network applications, in Proceedings of the 18th IEEE International Conference
on Distributed Computing Systems (ICDCS 1998), IEEE, Los Alamitos, CA, 1998, pp.
184–191.

[5] Y. Bartal, A. Fiat, and Y. Rabani, Competitive algorithms for distributed data management,
in Proceedings of the 24th ACM Symposium on Theory of Computing (STOC 1992), ACM,
New York, 1992, pp. 39–50.

[6] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power of
randomization in on-line algorithms, Algorithmica, 11 (1994), pp. 2–14.

[7] B. Chlebus, R. De Prisco, and A. A. Shvartsman, Performing tasks on restartable message-
passing processors, Distributed Comput., 14 (2001), pp. 49–64.

[8] R. De Prisco, A. Mayer, and M. Yung, Time-optimal message-efficient work performance
in the presence of faults, in Proceedings of the 13th ACM Symposium on Principles of
Distributed Computing (PODC 1994), ACM, New York, 1994, pp. 161–172.

[9] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math., 51 (1950),
pp. 161–166.

[10] S. Dolev, R. Segala, and A. A. Shvartsman, Dynamic load balancing with group communi-
cation, in Proceedings of the 6th International Colloquium on Structural Information and
Communication Complexity (SIROCCO 1999), Carleton Scientific, Waterloo, ON, Canada,
1999, pp. 111–125.

[11] C. Dwork, J. Y. Halpern, and O. Waarts, Performing work efficiently in the presence of
faults, SIAM J. Comput., 27 (1998), pp. 1457–1491.

[12] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young,
Competitive paging algorithms, J. Algorithms, 12 (1991), pp. 685–699.

[13] S. Georgiades, M. Mavronicolas, and P. Spirakis, Optimal, distributed decision-making:
The case of no communication, in Proceedings of the 12th International Symposium on
Fundamentals of Computation Theory (FCT 1999), Lecture Notes in Comput. Sci. 1684,
Springer-Verlag, Berlin, 1999, pp. 293–303.

[14] Ch. Georgiou, A. Russell, and A. A. Shvartsman, Optimally work-competitive scheduling
for cooperative computing with merging groups (brief announc.), in Proceedings of the
22nd ACM Symposium on Principles of Distributed Computing (PODC 2002), ACM, New
York, 2002, p. 132.

[15] Ch. Georgiou, A. Russell, and A. A. Shvartsman, Work-competitive scheduling for cooper-
ative computing with dynamic groups, in Proceedings of the 35th Annual ACM Symposium
on Theory of Computing (STOC 2003), ACM, New York, 2003, pp. 251–258.

[16] Ch. Georgiou and A. A. Shvartsman, Cooperative computing with fragmentable and merge-
able groups, J. Discrete Algorithms, 1 (2003), pp. 211–235.

[17] J. F. Groote, W. H. Hesselink, S. Mauw, and R. Vermeulen, An algorithm for the asyn-
chronous Write-All problem based on process collision, Distributed Comput., 14 (2001),
pp. 75–81.

[18] P. C. Kanellakis and A. A. Shvartsman, Fault-Tolerant Parallel Computation, Kluwer Aca-
demic, Dordrecht, The Netherlands, 1997.

[19] Z. M. Kedem, K. V. Palem, and P. Spirakis, Efficient robust parallel computations, in Pro-
ceedings of the 22nd ACM Symposium on Theory of Computing (STOC 1990), ACM, New

862 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

York, 1990, pp. 138–148.
[20] G. Malewicz, A. Russell, and A. A. Shvartsman, Distributed cooperation during the absence

of communication, in Proceedings of the 14th International Symposium on Distributed
Computing (DISC 2000), Lecture Notes in Comput. Sci. 1914, Springer-Verlag, Berlin,
2000, pp. 119–133.

[21] C. Martel and R. Subramonian, On the complexity of certified Write-All algorithms, J.
Algorithms, 16 (1994), pp. 361–387.

[22] C. H. Papadimitriou and M. Yannakakis, On the value of information in distributed decision-
making, in Proceedings of the 10th ACM Symposium on Principles of Distributed Com-
puting (PODC 1991), ACM, New York, 1991, pp. 61–64.

[23] D. Powell, ed., Special Issue on Group Communication Services, Comm. ACM, 39 (1996).
[24] M. Saks, N. Shavit, and H. Woll, Optimal time randomized consensus—making resilient

algorithms fast in practice, in Proceedings of the 2nd ACM-SIAM Symposium on Discrete
Algorithms (SODA 1991), ACM, New York, 1991, pp. 351–362.

[25] N. Shavit, Concurrent Timestamping, Ph.D. thesis, The Hebrew University, 1989.
[26] D. Sleator and R. Tarjan, Amortized efficiency of list update and paging rules, Comm.

ACM, 28 (1985), pp. 202–208.
[27] J. B. Sussman and K. Marzullo, The Bancomat problem: An example of resource allo-

cation in a partitionable asynchronous system, in Proceedings of the 12th International
Symposium on Distributed Computing (DISC 1998), Lecture Notes in Comput. Sci. 1499,
Springer-Verlag, Berlin, 1998, pp. 363–377.

