
Towards Feasible Implementations of

Low-Latency Multi-Writer Atomic Registers∗

Chryssis Georgiou † Nicolas C. Nicolaou† ‡ Alexander C. Russell‡

Alexander A. Shvartsman‡

Abstract

This work explores implementations of multi-writer/multi-reader (MWMR) atomic registers in
asynchronous, crash-prone, message-passing systems with the focus on low latency and computational
feasibility. The efficiency of atomic read/write register implementations is traditionally measured in
terms of the latency of read and write operations. To reduce operation latency researchers focused on
the communication costs, expressed as the number of communication round-trips (or rounds), often
ignoring the computation costs.

In this paper we consider efficiency of a register implementation in terms of both communication and
computation costs. As of this writing, algorithm Sfw is the sole known MWMR algorithm that allows
single round read and write operations. The algorithm uses collections of intersecting sets (quorums),
and to enable single round operations, Sfw relies on the evaluation of certain predicates. We formulate
a new combinatorial problem that captures the computational burden of evaluating the predicates in
algorithm Sfw and we show that it is NP-Complete. To make the evaluation of the predicates feasible,
we present a polynomial log-approximation algorithm for this problem and we show how to use it
with algorithm Sfw. Then we present a new algorithm, called CwFr, that allows fast operations
independently of the underlying quorum system construction. The algorithm implements two-round
writes and allows reads to complete in a single round. We conclude with preliminary experimental
evaluations of our algorithms obtained from simulations in NS2.

Technical Report TR-11-03
Department of Computer Science

University of Cyprus
March 2011

∗This work is supported in part by the Cyprus Research Promotion Foundation’s grant ΠENEK/0609/31 andthe European
Regional Development Fund.

†Department of Computer Science, University of Cyprus, Cyprus. Email: {chryssis,nicolasn}@cs.ucy.ac.cy.
‡Department of Computer Science & Engineering, University of Connecticut, CT, USA. Email: {acr,aas}@cse.uconn.edu.

1

1 Introduction

Emulating atomic registers in asynchronous, crash-prone, message-passing systems is one of the basic
problems in distributed computing. In such settings the register is replicated among a set of replica hosts
or servers to provide fault-tolerance and availability. Then read and write operations are implemented as
communication protocols that ensure atomic consistency.

Efficiency of register implementations is normally measured in terms of the latency of read and write
operations. Two factors affect operation latency: (a) computation, and (b) communication delays. An
operation may need to communicate with servers to read or write the register value. This involves at least
a single communication round-trip, or round, i.e., messages from the invoking process to some servers and
then the replies from these servers. Previous works focused on minimizing the number of rounds required
by each operation. Dutta et al. [7] developed the first single-writer/multi-reader (SWMR) algorithm,
where all operations complete in a single round. Such operations are called fast. The authors showed
that fast operations are possible only if the number of readers in the system is constrained with respect
to the number of servers. They also showed that it is impossible to have multi-writer/multi-reader
(MWMR) implementations where all operations are fast. To remove the constraint on the number of
readers, Georgiou et al. [13] introduced semifast implementations where at most one complete two-round
read operation is allowed per write operation. They also showed that semifast MWMR implementations
are impossible.

As of this writing, algorithm Sfw, developed by Englert et al. [8], is the only algorithm that allows
both reads and writes to be fast in the MWMR setting. The algorithm uses quorum systems, sets of
intersecting subsets of servers, to handle server failures. To decide whether an operation can terminate
after its first round, the algorithm employs two predicates, one for the write and one for read operations.

This paper identifies and examines two weaknesses of algorithm Sfw with respect to its practicality:
(1) the predicates used by the algorithm cannot be computed efficiently, and (2) fast operations are pos-
sible only when every 5 or more quorums used by the algortihm have a non-empty intersection. Here we
define a general problem that captures the definitions of the predicates. We prove that the problem is
NP-Complete and we provide a log-approximation algorithm for predicate evaluation. Next we consider
whether general quorum constructions can be used with algorithms that allow fast operations. We present
algorithm CwFr that uses Quorum Views [12], client-side decision tools, to allow some fast read oper-
ations without additional constraints on the quorum system. Write operations in this implementations
take two rounds. Finally, we evaluate the latency gains by the application of the approximation algorithm
by simulating the original algorithm Sfw and its modification in NS2. We empirically compare the two
algorithms in terms of the number of observed two round operations.

Backround. Attiya et al. [2] gave a SWMR algorithm that achieves consistency by using intersecting
majorities of servers in combination with ⟨timestamp, value⟩ value tags. A write operation increments the
writer’s local timestamp and delivers the new tag-value pair to a majority of servers, taking one round.
A read operation obtains tag-value pairs from some majority, then propagates the pair corresponding to
the highest timestamp to some majority of servers, thus taking two rounds.

The majority-based approach in [2] is readily generalized to quorum-based approaches in the MWMR
setting (e.g., [17, 9, 16, 10, 14]). Such algorithms requires at least two communication rounds for each read
and write operation. Both write and read operations query the servers for the latest value of the replica
during the first round. In the second round the write operation generates a new tag and propagates
the tag along with the new value to a quorum of servers. A read operation propagates to a quorum of
servers the largest value it discovers during its first round. Dolev et al. [6] and Chockler et al. [4], provide
MWMR implementations where some reads involve a single communication round when it is confirmed
that the value read was already propagated to some quorum.

Dutta et al. [7] present the first fast atomic SWMR implementation where all operations take a
single communication round. They show that fast behavior is achievable only when the number of reader

1

processes R is inferior to S
t − 2, where S the number of servers, t of whom may crash. They also showed

that fast MWMR implementations are impossible even in the presence of a single server failure. Georgiou
et al. [13] introduced the notion of virtual nodes that enables an unbounded number of readers. They
define the notion of semifast implementations where only a single read operation per write needs to be
“slow” (take two rounds). They also show the imposibility of semifast MWMR implementations.

Georgiou et al. [12] showed that fast and semifast quorum-based SWMR implementations are possible
if and only if a common intersection exists among all quorums. Hence a single point of failure exists in
such solutions (i.e., any server in the common intersection), making such implementations not fault-
tolerant. To trade efficiency for improved fault-tolerance, weak-semifast implementations in [12] require
at least one single slow read per write operation, and where all writes are fast. To obtain a weak-semifast
implementation they introduced a client-side decision tool called Quorum Views that enables fast read
operations under read/write concurrency when general quorum systems are used.

Recently, Englert et al. [8] developed an atomic MWMR register implementation, called algorithm
Sfw, that allows both reads and writes to complete in a single round. To handle server failures, their
algortihm uses n-wise quorum systems: a set of subsets of servers, such that each n of these subsets
intersect. The parameter n is called the intersection degree of the quorum system. The algorithm relies
on ⟨tag, value⟩ pairs to totally order write operations. In contrast with traditional approaches, the
algorithm uses the server side ordering (SSO) approach that transfers the responsibility of incrementing
the tag from the writers to the servers. This way, the query round of write operations is eliminated.
The authors proved that fast MWMR implementations are possible if and only if they allow not more
than n− 1 successive write operations, where n is the intersection degree of the quorum system. If read
operations are also allowed to modify the value of the register then from the provided bound it follows
that a fast implementation can accomodate up to n− 1 readers and writers.

Contributions. Our goal is to provide efficient and practical implementations of atomic MWMR regis-
ters. We examined the only known algorithm that allows fast read and write operations, algorithm Sfw,
and we identified two weaknesses with respect to its practicality: (1) the algorithm uses two computation-
ally hard predicates to decide on the value of the register, and (2) fast write operations are enabled only
if the quorum system satisfies specific quorum intersection properties. Motivated by these observations,
our contributions are as follows:

(1) We define a new combinatorial problem, called k-Set-Intersection, that represents both predi-
cates used in algorithm Sfw. We prove that the problem, and hence the evaluation of the predicates,
are NP-Complete by reduction from the 3-Sat problem. We present a polynomial time approxima-
tion algorithm that uses as its core a greedy approximation algorithm for the Set Cover problem.
Our approximation provides a log u-approximation for the number of sets included in the solution,
where u is the size of the set given as the input; for algorithm Sfw, u is the number of severs.
We derive a new atomic register algorithm, called Aprx-Sfw, by embedding our approximation
algorithm to evaluate the predicates in algorithm Sfw. For O(log u) predicate evaluations, the ap-
proximation used by algorithm Aprx-Sfw may yield false negatives, however this is a performance,
not a correctness, issue.

(2) We examine whether fast operations can be achieved if one uses general quorum constructions. By
generalizing the client side decision tools, called Quorum Views, developed for the SWMR setting
in [12], we derive algorithm CwFr. The new algorithm uses the conventional two round writes. To
allow fast read operations the algorithm analyzes, using quorum views, the distribution of a value
within a quorum of replies from servers. As multiple writes can occur concurrently, an iterative
technique is used to discover the latest potentially completed write operation.

(3) We obtained preliminary experimental results by simulating our algorithms on the NS2 simulator.
In particular, we first compare algorithms Sfw and Aprx-Sfw in terms of the number of second

2

communication rounds and show that the experimental results are within the theoretical approxi-
mation bounds. Furthermore, the hardness of the predicate evaluation computation is made evident
from the observed operation latency (as the number of servers increases). We then compare the
operation latency of algorithms Aprx-Sfw, CwFr, and a traditional two-round algorithm that in-
curs a low computational overhead. We observe that the first two algorithms achieve lower latency
despite the computational burden. Finally, we compare the operation latency and the percent-
age of fast reads of algorithms CwFr and Aprx-Sfw. We observe that in quorum systems with
small intersection degree, CwFr seems to perform better than Aprx-Sfw; in quorums with large
intersection degree Aprx-Sfw performs better.

Paper organization. In Section 2 we give the model of computation model and the notation we
use throughout. In Section 3 we overview algorithm Sfw. Section 4 introduces the new combinatorial
problem, its analysis, and the approximation algorithm. Algorithm CwFr is presented in Section 5.
Simulation results and comparisons of algorithms are in Section 6. We conclude in Section 7.

2 Model and Definitions

We consider the asynchronous message-passing model. There are three distinct finite sets of crash-
prone processors: a set of readers R, a set of writers W, and a set of servers S . The identifiers of all
processors are unique and comparable. Communication among the processors is accomplished via reliable
communication channels.

Servers and quorums. Servers are arranged into intersecting sets, or quorums, that together form
a quorum system Q. For a set of quorums A ⊆ Q we denote the intersection of the quorums in A by
IA =

∩
Q∈AQ. A quorum system Q is called an n-wise quorum system if for any A ⊆ Q, s.t. |A| = n

we have IA ̸= ∅. We call n the intersection degree of Q. Any quorum system is a 2-wise (pairwise)
quorum system because any two quroums intersect. At the other extreme, a |Q|-wise quorum system has
a common intersection among all quorums. From the definition it follows that an n-wise quorum system
is also a k-wise quorum system, for 2 ≤ k ≤ n.

Our system allows processes to fail by crashing. A process i is faulty in an execution if i crashes in
the execution (once a process crashes, it does not recover); otherwise i is correct. A quorum Q ∈ Q is
non-faulty if ∀i ∈ Q, i is correct; otherwise Q is faulty. We assume that at least one quorum in Q is
non-faulty in any execution.

Atomicity. We study atomic read/write register implementations, where the register is replicated at
servers. Reader p requests a read operation ρ on the register using action readp. Similarly, a write
operation is requested using action write(∗)p at writer p. The steps corresponding to such actions are
called invocation steps. An operation terminates with the corresponding acknowledgment action; these
steps are called response steps. An operation π is incomplete in an execution when the invocation step
of π does not have the associated response step; otherwise we say that π is complete. We assume that
requests made by read and write processes are well-formed: a process does not request a new operation
until it receives the response for a previously invoked operation.

In an execution, we say that an operation (read or write) π1 precedes another operation π2, or π2
succeeds π1, if the response step for π1 precedes in real time the invocation step of π2; this is denoted by
π1 → π2. Two operations are concurrent if neither precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the atomicity
and termination properties. Assuming the failure model discussed earlier, the termination property
requires that any operation invoked by a correct process eventually completes. Atomicity is defined as

3

follows [15]. For any execution if all read and write operations that are invoked complete, then the
operations can be partially ordered by an ordering ≺, so that the following properties are satisfied:

P1. The partial order is consistent with the external order of invocation and responses, that is, there
do not exist operations π1 and π2, such that π1 completes before π2 starts, yet π2 ≺ π1.

P2. All write operations are totally ordered and every read operation is ordered with respect to all the
writes.

P3. Every read operation ordered after any writes returns the value of the last write preceding it in
the partial order, and any read operation ordered before all writes returns the initial value of the
register.

Efficiency and Fastness. We measure the efficiency of an atomic register implementation in terms of
computation and communication round-trips (or simply rounds). A round is defined as follows [7, 13, 12]:

Definition 2.1 Process p performs a communication round during operation π if all of the following
hold:

1. p sends request messages that are a part of π to a set of processes,
2. any process q that receives a request message from p for operation π, replies without delay.
3. when process p receives enough replies it terminates the round (either completing π or starting new

round).

Operation π is fast [7] if it completes after its first communication round; an implementation is fast
if in each execution all operations are fast. We use quorum systems and tags to maintain, and impose
an ordering on, the values written to the register replicas. We say that a quorum Q ∈ Q, replies to a
process p for an operation π during a round, if ∀s ∈ Q, s receives a message during the round and replies
to this message, and p receives all such replies.

Given that any subset of readers or writers may crash, the termination of an operation cannot depend
on the progress of any other operation. Furthermore we guarantee termination only if servers’ replies
within a round of some operation do not depend on receipt of any message sent by other processes. Thus
we can construct executions where only the messages from the invoking processes to the servers, and from
the servers to the invoking processes are delivered. Lastly, to guarantee termination under the assumed
failure model, no operation can wait for more than a singe quorum to reply within the processing of a
single round.

3 Brief Description of Algorithm Sfw

Algortihm Sfw assumes that the servers are arranged in an n-wise quorum system. To order the written
values the algorithm uses ⟨tag, value⟩ pairs. To enable fast writes the algorithm assigns partial responsi-
bility to the servers for the ordering of the values written. If a server receives a write request it generates
a new tag, larger than any of the tags it witnessed, and assigns it to the value enclosed in the write
message. The server records a generated tag, along with the write operation it was created for, in a set
called inprogress. The set holds only the latest tag generated for each writer.

Each reader or writer must communicate with a quorum of servers, sayQ, during the first round of each
read/write operation. Due to concurrency different servers can receive messages from write operations
in different order, thus an operation may witness different tags assigned to a single write operation. To
deal with this algorithm Sfw uses two predicates to determine whether “enough” servers in the replying
quorum assigned the same tag to a particular write operation. Let n be the intersection degree of the
quorum system, and inprogresss(ω) be the inprogress set that server s enclosed in the message it sent
to the writer that invoked ω. The write predicate is:

4

PW: Writer predicate for a write ω: ∃ τ,A,MS where: τ ∈ {⟨., ω⟩ : ⟨., ω⟩ ∈ inprogresss(ω) ∧ s ∈ Q},
A ⊆ Q, 0 ≤ |A| ≤ n

2−1, and MS = {s : s ∈ Q ∧ τ ∈ inprogresss(ω)}, s.t. either |A| ̸= 0 and IA∩Q ⊆ MS
or |A| = 0 and Q = MS.

A read operation uses a similar predicate:
PR: Reader predicate for a read ρ: ∃ τ,B,MS, where: max(τ) ∈

∪
s∈Q inprogresss(ρ), B ⊆ Q, 0 ≤

|B| ≤ n
2 − 2, and MS = {s : s ∈ Q ∧ τ ∈ inprogresss(ρ)}, s.t. either |B| ̸= 0 and IB ∩ Q ⊆ MS or

|B| = 0 and Q = MS.

The predicates examine whether the same tag for a write operation is contained in the replies of all
servers in the intersection among the replying quorum and n

2 − 1 for PW (resp. n
2 − 2 for PR) of other

replying quorums. Satisfaction of the predicates for a tag τ guarantees that any subsequent operation
will also determine that the write operation is assigned tag τ . If the predicates hold with |A| ≥ n

2 − 1 or
|B| = n

2 − 2 then the write or read operation respectively needs to proceed to a second round. A write
operation can only be fast if PW holds. A read operations can be fast even if PR does not hold, but the
read observed enough confirmed tags with the same value. Confirmed tags are maintained in the servers
and they indicate that either the write of the value with that tag is complete, or the tag was returned by
some read operation. See [8] for full details.

4 NP-Completeness and Approximation

The complexity of the predicates raises the question whether they can be computed efficiently. The two
predicates can be captured by a decision problem that we formalize as follows:

Definition 4.1 (k-Set-Intersection) Given a set of elements U , a subset of those elements M ⊆ U
and a set of subsets Q = {Q1, . . . , Qn} s.t. Qi ⊆ U , a set I is an intersecting set if I ⊆ Q,

∩
Q∈I Q ̸= ∅,

and
∩

Q∈I Q ⊆ M . If |I| = k then I is a k intersecting set.

To the best of our knowledge this is a new combinatorial problem and it is similar to the open problem
stated in [5]. In the context of [8], the universe of elements U is the set of servers, and the set of subsets
of U is the deployed quorum system. Clearly k-Set-Intersection is in NP : given (U,M,Q) and a set
I ⊂ Q, |I| = k, we can verify in polynomial time (with respect to |Q|) if

∩
Q∈I Q ⊆ M .

4.1 Polynomial Reduction from 3-Sat

We now show that the k-Set-Intersection problem is NP-Complete by providing a polynomial reduc-
tion from the 3-Sat problem. The reduction involves a polynomial transformation of the input to 3-Sat
to an instance of k-Set-Intersection. We first provide the definition of 3-Sat [18]:

Definition 4.2 (3-Sat) Let X = {x1, . . . , xn} be a set of variables and Φ a boolean formula in CNF
(Conjuctive Normal Form) where each clause contains at most three literals (variable or its negation). Is
there a truth assignment to every xi ∈ X s.t. Φ becomes true?

Construction: We transform an instance of the 3-Sat problem to an instance (U,M,Q, k) of k-Set-
Intersection as follows. Let k = n the total number of variables. The universe consists of an element
for each variable, the negation of each variable and an element for each clause Ci of 3-Sat. It also
includes n elements which will ensure that each variable is chosen at least once:

U = {x1, . . . , xn, x1, . . . , xn, C1, . . . , Cm, ℓ1, . . . , ℓn}
The set M ⊆ U contains all the elements that appear in the clauses. Both the variable xi and its negation
xi may appear in M , if they appear is some clause of the boolean formula. Thus the set M is constructed
in O(2nm) time as follows:

5

M = {xi : ∃Cj , xi ∈ Cj} ∪ {xi : ∃Cj , xi ∈ Cj}
Lastly we construct the set of subsets Q. For each variable xi ∈ M we construct a subset, Qi and

for each variable xi ∈ M we construct a subset Q′
i. Every Qi contains the variable xi, the variables xj

for j ̸= i and their negations, and the clauses that do not contain xi or contain xi. Intuitively, those are
the clauses that are not directly satisfied if we set xi = true. Finally, we include one element ℓj for each
j ̸= i. These elements will ensure that for a variable xi we choose either Qi or Q′

i but not both. We
construct Q′

i similarly for xi. More formally the sets we obtain are the following:

Qi = {xi : xi ∈ M} ∪ {xj , xj : j ̸= i}
∪{Cj : xi /∈ Cj or xi ∈ Cj} ∪ {ℓj : j ̸= i}

Q′
i = {xi : xi ∈ M} ∪ {xj , xj : j ̸= i}

∪{Cj : xi /∈ Cj or xi ∈ Cj} ∪ {ℓj : j ̸= i}

Given the above sets, the set of subsets Q is:

Q =

 ∪
xi∈M

{Qi}

 ∪

 ∪
xi∈M

{Q′
i}


The construction of all sets Qi and Q′

i takes at most O(2n2m) time.
The idea of this construction is to find a set of subsets such that their intersection contains positive

and negative variables and no clauses or elements ℓj . In our construction this implies that setting the
variables of the intersection to true satisfies all clauses. In addition, the elimination of the elements ℓj ,
in combination with k being equal to n, implies that we choose either Qi or Q

′
i but not both. Therefore,

the intersection of n subsets implies that we chose a single truth value for every variable.

Example. Consider the following boolean formula:

Φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)

The universe set will be:

U = {x1, x2, x3, x4, x1, x2, x3, x4, C1, C2, ℓ1, ℓ2, ℓ3}

The corresponding set M ⊆ U will be:

M = {x1, x2, x2, x3, x3, x4}

Finally the corresponding set of subsets is:

Q1 = {x1, x2, x2, x3, x3, x4, x4, C2, ℓ2, ℓ3, ℓ4}

Q2 = {x2, x1, x1, x3, x3, x4, x4, C1, ℓ1, ℓ3, ℓ4}
Q′

2 = {x2, x1, x1, x3, x3, x4, x4, C2, ℓ1, ℓ3, ℓ4}

Q3 = {x3, x1, x1, x2, x2, x4, x4, C2, ℓ1, ℓ2, ℓ4}
Q′

3 = {x3, x1, x1, x2, x2, x4, x4, C1, ℓ1, ℓ2, ℓ4}

Q′
4 = {x4, x1, x1, x2, x2, x3, x3, C1, ℓ1, ℓ2, ℓ3}

One of the solutions of the n-Set-Intersection problem is Q1 ∩ Q′
2 ∩ Q3 ∩ Q′

4 = {x1, x2, x3, x4}.
Thus, one possible assignment that makes Φ = true is x1 = true, x2 = false, x3 = true, and x4 = false.

6

Reduction. With this construction we formally show that 3-Sat ≤p k-Set-Intersection, obtaining
the following theorem:

Theorem 4.3 k-Set-Intersection is NP-Complete.

Proof. Let us first show that if we decide YES in the 3-Sat problem then we decide YES in the
k-Set-Intersection problem as well.

If A is a truth assignment for 3-Sat then I = {Qi : (xi = true) ∈ A} ∪ {Q′
i : (xi = false) ∈ A} is

a n intersecting set for n-Set-Intersection. Let Φ be the CNF boolean formula. If the assignment
xi = true belongs in A, then it follows that there exists a clause Cj ∈ Φ such that xi ∈ Cj . Similarly, if
xi = false belongs in A, then ∃Cj , s.t. xi ∈ Cj . Thus, every element xi = true in A, then xi ∈ M and for
every element xi = false in A, xi ∈ M . Subsequently, for every xi = true in A we construct the subset
Qi and for every xi = false in A we construct Q′

i. For simplicity we say that xi ∈ A if (xi = true) ∈ A
and xi ∈ A if (xi = false) ∈ A.

We need to show that the intersection of the sets in I is a subset of M . Since, A is a truth assignment
for Φ, then it follows that every clause of Φ is satisfied. That is, for every clause Cj there exists some
variable xi such that either xi ∈ A or xi ∈ A, making Cj true. According to our construction, every Qi

contains the element xi along with the positive and negative form of every other variable and the clauses
that xi does not satisfy if it is set to true. Thus, if xi ∈ A (resp. xi ∈ A) and makes Cj true, the set Qi

(resp. Q′
i) does not contain Cj . Since, Qi (resp. Q′

i) is in I, then Cj /∈
∩

Q∈I Q either. Therefore, since
∀Cj , ∃xi ∈ A or xi ∈ A, then the corresponding sets in I do not contain Cj , and hence

∩
Q∈I Q does not

contain any clause Cj . Moreover, since either Qi or Q
′
i is in I for every element xi, then

∩
Q∈I Q includes

exactly the elements in A, and, for 1 ≤ j ≤ n, ℓj /∈
∩

Q∈I Q. Hence,
∩

Q∈I Q ⊆ M .
It is easy to see that the resulting set is also the maximum intersection we can obtain among n subsets.

Intersecting two subsets Qi and Qj , the resulting set is at least two elements smaller than any of these
subsets. Namely, xi /∈ Qi and xj /∈ Qj , and hence xi, xj /∈ Qi ∩ Qj . Thus, intersecting any n subsets
results in a set with at least n elements smaller than any of the subsets. Since, we have a total of 2n
variable elements (each variable in its positive and negative form), and since |I| = n and by construction
|
∩

Q∈I Q| = n, then the intersection is the maximum we can obtain.
Conversely we need to show that if I is an n intersecting set for n-Set-Intersection, then A =

{xi = true : Qi ∈ I} ∪ {xi = false : Q′
i ∈ I} is a truth assignment for Φ. It follows that

∩
Q∈I Q ⊆ M .

By construction, M contains only positive and negative variables then:
(a) for 1 ≤ i ≤ n, ℓi /∈

∩
Q∈I Q, and

(b) for 1 ≤ j ≤ m, Cj /∈
∩

Q∈I Q.
From (a) we can conclude that for every variable xi either Qi ∈ I or Q′

i ∈ I, but not both. From (b) we
conclude that all the clauses are satisfied. Next we show how we reach these conclusions.

By construction, each Qi and Q′
i contains {ℓj : 1 ≤ j ≤ n s.t. j ̸= i}. There is at most 2n subsets

corresponding to the positive and negative term of each variable xi. Let us assume to derive a contra-
diction that for some variable xi, Qi, Q

′
i ∈ I. Since the intersection is for an n intersecting set, then

|I| = n. Thus, by pigeonhole principle if Qi, Q
′
i ∈ I then ∃j ̸= i, such that Qj , Q

′
j /∈ I. Since, ℓj ∈ Qi and

ℓj ∈ Q′
i, ∀i ̸= j, then in the absence of Qj , Q

′
j from I it follows that ℓj ∈

∩
Q∈I Q as well. In that case∩

Q∈I Q * M and hence this contradicts our initial assumption. Thus,
∩

Q∈I Q does not contain any ℓj ’s
only if I contains either Qi or Q

′
i for every variable xi.

It remains to show that if for 1 ≤ j ≤ m, Cj /∈
∩

Q∈I Q then all the clauses are satisfied by giving a
true value to the elements in

∩
Q∈I Q. Notice that by construction every Qi contains a clause Cj only if

xi /∈ Cj or xi ∈ Cj . Therefore, ∀Cz /∈ Qi, xi ∈ Cz, and thus by setting xi = true then Cz becomes true
as well. It follows that for any two sets Qi and Qc, the clause Cj ∈ Qi ∩Qc if xi, xc /∈ Cj or xi, xc ∈ Cj .
For any other clause Cz /∈ Qi ∩ Qc, Cz contains either xi or xc or both. Thus, by setting xi and xc to
true Cz becomes true as well. Inductively we can show that if Cj ∈

∩
Q∈I Q then ∀xi, either xi /∈ Cj or

xi ∈ Cj . In that case Cj and subsequently Φ cannot be satisfied even if we set every variable xi ∈
∩

Q∈I Q

7

to true. If however Cj ∈
∩

Q∈I Q, then
∩

Q∈I Q * M and hence, I is not an intersecting set. If on the
other hand ∀Cj , Cj /∈

∩
Q∈I Q, then it follows that ∃xi ∈

∩
Q∈I Q such that xi ∈ Cj . Thus, by setting

every xi ∈
∩

Q∈I Q to true, then every Cj becomes true, and formula Φ is satisfied. Moreover, as shown
earlier, either Qi ∈ I or Q′

i ∈ I. Thus, |
∩

Q∈I Q| = n, and contains the negative or positive term of each
variable. Setting every variable xi or xi to true is a truth assignment for Φ. This completes the proof. ⊓⊔

4.2 Approximation Algorithm

Here we provide a polynomial time algorithm that yields an approximate solution to the problem given
in Definition 4.1. As a part of our algorithm we use the standard Set-Cover greedy log-approximation
algorithm (cf. [18]). The set cover problem is defined as follows [18]:

Definition 4.4 (Set-Cover) Given a universe U of elements, a collection of subsets of U , S = {S1, . . . , Sz},
and a number k, find at most k sets of S such that their union covers all elements in U .

For an instance (U,M,Q, k) of k-Set-Intersection do:
Step 1: ∀m ∈ M

let Tm = {(U −M)− (Qi −M) : m ∈ Qi}
Step 2: Run Set-Cover greedy algorithm on

the instance {U −M,Tm, k} for every m ∈ M :
Step 2a: Pick the set Ri ∈ Tm with

the maximum uncovered elements
Step 2b: Take the union of every R ∈ Tm

picked in Step 2a (incl. Ri)
Step 2c: If the union equals U −M go to Step 3;

else if there are more sets in Tm go to Step 2a
else repeat for another m ∈ M

Step 3: For any set (U −M)− (Qi −M) in the solution of set cover, add Qi in the intersecting set.

Figure 1: Polynomial approximation algorithm for k-Set-Intersection.

We now present the steps of the algorithm in Figure 1 and then provide an explanation the algorithm’s
rationale.

Every Tm contains the complements of the quorums that contain m. Let Rm,i = (U −M)− (Qi−M)
for m ∈ Qi. Given the sets Rm,i assume that we can find k of those that

Rm,1 ∪ . . . ∪Rm,k = U −M

By de Morgan’s Law it follows that

Rm,1 ∩ . . . ∩Rm,k = ∅

Since, Rm,i = (U −M)− (Qi −M), then Rm,i = (Qi −M) and

Rm,1 ∩ . . . ∩Rm,k = (Qi −M) ∩ . . . ∩ (Qk −M) = ∅ (1)

By construction ∀Rm,i ∈ Tm, m ∈ Qi, and thus {m} ⊆ Qi ∩ . . . ∩ Qk. From this and (1) it follows
that Qi ∩ . . . ∩Qk is a non-trivial subset of M .

It is known [18] that Set-Cover greedy algorithm is a log u-approximation algorithm, where u = |U |.
That is, if k is the optimal solution, then the greedy algorithm will include at most k log u sets in its
solution. As the number of subsets in the solution of k-Set-Intersection is the same as the number of
subsets in the solution of Set-Cover, we obtain the following lemma:

8

Lemma 4.5 The algorithm in Figure 1 is a log u-approximation algorithm for the k-Set-Intersection
problem, where u = |U |.

If we use the above algorithm to implement the two predicates of algorithm’s Sfw, the resulting
implementation will yield a factor of log u increase in the number of second communication rounds,
where u is the number of servers. This is a modest price to pay in exchange for substantial reduction in
the computation overhead of algorithm Sfw. Recall that it is currently the only known atomic MWMR
register implementation that allows fast read and write operations. In Section 6 we present an empirical
evaluation of the approximate algorithm Sfw comparing it to the original algorithm Sfw.

5 Algorithm CwFr

In this section we explore the possibility of introducing fast operations in the MWMR setting when servers
are organized as an arbitrary quorum system. We introduce a new algorithm, called algorithm CwFr,
that enables fast read operations by adopting the general idea of Quorum Views [12]. The algorithm
employs two techniques:

(i) the typical query and propagate approach (two rounds) for write operations, and

(ii) analysis of Quorum Views [12] for potentially fast (single round) read operations.

Read operations can be fast in algorithm CwFr even when they are invoked concurrently with write op-
erations. This distinguishes algorithm CwFr from previous approaches [6, 4]. To impose a total ordering
on the written values, algorithm CwFr uses ⟨tag, value⟩ pairs. A tag is a tuple of the form ⟨τ, w⟩ ∈ N×W,
where τ is the timestamp and w is a writer identifier. Such tags are compared lexicographically.

5.1 Quorum Views

We generalize the definition of quorum views from [12] for use with structured tags:

Definition 5.1 Let process p, receive replies from every server s in some quorum Q ∈ Q for a read or
write operation π. Let a reply from s include a tag tags(π) and let maxTag = maxs∈Q(tags(π)). We say
that p observes one of the following quorum views for Q:

• qV iew(1): ∀s ∈ Q : tags(π) = maxTag,

• qV iew(2): ∀Q′ ∈ Q : Q ̸= Q′ ∧ ∃A ⊆ Q ∩Q′, s.t. A ̸= ∅ and ∀s ∈ A : tags(π) < maxTag,

• qV iew(3): ∃s′ ∈ Q : tags′(π) < maxTag and ∃Q′ ∈ Q s.t. Q ̸= Q′∧∀s ∈ Q∩Q′ : tags(π) = maxTag

Restating the above definition, qV iew(1) requires that all servers in some quorum reply with the
same tag. qV iew(3) reveals that some servers in the quorum contain an older value, but there exists
an intersection where all of its servers contain the new value. Finally qV iew(2) is the negation of the
other two views, revealing a quorum where the new value is neither distributed to the full quorum nor
distributed fully in any of its intersections.

5.2 Description of CwFr

9

write(val):
init: tag=⟨0, wid⟩, v=⊥, wcounter=0

1: wcounter++
2: send ⟨READ, ⟨tag, v⟩, wcounter⟩ to all servers
3: wait for the servers of a quorum Q to reply
4: /* find maximum tag among the replies */
5: tag = maxs∈Q(s.tag)
6: /* increment the maximum tag and generate a new tag */
7: tag = ⟨tag.ts+ 1, wid⟩
8: v = val
9: wcounter++
10: send ⟨WRITE, ⟨tag, v⟩, wcounter⟩ to all servers
11: wait for the servers of a quorum Q to reply
12: return OK

read():
init: tag=maxTag=⟨0, 0⟩, v=⊥, rcounter=0

1: rcounter++
2: send ⟨READ, ⟨tag, v⟩, wcounter⟩ to all servers
3: wait for the servers of a quorum Q to reply
4: while (Q ̸= ∅) do
5: ⟨maxTag, v⟩ = maxs∈Q(⟨s.tag, s.v⟩)
6: if (∀s ∈ Q : s.tag = maxTag) then
7: /* qView(1) */
8: tag = maxTag
9: return tag
10: end if
11: /* qView(3) */
12: if ∃Q′ : Q′ ̸= Q ∧ ∀s ∈ Q′ ∩Q, s.tag = maxTag then
13: tag = maxTag
14: send ⟨WRITE, ⟨tag, v⟩, wcounter⟩ to all servers
15: wait for the servers of a quorum Q to reply
16: return tag
17: end if
18: /* qView(2) */
19: if ∀Q′ : Q′ ̸= Q ∧ ∃s ∈ Q′ ∩Q, s.tag < maxTag then
20: Q = Q− {s : s ∈ Q ∧ s.tag = maxTag}
21: end if
22: end while

serve():
init: tag=⟨0, 0⟩, v=⊥, pCounter[]=0

1: upon receipt of ⟨msgType, ⟨t, val⟩, counter⟩ from process p
2: /* check message freshness */
3: if counter > pCounter[p] then
4: if t > tag then
5: ⟨tag, v⟩ = ⟨t, val⟩
6: end if
7: if msgType = WRITE then
8: send ⟨WRITEACK, ⟨tag, v⟩, pCounter[p]⟩ to p
9: else
10: send ⟨READACK, ⟨tag, v⟩, pCounter[p]⟩ to p
11: end if
12: end if

Figure 2: Pseudocode for Writer, Reader and Server of
algorithm CwFr.

The original quorum views algorithm [12]
relies on the fact that there is a single writer.
If a quorum view is able to predict the non-
completeness of the latest write operation, it
is immediately understood that – by the well-
formedness of the single writer – any previous
write operation is already complete. Multiple
writers invalidate such a conclusion: differ-
ent values (and tags) may be written concur-
rently. Hence, the discovery of a write op-
eration that propagates some tag does not
imply the completion of the write operations
that propagate a smaller tag. Thus a direct
adaptation of the quorum view idea from the
SWMR model to the MWMR model is not
possible. Consequently, algorithm CwFr in-
corporates an iterative technique around quo-
rum views that not only predicts the comple-
tion status of a write operation, but also de-
tects the last potentially complete write op-
eration. Below we provide a description of
our algorithm and present the main idea be-
hind our technique. The pseudocode of the
algorithm appears in Figure 2.
Writers. The write protocol has two rounds.
During the first round the writer discovers the
maximum tag among the servers: it sends
read messages to all servers and waits for
replies from all members of some quorum. It
then discovers the maximum tag among the
replies and generates a new tag in which it en-
closes the incremented timestamp of the max-
imum tag, and the writer’s identifier. In the
second round, the writer associates the value
to be written with the new tag, it propagates
the pair to some quorum, and completes the
write.
Readers. The read protocol is more in-
volved. The reader sends a read message to
all servers and waits for some quorum to re-
ply. Once a quorum replies, the reader de-
termines maxTag. Then the reader analyzes
the distribution of the tag within the responding quorum Q in an attempt to determine the latest, po-
tentially complete, write operation. This is accomplished by determining the quorum view conditions.
Detecting conditions of qV iew(1) and qV iew(3) are straightforward. When condition for qV iew(1) is
detected, the read completes and the value associated with the discovered maxTag is returned. In the
case of qV iew(3) the reader continues to the second round, advertising the latest tag (maxTag) and its
associated value. When a full quorum replies in the second round, the read returns the value associated
with maxTag.

Analysis of qV iew(2) involves the discovery of the earliest completed write operation. This is done

10

iteratively by (locally) removing the servers from Q that replied with the largest tags. After each iteration
the reader determines the next largest tag in the remaining server set, and then re-examines the quorum
views in the next iteration. This process eventually leads to either qV iew(1) or qV iew(3) being observed.
If qV iew(1) is observed, then the read completes in a single round by returning the value associated with
the maximum tag among the servers that remain in Q. If qV iew(3) is observed, then the reader proceeds
to the second round as above, and upon completion it returns the value associated with the maximum
tag maxTag discovered among the original respondents in Q.
Servers. The servers play a passive role. They receive read or write requests, update their object replica
accordingly, and reply to the process that invoked the operation. Upon receipt of any message, the server
compares its local tag with the tag included in the message. If the tag of the message is higher than
its local tag, the server adopts the higher tag along with its corresponding value. Once this is done the
server replies to the invoking process.

Main Idea. We now explain the idea behind our technique. Observe that under our failure model, any
write operation can expect a response from at least one full quorum. Moreover a write ω distributes its
tag tagω to some quorum, say Qi, before completing. Thus, when a read operation ρ, s.t. ω → ρ, receives
replies from some quorum Qj , then observes one of the following tag distributions: (a) if Qj = Qi, then
∀s ∈ Qj , tags = tagω (qV iew(1)), or (b) if Qj ̸= Qi, then ∀s ∈ Qi ∩Qj , tags = tagω (qV iew(3)). Hence,
if ρ observes a distribution as in qV iew(1) then a write operation completed and received replies from
the same quorum that replied to ρ. Alternatively, if only an intersection contains a uniform tag (i.e., the
case of qV iew(3)) then there is a possibility that some write completed in an intersecting quorum (in this
example Qi). The read operation is fast in qV iew(1) since it is determinable that the write potentially
completed. The read proceeds to the second round in qV iew(3), since the completion of the write is
indeterminable and it is necessary to ensure that any subsequent operation observes that tag. If neither
qv1 nor qv(3) hold, then qV iew(2) holds, and it must be the case that the write that yields the maximum
tag is not yet complete. Hence we try to discover the latest potentially complete write by removing all
servers with the highest tag from Qj and repeating the analysis. If at some iteration, qV iew(1) holds
on the remaining tag values, then a potentially complete write (that was overwritten by greater tags in
the rest of the servers) is discovered and that tag is returned. If no iteration is interrupted because of
qV iew(1), then eventually qV iew(3) is observed, in the worst case, when a single server remains in some
intersection of Qj . Since a second round cannot be avoided in this case, we take the opportunity to
propagate the largest tag observed in Qj . At the end of the second round that tag is written to at least
one complete quorum and thus the reader can safely return the corresponding value.

Theorem 5.2 Algorithm CwFr implements an atomic MWMR register.

Proof. [Sketch] We first show that the iterative application of the quorum views reveals the smallest
tag potentially associated with a complete write operation, and that no other read operation observes a
different smallest tag. With this we are able to claim consistency among read operations and show that if
a read operation ρ1 returns a tag τ and a read operation ρ2 succeeds ρ1 (i.e., ρ1 → ρ2) and returns a tag
τ ′, then τ ′ ≥ τ . Furthermore it allows us to show that if a write operation ω precedes a read operation ρ
(i.e., ω → ρ) then ρ returns tag τ higher or equal to the tag associated with the write operation. Lastly
the fact that write operations always perform two rounds implies the uniqueness of the tags associated
with write operations and we show that if there are two write operations s.t. ω1 → ω2 and tag τ1 is
associated with ω1 and τ2 with ω2 then it must be the case that τ2 > τ1. This reasoning is accompanied
by the proof of tag monotonicity, completing the proof. For a rigorous, complete proof see [11]. ⊓⊔

6 Empirical Results: Simulations

We now present preliminary experimental evaluations of our algorithms, obtained by using the NS-2
network simulator.

11

Experimentation Platform: Our test environment consists of a set of writers, readers, and servers.
We use bidirectional links between the communicating nodes, with 1Mb bandwidth, latency of 10ms,
and a DropTail queue. To model asynchrony, the processes send messages after a random delay between
0 and 0.3 sec. We ran NS2 in Ubuntu, on a Centrino 1.8GHz processor. The average of 5 samples per
scenario provided the stated operation latencies.

We have evaluated the algorithms with majority quorums. As discussed in [8], assuming |S| servers
out of which f can crash, we can construct an (|S|f − 1)-wise quorum system Q. Each quorum Q of Q
has size |Q| = |S| − f . The processes are not aware of f . The quorum system is generated a priori
and is distributed to each participant node via an external service (out of the scope of this work). We
model server failures by selecting some quorum of servers (unknown to the participants) to be correct
and allowing any other server to crash. The positive time parameter cInt is used to model the failure
frequency or reliability of every server s.

We use the positive time parameters rInt = 5sec and wInt = 10sec to model operation frequency.
Readers and writers pick a uniformly at random time between [0 . . . rInt] and [0 . . . wInt], respectively,
to invoke their next read (resp. write) operation.

Algorithm Sfw vs. Aprx-Sfw: First we compare algorithms Sfw and Aprx-Sfw. We examine
a specific scenario where the number of readers is fixed at 40 and the number of writers is fixed at
20 (other scenarios can be found in Appendix). By assuming a single server failure and increasing the
number of servers in the system, we evaluate the two algorithms using quorum systems with different
intersection degrees. In particular, we run the scenario using 10, 15, and 25 servers that, with a single
failure, yield a 9-wise, 14-wise, and 24-wise quorum system respectively. Examining the latency of the
two algorithms, including both communication and computation costs, provides evidence of the heavy
computational burden of algorithm Sfw. In particular, we obtained the following numbers for the average
read latency: (i) |S| = 10, Sfw RL = 1.72s, Aprx-Sfw RL = 1.56s, (ii) |S| = 15, Sfw RL = 10.72s,
Aprx-Sfw RL = 1.67s, and (iii) |S| = 25, Sfw RL = 45min, Aprx-Sfw RL = 1.23s. It appears
that latency of algorithm Sfw grows exponentially, whereas the latency of Aprx-Sfw can even improve
when using quorum systems with large intersection degree (due to the larger number of fast reads). The
exceedingly large delay of Sfw in the scenario where |S| = 25, forced us to terminate the simulation prior
to its completion. The results presented above were obtained by examining the log files and taking an
average of the time over all the completed read operations. We then examine the number of two-round
writes. A writer performs two rounds only when the predicate does not hold. Thus, counting the number
of two-round writes reveals how many times the predicate does not hold for an algorithm. Below we
present the number of two round writes, out of a total 900 writes, that each algorithm required in two
different scenarios: (i) |S| = 10, Sfw #2comm = 545, Aprx-Sfw #2comm = 593, (ii) |S| = 15, Sfw
#2comm = 428, Aprx-Sfw #2comm = 592. According to our theoretical findings, algorithm Aprx-
Sfw should allow no more than log |S| · RR two-round reads or log |S| · WR two-round writes in each
scenario, where RR and WR are the number of two-round reads and writes allowed by the algortihm,
respectively. Our experimental results are within the theoretical upper bound, illustrating the fact that
algorithm Aprx-Sfw implements a log |S|-approximation relative to algorithm Sfw. These scenarios
demonstrate the performance benefit of using algorithm Aprx-Sfw over algorithm Sfw.

Algorithm CwFr vs. Aprx-Sfw: We now proceed to compare Algorithm Aprx-Sfw with the new
algorithm CwFr. To examine the impact of computation on the operation latency, we also compare
these algorithms to algorithm Simple. This is a standard two-round read and write protocol. Both read
and write operations involve a query phase to discover the maximum tag in the system; then the write
operation increments the maximum tag and propagates the new tag along with the value to be written
to some quorum, whereas the read operation just propagates the maximum tag to some quorum. Note
that algorithm Simple requires insignificant computation, and thus the latency of an operation in this

12

algorithm directly reflects four communication delays (i.e., two rounds).
To evaluate the efficiency of the algorithms we consider two scenarios. More scenarios are planned

to be conducted in due time. The first uses a quorum system with small a intersection degree and the
second uses a quorum system with a large intersection degree: (i) |S| = 10, f = 2, thus n = 4, and (ii)
|S| = 15, f = 1, thus n = 14. In the scenarios we use 10, 20, 40 and 80 readers, combined with 10,
20, and 40 writers respectively. We observe that in both scenarios algorithms Aprx-Sfw and CwFr
exhibit better read and sometimes better write latency than algorithm Simple. This suggests that the
additional computation incurred in these two algorithms does not exceed the delay associated with a
second communication round. Figures 3 and 4 depict the two specific scenarios that we explain further
below.

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80

%
2c

om
m

-r
ea

ds

#Readers

% of Slow Reads vs # of Readers: RR.nw20.all.fastSSOAPRX.rounds.maj10.f2.data.2D plot

SIMPLE
CWFR

APRX-SFW

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 10 20 30 40 50 60 70 80

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw20.all.fastSSOAPRX.rounds.maj10.f2.data.2D plot

SIMPLE
CWFR

APRX-SFW

 2.24

 2.26

 2.28

 2.3

 2.32

 2.34

 2.36

 2.38

 10 15 20 25 30 35 40

W
rit

eL
at

en
cy

#Writers

Write Latency vs # of Writers: WL.nr40.all.fastSSOAPRX.rounds.maj10.f2.data.2D plot

SIMPLE
CWFR

APRX-SFW

(a) (b) (c)

Figure 3: 4-wise quorum system (|S = 10, f = 2): (a) Percentage of slow reads, (b) Latency of read
operations, and (c) Latency of write operations.

Scenario 1: In this scenario we consider a system with |S| = 10 servers where 2 of them may crash,
resulting in a 4-wise quorum system. Using a small intersection degree none of the predicates used in
algorithm Aprx-Sfw can be satisfied. Reads may be fast even if the predicate does not hold. Figure 3
illustrates the run where the number of writers is fixed to 20 in (a) and (b) and the number of readers
is fixed to 40 in (c). Observe from Figure 3(a) that algorithm CwFr requires fewer two-round reads
than Aprx-Sfw. For this reason, in Figure 3(b), we observe that the average read latency of CwFr
is overall lower. Since the write predicate does not hold when assuming small intersection degree, the
three algorithms require all write operations to perform two rounds. The extra computation required by
algorithms CwFr and Aprx-Sfw explains why the write latency of these algorithms is slightly higher
than the write latency of algorithm Simple; see Figure 3(c).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80

%
2c

om
m

-r
ea

ds

#Readers

% of Slow Reads vs # of Readers: RR.nw20.all.fastSSOAPRX.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 10 20 30 40 50 60 70 80

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw20.all.fastSSOAPRX.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 10 15 20 25 30 35 40

W
rit

eL
at

en
cy

#Writers

Write Latency vs # of Writers: WL.nr40.all.fastSSOAPRX.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

(a) (b) (c)

Figure 4: 14-wise quorum system (|S = 15, f = 1): (a) Percentage of slow reads, (b) Latency of read
operations, and (c) Latency of write operations.

Scenario 2: In this scenario we consider a system with |S| = 15 where a single server may crash.
This scenario is designed to test the performance of the algorithms when quorum systems with large

13

intersection degree are used. The scenario yields a 14-wise quorum system and contains 15 quorums.
Figure 4 depicts the results obtained for a specific run of this scenario where the number of writers is
fixed to 20 in (a) and (b) and the number of readers is fixed to 40 in (c). Due to the large intersection
degree, algorithm Aprx-Sfw allows more fast reads than CwFr (see Figure 4(a)). Consequently, as it
can be seen in Figure 4(b), algorithm Aprx-Sfw achieves better read latency than CwFr. Moreover,
from Figure 4(c) it can be observed that Aprx-Sfw allows some write operations to be fast and thus,
its average write latency is better than in the other approaches.

A general observation is that the performance of algorithm Aprx-Sfw is affected by both the number
of readers and the intersection degree of the underlying quorum system; algorithm CwFr appears to have
more stable performance in the scenarios we tested.

7 Conclusions

In this work we explored the feasibility of implementing multi-writer atomic registers that enable fast,
single round operations. We determined that the only such previously known algorithm incorporates a
decision problem that we showed to be NP-Complete, making the algorithm not practical. We presented
more practical algorithms, one of which uses a log-approximation to speed up its computation. Simulation
results illustrate the advantages of our approach. We intend to conduct more simulation experiments to
obtain a richer evaluation of these algorithms. Next we plan to evaluate them under the realistic and
adverse conditions found on PlanetLab [1, 3], a planetary-scale networked infrastructure.

References

[1] PlanetLab, http://www.planet-lab.org.

[2] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in message passing systems.
Journal of the ACM 42(1) (1996), 124–142.

[3] Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L.,
Roscoe, T., Spalink, T., and Wawrzoniak, M. Operating system support for planetary-scale
network services. In NSDI’04: Proceedings of the 1st conference on Symposium on Networked Systems
Design and Implementation (Berkeley, CA, USA, 2004), USENIX Association, pp. 19–19.

[4] Chockler, G., Gilbert, S., Gramoli, V., Musial, P. M., and Shvartsman, A. A. Recon-
figurable distributed storage for dynamic networks. Journal of Parallel and Distributed Computing
69, 1 (2009), 100–116.

[5] Clifford, R., and Popa, A. Maximum subset intersection. Inf. Process. Lett. 111 (March 2011),
323–325.

[6] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., and Welch, J. Geoquorums: Imple-
menting atomic memory in mobile ad hoc networks. In Proceedings of 17th International Symposium
on Distributed Computing (DISC) (2003).

[7] Dutta, P., Guerraoui, R., Levy, R. R., and Chakraborty, A. How fast can a distributed
atomic read be? In Proceedings of the 23rd ACM symposium on Principles of Distributed Computing
(PODC) (2004), pp. 236–245.

[8] Englert, B., Georgiou, C., Musial, P. M., Nicolaou, N., and Shvartsman, A. A. On the
efficiency of atomic multi-reader, multi-writer distributed memory. In Proceedings 13th International
Conference On Principle Of DIstributed Systems (OPODIS 09) (2009), pp. 240–254.

14

[9] Englert, B., and Shvartsman, A. A. Graceful quorum reconfiguration in a robust emulation
of shared memory. In Proceedings of International Conference on Distributed Computing Systems
(ICDCS) (2000), pp. 454–463.

[10] Fan, R., and Lynch, N. Efficient replication of large data objects. In Distributed algorithms (Oct
2003), F. E. Fich, Ed., vol. 2848/2003 of Lecture Notes in Computer Science, pp. 75–91.

[11] Georgiou, C., and Nicolaou, N. C. Algorithm cwfr: Using quorum views for fast reads in
the MWMR setting. Technical Report TR-10-05, Department of Computer Science, University of
Cyprus, December 2010.

[12] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. On the robustness of (semi) fast
quorum-based implementations of atomic shared memory. In DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing (Berlin, Heidelberg, 2008), Springer-Verlag,
pp. 289–304.

[13] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. Fault-tolerant semifast implemen-
tations of atomic read/write registers. Journal of Parallel and Distributed Computing 69, 1 (2009),
62–79. A preliminary version of this work appeared in the proceedings 18th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’06).

[14] Gramoli, V., Anceaume, E., and Virgillito, A. SQUARE: scalable quorum-based atomic
memory with local reconfiguration. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing (New York, NY, USA, 2007), ACM, pp. 574–579.

[15] Lynch, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[16] Lynch, N., and Shvartsman, A. RAMBO: A reconfigurable atomic memory service for dynamic
networks. In Proceedings of 16th International Symposium on Distributed Computing (DISC) (2002),
pp. 173–190.

[17] Lynch, N. A., and Shvartsman, A. A. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant Computing
(1997), pp. 272–281.

[18] Vazirani, V. V. Approximation Algorithms. Springer, 2001.

15

