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Abstract

Abstract models and specifications can be used in the
design of distributed applications to formally reason about
their safety properties. However, the benefits of using for-
mal methods are often negated by the ad hoc process of
mapping the semantics of an abstract specification to al-
gorithms designed to be executed on target distributed plat-
forms. The challenge of formally specifying communica-
tion channels and correctly implementing them as algo-
rithms that use realistic distributed system services is the
focus of this paper. This work provides an original for-
mal specification of an abstract asynchronous communica-
tion channel with support for dynamic creation and tear
down of links between participating network nodes, and its
implementation as an algorithm using Java sockets. The
specification and the algorithm are expressed using the In-
put/Output Automata formalism, and it is proved that the
algorithm correctly implements the specification, viz. that
any externally observable behavior (trace) of the algorithm
has a corresponding behavior of the specification. The ap-
proach presented here can be used to implement algorithms
for dynamic systems, where communicating nodes may join,
leave, and experience delays. The result is also of direct
benefit to automated code generation, such as that imple-
mented within the Input/Output Automata Toolkit at MIT.

∗This work is supported in part by the NSF Grants 0121277, 0311368,
and 0702670, and by VEROMODO Inc. through AFOSR Contracts F9550-
05-C-0178 and FA9550-07-C-0114.

1. Introduction

The increasing complexity of distributed software sys-
tems makes reasoning about their behavior evermore chal-
lenging. Abstract specifications of distributed systems sim-
plify formal reasoning about their correctness, and several
formal systems have been used for this purpose, e.g., [2, 9,
1, 10, 11, 14, 17]. Using such systems enables end-to-end
algorithm design in which correctness properties are pre-
served from initial specification to final executable.

Translation of abstract specifications into executable
code for target environments is particularly challenging in
the case of communication channels. Distributed systems
are designed for a specific communication model, where the
correctness (safety) properties of the communication chan-
nels used by the system directly impact the safety guaran-
tees of the overall system. Common practice often foregoes
the rigorous correctness arguments about the channel imple-
mentation and its interaction with the system components.
Hence, it is not clear whether the resulting communication
service is correct with respect to its high-level specification.

The key contribution of this work is the first specification
of an abstract asynchronous communication channel with
explicit support of dynamic creation and tear down of com-
munication links between the network nodes, and its correct
implementation as an algorithm using Java sockets [21]. For
simplicity, our algorithm associates a unique socket with
each communication link between a pair of nodes; the solu-
tion can be naturally extended to incorporate multiple, con-
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current, point-to-point socket connections. We prove that
the algorithm correctly implements the specification, i.e., it
preserves the safety guarantees of the specification. Hence,
if our channel representation is used in a system that relies
on such channels, then the reasoning presented here can be
used in proving correctness of the system.

We use the Input/Output Automata model [14] to spec-
ify and reason about the behavior of distributed algorithms.
A plethora of algorithms have been described using this
model [12]. We refer to the language used to describe sys-
tems in this model as IOA [4]. Suites of tools [3, 23] have
been developed to support system specification and devel-
opment in IOA, including code generation tools [22]. These
tools have been used to develop a number of distributed al-
gorithms (e.g, [6, 5, 8]). Our work can be used to extend
these tools to support the implementation of distributed al-
gorithms with dynamic node participation.

Document structure. In Section 2 we present prior work
and Java support for TCP sockets. In Section 3 we review
the IOA model and state our assumptions. In Section 4
we present our communication channel, its implementation,
and proof of correctness outline. We conclude in Section 5.

2. Background

Prior Work. Tauber [22] presents an IOA compiler for a
target programming framework consisting of Java [21] and
MPI [16]. The compiler design is proved correct to ensure
that the safety guarantees of the source specification are
preserved in the resulting Java/MPI implementation. The
choice of MPI limits the domain of systems to those that do
not encounter failures and arbitrary message latency, and
where nodes do not join and leave during execution. In our
work we use Java sockets and TCP [20], thus extending the
domain of discourse to include systems supporting dynamic
behaviors and failures.

Java Environment. Java [21] provides several classes to
establish point-to-point connections via TCP sockets. A re-
ceiving node indicates its willingness to communicate with
other nodes by creating an instance of the ServerSocket

class and invoking its accept() method. A sending
node attempts to connect with an accepting receiver by
creating a Socket with the address and port of the re-
ceiver. If successful, the sender and receiver create data
streams for the socket with the getInputStream() and
getOutputStream() methods of Socket. Messages are
received and sent over the connection with the read meth-
ods of the InputStream class and the write methods of

the OutputStream class. Either the sender or the receiver
may close the connection with the close() method.

The Java mechanism for reporting an error, such as a
network timeout, is an Exception. For instance, when
performing a write method, a node may discover by an
exception that the destination node has initiated a close se-
quence or that the link between the nodes is no longer func-
tioning. The methods used to establish communication and
exchange messages are blocking; however, these methods
can be parameterized to timeout if the desired event does
not occur in some predetermined amount of time.

3. Model, Definitions, and Data Types

Input/Output Automata. Specifications in this work are
done in terms of the Input/Output Automata model of Lynch
and Tuttle [14, 12]. It is a labeled transition system model
for specifying components in asynchronous distributed sys-
tems. Each automaton consists of a set of actions π (clas-
sified as input, output, or internal), a set of states s that
includes start states, and a set of transitions or steps of the
form (s, π, s′) that specify the effects of the automaton’s ac-
tions. An action is enabled if its preconditions are satisfied.
Input actions are always enabled. The (parallel) composi-
tion operator allows an output action of one automaton to
be identified with input actions in other automata.

The behaviors of an Input/Output Automaton are de-
scribed by its executions and traces. An execution is a se-
quence of alternating states and actions starting with an ini-
tial state, e.g., s0, π1, s1, π2, s2 . . .. A trace is the sequence
of input and output actions occurring in an execution. An
automaton is said to implement another automaton if any
trace of the former is a trace of the latter.

Channels and Nodes. As in [22], we assume algorithms
given in the node-channel form, meaning the system is a
collection of n asynchronous nodes executing application
automata connected by up to n(n− 1) asynchronous chan-
nel automata. Each node is labeled with a unique identifier.
We assume that channels do not corrupt and do not sponta-
neously create messages.

We concentrate on the high-level behavior and the inter-
face with sockets via the Java libraries; we do not model
TCP or the Java Virtual Machine (JVM) environment. We
restrict our attention to unidirectional communication over
a single socket connection between any pair of nodes.

Data Types. Throughout the paper, the set of unique loca-
tion (node) identifiers is denoted as I . The set of all mes-
sages is denoted as M . Streams is a set of all Java streams
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used to read and write messages to and from TCP sockets.
For the transition parameters, we have i, j ∈ I , m ∈ M ,
and s ∈ Streams.

4. Communication Channel with Graceful
Comings and Goings

We present a model for an asynchronous communica-
tion channel connecting applications running on any num-
ber of networked nodes. A sender node may create con-
nections with any number of receiver nodes, and any node
may gracefully close the connection. Messages may be lost,
delayed, and delivered out of order.

The current model supports a single socket connection
between any two nodes. Thus, once a connection between
two nodes is established and subsequently closed, it cannot
be reopened (unless it can be determined that the socket can
be reused). Allowing multiple, concurrent, socket connec-
tions between two nodes is a straightforward extension to
this model, accomplished by adding the socket number as
another dimension to each of the state variable arrays.

We first define an automaton, called ABSCH, modeling
the behavior of a many-to-many, asynchronous communi-
cation channel that allows nodes to spontaneously connect
and gracefully disconnect. Next, we present an automa-
ton, called JVMCH, that models the behavior of the Java in-
terface to a communication channel using TCP. Following
Tauber’s approach [22], we then establish a mediation be-
tween the sending application, the communication channel,
and the destination application. The mediating automata
are mapped to the nodes of the corresponding application
automata, as illustrated in Figure 1. We refer to the compo-
sition of the JVMCH automaton with the mediating automata
as the COMPCH automaton. We then show that COMPCH

implements ABSCH, hence preserving the properties of our
abstract asynchronous channel.

Node i

Send

Mediator

Receive

Mediator

TCP

Sockets

TCP

Sockets

Application

Automaton

JVM

Channel

Figure 1. Node automata.

4.1. Abstract Channel Automaton

We present an abstract communication channel automa-
ton, called ABSCH, that allows individual connections for
nodes in I to be created. Messages then can be sent and
received over the connections. The connections are closed
in a graceful way, ensuring that messages that are in-transit
are delivered before the connection is closed. The state and
transitions of ABSCH are depicted in Figure 2.

The state of the automaton consists of four state vari-
ables, messages , listening , status , and emptying . The
state variable messages is a set of triples of the form
〈m, i, j〉, where m is a message sent by node i but not yet
delivered to its destination at node j. A set called listening
is used to record the identifiers of all the receiver nodes that
are listening for incoming connections. The status state
variable is an array indexed by I × I . For each i and j from
I , status(i, j) contains the state of the channel from i to j,
which may be any one of the following states:

• closed, the unidirectional channel from i to j is closed,
and i cannot send messages to j.
• connecting, i is attempting to connect with j, but the

connection is not yet fully established.
• connected, the channel between i and j is open, and

messages sent by i will be transmitted to j.

The last state variable emptying is a Boolean array, indexed
by I×I , where emptying(i, j) is true if sender i is attempt-
ing to close the connection with receiver j; it remains true,
and status(i, j) is not set to closed, until all the messages
in messages from i to j are delivered.

In order to establish a connection from i to j, the re-
ceiving node, j, invokes the receiverListening(j) action
that indicates its willingness to communicate. The re-
ceiver then awaits a connection request from i, which is
a senderOpen(i, j) action. The respReceiverListening(i, j)
action notifies j that a connection with node i has been cre-
ated. Node i is then allowed to send messages to node j,
and node j is capable of receiving messages sent by i. If a
receiver j, after invoking a receiverListening(j) action, de-
cides it is no longer willing to communicate, it indicates this
with a receiverStopListening(j) action.

Messages may be sent at any time after a
senderOpen(i, j) action, i.e., when status(j) is connecting

or connected. A message is deposited into the channel
via the action send(m, i, j), where m is the message, i is
the source node, and j is the destination node. The tuple
〈m, i, j〉 is added to the set messages , and the message is
considered to be in-transit.
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A message m from i may be received by j if messages
contains 〈m, i, j〉 as a result of an earlier send(m, i, j) ac-
tion. The effect of receive(m, i, j) is the removal ofm from
the channel and its delivery to j. Messages can be deliv-
ered out of order. The action lose(m) models the loss of a
message (e.g., due to a buffer overflow or network failure).

State:
messages , subset of M × I × I , initially ∅
listening , subset of I, initially ∅
status : I × I → {closed, connecting, connected}, initially all closed
emptying : I × I → Boolean, initially all false

Transitions:
input send(m, i, j)
Effect:

if status(i, j) 6= closed ∧ ¬emptying(i, j) then
messages ← messages ∪ {〈m, i, j〉}

input receiverListening(j)
Effect:

listening ← listening ∪ {j}

input senderOpen(i, j)
Effect:

status(i, j)← connecting

input receiverStopListening(j)
Effect:

listening ← listening − {j}

input receiverClose(i, j)
Effect:

messages ← messages − {〈m, s, r〉 ∈ messages|s = i ∧ r = j}
status(i, j)← closed

input senderClose(i, j)
Effect:

emptying(i, j)← true

output receive(m, i, j)
Precondition:
〈m, i, j〉 ∈ messages
status(i, j) = connected

Effect:
messages ← messages − {〈m, i, j〉}

output respReceiverListening(i, j)
Precondition:

status(i, j) = connecting
j ∈ listening

Effect:
status(i, j)← connected

internal senderClosing(i, j)
Precondition:

emptying(i, j)
∀〈m, s, r〉 ∈ messages, s 6= i ∧ r 6= j

Effect:
status(i, j)← closed
emptying(i, j)← false

internal lose(m)
Precondition:
〈m, i, j〉 ∈ messages

Effect:
messages ← messages − {〈m, i, j〉}

Figure 2. State and transitions of the abstract
many-to-many automaton, ABSCH.

A connection may be closed by either the sender or
the receiver. A sender node i initiates the closing of a
connection with a senderClose(i, j) action. As a result
emptying(i, j) is set to true, and no new messages can be
sent. However, the messages that are already in the channel
must be delivered. Therefore, action senderClosing(i, j),
which puts the connection in the closed state, occurs only
after all the messages from i to j have been delivered (or
lost). Alternatively, the receiver may close the connection
with a receiverClose(i, j) action, in which case all in-transit
messages to j from i are dropped, and the connection be-
tween i and j enters the closed state. Once the connection
from i to j is closed, any messages that node i attempts to
send to j are dropped.

4.2. JVM-TCP Channel Automaton

The state variables and transitions of the automa-
ton JVMCH is defined in Figures 3 and 4. The set
jvmBuffer contains all messages 〈m, stream〉 in transit,
where stream defines the destination. The set writeErrors
records any messages written to streams that have been
closed by their destinations. All requests to read a
message from a stream are placed in reading , a sub-
set of Streams . Identifiers of nodes that are in the
accepting mode (i.e., Java servers) are maintained in
the set accepting . The status of a connection between
any two nodes is recorded in jvmStatus , whose values
may be closed, notAccepting, connecting, sConnected, or
connected (initially closed). The streams dedicated to each
connection are stored in jvmStream . The Boolean array
jvmEmptying indicates if any messages remain to be sent
to the destination after the sender has closed the connection.

Prior to exchanging messages, the following steps are
taken. First, the receiver indicates its readiness to ac-
cept messages, which is done via action accept(j), where
j is the receiving node. This corresponds to invok-
ing the Java accept() method, and results in j be-
ing added to the set accepting . Second, sender i tries
to create a connection with receiver j. This is accom-
plished using createStream(i, j), which combines con-
structing a Socket and invoking its getOutputStream()
method in Java. There are two possible outcomes for
the createStream(i, j) action. If a previous accept(j) ac-
tion occurred at j, and thus j is in accepting , the oper-
ation is successful, and respCreateStream(i, j, s) will re-
turn the new stream dedicated to the connection. This out-
come is indicated by removing j from accepting , assigning
jvmStatus(i, j) to connecting and then sConnected, and
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updating jvmStream(i, j) with the new stream. The re-
ceiver is then notified of the successful connection and as-
signed stream with a respAccept(i, j, s) action, which com-
bines the return from the receiver’s accept() invocation
with getInputStream() in Java. Finally, jvmStatus(i, j)
is set to connected. On the other hand, if a previous
accept(j) action has not occurred at j, and thus j is not
in accepting , the connection cannot be established. This
is indicated to the sender with a createStreamError(i, j)
action (a Java exception), and jvmStatus is assigned to
notAccepting and then closed.

Once the sender obtains an output stream for the con-
nection, a message m may be written to the stream s via

State:
jvmStatus : I × I → {closed, notAccepting, connecting, sConnected,

connected}, initially all closed
jvmBuffer , subset of M × Streams , initially ∅
writeErrors , subset of M × Streams , initially ∅
reading , subset of Streams , initially ∅
accepting , subset of I , initially ∅
jvmStream : I × I → Streams, initially all undefined.
jvmEmptying : I × I → Boolean, initially all false

Transitions:
input write(m, s)
Effect:

if s = jvmStream(i, j) ∧ (jvmStatus(i, j) = connected∨
jvmStatus(i, j) = sConnected) then

jvmBuffer ← jvmBuffer ∪ {〈m, s〉}
else writeErrors ← writeErrors ∪ {〈m, s〉}

input read(s)
Effect:

reading ← reading ∪ {s}

input accept(j)
Effect:

accepting ← accepting ∪ {j}

input createStream(i, j)
Effect:

if j ∈ accepting then
jvmStatus(i, j)← connecting
accepting ← accepting − {j}

else jvmStatus(i, j)← notAccepting

input stopAccepting(j)
Effect:

accepting ← accepting − {j}

input senderCloseStream(i, j)
Effect:

if (jvmStatus(i, j) = connected ∨ jvmStatus(i, j) = sConnected) then
jvmEmptying(i, j)← true

else jvmStatus(i, j)← closed

input receiverCloseStream(i, j)
Effect:

jvmBuffer ← jvmBuffer−
{〈m, s〉 ∈ jvmBuffer |s = jvmStream(i, j)}

if ¬jvmEmptying(i, j) then jvmStatus(i, j)← closed

Figure 3. State and input transitions of the
many-to-many automaton JVMCH.

write(m, s). The message is sent only if jvmStatus is
connected or sConnected, indicating that the destination
has not closed the connection. If these preconditions are
satisfied, then jvmBuffer is updated with the tuple 〈m, s〉;
otherwise, 〈m, s〉 is added to writeErrors . A subsequent
action writeError(m, s) will indicate to the sender that the
write operation was unsuccessful, corresponding to an ex-
ception on the write invocation in Java.

output respRead(m, s)
Precondition:
〈m, s〉 ∈ jvmBuffer
s ∈ reading

Effect:
jvmBuffer ← jvmBuffer − {〈m, s〉}
reading ← reading − {s}

output writeError(m, s)
Precondition:
〈m, s〉 ∈ writeErrors

Effect:
writeErrors ← writeErrors−
{〈m, stream〉 ∈ writeErrors|stream = s}

output readError(s)
Precondition:

s ∈ reading
s = jvmStream(i, j) ∧ jvmStatus(i, j) = closed

Effect:
reading ← reading − {s}

output respAccept(i, j, s)
Precondition:

jvmStatus(i, j) = sConnected
s = jvmStream(i, j)

Effect:
jvmStatus(i, j)← connected

output respCreateStream(i, j, s)
Precondition:

jvmStatus(i, j) = connecting
∀ i, j ∈ I, s 6= jvmStream(i, j)

Effect:
jvmStatus(i, j)← sConnected
jvmStream(i, j)← s

output createStreamError(i, j)
Precondition:

jvmStatus(i, j) = notAccepting
Effect:

jvmStatus(i, j)← closed

internal senderClosingStream(i, j)
Precondition:

jvmEmptying(i, j)
∀ 〈m, s〉 ∈ jvmBuffer , s 6= jvmStream(i, j)

Effect:
jvmStatus(i, j)← closed
jvmEmptying(i, j)← false

internal jvmLose(m)
Precondition:
〈m, s〉 ∈ jvmBuffer

Effect:
jvmBuffer ← jvmBuffer − {〈m, s〉}

Figure 4. Output and internal transitions of
the many-to-many automaton JVMCH.
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A receiver initiates a read request from an assigned
stream s with a read(s) action. If there is a message for
s in jvmBuffer , the message is removed from jvmBuffer
and returned to the receiver with a respRead(m, s) action.
However, if the sender has closed the connection and all
previously sent messages have been received, the receiver
is notified of this closure with a readError(s) action. The
respRead(m, s) corresponds to a normal return on the read
invocation in Java, and readError(s) signals an exception.

A stream may be closed by the sender or the re-
ceiver. If the receiver closes the connection with a
receiverCloseStream(i, j) action, all messages in tran-
sit to the receiver are dropped, and the connection is
closed. If the sender closes the connection with a
senderCloseStream(i, j) action, all messages in transit are
delivered to the receiver (or lost) before the connection is
closed. This is indicated by setting jvmEmptying to true.

Finally, the jvmLose(m) action drops a message m as a
result of a network failure such as a broken or reset TCP
connection [21].

4.3. Send Mediator Automaton

The state and transitions of the SENDMED automaton are
given in Figure 5. The set sendBuffer tracks messages
sent by the application automaton, but not yet forwarded to
JVMCH, where for each tuple 〈m, i〉 in the set, m is the mes-
sage and i is an identifier of the destination. The variables
sendStatus and sendStream keep track of the status and
the stream associated with each connection established by
the sender. Finally, sendEmptying is an array of Boolean
values used during the process of closing a connection to
ensure that all previously sent messages are delivered.

The signature of SENDMED defines the interface between
the application automaton and JVMCH. Before an applica-
tion at node i can communicate with another at node j, it
must create a connection with a senderOpen(i, j) action.
This action sets sendStatus to opening. Next, SENDMED

attempts to create a stream for this connection, via the ac-
tion createStream(i, j). There are two possible outcomes.
If JVMCH is able to negotiate a connection between i and
j and a stream is created, it indicates this with the ac-
tion respCreateStream(i, j, s) that stores s in sendStream
and sets sendStatus to connected. Alternatively, if a con-
nection or stream cannot be created, JVMCH generates the
action createStreamError(i, j). However, SENDMED will
keep trying to establish the connection, and hence main-
tain sendStatus as opening. The application may re-
quest that the connection be gracefully closed using action

senderClose(i, j). However, the stream is not closed un-
til all messages sent to j are transmitted to the channel, at
which time a senderCloseStream(i, j) action is generated
and sendStatus is set to closed.

State:
sendBufferi, a subset of M × I , initially ∅
sendStatusi : I → {closed, opening, connecting, notAccepting, connected},

initially all closed
sendStreami : I → Streams, initially all undefined
sendEmptyingi : I → Boolean, initially all false

Transitions:
input send(m, i, j)
Effect:

if sendStatusi(j) 6= closed ∧ ¬sendEmptyingi(j) then
sendBufferi ← sendBufferi ∪ {〈m, j〉}

input writeError(m, s)
Effect:

if s = sendStreamsi(j) then
sendBufferi ← sendBufferi−
{〈m, receiver〉 ∈ sendBufferi|receiver = i}

sendStatusi(j)← closed

input senderOpen(i, j)
Effect:

sendStatusi(j)← opening

input respCreateStream(i, j, s)
Effect:

sendStatusi(j)← connected
sendStreami(j)← s

input createStreamError(i, j)
Effect:

sendStatusi(j)← opening

input senderClose(i, j)
Effect:

sendEmptyingi(j)← true

output write(m, s)
Precondition:
〈m, j〉 ∈ sendBufferi
sendStatusi(j) = connected
s = sendStreami(j)

Effect:
sendBufferi ← sendBufferi − {〈m, j〉}

output createStream(i, j)
Precondition:

sendStatusi(j) = opening
Effect:

sendStatusi(j)← connecting

output senderCloseStream(i, j)
Precondition:

sendEmptyingi(j)
∀〈m, receiver〉 ∈ sendBufferi, receiver 6= j

Effect:
sendStatusi(j)← closed
sendEmptyingi(j)← false

internal senderLose(m)
Precondition:
〈m, j〉 ∈ sendBufferi

Effect:
sendBufferi ← sendBufferi − {〈m, j〉}

Figure 5. State and transitions of the one-to-
many automaton SENDMED at node i.
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Finally, the action senderLose(m) models the loss of a
message due to an overflow of sendBuffer .

4.4. Receiver Mediator Automaton

The state and transitions of the automaton RECVMED are
given in Figures 6 and 7. The state is composed of five vari-
ables: acceptStatus , representing the status of the receiver;
receiveBuffer , the set of all messages received but not yet
delivered to the application automaton; receiveStatus , rep-
resenting the status of the connections with each node in I;
receiveStream , the active streams – one for each node con-
nected to the receiver automaton; and receiveEmptying , an
array of Boolean flags used for processing sender-initiated
closings of connections.

The application automaton at node j announces its readi-
ness to accept connections from other nodes via the ac-

State:
acceptStatusj ∈ {idle, accepting, waiting, stopping}, initially idle

receiveBufferj , a subset of M × I , initially ∅
receiveStatusj : I →{closed, connecting, connected, reading, rClosing},

initially all closed
receiveStreamj : I → Streams , initially all undefined
receiveEmptyingj : I → Boolean, initially all false

Transitions:
input respRead(m, s)
Effect:

if s = receiveStreamj(i) ∧ receiveStatusj(i) = reading then
receiveBufferj ← receiveBufferj ∪ {〈m, i〉}
receiveStatusj(i)← connected

input readError(s)
Effect:

if s = receiveStreamj(i) then
if receiveStatusj(i) 6= closed then

receiveEmptyingj(i)← true

input receiverListening(j)
Effect:

acceptStatusj ← accepting

input respAccept(i, j, s)
Effect:

receiveStatusj(i)← connecting
reciveStreamj(i)← s
if acceptStatusj = waiting then

acceptStatusj ← accepting

input receiverStopListening(j)
Effect:

if acceptStatusj 6= idle then
acceptStatusj ← stopping

input receiverClose(i, j)
Effect:

receiveBufferj ← receiveBufferj−
{〈m, sender〉 ∈ receiveBufferj |sender = i}

receiveStatusj(i)← rClosing

Figure 6. State and input transitions of the
many-to-one automaton RECVMED at node j.

tion receiverListening(j). As a result, RECVMED invokes
an accept(j) action, notifying JVMCH of its willingness to
wait for a connection to be established. When a sender
node i makes a connection, RECVMED is handed the as-
signed stream for the incoming connection via the ac-
tion respAccept(i, j, s). RECVMED then issues the action
respReceiverListening(i, j), signaling the completion of the
connection setup.

Once a stream s between the sender and receiver is cre-
ated, RECVMED attempts to read a message via the action

output receive(m, i, j)
Precondition:
〈m, i〉 ∈ receiveBufferj

Effect:
receiveBufferj ← receiveBufferj − {〈m, i〉}

output accept(j)
Precondition:

acceptStatusj = accepting
Effect:

acceptStatusj ← waiting

output read(s)
Precondition:

s = receiveStreamj(i)
receiveStatusj(i) = connected

Effect:
receiveStatusj(i)← reading

output respReceiverListening(i, j)
Precondition:

receiveStatusj(i) = connecting
acceptStatusj = accepting ∨ acceptStatusj = waiting

Effect:
receiveStatusj(i)← connected

output stopAccepting(j)
Precondition:

acceptStatusj = stopping
Effect:

acceptStatusj ← idle

output receiverCloseStream(i, j)
Precondition:

receiveStatusj(i) = rClosing
¬receiveEmptyingj(i)

Effect:
receiveStatusj(i)← closed

internal senderClosing(i, j)
Precondition:

receiveEmptyingj(i)
∀〈m, sender〉 ∈ receiveBufferj , sender 6= i

Effect:
receiveStatusj(i)← closed
receiveEmptyingj(i)← false

internal receiverLose(m)
Precondition:
〈m, i〉 ∈ receiveBufferj

Effect:
receiveBufferj ← receiveBufferj − {〈m, i〉}

Figure 7. Output & internal transitions of the
many-to-one automaton RECVMED at node j.
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read(s). If there is a message, JVMCH responds to the ac-
tion read(s) with the action respRead(m, s) containing the
message. However, if the sender has closed the connec-
tion and all previous messages from the sender have been
delivered to RECVMED, JVMCH responds with the action
readError(s). A message that is successfully received by
RECVMED is delivered to the application automaton in the
action receive(m, i, j).

The application automaton may stop listening for con-
nections from other nodes at any time by indicating this
with the action receiverStopListening(j). As a result, the
action stopAccepting(j) follows, ensuring that no more
connections will be accepted. Also, the application au-
tomaton may wish to close a connection with the ac-
tion receiverClose(i, j). Once a connection is closed, all
messages destined to the application automaton from that
sender are purged from receiveBuffer .

The two remaining actions are internal. The action
senderClosing(i, j) indicates that all messages sent prior to
a sender-initiated closing of the connection have been deliv-
ered, lost, or purged. The action receiverLose(m) indicates
that a message has been lost (modeling buffer overflow).

4.5. Proof of Correctness

Forward simulation [12, 15] is used to prove that
COMPCH, comprised of JVMCH composed with the send
and receive mediators at each node, implements ABSCH,
the abstract asynchronous channel in Figure 2. A well-
formedness condition on the behaviors of the application
automata is required for this forward simulation, namely
neither a sender nor a receiver can issue more than one re-
quest to close a connection. From our assumption that there
is only a single socket connection between any two nodes,
we also can conclude that a new connection from a sender
to a receiver cannot be opened until the previous connec-
tion, if any, from that sender to that receiver is completely
closed.

Theorem 4.1 Any trace of COMPCH is a trace of ABSCH.

The complete proof is contained in [7]. We begin by pre-
senting a mapping from the states of COMPCH to the states
of ABSCH. For example, consider the mapping for the set
messages in ABSCH. It is not difficult to see that a mes-
sage in messages must be in one of the sets sendBuffer i,
jvmBuffer , and receiveBuffer j in COMPCH. However,
when the receiver initiates a closing procedure, all messages
in messages are purged, but some messages may remain in
sendBuffer i and jvmBuffer for a short period of time until

they also are purged. Thus, messages in ABSCH is mapped
to the union of the following three sets in COMPCH:

messages ≡ {〈m, i, j〉|〈m, i〉 ∈ receiveBufferj} ∪
{〈m, i, j〉|〈m, s〉 ∈ jvmBuffer ∧ s = jvmStream(i, j)∧

receiveStatusj(i) 6= rClosing} ∪
{〈m, i, j〉|〈m, j〉 ∈ sendBuffer i ∧ receiveStatusj(i) 6= rClosing∧
¬[sendStatusi(j) = connected ∧ jvmStatus(i, j) = closed ∧
receiveStatusj(i) = closed]}

As another example of the simulation relation map-
ping, the variable emptying(i, j) in ABSCH becomes
true when the sender desires to close the connec-
tion and remains true until all previously sent mes-
sages are delivered to the receiver. In COMPCH, the
previously sent messages may appear in sendBuffer i,
jvmBuffer , and receiveBuffer j . While these mes-
sages remain in sendBuffer i, sendEmptying i(j) =
true. Then, while messages remain in jvmBuffer ,
jvmEmptying(i, j) = true. Finally, as soon as RECVMEDj

determines that the sender has closed the connection, it
sets receiveEmptyingj(i) to true; receiveEmptyingj(i) re-
mains true as long as messages remain in receiveBuffer j .
Therefore, we have:

emptying(i, j) ≡ sendEmptyingi(j) ∨ jvmEmptying(i, j)∨
receiveEmptyingj(i) ∨ [sendStatusi(j) = closed ∧
jvmStatus(i, j) = closed ∧ receiveStatusj(i) 6= closed]

The proof consists of two parts. First, we show that every
initial state of COMPCH maps to an initial state of ABSCH.
Next, we show that for every reachable state cc of COMPCH,
mapping to state ac of ABSCH, and for every transition π of
COMPCH enabled in state cc and resulting in state cc′, there
is a (possibly empty) sequence of transitions α of ABSCH

that results in state ac′, where cc′ maps to ac′ and α has the
same trace as π. The proof proceeds by case analysis on the
transitions π of COMPCH.

4.6. Implementation

The mediator automata presented in Sections 4.3 and 4.4
have been manually implemented in Java [19]. Although
the automata are non-deterministic, where all enabled ac-
tions in a given state have the same probability of being
chosen for execution and where there are arbitrary delays
between state transitions, our implementation restricts this
non-determinism in order to ensure efficient execution. The
functionality of the implementation has been tested in a
LAN setting using three Windows machines (two XP and
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one Vista). A driver program was used to perform various
tests. We are currently integrating our implementation in
the RAMBO service [13, 18] and the IOA Toolkit [3].

5. Discussion

The work presented in this paper is the first formal pre-
sentation of an abstract asynchronous communication chan-
nel with graceful comings and goings. Many algorithm im-
plementations rely on such abstract channels without pro-
viding a proof of correctness for the composition of the
source algorithm and the communication channel. There-
fore, our solution can be used to claim that such implemen-
tations are, in fact, correct.

The importance of proving the correctness of the com-
posite automaton (Theorem 4.1) cannot be overemphasized.
It was only by going through the proof process that several
subtle errors in the design of the component automata were
discovered and corrected.

We intend to use this work in formally reasoning about
the correctness of dynamic distributed data-sharing appli-
cations. We also plan to use our proposed solution in ex-
ploring automated code generation for dynamic networked
applications. Future extensions to the model will include
support for bidirectional communication over socket pairs,
multiple connections between pairs of nodes, and timing
considerations.
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