
Developing a Consistent Domain-Oriented Distributed Object Service∗

Chryssis Georgiou† Peter M. Musiał‡ Alexander A. Shvartsman‡ §

Abstract

This paper presents a new algorithm for a reconfigurable
distributed domain-orientedatomic object service, called
DO-RAMBO, which stands for Domain-Oriented Reconfig-
urable Atomic Memory for Basic Objects. This service is
suitable for inclusion as a middleware system service for
distributed applications requiring atomic read/write data.
The implementation substantially extends and refines the
abstract RAMBO algorithm of Lynch and Shvartsman that
supports individual atomic objects. In this paperdomains
are introduced to allow the users to group related atomic
objects. The new implementation manages configurations
on the basis of domains, significantly improving the utility
and the performance of the resulting service. DO-RAMBO
guarantees consistency under asynchrony, message loss,
node crashes, new node arrivals, and node departures. We
present the formal algorithm development for DO-RAMBO
and give analytical and preliminary empirical results that
illustrate the benefit of the new approach.

1 Introduction

This paper presents a formal development of a practi-
cal distributed service supporting shared read/write atomic
objects in dynamic network settings. Users of the service
can efficiently group objects in users’ scope of interest in
user-defined domains. This service is suitable for maintain-
ing consistent long-lived survivable data in a dynamic net-
works, in which participants may join, leave, or fail during
the course of computation. Such settings are becoming in-
creasingly common in modern distributed applications that
rely on multitudes of communicating, computing devices.

∗This work is supported in part by the NSF Grants 9988304, 0121277,
0311368 and by the NSF CAREER Award 9984778.

†Dept. of Computer Science, University of Cyprus, 75 Kallipoleos Str.,
P.O. Box 20537, CY-1678, Nicosia, Cyprus. Email: chryssis@ucy.ac.cy

‡Dept. of Computer Science and Engineering, University of Con-
necticut, 371 Fairfield Rd., U-2155, Storrs, CT 06269, USA. Email:
piotr@cse.uconn.edu

§CSAIL, Massachusetts Institute of Technology, The Stata Center,
Cambridge, MA 02139, USA. Email: alex@theory.csail.mit.edu

The only way to ensure survivability of data is through re-
dundancy: the data is replicated and maintained at several
network locations. Replication introduces the challengesof
maintainingconsistencyamong the replicas, and managing
dynamic participationas the collections of network loca-
tions storing the replicas change due to arrivals, departures,
and failures of nodes.

An approach to implementing read/write objects for dy-
namic networks was developed by Lynch and Shvarts-
man [13], and extended by Gilbertet al. [10] and Geor-
giou et al. [7]. They implement a consistent distributed
memory service called RAMBO (Reconfigurable Atomic
Memory for Basic Objects) that maintains atomic (lineariz-
able) data in dynamic environments. In order to achieve
availability in the presence of failures, the objects are repli-
cated at several network locations. To maintain consistency
in the presence of small and transient changes, the algorithm
usesconfigurationsconsisting ofquorumsof locations. To
accommodate larger and more permanent changes, the al-
gorithm supportsreconfiguration, by which the configura-
tions are modified. Any configuration may be installed at
any time. Obsolete configurations can be removed from the
system without interfering with the ongoing read and write
operations [10]. The algorithm tolerates asynchrony, node
arrivals, departures and failures, and message loss.

Motivation for the current development. The original
RAMBO algorithms [13, 10, 7] are specified using the In-
put/Output Automata (IOA) formalism [14, 11]. This en-
ables one to reason formally about the properties of the ser-
vice. The service is parameterized by object name, that is,
the service is specified individually for each object instance.
Multiple objects are supported by composing multiple in-
stances of the service, one for each object. While compo-
sition preserves atomicity, the resulting service is imprac-
tical for supporting large numbers of objects because this
requires running multiple instances of the service, one in-
stance per object, which introduces substantial processing
and messaging overhead. For example, bookkeeping com-
munication is carried out in the background individually for
each object, and configuration upgrades and removal of ob-
solete configurations must also be done on a per-object ba-
sis. With this approach, the penalty for the mathematical

simplicity of the formal specification is the reduced practi-
cality of the resulting system.

In many settings applications may use multiple related
objects, e.g., the objects may represent data values of in-
terest to certain users. In such cases it is highly desirable
to eliminate redundancy by allowing a collection of objects
to share configurations and related processing. In this work
we investigate an approach where multiple related objects
are grouped into adomain, so that reconfiguration is per-
formed on the per-domain basis instead of on the per-object
basis. While this is a conceptually sensible approach, for-
mally specifying such a solution and proving it correct is
fairly involved. To assess the practicality of the solution, it
is also important to experiment with a working system that
implements the desired service in a network.

Contributions. We present a new algorithm implementing
reconfigurable, domain-oriented, atomic distributed object
service, called Domain-Oriented Reconfigurable Atomic
Memory for Basic Objects, or DO-RAMBO . The algorithm
borrows from the abstract RAMBO algorithms [13, 10, 7]
that implement individual reconfigurable objects. We intro-
duce the notion ofdomainsthat allow the users to group
related objects. Users join the system by means ofjoin re-
quests. The objects in domains are then accessed by means
of read andwrite operations. Users request reconfiguration
by means ofrecon operations. The algorithm manages con-
figurations on the basis of domains, which significantly im-
proves the practicality of the service.

We use Input/Output Automata [14] (IOA) to specify the
algorithms and reason about correctness. The formal de-
velopment is presented in two steps. First, based on the
ideas in [13, 10], we present and prove correct an interme-
diate version. Here we implement domains, yet the result-
ing algorithm is not practical for long-lived applicationsbe-
cause it involves messages that may grow in size without
bound. In the second step, we make the algorithm practi-
cal using the approach in [7] for implementing long-lived
data services. Presenting the development in two steps sub-
stantially simplifies the proofs of correctness, and separates
the functional issues of domain implementation from the
performance issues associated with dynamic network set-
tings and the need to bound the demands for communica-
tion bandwidth. We perform conditional latency analysis
that shows that, under reasonable network behavior assump-
tions, the read and write operations take at most time8δ,
whereδ is the maximum message delay (unknown to the al-
gorithm). We developed a complete implementation of the
DO-RAMBO service on a network of workstations. This
development is an example of an approach to software en-
gineering in which formal algorithm design is followed by
a methodical translation of the abstract algorithm specifica-
tion in IOA to distributed Java code using the techniques we

earlier documented in [15].
Background. Several approaches have been used to imple-
ment consistent data in (static) distributed systems. Starting
with the work of Gifford [9] and Thomas [16], many al-
gorithms have used collections of intersecting sets of ob-
jects replicas (such as quorums) to solve the consistency
problem. Upfal and Wigderson [17] use majority sets of
readers and writers to emulate shared memory. Vitányi and
Awerbuch [4] use matrices of registers where the rows and
the columns are written and respectively read by specific
processors. Attiya, Bar-Noy and Dolev [3] use majorities
of processors to implement shared objects in static mes-
sage passing systems. Extension for limited reconfiguration
of quorum systems have also been explored [6, 12]. Vir-
tually synchronous services [5], and group communication
services (GCS) in general [1], can also be used to implement
consistent data services, e.g., by implementing a global to-
tally ordered broadcast. While the universe of processors
in a GCS can evolve, in most implementations, forming
a new view takes a substantial time, and client operations
are interrupted during view formation. In our algorithm, as
in [13, 10], reads and writes can make progress during re-
configuration.
Document structure. In Section 2 we present the speci-
fication and the algorithms for the reconfigurable domain-
oriented object service. Proof of atomicity is in Section 3.
In Section 4 we refine the algorithm making it suitable for
long-lived executions. Conditional performance analysis
and the experimental results are presented in Section 5. We
conclude the paper in Section 6. Due to lack of space, sev-
eral low-level details and proofs are omitted (they can be
found in [8]).

2 The DO-RAMBO Algorithm

In this section we present the architecture of DO-
RAMBO , then focus on the key new components. We be-
gin by presenting RAMBO , since at the component level the
structure of DO-RAMBO follows that of RAMBO . In later
sections we describe in detail the new components of DO-
RAMBO . As presented in [13, 10], RAMBO is given for a
single object. Since atomicity is preserved under composi-
tion, single-object services can be composed to yield a com-
plete shared memory. However, as discussed earlier, doing
this introduces performance overheads making the resulting
service impractical for supporting large numbers of objects.

In order to achieve fault tolerance and availability,
RAMBO uses reconfigurable quorum configurations, where
any quorum configuration may be installed, and atomicity is
preserved in all executions. Old configurations are removed
and the new configurations are updated with the latest object
information, without any interference from ongoing reads
and writes. Multiple configurations may be removed con-

2

currently.
Read and write operations consist of two phases. In the

first phase, the node initiating a read or write operation con-
tacts at least one read-quorum of each installed configura-
tion. The quorum intersection property ensures that after
this phase the most up to date information about the object
is obtained. In the next phase this information (in case of
a write, the new value) is propagated to appropriate write-
quorums, ensuring consistency. Next, we present each of
these operations in detail for the DO-RAMBO algorithm.

2.1 DO-RAMBO : architecture and interface

The overall architecture is given in Figure 1, following
the earlier model of RAMBO . The main external distinc-
tion is that DO-RAMBO automata are parameterized by a
domain name, instead of an object name. The algorithm is
composed of several components, formally expressed as In-
put/Output Automata [14].

DO-RAMBOd at i

Reader-Writerd,i

Joinerd,i

DO-RAMBOd at j

Reader-Writerd,j

Joinerd,j
Channeld,i,j

Channeld,j,i

Recond

- -

��?6 ?6

?6 ?6

Figure 1. DO-RAMBOd component architecture depict-
ing the automata at some representative nodesi andj, the
channels, and theReconservice.

Let D be the set of domain identifiers. Ford ∈ D we de-
fine Xd to be the set of object identifiers for domaind. Let
I be the set of network locations. For each domaind and
each participating network locationi, the system includes
Joinerd,i automata, which handle joining of new partici-
pants, andReader-Writerd,i automata, which handle read-
ing, writing, and upgrading configurations. TheReader-
Writer and Joiner automata have access to asynchronous
channelsChanneld,i,j providing communication from loca-
tion i to locationj, implemented as a typical unidirectional
asynchronous channel that does not corrupt messages, but
that may reorder and lose messages. TheReader-Writerau-
tomata interact with an arbitrary implementation of theRe-
conservice that is responsible for emitting a totally-ordered
sequence of configurations based on user requests (this ser-
vice is exactly as specified in [13] and we do not discuss it
further). TheJoinerautomata implement a very simple pro-
tocol that allows new participants to join the system. The
details can be found in [13]. The only difference is that in
DO-RAMBO nodes join the service for a domain of objects,
and not for a single object.

Data types:
I, a set of processes,D, a set of domains,V , a set of legal values
Xd, a set of object identifiers from domaind, whered ∈ D

C, a set of configurations, each consisting of members, read/write-quorums
Input:

join(rambo, J)d,i, J a finite subset ofI − {i}, i ∈ I,
such that ifi = i0 thenJ = ∅, d ∈ D

read(x)d,i, i ∈ I, x ∈ Xd, d ∈ D

write(x, v)d,i, v ∈ V, i ∈ I, x ∈ Xd, d ∈ D

recon(c, c′)d,i, c, c′ ∈ C, i ∈ members(c), i ∈ I, d ∈ D

faild,i, i ∈ I, d ∈ D

Output:
join-ack(rambo)d,i, i ∈ I, d ∈ D

read-ack(x, v)d,i, v ∈ V, i ∈ I, x ∈ Xd, d ∈ D

write-ack(x)d,i, i ∈ I, x ∈ Xd, d ∈ D

recon-ack(b)d,i, b ∈ {ok, nok}, i ∈ I, d ∈ D

report(c)d,i, c ∈ C, i ∈ I, d ∈ D

Figure 2. DO-RAMBOd: External signature.

The heart of the DO-RAMBO system is theReader-
Writer automata that implement read and write operations,
perform upgrade to new and remove obsolete configura-
tions. We present this in Section 2.2. The external interface
of the service is given in Figure 2. Processes join the system
via join/join-ack events. Read (write) operations correspond
to read/read-ack (write/write-ack) events. Participants sub-
mit reconfiguration requests using therecon action, which
is acknowledged via therecon-ack event. Participants learn
about new configurations via thereport event. We model
node crashes using an externalfail event. In the presentation
that follows we will deal with a single domain (only to re-
duce notational clutter) and suppress explicit mention ofd

where it is clear from the context.

2.2 Reader-Writer automata

We now present in detail theReader-Writeri automata:
signature, state, transitions, and operation protocols.
Signature and state. The signature and state ofReader-
Writeri appear in Figure 3. The state variables are used as
follows. Thestatus variable keeps track of the progress of
the component as it joins the protocol. Whenstatus = idle,
Reader-Writeri does not respond to any inputs (except for
join) and does not perform any locally controlled actions.
Whenstatus = joining, Reader-Writeri is receptive to in-
puts but still does not perform any locally controlled actions.
Whenstatus = active, the automaton participates fully in
the protocol.

Theworld variable is used to keep track of all processes
that are known to have attempted to join the system. The
value array contains the latest known value for the local
replica of each object, e.g.,value(x) is a value for the lo-
cal replica of some objectx. Thetag array holds the asso-
ciated tag of each object, e.g.,tag(x) is the latest known
tag for the objectx (tags are pairs consisting of a se-
quence number and location id, comparable lexicographi-
cally). The cmap(·) variable contains information about
configurations: Ifcmap(k) = ⊥, it means thatReader-
Writeri has not yet learned what thekth configuration iden-

3

Signature:
Input:
read(x)i, x ∈ Xd

write(x, v)i, x ∈ Xd, v ∈ Vx

new-config(c, k)i, c ∈ C, k ∈ N
+

recv(join)j,i, j ∈ I − {i}
recv(mx)j,i, mx ∈M , j ∈ I

join(rw)i

faili

Output:
join-ack(rw)i

read-ack(x, v)i, x ∈ Xd, v ∈ Vx

write-ack(x)i, x ∈ Xd

send(mx)i,j , mx ∈M , j ∈ I

Internal:
query-fix(x)i, x ∈ Xd

prop-fix(x)i, x ∈ Xd

cfg-upgrade(k)i, k ∈ N
>0

cfg-upg-query-fix(k)i, k ∈ N
>0

cfg-upg-prop-fix(k)i, k ∈ N
>0

cfg-upgrade-ack(k)i, k ∈ N
>0

State:
status ∈ {idle, joining, active}, initially idle

world , a finite subset ofI, initially ∅
value(x) ∈ Vx, x ∈ Xd, initially ∀ x ∈ Xd: value(x) = (v0)x

tag ∈ X → T , initially ∀ x ∈ Xd: tag(x) = (0, i0)
cmap ∈ CMap, initially cmap(0) = c0,

cmap(k) = ⊥ for k ≥ 1
pnum1 ∈ Xd → N, initially ∀ x ∈ Xd: pnum1(x) = 0
pnum2 ∈ Xd × I → N, initially ∀ x ∈ Xd, ∀j ∈ I,

wherej 6= i: pnum2(x, j) = 0
failed , a Boolean, initiallyfalse

op(x), an array of records (one for each objectx ∈ Xd) with fields:
type ∈ {read, write}
phase ∈ {idle, query, prop, done}, initially idle

pnum ∈ N

cmp ∈ CMap

acc, a finite subset ofI
val ∈ Vx

upg , a record with fields:
phase ∈ {idle, query, prop}, initially idle

pnum(x) ∈ N, ∀ x ∈ Xd: pnum(x) = 0
cmap ∈ CMap

acc(x), a finite subset ofI, ∀ x ∈ Xd

target ∈ N

Figure 3. Reader-Writer i: Signature and state

tifier is. If cmap(k) = c ∈ C, it means thatReader-
Writeri has learned that thekth configuration identifier is
c, and thekth configuration was not included in a local con-
figuration upgrade operation. Ifcmap(k) = ±, it means
thatReader-Writeri performed a configuration upgrade op-
eration that includedkth configuration identifier.Reader-
Writeri learns about configuration identifiers either directly,
from theReconservice, or indirectly, from otherReader-
Writer processes. The value ofcmap is always inUsable,
that is,± for some finite prefix ofN, followed by an element
of C, followed by elements ofC ∪ {⊥}, with only finitely
many elements ofC. WhenReader-Writeri processes a read
or write operation, it uses all the configurations whose iden-
tifiers appear in itscmap up to the first⊥.

The pnum1 array andpnum2 matrix are used to im-
plement a handshake that identifies “recent” messages in re-
gards to a specific object.Reader-Writeri usespnum1 array
to count the total number of operation “phases” it has initi-
ated overall per object, including phases occurring in read,
write, and configuration upgrade operations. (A “phase”
here refers to either a query or propagate phase, as described
below.) For everyj, including j = i and some object
x, Reader-Writeri usespnum2 (x, j) to record the largest
number of a phase thati has learned thatj has started.

For each objectx, the recordop(x) contains informa-
tion about the locally-initiated read or write operation in
progress. The recordupg contain information about the
locally-initiated configuration upgrade in progress. A node
can process read/write operations concurrently with config-
uration upgrades. Thetype subfield records the type of the
operation in progress, either a read or a write. Thecmap

subfield records the configuration map associated with the
operation onx. For read or write operations this consists
of the node’scmap when a phase begins, augmented by

any new configurations discovered during the phase. The
pnum subfield records the phase number when the phase
begins, allowing the initiator to determine which responses
correspond to the phase. The phase of the operation is in-
dicated byphase subfield. Theacc subfield records which
nodes have responded during the current phase. The like
named subfields ofupg record are defined analogously. The
upg .target subfield records the identifier of configuration
that is the target of current upgrade operation.

Transitions. Transitions pertaining to reading, writing, and
configuration upgrade are presented in Figure 4.

Joining. Since the join protocol is simple, we omit the re-
lated to it transitions (see [13]), and instead we briefly de-
scribe the join process. Whenstatus = idle and join(rw)i

input occurs, then: ifi = i0 and is the domain’s initia-
tor thenstatus becomesactive andReader-Writeri is now
ready for conducting operations; otherwise,status becomes
joining, makingReader-Writeri receptive to inputs only. In
both cases,Reader-Writeri records itself as a member of its
ownworld . From this point on,Reader-Writeri also adds to
its world any process from which it receives ajoin message
(these messages are originated by theJoinerautomata).

After Reader-Writeri receives arecv(∗)∗,i message (see
Figure 4) from another process whilestatus = joining, then
status becomesactive. At this point, processi can perform
a join-ack(rw) and has acquired enough information to be-
gin participating fully.

Information propagation. Information is propagated be-
tween Reader-Writerprocesses in the background, using
send and recv actions. Each message sent by processi

is per object (we describe in Section 5 how to remove
this requirement) and includes: an object identifierobj ,
the latest knownvalue(obj) and tag(obj), world , cmap,
and two phase numbers—the current phase number ofi,

4

Output send(〈W, cm, obj, v, t, pns, pnr〉)i,j

Precondition:
¬failed
status = active

j ∈ world

x ∈ X

〈W, cm〉 = 〈world, cmap〉
〈obj, v, t〉 = 〈x, value(x), tag(x)〉
〈pns, pnr〉 = 〈pnum1(x), pnum2(x, j)〉

Effect:
none

Input recv(〈W, cm, obj, v, t, pns, pnr〉)j,i

Effect:
if ¬failed andstatus 6= idle then
status ← active

world ← world ∪W

cmap ← update(cmap, cm)
if t > tag(obj) then
(value(obj), tag(obj))← (v, t)

pnum2(obj, j)← max(pnum2(obj, j), pns)
if op(obj).phase ∈ {query, prop} and
pnr ≥ op(obj).pnum then
op(obj).cmp ←

extend(op(obj).cmp, truncate(cm))
if op(obj).cmp ∈ Truncated then

op(obj).acc ← op(obj).acc ∪ {j}
else

pnum1(obj)← pnum1(obj) + 1
op(obj).acc ← ∅
op(obj).cmp ← truncate(cmap)

if upg.phase ∈ {query, prop} and
pnr ≥ upg.pnum(obj) then
upg.acc(obj)← upg.acc(obj) ∪ {j}

Input new-config(c, k)i

Effect:
if ¬failed andstatus 6= idle then
cmap(k)← update(cmap(k), c)

Input read(x)i

Effect:
if ¬failed andstatus 6= idle then
pnum1(x)← pnum1(x) + 1
op(x)← 〈read, query, pnum1(x),

truncate(cmap), ∅, op.(x).value〉

Input write(x, v)i

Effect:
if ¬failed andstatus 6= idle then
pnum1(x)← pnum1(x) + 1
op(x)← 〈write, query, pnum1(x),

truncate(cmap), ∅, v〉

Internal query-fix(x)i

Precondition:
¬failed
status = active

op(x).type ∈ {read, write}
op(x).phase = query

∀k ∈ N, c ∈ C : (op(x).cmp(k) = c)
⇒ (∃R ∈ read-quorums(c) :

R ⊆ op(x).acc)
Effect:

if op(x).type = read then
op(x).value ← value(x)

else
value(x)← op(x).value
tag(x)← 〈tag(x).seq + 1, i〉

pnum1(x)← pnum1(x) + 1
op(x).pnum ← pnum1(x)
op(x).phase ← prop

op(x).cmp ← truncate(cmap)
op(x).acc ← ∅

Internal prop-fix(x)i

Precondition:
¬failed
status = active

op(x).type ∈ {read, write}
op(x).phase = prop

∀k ∈ N, c ∈ C : (op(x).cmp(k) = c)
⇒ (∃W ∈ write-quorums(c) :

W ⊆ op(x).acc)
Effect:

op(x).phase = done

Output read-ack(x, v)i

Precondition:
¬failed
status = active

op(x).type = read

op(x).phase = done

v = op(x).value
Effect:

op(x).phase = idle

Output write-ack(x)i

Precondition:
¬failed
status = active

op(x).type = write

op(x).phase = done

Effect:
op(x).phase = idle

Internal cfg-upgrade(k)i

Precondition:
¬failed
status = active

upg.phase = idle

cmap(k) ∈ C

∀l ∈ N, l < k : cmap(l) 6= ⊥
Effect:

for all x ∈ X do
pnum1(x)← pnum1(x) + 1
upg.pnum(x)← pnum1(x)
upg.acc(x)← ∅

upg.phase ← query

upg.target ← k

upg.cmap ← cmap

Internal cfg-upg-query-fix(k)i

Precondition:
¬failed
status = active

upg.phase = query

upg.target = k

∀l ∈ N, l < k : upg.cmap(l) ∈ C

⇒ ∃R ∈ read-quorums(upg.cmap(l)) :
∃W ∈ write-quorums(upg.cmap(l)) :
R ∪W ⊆ upg.acc(x), ∀x ∈ X

Effect:
for all x ∈ X do
pnum1(x)← pnum1(x) + 1
upg.pnum(x)← pnum1(x)
upg.acc(x)← ∅

upg.phase ← prop

Internal cfg-upg-prop-fix(k)i

Precondition:
¬failed
status = active

upg.phase = prop

upg.target = k

∃W ∈ write-quorums(upg.cmap(k)) :
W ⊆ upg.acc(x), ∀x ∈ X

Effect:
for l ∈ N : l < k do
cmap(l)← ±

Internal cfg-upgrade-ack(k)i

Precondition:
¬failed
status = active

upg.target = k

∀l ∈ N, l < k : cmap(l) = ±
Effect:

upg.phase = idle

Figure 4. Reader-Writer i: Read/write and configuration upgrade transitions

pnum1 (obj), and the latest known phase number of the re-
ceiver, pnum2 (obj, j). These background messages may
be sent at any time, once the process is active. They are sent
only to processes in the sender’sworld set.

WhenReader-Writeri receives a message,status is set to
active. The incoming world information, inW , is merged
with the localworld set. Also, the localcmap is updated
with the incoming configuration information,cm. That is,
for eachk, if cmap(k) = ⊥ andcm(k) is a configuration
identifierc ∈ C, then processi sets itscmap(k) to c. Also,
if cmap(k) ∈ C ∪ {⊥}, and cm(k) = ± then Reader-
Writeri sets itscmap(k) to ±, indicating that this config-
uration has been removed. Since, messages are per object,
obj indicates identifier of this object, and is used to update

the remaining state variables.Reader-Writeri compares the
incoming tagt to its owntag(obj). If t is strictly greater, it
represents a more recent version of this object; in this case,
tag(obj) is replaced witht and value(obj) with value v.
Reader-Writeri also updates itspnum2 (obj, j) component
for the senderj to reflect new information about the phase
number of the sender for the object whose identifiers isobj ,
which appears in thepns component of the message.

The last sequence of updates depends on the following:
if Reader-Writeri is conducting a phase of a read, write,
or configuration upgrade, and the incoming message is “re-
cent”, then senderj is replying to a message thati sent in
the current phase. Phase numbers are used to perform this
check: if the incoming phase numberpnr is at least as large

5

as the current operation phase number (op(obj).pnum or
upg .pnum(obj)), then the message is recent. If these con-
ditions are met thenop(obj) andupg records are updated.

Read and write operations. A read or write operation on
objectx consists of a query phase and a propagation phase.
In each phase,Reader-Writeri obtains recenttag andvalue

for x, andcmap information from “enough” processes (as
we explain below) by exchanging messages in the back-
ground, as described above.

For an objectx, when Reader-Writeri starts either a
query or a propagation phase of a read or write, it sets
op(x).cmp to truncate(cmap), which is defined to in-
clude all the configuration identifiers in the localcmap up
to the first⊥.When a newCMap, cm, is received during
the phase,op(x).cmp is “extended” by adding all newly-
discovered configuration identifiers, up to the first⊥ in cm.
If adding these new configuration identifiers does not create
a “gap”, that is, if the extendedop(x).cmp is in Truncated ,
then the phase continues using the newop(x).cmp. On
the other hand, if a “gap” is created (that is, the result
is not in Truncated), then Reader-Writeri can infer that
it has been using out-of-date configuration identifiers. In
this case, it restarts the phase using the best currently
knownCMap, information, which is obtained by comput-
ing truncate(cmap) for the latest localcmap.

In between restarts, while processi is engaged in a sin-
gle attempt to complete a phase, it never removes configu-
ration identifiers fromop(x).cmp. In particular, if process
i learns during a phase that a configuration identifier in
op(x).cmp(k) has been included in some configuration up-
grade, it does not remove it fromop(x).cmp, but continues
to include it in conducting the phase.

The query phase of a read or write operation terminates
when aquery fixed pointis reached. This happens when
Reader-Writeri receives recent responses from some read-
quorum of each configuration inop(x).cmp. Let t denote
processi’s tag(x) at the query fixed point. Then we know
thatt is at least as great as thetag(x) value that each process
in each of these read-quorums had at the start of this phase.

If the operation is a read, then processi at this point fixes
its current value as the value to be returned to its client.
However, before returning this value, processi performs
the propagation phase, whose purpose is to make sure that
“enough” Reader-Writerprocesses have acquired tags that
are at leastt (and associated values). Again, the information
is propagated in the background, andop(x).cmp is man-
aged as described above. The propagation phase ends once
a propagation fixed pointis reached, whenReader-Writeri
has received recent responses from some write-quorum of
each configuration in the currentop(x).cmp. When this oc-
curs, we know that thetag(x) of each process in each of
these write-quorums is at leastt.

Processing for a write operation, for objectx, starting
with a write(x, v)i event is similar to that for a read. The
query phase is conducted exactly as for a read, but process-
ing after the query fixed point is different. Supposet,
processi’s tag(x) at the query fixed point, is of the form
(n, j). ThenReader-Writeri defines the tag for its write op-
eration to be the pair(n+1, i). Reader-Writeri sets its local
tag(x) to (n+1, i) and itsvalue(x) to v, the value it is cur-
rently writing. Then, it performs its propagation phase. The
purpose of the propagation phase is to ensure that “enough”
processes acquire tags that are at least as great as the new
tag(n + 1, i). The propagation phase is conducted and con-
cluded exactly as for a read operation.
New configurations and configuration upgrade. Con-
figurations go through three stages: proposal, installation,
and upgrade. First, a configuration isproposedby a recon

event. Next, if the proposal is successful, theRecon ser-
vice achieves consensus on the new configuration, and noti-
fies participants withdecide events. When every non-failed
member of the prior configuration has been notified, the
configuration isinstalled. The configuration isupgraded
when every configuration with a smaller index has been
removed. Upgrades are performed by the configuration
upgrade operations. Each upgrade operation requires two
phases, a query phase and a propagate phase. The query
phase terminates, i.e. thecfg-upg-query-fix point is reached,
when for each object in the domain fresh responses from
at least one read quorum and at least one write quorum of
each old configuration are collected. In the second phase,
the latest object information obtained in the query phase is
propagated to the members of the write-quorum of the new
configuration. This means that theupg-cfg-prop-fix event
occurs when fresh responses for each object in the domain
from members of the write-quorum of the new configuration
are collected. This ensures that the latest domain informa-
tion is propagated to the new configuration.

Note, in DO-RAMBO the upgrade operation is conducted
on behalf of all objects in the domain, hence the query and
propagation phases are based on fresh responses for each
object from appropriate quorums.
The complete algorithm. The complete implementation
is the composition of theJoiner i andReader-Writeri au-
tomata for alli, all the channels, and any automaton whose
traces satisfy theReconsafety specification—with all the
non-external actions of DO-RAMBO hidden. (Recall that
the specification ofReconservice [13] is essentially un-
changed: the only difference is that theReconservice is
parameterized by domains instead of objects.)

3 Atomic Consistency

We now state the key lemmas that lead to the main re-
sult. Throughout the rest of this paper, we consider “good”

6

executions of the algorithm. In general, the assumptions we
present require well-formed requests: clients follow the pro-
tocols for joining and to initiating reconfiguration; clients
initiate only one operation at a time on any object; clients
wait for appropriate acknowledgments before proceeding.
Definitions. In this section, we assume thatα is an arbitrary,
good execution of the algorithm. We also assume thatπ(x)1
andπ(x)2 are two read or write operations on some object
x from domaind (i.e., x ∈ Xd) that occur ati1 andi2 re-
spectively, wherei1 andi2 are participants of DO-RAMBOd

service. Additionally, we assume thatπ(x)1 completes be-
fore π(x)2 begins inα. In the case when the ordering of
operations is not important we denote a read or write op-
eration onx as π(x). For everyπ(x), the query-fix(x)
(resp.prop-fix(x)) event occurs immediately after the query
(resp. prop) phase ofπ(x) completes. For every con-
figuration upgrade operationγ, the cfg-upg-query-fix and
cfg-upg-prop-fix events are defined analogously.

Next we introduce history variables. First, the
query-cmap(π(x)) is a map from integer indices toC ∪
{⊥,±}, initially undefined. It is set in thequery-fix(x) step
of π(x), to the value ofop(x).cmp in the pre-state. (If
configuration with indexℓ equals⊥, c(ℓ) = ⊥, then this
means that this configuration has not been installed. On the
other hand, ifc(ℓ)=± then this configuration has been up-
graded.) The history variableprop-cmap(π(x)) is defined
analogously for the propagation phase of operationπ(x).

The query-phase-start(π(x)), initially undefined is de-
fined in thequery-fix(x) step of π(x), to be the unique
earlier event at which the collection of query results
was started and not subsequently restarted (the last time
op(x).acc set is assigned∅). This is either aread(x),
write(x, ∗), or recv(∗, ∗, x, ∗, ∗, ∗, ∗) event. The event
prop-phase-start(π(x)) is defined analogously, but with re-
spect to the propagation phase.

For every read or write operationπ(x) at nodei, we de-
fine the history variabletag(π(x)) to be the value oftag(x)i

when thequery-fix(x) event occurs forπ(x) at nodei. If
π(x) is a read operation thentag(π(x)) is the largest tag
that nodei encounters during the query phase. Ifπ(x) is a
write operation,tag(π(x)) is the new tag that is chosen by
i for performing the write.

Similarly, for a configuration upgrade operationγ at
nodei, we definetag(x, γ) to be the tag of objectx at nodei
(i.e.,tag(x)i) when thecfg-upg-query-fix event occurs, that
is, the largest tag encountered for objectx at nodei during
the query phase ofγ.

The last history variable isremoval-set(γ), defined for
the configuration upgrade operationγ. It is a subset ofN,
initially undefined, and records the configuration identifiers
of the configurations that are marked for removal (configu-
rations with identifier less thanupg .target for γ).

Correctness. We show atomicity using the framework of
Lemma 13.16 in [11]. Recall thatα is an arbitrary, good
execution of the algorithm. We need to show that inα if
all invoked read/write operations complete, then these oper-
ations onx can be partially ordered by an ordering≺x, so
that with regard to each objectx ∈ Xd the following proper-
ties are satisfied.(P1): ≺x totally orders all write operations
in α. (P2): ≺x orders every read operation inα with respect
to every write operation inα. (P3): for each read opera-
tion, if there is no preceding write operation in≺x, then the
initial value is returned; else, the read operation returnsthe
value of the unique write operation immediately preceding it
in ≺x. (P4): if some operation,π(x)1, completes before an-
other operation,π(x)2, begins inα, thenπ(x)2 does not pre-
cedeπ(x)1 in ≺x. If such ordering≺x can be constructed
for α, then the algorithm guarantees atomic consistency.

We define≺x in terms of the lexicographic order on
tags of operationsπ(x). As (P1) to (P3) are essentially
immediate, we focus on(P4). To demonstrate that our al-
gorithm implements atomic objects, we have to show that
tag(π(x)1) ≤ tag(π(x)2), and the strict inequality ifπ(x)2
is a write operation.

First we examine the behavior of sequential read and
write operations. The first lemma describes propagation of
tag information, in the case where the propagation phase of
the first operation and the query phase of the second opera-
tion share an active configuration.

Lemma 3.1 Let π(x)1 and π(x)2 be as defined above
and k ∈ N, such that theprop-fix(x) event ofπ(x)1
precedes thequery-phase-start(π(x)2) event in α. If
prop-cmap(π(x)1) ∩ query-cmap(π(x)2) 6= ∅, then
tag(π(x)1) ≤ tag(π(x)2) and if π(x)2 is a write then
tag(π(x)1) < tag(π(x)2).

The next lemma says that when two read or write op-
erations onx, π(x)1 andπ(x)2, execute sequentially, the
smallest configuration index used in the propagation phase
of π(x)1 is no larger than the largest index used in the query
phase ofπ(x)2.

Lemma 3.2 Let π(x)1 and π(x)2 be as defined
above, such that theprop-fix(x) event of π(x)1 pre-
cedes thequery-phase-start(π(x)2) event in α. Then:
min({ℓ : prop-cmap(π(x)1)(ℓ) ∈ C}) ≤ max({ℓ :
query-cmap(π(x)2)(ℓ) ∈ C}).

The only remaining case is whenprop-cmap(π(x)1)
and query-cmap(π(x)2) are disjoint and
max(prop-cmap(π(x)1)) ≤ min(query-cmap(π(x)2)).
In the rest of the discussion this relationship between
the cmaps is assumed. Next, we proceed to show the
appropriate relationship between thetags.

The next lemma shows that if, for some read/write opera-
tion π(x), k is the index of the smallest active configuration

7

in query-cmap(π(x)), then some configuration upgrade op-
erationγ with targetk precedesπ(x) and updatesc(k).

Lemma 3.3 Let π(x) be as previously defined and that
query-fix(x) event occurs inα. Let k be the smallest ele-
ment such thatquery-cmap(π(x))(k) ∈ C. Assumek > 0.
Then there must exist a configuration upgrade operationγ

such thatupg .target of γ equalsk, and thecfg-upg-prop-fix

event ofγ precedes thequery-phase-start(π(x)).

Lemma 3.3 implies thattag(x, γ) ≤ tag(π(x)2). Tags
are propagated from the configuration upgrade operation to
the following read or write operation via update ofc(k).
The first operation updates some write-quorum ofc(k) in its
propagation phase and the later accesses some read-quorum
of c(k) in the query phase. By the intersection properties
of the read and write quorums and the fact thatγ completes
beforeπ(x)2 begins, the claim follows. Similarly, it fol-
lows that if π(x)2 is a write operation thentag(x, γ) <

tag(π(x)2).
Now, we construct a sequence of preceding upgrade op-

erations satisfying certain properties. Assuming that some
configuration with indexk is removed by the specified up-
grade operation. For every configuration with an index
smaller thank, we choose a single upgrade operation—that
removes this configuration—to add to the sequence. There-
fore the constructed sequence may well contain the same
configuration upgrade operation multiple times, if the op-
eration removed multiple configurations. If two elements in
the sequence are distinct upgrade operations, then the earlier
operation completes before the later operation is initiated.
Also, the target of an upgrade operation in the sequence is
removed by the next distinct upgrade operation in the se-
quence. As a result of these properties, the configuration
upgrade process obeys a sequential discipline. The sequen-
tial nature of configuration upgrade has a nice consequence
for propagation of tags: for any sequence of upgrade op-
erations as described here,tag(x, γs), wherex ∈ Xd, is
nondecreasing ins.

Lemma 3.4 Let γℓ, . . . , γk be a sequence of configuration
upgrade operations such that:

1. ∀ s : 0 ≤ s ≤ s2, s ∈ removal-set(γs),
2. ∀ s : 0 ≤ s < s2 − 1, if γs 6= γs+1, then thecfg-

upg-prop-fix event ofγs and thecfg-upgrade event of
γs+1 occur inα, and thecfg-upg-prop-fix event ofγs

precedes thecfg-upgrade event ofγs+1, and
3. ∀ s : 0 ≤ s < s2 − 1, if γs 6= γs+1, thentarget(γs) ∈

removal-set(γs+1).

Then ∀s, x : 0 ≤ s < s2 − 1, x ∈ Xd, tag(x, γs) ≤
tag(x, γs+1).

Lemmas 3.1 to 3.4 are used to show the key theorem:

Theorem 3.5 Let π(x)1 and π(x)2 be as previously de-
fined and that theprop-fix(x) event ofπ(x)1 precedes the

query-phase-start(π(x)2) event inα. Thentag(π(x)1) ≤
tag(π(x)2), and if π(x)2 is a write thentag(π(x)1) <

tag(π(x)2).

Proof. (Sketch). The proof is similar to that of The-
orem 4.6 of [10]. Letcm1 = prop-cmap(π(x)1) and
cm2 = prop-cmap(π(x)2). If both cm1 and cm2 share
a configuration, then the result follows from Lemma 3.1.
Now assume thatcm1 andcm2 are disjoint. Letℓ1 be the
largest element incm1, andℓ2 the smallest element incm2.
Per Lemma 3.2,ℓ1 < ℓ2. Lemma 3.3 withπ(x) = π(x)2
andk = ℓ2 defines an upgrade operationγ which precedes
π(x)2. Using Lemma 3.4 we construct a sequence of config-
uration upgradesγ0, . . . , γℓ2−1 such thatγℓ2−1 = γ. Con-
sider γℓ1 from this sequence. From Lemma 3.4 we have
that tag(x, γℓ1) ≤ tag(x, γℓ2−1). Now continuing with ex-
actly the same reasoning as in Theorem 4.6 of [10] we get
that tag(π(x)1) ≤ tag(x, γℓ1). We already showed that
tag(x, γℓ1)≤ tag(π(x)2), and ifπ(x)2 is a write operation
then tag(x, γℓ1) < tag(π(x)2). Combining all the above
inequalities, the result follows. �

Theorem 3.5 shows that the tags of operations onx are
monotonically increasing. It follows that the tags induce a
partial order≺x that meets the necessary and sufficient re-
quirements for atomic consistency. Since the property holds
for any x, it must hold for allx ∈ Xd. The main result
follows:

Theorem 3.6 DO-RAMBO implements atomic read/write
objects.

4 Long-Lived DO-RAMBO

In this section we make DO-RAMBO suitable for long
lived executions, by allowing processes to gracefully leave
the service, and by using an incremental gossip mechanism
to reduce the size of gossip messages.

The long-lived version of RAMBO algorithm, called LL-
RAMBO , is presented in [7]. LL-RAMBO supports graceful
departures and incremental gossip, which we now briefly
describe. Prior to departure, a process sends notification
messages to some subset of processes in itsworld . Once
these messages are sent the process simply stops participat-
ing in the service. A node that receives the departure no-
tifications, marks the sender as departed, hence preventing
any further communication with that node. The departed
information is included in the gossip messages and shared
among non-failed participants. This improvement reduces
the extra communication burden created by processes send-
ing gossip messages to processes that left the service. The
incremental gossip protocol trades the local processing for
decreased communication cost. Each process keeps track of
information that is known by each process in itsworld . This
knowledge is used when sending gossip messages: only new

8

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32
Number of objects

A
vg

. o
p.

 la
te

nc
y

(m
se

c)
Do-Rambo

|Xd|-Rambo

Figure 5. DO-RAMBO vs. the composition of|Xd| in-
stances of RAMBO .

or unacknowledged information is sent. The proof of cor-
rectness of LL-RAMBO is shown by forward simulation [7].

We now make two observations. First, in LL-RAMBO

the leave protocol is per object, similarly to the join ser-
vice. In the case of DO-RAMBO the leave protocol is per
domain. Second, the incremental gossip mechanism is used
onworld (anddeparted) variables; state variables that per-
tain to the entire domain. Therefore, as in [7] we augment
DO-RAMBO by adding the leave protocol and incremental
gossip mechanism and obtain long-lived DO-RAMBO .

Using the approach from [7] we prove the following by
forward simulation.
Theorem 4.1 Long-livedDO-RAMBO implements atomic
read/write objects.

In the remainder of the paper, when let DO-RAMBO de-
note the long-lived version of the service.

5 Analysis, Implementation, and Evaluation

We now present a conditional analysis of operation la-
tency in DO-RAMBO , and the preliminary empirical results
obtained from our implementations of RAMBO and DO-
RAMBO on a LAN, comparing the performance of the two
implementations in two different settings.

Conditional Analysis. A conditional analysis of RAMBO

read and write operation latency is presented in [13, 10, 7].
Here we show that under the same conditions DO-RAMBO

has the same operation latency as RAMBO .
An execution is said to be insteady statewhen the fol-

lowing conditions hold: (a) the local clocks of all automata
progress at exactly the rate of real time, (b) all messages
sent prior to and during the steady state are delivered with-
ing bounded time ofδ, (c) the sending pattern is restricted,
where each automaton sends messages at the first possible
time and at regular intervals ofδ, as measured on the local
clock, (d) the non-send locally controlled events occur in-
stantaneously and just once, and (e) reconfiguration is infre-
quent and the installed configurations are not disabled due
to failures and departures—also, at the time of a configu-
ration being installed, all of its members have successfully
joined the system and have learned about each other. We

0

100

200

300

400

500

600

700

800

900

1 100
200

300
400

500
600

700
800

900
1000

Number of objects

La
te

nc
y

(m
se

c)

Do-Rambo

|Xd|-Rambo

Figure 6. DO-RAMBO vs. RAMBO for a single “super-
object” of |Xd| objects.

now state the latency bounds on the read/write operations
under the steady state assumptions in DO-RAMBO .

Theorem 5.1 Let α be a steady state execution ofDO-
RAMBO . Assumei is a process that successfully joined the
system prior to timet and does not fail or depart inα until
after timet + 8δ. Then if a read or write operation starts at
processi for objectx at timet, it completes by timet + 8δ.

Implementations. We implemented RAMBO and DO-
RAMBO on a network-of-workstations. We now describe
our implementations along with the initial experimental re-
sults. These preliminary results support our expectation
that grouping objects into domain leads to improved per-
formance.

We manually translated the IOA specification to Java
code. To mitigate the introduction of errors during trans-
lation, the implementers followed a set of precise rules that
guided the derivation of Java code [15]. The platform con-
sists of a cluster with ten machines running Linux. The ma-
chines are various Pentium processors up to 900 MHz inter-
connected via a 100Mbps Ethernet switch.

Each instance of RAMBO (resp. DO-RAMBO) uses a sin-
gle socket to receive messages over TCP/IP, and maintains
a list of open, outgoing connections to each process in its
world. Both algorithms use identical communication rou-
tines. The implementation ofJoiner andReconservices is
also identical.

TheReader-Writerservice is implemented as described
in the previous sections. Management ofcommonstate vari-
ables to RAMBO and DO-RAMBO , such asworld , cmap, is
identical. However, we make one simple optimization in the
implementation of DO-RAMBO . In the specification of DO-
RAMBO we assume that each gossip message is per object
(containsvalue, tag, andobject identifierof a single object).
In the implementation our messages may include informa-
tion about multiple objects (at least one). This simple opti-
mization trivially preserves correctness.
Experiments. We designed two experiments as follows:
There are ten processes that do not leave the system and
a single configuration is installed that includes all of these
processes as members. The configuration does not change

9

over time and consists of majorities; here we consider any
majority configuration with at least six processes. In the first
experiment we compare the performance of DO-RAMBO

with |Xd| objects to that of a|Xd| instances of RAMBO ,
where all processes perform concurrent read and write op-
erations on all objects in the domain. Figure 5 presents
average latency of read/write operations (over all objects
and all machines) as the number of objects grows from 1
to 32. We note that collecting data for the composition of
RAMBO instances when the number of objects is8 or larger
(8×RAMBO) was not possible, as our hardware was not ca-
pable of executing more than eight instances of RAMBO

at the same time. A possible explanation of this phenom-
enon is the rapidly growing communication burden between
the individual RAMBO automata. The second experiment
is designed to compare the performance of DO-RAMBO to
a single RAMBO instance that encapsulates the entire do-
main into a single object that we refer as a “super-object”,
where we choose a single object and let all processes per-
form read/write operations on that object concurrently. Fig-
ure 6 presents the average latency of read/write operations
(over all machines) as the number of objects in the domain
increases from 1 to 1000.

6 Discussion

RAMBO [13] is an atomic memory service for highly dy-
namic networks. Several proposals were recently made to
make this service more practical [10, 7, 15]. An imple-
mentation of RAMBO is presented in [15]. These succes-
sive improvements are aimed at improving the performance
of RAMBO implementations, but support only a single ob-
ject per system instance. To support multiple shared atomic
objects one has to use a composition of multiple RAMBO

instances, one per object. This approach is very inefficient.
In this paper we presented a specification and an efficient
implementation of an atomic memory service that supports
multiple related objects by grouping them into domains. We
proved that the algorithms implement atomic objects. We
methodically derived a real implementation of the service
for a network-of-workstations, and we presented a prelim-
inary comparison of its performance to the performance of
the similar implementation of the prior RAMBO service.

In designing practical distributed object services, we also
aim to make them useful in a broad set of distributed ap-
plications that incorporate atomic objects (cf. [2]). Thus
we consider our services suitable as middleware. Our ap-
proach to middleware differs from common practice: al-
though middleware frameworks such as CORBA, DCE and
Java/JINI support construction of distributed systems from
components, their specification capability is limited to the
formal definition of interfaces and informal descriptions of
behavior. These are not enough to support careful reason-

ing about the behavior of systems that are built using such
services. Moreover, current middleware provides only rudi-
mentary support for fault-tolerance. In contrast, our services
are precisely defined, with respect to both their interfaces
and their behavior.

References

[1] Special issue on group communication services.Communi-
cations of the ACM, 39(4), 1996.

[2] J. Albrecht and S. Yasushi. RAMBO for dummies. Technical
Report HPL-2005-39, HP Labs, 2005.

[3] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message passing systems.J. of the ACM, 42(1):124–
142, 1996.

[4] B. Awerbuch and P. Vitanyi. Atomic shared register access by
asynchronous hardware. InProc. of 27th IEEE Symposium
on Foundations of Computer Science, pages 233–243, 1986.

[5] K. Birman and T. Joseph. Exploiting virtual synchrony in
distributed systems. InProc. of the 11th ACM Symposium on
Operating Systems Principles, December 1987.

[6] B. Englert and A. Shvartsman. Graceful quorum reconfigu-
ration in a robust emulation of shared memory. InProc. of
International Conference on Distributed Computer Systems,
pages 454–463, 2000.

[7] C. Georgiou, P. Musial, and A. Shvartsman. Long-lived
RAMBO: Trading knowledge for communication. InProc.
of 11’th Colloquium on Structural Information and Commu-
nication Complexity, pages 185–196. Springer, 2004.

[8] C. Georgiou, P. Musial, and A. Shvartsman. De-
veloping a consistend domain-oriented distributted ob-
ject service.http://www.cse.uconn.edu/ ˜ piotr/
pubs/TRs/GMS_NCA05F.pdf , 2005.

[9] D. Gifford. Weighted voting for replicated data. InProc. of
7th ACM Symp. on Oper. Sys. Princ., pages 150–162, 1979.

[10] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II:
Rapidly reconfigurable atomic memory for dynamic net-
works. InProc. of International Conference on Dependable
Systems and Networks, pages 259–268, 2003.

[11] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers, 1996.

[12] N. Lynch and A. Shvartsman. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts.
In Proc. of 27th Int-l Symp. on Fault-Tolerant Comp., pages
272–281, 1997.

[13] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable
atomic memory service for dynamic networks. InProc.
of 16th International Symposium on Distributed Computing,
pages 173–190, 2002.

[14] N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. Technical report, 1987.

[15] P. Musial and A. Shvartsman. Implementing a reconfigurable
atomic memory service for dynamic networks. InProc. of
18’th International Parallel and Distributed Symposium —
FTPDS WS, page 208b, 2004.

[16] R. Thomas. A majority consensus approach to concurrency
control for multiple copy databases.ACM Trans. on Data-
base Sys., 4(2):180–209, 1979.

[17] E. Upfal and A. Wigderson. How to share memory in a dis-
tributed system.Journal of the ACM, 34(1):116–127, 1987.

10

