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Abstract The only way to ensure survivability of data is through re-
dundancy: the data is replicated and maintained at several
This paper presents a new algorithm for a reconfigurable network locations. Replication introduces the challergfes
distributed domain-orientedatomic object service, called maintainingconsistencyamong the replicas, and managing
DO-RAMBO, which stands for Domain-Oriented Reconfig- dynamic participationas the collections of network loca-
urable Atomic Memory for Basic Objects. This service is tions storing the replicas change due to arrivals, depestur
suitable for inclusion as a middleware system service for and failures of nodes.

distributed applications requiring atomic read/write dat An approach to implementing read/write objects for dy-
The implementation substantially extends and refines thengmic networks was developed by Lynch and Shvarts-
abstract RAMBO algorithm of Lynch and Shvartsman that yan [13], and extended by Gilbeet al. [10] and Geor-
supports individual atomic objects. In this papgomains  gijoy et al. [7]. They implement a consistent distributed
are introduced to allow the users to group related atomic memory service called RvBO (Reconfigurable Atomic
objects. The new implementation manages configurationsyiemory for Basic Objects) that maintains atomic (lineariz-
on the basis of domains, significantly improving the utility able) data in dynamic environments. In order to achieve
and the performance of the resulting service. DO-RAMBO yajlability in the presence of failures, the objects aggire
guarantees consistency under asynchrony, message 10Sgated at several network locations. To maintain consigtenc
node crashes, new node arrivals, and node departures. Wan the presence of small and transient changes, the algorith
present the formal algorithm development for DO-RAMBO sesconfigurationsconsisting ofquorumsof locations. To
and give analytical and preliminary empirical results that zccommodate larger and more permanent changes, the al-
illustrate the benefit of the new approach. gorithm supportseconfiguration by which the configura-
tions are modified. Any configuration may be installed at
any time. Obsolete configurations can be removed from the
1 Introduction system without interfering with the ongoing read and write
operations [10]. The algorithm tolerates asynchrony, node

This paper presents a formal development of a practi- arrivals, departures and failures, and message loss.
cal distributed service supporting shared read/write atom Motivation for the current development. The original
objects in dynamic network settings. Users of the service RAMBO algorithms [13, 10, 7] are specified using the In-
can efficiently group objects in users’ scope of interest in put/Output Automata (IOA) formalism [14, 11]. This en-
user-defined domains. This service is suitable for maintain ables one to reason formally about the properties of the ser-
ing consistent long-lived survivable data in a dynamic net- vice. The service is parameterized by object name, that is,
works, in which participants may join, leave, or fail during the service is specified individually for each object instan
the course of computation. Such settings are becoming in-Multiple objects are supported by composing multiple in-
creasingly common in modern distributed applications that stances of the service, one for each object. While compo-
rely on multitudes of communicating, computing devices. sition preserves atomicity, the resulting service is impra
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simplicity of the formal specification is the reduced practi earlier documented in [15].
cality of the resulting system. Background. Several approaches have been used to imple-

In many settings applications may use multiple related ment consistent data in (static) distributed systemstiSgar
objects, e.g., the objects may represent data values of inWith the work of Gifford [9] and Thomas [16], many al-
terest to certain users. In such cases it is highly desirablegorithms have used collections of intersecting sets of ob-
to eliminate redundancy by allowing a collection of objects jects replicas (such as quorums) to solve the consistency
to share configurations and related processing. In this workProblem. Upfal and Wigderson [17] use majority sets of
we investigate an approach where multiple related objectseaders and writers to emulate shared memonanyitand
are grouped into @omain so that reconfiguration is per- Awerbuch [4] use matrices of registers where the rows and
formed on the per-domain basis instead of on the per-objecithe columns are written and respectively read by specific
basis. While this is a conceptually sensible approach, for-Processors. Attiya, Bar-Noy and Dolev [3] use majorities
mally specifying such a solution and proving it correct is Of processors to implement shared objects in static mes-
fairly involved. To assess the practicality of the solutitn ~ Sage passing systems. Extension for limited reconfiguratio
is also important to experiment with a working system that Of quorum systems have also been explored [6, 12]. Vir-

implements the desired service in a network. tually synchronous services [5], and group communication
services (GCS) in general [1], can also be used to implement

consistent data services, e.g., by implementing a global to
tally ordered broadcast. While the universe of processors
in a GCS can evolve, in most implementations, forming
a new view takes a substantial time, and client operations
are interrupted during view formation. In our algorithm, as
in [13, 10], reads and writes can make progress during re-

Contributions. We present a new algorithm implementing
reconfigurable, domain-oriented, atomic distributed ctbje
service, called Domain-Oriented Reconfigurable Atomic
Memory for Basic Objects, or RAMBO. The algorithm
borrows from the abstract /180 algorithms [13, 10, 7]
that implement individual reconfigurable objects. We intro
duce the notion oflomainsthat allow the users to group : ;

: i L configuration.
related objects. Users join the system by meansiofre- t struct In Section 2 tth .
quests. The objects in domains are then accessed by mearfgoctgmen dstrhuc ulre. 't?] ecf: 'O?h we prfgsen bl edspec.|—
of read andwrite operations. Users request reconfiguration ication and the algorithms for the recontigurable domain-
by means ofecon operations. The algorithm manages con- oriented object service. Proof of atomicity is in Section 3.

figurations on the basis of domains, which significantly im- lln Selc_:tlodn 4 we ;_efme thg alg_(:_rlthrT ma;(mg It swtablel fo_r
proves the practicality of the service. ong-lived executions. Conditional performance analysis

) and the experimental results are presented in Section 5. We
We use Input/Output Automata [14] (IOA) to specify the  concjude the paper in Section 6. Due to lack of space, sev-

algorithms and reason about correctness. The formal de g |ow-level details and proofs are omitted (they can be
velopment is presented in two steps. First, based on thery nd in [8]).

ideas in [13, 10], we present and prove correct an interme-

diate version. Here we implement domains, yet the result-2  The Do-RAMBO Algorithm

ing algorithm is not practical for long-lived applicatiobe-

cause it involves messages that may grow in size without In this section we present the architecture ob-D
bound. In the second step, we make the algorithm practi-RAMBO, then focus on the key new components. We be-
cal using the approach in [7] for implementing long-lived gin by presenting RMBO, since at the component level the
data services. Presenting the development in two steps substructure of -RAMBO follows that of RamBO. In later
stantially simplifies the proofs of correctness, and sd¢para sections we describe in detail the new components @f D
the functional issues of domain implementation from the RAMBO. As presented in [13, 10], /MBO is given for a
performance issues associated with dynamic network setsingle object. Since atomicity is preserved under composi-
tings and the need to bound the demands for communicadion, single-object services can be composed to yield a com-
tion bandwidth. We perform conditional latency analysis plete shared memory. However, as discussed earlier, doing
that shows that, under reasonable network behavior assumpthis introduces performance overheads making the regultin
tions, the read and write operations take at most tdfle  service impractical for supporting large numbers of olgect
whered is the maximum message delay (unknown tothe al- In order to achieve fault tolerance and availability,
gorithm). We developed a complete implementation of the RAMBO uses reconfigurable quorum configurations, where
Do-RAMBO service on a network of workstations. This any quorum configuration may be installed, and atomicity is
development is an example of an approach to software enpreserved in all executions. Old configurations are removed
gineering in which formal algorithm design is followed by and the new configurations are updated with the latest object
a methodical translation of the abstract algorithm spexific  information, without any interference from ongoing reads
tion in I0A to distributed Java code using the techniques we and writes. Multiple configurations may be removed con-



currently.

Data types:
I, a set of processef), a set of domainsy, a set of legal values

Read and write Operations consist of two phases. In the X4, a set of object identifiers from domaih whered € D

first phase, the node initiating a read or write operatior con |

. . nput
tacts at least one read-quorum of each installed configura-

tion. The quorum intersection property ensures that after
this phase the most up to date information about the object
is obtained. In the next phase this information (in case of

a write, the new value) is propagated to appropriate write- output:

guorums, ensuring consistency. Next, we present each of
these operations in detail for theod®BRAMBO algorithm.

C, a set of configurations, each consisting of members, read/write-quorums

join(rambo, J) 4 ;, J afinite subsetof — {i},: € I,
such that ifi = ig thenJ = 0,d € D
read(xz)q,;, 1 € I, x € Xq, d € D
write(z,v)q,i, vEV,i €I, 2 € Xq,d € D
recon(c, ¢’ )a,i, ¢, ¢’ € C, i € members(c), i € I, d € D
failg, i€, de D

join-ack(rambo)4 ;, ¢ € I, d € D
read-ack(x,v)q,i, v €V, i€ I, x € Xq, dE D
write-ack(z)q,i, t € I, x € Xgq, d € D
recon-ack(b)q,;, b € {ok,nok},i € I, d € D
report(c)a,i, c€ C,i €I, d€ D

2.1 Do-RamBO: architecture and interface
The overall architecture is given in Figure 1, following

Figure 2. Do-RAMBO,: External signature.

the earlier model of RmMBO. The main external distinc-

The heart of the D-RAMBO system is theReader-

tion is that Do-RAMBO automata are parameterized by a Writer automata that implement read and write operations,
domain name, instead of an object name. The algorithm isperform upgrade to new and remove obsolete configura-
composed of several components, formally expressed as Intions. We present this in Section 2.2. The external interfac

put/Output Automata [14].

Do-RAMBO ati

1

Do-RAMBO atj

Channel; ; ; |

Recon

Reader-Writey ;

C )

Figure 1. Do-RAMBO, component architecture depict-
ing the automata at some representative nadesd j, the
channels, and thReconservice.

Reader-Writey, ;

Let D be the set of domain identifiers. RéE D we de-
fine X to be the set of object identifiers for domainLet
I be the set of network locations. For each domaiand
each participating network locatian the system includes
Joiner; ; automata, which handle joining of new partici-
pants, andReader-Writeg ; automata, which handle read-
ing, writing, and upgrading configurations. TiReader-
Writer and Joiner automata have access to asynchronous
channelChanne} ; ; providing communication from loca-
tion ¢ to locationj, implemented as a typical unidirectional

of the service is given in Figure 2. Processes join the system
via join/join-ack events. Read (write) operations correspond
to read/read-ack (write/write-ack) events. Participants sub-
mit reconfiguration requests using theon action, which

is acknowledged via thecon-ack event. Participants learn
about new configurations via theport event. We model
node crashes using an exterfallevent. In the presentation
that follows we will deal with a single domain (only to re-
duce notational clutter) and suppress explicit mentiod of
where it is clear from the context.

2.2 Reader-Writer automata

We now present in detail thReader-Writey automata:
signature, state, transitions, and operation protocols.
Signature and state. The signature and state 8feader-
Writer; appear in Figure 3. The state variables are used as
follows. Thestatus variable keeps track of the progress of
the component as it joins the protocol. Whenatus = idle,
Reader-Writey does not respond to any inputs (except for
join) and does not perform any locally controlled actions.
When status = joining, Reader-Writey is receptive to in-
puts but still does not perform any locally controlled anto
Whenstatus = active, the automaton participates fully in
the protocol.

asynchronous channel that does not corrupt messages, but Theworld variable is used to keep track of all processes

that may reorder and lose messages. Rbader-Writerau-
tomata interact with an arbitrary implementation of Re-
conservice that is responsible for emitting a totally-ordered

that are known to have attempted to join the system. The
value array contains the latest known value for the local
replica of each object, e.gualue(x) is a value for the lo-

sequence of configurations based on user requests (this secal replica of some objeat. The tag array holds the asso-

vice is exactly as specified in [13] and we do not discuss it
further). TheJoinerautomata implement a very simple pro-
tocol that allows new participants to join the system. The
details can be found in [13]. The only difference is that in
Do-RaMBO nodes join the service for a domain of objects,
and not for a single object.

ciated tag of each object, e.ggg(x) is the latest known
tag for the objectz (tags are pairs consisting of a se-
guence number and location id, comparable lexicographi-
cally). The cmap(-) variable contains information about
configurations: Ifcmap(k) 1, it means thaReader-
Writer; has not yet learned what tthé" configuration iden-



Signature:
Input:
read(z);, z € X4
write(z,v);, ¢ € Xgq,v € Vy
new-config(c, k)i, ¢ € C, k € NT
recv(join); s, 5 € I — {i}
recv(mg)j,ivma € M,j €1
join(rw);
fail;

Output:
join-ack(rw);

write-ack(z);, z € Xg

State:
status € {idle, joining, active}, initially idle
world, afinite subset of , initially @
value(z) € Vp,x € Xgq, initially Vz € Xg: value(z) = (vo)a
tag € X — T,initially Vz € Xg4: tag(z) = (0,40)
cmap € CMap, initially cmap(0) = co,
cmap(k) = Lfork > 1
pnuml € X4 — N, initially Vo € X4: pnumi(z) =0
pnum2 € X4 x I — N,initially Va € X4,Vj € I,
wherej # i: pnum2(z,j) =0
failed, a Boolean, initiallyfalse

read-ack(z,v);, z € Xq,v € V,

send(mg )i, j,ma € M,j €T

Internal:

query-fix(x),, x € X4
prop-fix(z);, x € X4
cfg-upgrade(k):, k € N>°
cfg-upg-query-fix(k);, k € N>°
cfg-upg-prop-fix(k);, k € N>°
cfg-upgrade-ack(k);, k € N>°

op(z), an array of records (one for each object X ;) with fields:

type € {read, write}

phase € {idle, query, prop, done}, initially idle
pnum € N

cmp € CMap

acc, afinite subset of

val € V,

upg, a record with fields:

phase € {idle, query, prop}, initially idle
pnum(z) €N, Vo € X4: pnum(xz) =0
cmap € CMap

acc(z), afinite subsetof,Vz € X4
target € N

Figure 3. Reader-Writer;: Signature and state

tifier is. If cmap(k) ¢ € C, it means thaiReader-
Writer; has learned that the'” configuration identifier is
¢, and thek*" configuration was not included in a local con-
figuration upgrade operation. Hmap(k) = =+, it means
thatReader-Writey performed a configuration upgrade op-
eration that included:’” configuration identifier.Reader-
Writer; learns about configuration identifiers either directly,
from the Reconservice, or indirectly, from otheReader-
Writer processes. The value ofnap is always inUsable,
that is,+ for some finite prefix oN, followed by an element
of C, followed by elements of' U {_L}, with only finitely
many elements af'. WhenReader-Writey processes aread
or write operation, it uses all the configurations whose-4iden
tifiers appear in itgmap up to the firstL.

The pnum1 array andpnum2 matrix are used to im-

any new configurations discovered during the phase. The
pnum subfield records the phase number when the phase
begins, allowing the initiator to determine which respanse
correspond to the phase. The phase of the operation is in-
dicated byphase subfield. Theacc subfield records which
nodes have responded during the current phase. The like
named subfields afpg record are defined analogously. The
upg.target subfield records the identifier of configuration
that is the target of current upgrade operation.

Transitions. Transitions pertaining to reading, writing, and
configuration upgrade are presented in Figure 4.

Joining. Since the join protocol is simple, we omit the re-
lated to it transitions (see [13]), and instead we briefly de-
scribe the join process. Whetatus = idle andjoin(rw);
input occurs, then: if = iy, and is the domain’s initia-

plement a handshake that identifies “recent” messages in retor thenstatus becomesctive and Reader-Writey is now

gards to a specific objedReader-Writeyusespnum1 array

ready for conducting operations; otherwis&itus becomes

to count the total number of operation “phases” it has initi- joining, makingReader-Writey receptive to inputs only. In
ated overall per object, including phases occurring in read both casesReader-Writef records itself as a member of its

write, and configuration upgrade operations. (A “phase”

own world. From this point onReader-Writer also adds to

here refers to either a query or propagate phase, as dascribéts world any process from which it receivegan message

below.) For everyj, includingj = ¢ and some object
x, Reader-Writer usespnum?2(x, j) to record the largest
number of a phase thahas learned that has started.

For each object:, the recordop(z) contains informa-
tion about the locally-initiated read or write operation in
progress. The recordpg contain information about the
locally-initiated configuration upgrade in progress. A aod

(these messages are originated byXbi@er automata).

After Reader-Writey receives aecv(x), ; message (see
Figure 4) from another process whid&itus = joining, then
status becomesactive. At this point, processcan perform
ajoin-ack(rw) and has acquired enough information to be-
gin participating fully.

Information propagation. Information is propagated be-

can process read/write operations concurrently with cenfig tween Reader-Writerprocesses in the background, using

uration upgrades. Thaype subfield records the type of the
operation in progress, either a read or a write. theip

send and recv actions. Each message sent by process
is per object (we describe in Section 5 how to remove

subfield records the configuration map associated with thethis requirement) and includes: an object identifiéy,

operation onx. For read or write operations this consists

the latest knowrvalue(obj) and tag(obj), world, cmap,

of the node’scrmap when a phase begins, augmented by and two phase numbers—the current phase numbey of



Output send({(W, cm, obj, v, t, pns, pnr)); ;
Precondition:

—failed

status = active

Jj € world

zeX

(W, em) = (world, cmap)

(0bj, v, t) = (x, value(z), tag(x))

{pns, prr) = (pnumi (z), prum2(z, ))
Effect:

none

Input recv((W, cm, obj, v, t, pns, pnr));
Effect:
if ~failed andstatus # idle then
status «— active
world «— world UW
cmap — update(cmap, cm)
if t > tag(obj) then
(value(obj), tag(obj)) «— (v, t)
pnum2(obj, j) « max(pnum?2(obj, j), pns)
if op(obj).phase € {query, prop} and
pnr > op(obj).pnum then
op(obj).cmp —
extend(op(obj).cmp, truncate(cm))
if op(obj).cmp € Truncated then
op(obj).acc — op(obj).accU {j}
else
pnuml (obj) «— pnumi(obj) + 1
op(obj).acc — 0
op(objg).cmp «— truncate(cmap)
if upg.phase € {query, prop} and
pnr > upg.pnum(obj) then
upg.acc(obj) — upg.acc(obj) U {j}

Input new-config(c, k);
Effect:
if ~failed andstatus # idle then
cmap (k) «— update(cmap(k), c)

Input read(x),
Effect:
if =failed andstatus # idle then
pnuml(z) «— pnumli(z) + 1
op(z) « (read, query, pnuml (z),
truncate(cmap), 0, op.(z).value)

Input write(z, v);
Effect:
if —failed andstatus # idle then
pnuml (z) — pnuml(z) + 1
op(z) < (write, query, pnuml (x),
truncate(cmap), 0, v)

Internal query-fix(x);
Precondition:
—failed
status = active
op(z).type € {read, write}
op(z).phase = query
Vk € Nyc € C: (op(z).cmp(k) = ¢)
= (3R € read-quorums(c) :
R C op(z).acc)
Effect:
if op(z).type = read then
op(z).value — value(x)
else
value(z) «— op(x).value
tag(z) «— (tag(z).seq + 1,1)
pnuml(z) «— pnuml(z) + 1
op(z).pnum «— pnuml (x)
op(z).phase < prop
op(z).cmp — truncate(cmap)
op(z).acc — 0

Internal prop-fix(z);
Precondition:
—failed
status = active
op(z).type € {read, write}
op(z).phase = prop
Vk € N,ce€ C: (op(z).cmp(k) = c)
= (IW € write-quorums(c) :
W C op(z).acc)
Effect:
op(z).phase = done

Output read-ack(z, v);
Precondition:
—failed
status = active
op(z).type = read
op(z).phase = done
v = op(z).value
Effect:
op(z).phase = idle

Output write-ack(x);
Precondition:
—failed
status = active
op(z).type = write
op(z).phase = done
Effect:
op(z).phase = idle

Internal cfg-upgrade(k);
Precondition:
—failed
status = active
upg.phase = idle
cmap(k) € C
VieN, I <k:cmap(l) # L
Effect:
forallz € X do
pnuml (z) «— pnuml(z) + 1
upg.pnum(x) < pnuml (x)
upg.acc(z) — 0
upg.phase «— query
upg.target — k
upg.cmap < cmap

Internal cfg-upg-query-fix(k);
Precondition:
—failed
status = active
upg.phase = query
upg.target = k
Vi€ N,l < k: upg.cmap(l) € C
= 3R € read-quorums(upg.cmap(l)):
IW € write-quorums(upg.cmap(l)) :
RUW C upg.acc(x),Ve € X
Effect:
forallz € X do
pnuml (z) «— pnumli(z) + 1
upg.pnum(x) «— pnuml (x)
upg.acc(x) «— 0
upg.phase «— prop

Internal cfg-upg-prop-fix(k),
Precondition:
—failed
status = active
upg.phase = prop
upg.target = k
IW € write-quorums(upg.cmap(k)) :
W C upg.acc(z),Ve € X
Effect:
forl e N: 1 < kdo
cmap(l) — +

Internal cfg-upgrade-ack(k);
Precondition:

—failed

status = active

upg.target = k

VieN,l<k:cmap(l) ==+
Effect:

upg.phase = idle

Figure 4. Reader-Writer;: Read/write and configuration upgrade transitions

pnuml (obj), and the latest known phase number of the re- the remaining state variableReader-Writer compares the
ceiver, pnum?2(obj, j). These background messages may incoming tag: to its owntag(obj). If ¢ is strictly greater, it

be sent at any time, once the process is active. They are sentepresents a more recent version of this object; in this,case
only to processes in the sendewsrid set. tag(obj) is replaced witht and value(obj) with value v.
Reader-Writer also updates itgnum2(obj, j) component

for the sendey to reflect new information about the phase
number of the sender for the object whose identifieigjs
which appears in thens component of the message.

WhenReader-Writef receives a messagéatus is setto
active. The incoming world information, i®/, is merged
with the localworld set. Also, the locaktmap is updated
with the incoming configuration informatiomm. That is,
for eachk, if cmap(k) = L andem(k) is a configuration
identifierc € C, then processsets itscmap (k) to c. Also,

The last sequence of updates depends on the following:
if Reader-Writer is conducting a phase of a read, write,
if cmap(k) € C U {Ll}, andem(k) = =+ thenReader- or configuration upgrade, and the incoming message is “re-
Writer; sets itscmap(k) to £, indicating that this config-  cent”, then sendef is replying to a message thasent in
uration has been removed. Since, messages are per objedhe current phase. Phase numbers are used to perform this
obj indicates identifier of this object, and is used to update check: if the incoming phase numbetr is at least as large



as the current operation phase numher(6b;j).pnum or Processing for a write operation, for object starting
upg.pnum(obj)), then the message is recent. If these con- with a write(x, v); event is similar to that for a read. The
ditions are met thenp(obj) andupg records are updated.  query phase is conducted exactly as for a read, but process-
Read and write operations. A read or write operation on  ing after the query fixed point is different. Suppose
objectz consists of a query phase and a propagation phaseProcessi's tag(x) at the query fixed point, is of the form

In each phaseReader-Writey obtains recentag andvalue (n, 7). ThenReader-Writey defines the tag for its write op-

for «, and crmap information from “enough” processes (as €ration to be the paimn +1, ). Reader-Writes sets its local

we explain below) by exchanging messages in the back-tag(z) to (n+1,4) and itsvalue(z) to v, the value it is cur-
ground, as described above. rently writing. Then, it performs its propagation phaseeTh

purpose of the propagation phase is to ensure that “enough”
gPprocesses acquire tags that are at least as great as the new
op(z).cmp 10 truncate(cmap), which is defined to in- tag(n+1,¢). The propagation pha;e is conducted and con-
clude all the configuration identifiers in the locahap up ~ Cluded exactly as for a read operation.

to the first L.When a newCMap, cm, is received during ~ New configurations and configuration upgrade. Con-
the phasepp(z).cmp is “extended” by adding all newly- ~ figurations go through three stages: proposal, instafiatio

For an objectz, when Reader-Writey starts either a
qguery or a propagation phase of a read or write, it set

discovered configuration identifiers, up to the fitsin cm. and upgrade. First, a configurationfsposedoy arecon
If adding these new configuration identifiers does not create€vent. Next, if the proposal is successful, thecon ser-
a“gap’, that s, if the extendeap(z).cmp is in Truncated, vice achieves consensus on the new configuration, and noti-

then the phase continues using the newz).cmp. On fies participants wi'thiecide events. When every norkfailed
the other hand, if a “gap” is created (that is, the result member qf th_e_prlor conflguratlon_ has _bee_n notified, the
is not in Truncated), then Reader-Writey can infer that ~ configuration isinstalled The configuration isipgraded
it has been using out-of-date configuration identifiers. In When every configuration with a smaller index has been
this case, it restarts the phase using the best currentlyémoved. Upgrades are performed by the configuration
known CMap, information, which is obtained by comput- UPgrade operations. Each upgrade operation requires two
ing truncate(cmap) for the latest locatmap. phases, a query phase and a propagate phase. The query
In between restarts, while process engaged in a sin- phase termlnates,_l.e. t_h%—upg—quer_y—flx pointis reached,
gle attempt to complete a phase, it never removes configu-When for each object in the domain fresh responses from
ration identifiers fromop(z).cmp. In particular, if process at least one rgad quorum and at least one write quorum of
1 learns during a phase that a configuration identifier in each old cor]flgu.ratlon are coIIec_ted. .In the second pha;e,
op(z).cmp(k) has been included in some configuration up- the latest object information obtalned. in the query phase is
grade, it does not remove it fromp (). cmp, but continues propagated to the members of the write-quorum of the new

to include it in conducting the phase. configuration. This means that th@g—cfg-p_rop-ﬁx event _
Th h f d it tion terminat occurs when fresh responses for each object in the domain

h € query F; aze 0 'ai rea 0; V\g' eTt;perha lon ermlrr:a ©Sfrom members of the write-quorum of the new configuration
when aguery fixed poinis reached. IS NAppens WNEN 516 collected. This ensures that the latest domain informa-
Reader-Writer receives recent responses from some read—tion is propagated to the new configuration

q?:ég;g f tea?h)c;ntf;]%uritécr)n ;ﬁ(g).ginn”tg ' 'h?etri \(/jveenlgéiw Note, in Do-RAMBO the upgrade operation is conducted
b ag\v query point. on behalf of all objects in the domain, hence the query and

thatt is at least as great as t x) value that each process -
in each of these regad-quoruhn?s( h)ad at the start of E[)his phasepropagatlon phases are based on fresh responses for each

o } ) A Object from appropriate quorums.
I the operation is a read, then process this pointfixes 1o complete algorithm. The complete implementation
its current value as the value to be returned to its client.

bef i hi | ) ; is the composition of the/oiner; and Reader-Writey au-
However, before returning this value, procesperforms tomata for alli, all the channels, and any automaton whose

Ehe prop?gatlon pha;e, whose purpose is to .make sure thq aces satisfy th&econsafety specification—with all the
enough” Reader-Writerprocesses have acquired tags that ., eytemal actions of ®RAMBO hidden. (Recall that
are at least (and associated values). Again, the information y,o ghecification oReconservice [13] is essentially un-
is propagated in the background, ampl(z).cmp is man-  cpanaed: the only difference is that tReconservice is

aged as described above. The propagation phase ends Oncb%rameterized by domains instead of objects.)
a propagation fixed poinis reached, wheReader-Writey

has received recent responses from some write-quorum o3 Atomic Consistency

each configuration in the curreap(z).cmp. When this oc-

curs, we know that theag(z) of each process in each of We now state the key lemmas that lead to the main re-
these write-quorums is at least sult. Throughout the rest of this paper, we consider “good”



executions of the algorithm. In general, the assumptions weCorrectness. We show atomicity using the framework of
present require well-formed requests: clients followtreep  Lemma 13.16 in [11]. Recall that is an arbitrary, good
tocols for joining and to initiating reconfiguration; clisn  execution of the algorithm. We need to show thatirif
initiate only one operation at a time on any object; clients all invoked read/write operations complete, then these-ope
wait for appropriate acknowledgments before proceeding. ations onx can be partially ordered by an orderirg., so
Definitions. In this section, we assume thats an arbitrary,  thatwith regard to each objectc X, the following proper-
good execution of the algorithm. We also assumetiay; ties are satisfiedP1). <, totally orders all write operations
andr(x), are two read or write operations on some object in a. (P2): <, orders every read operationdrwith respect
z from domaind (i.e.,z € X,) that occur at; andi, re-  to every write operation imv. (P3): for each read opera-
spectively, wheré; andi, are participants of D-RAMBO tion, if there is no preceding write operation-,, then the
service. Additionally, we assume thatxz), completes be- initial value is returned; else, the read operation rettines
fore 7(z), begins ina. In the case when the ordering of Vvalue of the unique write operation immediately preceding
operations is not important we denote a read or write op-in <.. (P4): if some operationg(z),, completes before an-
eration onz asw(z). For everyr(z), the query-fix(z) other operationg (z)2, begins inx, thenr (), does not pre-
(resp.prop-fix(x)) event occurs immediately after the query ceder(x); in <. If such ordering<, can be constructed

(resp. prop) phase of(x) completes. For every con-
figuration upgrade operatiof, the cfg-upg-query-fix and
cfg-upg-prop-fix events are defined analogously.

Next we introduce history variables. First, the
query-cmap(m(x)) is a map from integer indices ©' U
{L, £}, initially undefined. It is set in thquery-fix(z) step
of 7(x), to the value ofop(z).cmp in the pre-state. (If
configuration with index! equals_L, ¢(¢) = L, then this

for «, then the algorithm guarantees atomic consistency.
We define<, in terms of the lexicographic order on
tags of operationsr(z). As (P1) to (P3) are essentially
immediate, we focus ofP4). To demonstrate that our al-
gorithm implements atomic objects, we have to show that
tag(m(z)1) < tag(m(z)2), and the strict inequality if(x)2
is a write operation.
First we examine the behavior of sequential read and

means that this configuration has not been installed. On therite operations. The first lemma describes propagation of

other hand, ikz(¢) = £ then this configuration has been up-
graded.) The history variablerop-cmap (7 (z)) is defined
analogously for the propagation phase of operation).

The query-phase-start(7(z)), initially undefined is de-
fined in thequery-fix(z) step ofn(z), to be the unique
earlier event at which the collection of query results

was started and not subsequently restarted (the last timeyrop-cmap(n(x)1) N query-cmap(m(x)sz)

op(z).acc set is assigned)). This is either aread(x),
write(z, %), OF recv(x,*,x,*,*, x %) event. The event
prop-phase-start(m(z)) is defined analogously, but with re-
spect to the propagation phase.

For every read or write operatier(x) at nodei, we de-
fine the history variableag (7 (z)) to be the value ofag(z);
when thequery-fix(z) event occurs forr(z) at nodei. If
m(x) is a read operation thetug(w(x)) is the largest tag
that nodei encounters during the query phasexr(f) is a
write operationtag(w(z)) is the new tag that is chosen by
1 for performing the write.

Similarly, for a configuration upgrade operationat
nodei, we definetag(x, ) to be the tag of object at node
(i.e., tag(x);) when thecfg-upg-query-fix event occurs, that
is, the largest tag encountered for objecit node; during
the query phase of.

The last history variable isemoval-set (), defined for
the configuration upgrade operatign It is a subset of,
initially undefined, and records the configuration identifie
of the configurations that are marked for removal (configu-
rations with identifier less thampg.target for ).

tag information, in the case where the propagation phase of
the first operation and the query phase of the second opera-
tion share an active configuration.

Lemma 3.1 Let w(x); and w(x), be as defined above
and £k € N, such that theprop-fix(z) event ofr(z);
precedes thequery-phase-start(mw(z)) event ina. If
# 0, then
tag(m(z)1) < tag(w(x)s) and if w(x), is a write then
tag(m(x)1) < tag(m(x)2).

The next lemma says that when two read or write op-
erations onz, w(x); andw(z)2, execute sequentially, the
smallest configuration index used in the propagation phase
of 7(x)1 is no larger than the largest index used in the query
phase ofr(z)s.

Lemma3.2 Let «(z); and =(z); be as defined
above, such that therop-fix(z) event of «(z); pre-
cedes thequery-phase-start(w(z)2) event ina. Then:
min({¢ : prop-cmap(n(z)1)(¢) € C}) < max{{ :
query-cmap(m(z)2)(f) € C}).

The only remaining case is whewop-cmap(w(z)1)
and query-cmap(m(x)2) are disjoint and
max prop-cmap(w(z)1)) < min(query-cmap(n(zx)2)).

In the rest of the discussion this relationship between
the cmaps is assumed. Next, we proceed to show the
appropriate relationship between thes.

The next lemma shows that if, for some read/write opera-
tion 7(z), k is the index of the smallest active configuration



in guery-cmap(mw(x)), then some configuration upgrade op-

erationy with targetk precedesr(z) and updates(k).

Lemma 3.3 Let 7(x) be as previously defined and that
query-fix(x) event occurs irv. Letk be the smallest ele-
ment such thaguery-cmap(n(z))(k) € C. Assume > 0.
Then there must exist a configuration upgrade operation
such thatupg.target of v equalsk, and thecfg-upg-prop-fix
event ofy precedes thgquery-phase-start(w(z)).

Lemma 3.3 implies thatag(z,v) < tag(n(z)2). Tags

query-phase-start(7(z)2) event ina. Thentag(r(z)1)
tag(m(x)2), and if w(z)s is a write thentag(n(z)1)
tag(m(x)2).

<
<

Proof. (Sketch). The proof is similar to that of The-
orem 4.6 of [10]. Letem; = prop-cmap(w(x);) and
emy = prop-cmap(m(z)2). If both emy and ems share

a configuration, then the result follows from Lemma 3.1.
Now assume thatm, andcms are disjoint. Let/; be the
largest element iam, and/, the smallest element itm..

are propagated from the configuration upgrade operation toP€r Lemma 3.2, < £,. Lemma 3.3 withr(z) = m(z)2

the following read or write operation via update «f).
The first operation updates some write-quorum(éf) in its

propagation phase and the later accesses some read—quoru‘r#'ia'fion upgradesy, . . .

andk = /5 defines an upgrade operatigrwhich precedes
m(x)2. Using Lemma 3.4 we construct a sequence of config-
,Ve,—1 such thaty,,_, = ~. Con-

of c(k) in the query phase. By the intersection properties Sider~y,, from this sequence. From Lemma 3.4 we have

of the read and write quorums and the fact thabmpletes
beforer (), begins, the claim follows. Similarly, it fol-
lows that if 7(x)2 is a write operation therag(z,v) <

tag(m(z)2).

thattag(z,ve, ) < tag(x,ve,—1). Now continuing with ex-
actly the same reasoning as in Theorem 4.6 of [10] we get
that tag(m(x),) < tag(z,~e,). We already showed that
tag(x,ve,) < tag(m(x)2), and ifr(x)2 is a write operation

Now, we construct a sequence of preceding upgrade opthentag(z, v, ) < tag(w(z)z). Combining all the above
erations satisfying certain properties. Assuming thatesom inequalities, the result follows. O

configuration with index is removed by the specified up-
grade operation.

For every configuration with an index
smaller thark, we choose a single upgrade operation—that
removes this configuration—to add to the sequence. There
fore the constructed sequence may well contain the sam
configuration upgrade operation multiple times, if the op-

Theorem 3.5 shows that the tags of operations: @me
monotonically increasing. It follows that the tags induce a
partial order<, that meets the necessary and sufficient re-

‘quirements for atomic consistency. Since the propertysold
Sor any z, it must hold for allx € X;. The main result

follows:

eration removed multiple configurations. If two elements in

the sequence are distinct upgrade operations, then thierear] Theorem 3.6 Do-RAmMBO implements atomic read/write
operation completes before the later operation is inifiate Objects.

Also, the target of an u.pg.rade operation in thg sequence is; Long-Lived Do-RAMBO

removed by the next distinct upgrade operation in the se-
quence. As a result of these properties, the configuration |n this section we make ® RAMBO suitable for long
upgrade process obeys a sequential discipline. The sequenived executions, by allowing processes to gracefully éeav
tial nature of configuration upgrade has a nice consequencghe service, and by using an incremental gossip mechanism

for propagation of tags: for any sequence of upgrade op-to reduce the size of gossip messages.

erations as described herey(z,vs), wherez € Xy, is
nondecreasing is.

Lemma 3.4 Let~y, ...,y be a sequence of configuration
upgrade operations such that:
1.Vs:0<s<sq,s € removal-set(vs),
2.Vs:0< s < sy—1,if vy # vs11, then thecfg-
upg-prop-fix event ofy, and thecfg-upgrade event of
~s+1 Occur ina, and thecfg-upg-prop-fix event ofy,
precedes thefg-upgrade event ofys 1, and
3.Vs:0< s < sy —1,if 5 # 7511, thentarget(vs) €
removal-set(Ys41)-
ThenVs,xz : 0 < s < s9 — 1,z € Xy, tag(z,7s) <
tag(x, Ys+1)-
Lemmas 3.1to 3.4 are used to show the key theorem:

Theorem 3.5 Let «(z); and n(x), be as previously de-
fined and that therop-fix(z) event ofr(x); precedes the

The long-lived version of RmMBO algorithm, called LL-
RAMBO, is presented in [7]. LL-RMBO supports graceful
departures and incremental gossip, which we now briefly
describe. Prior to departure, a process sends notification
messages to some subset of processes imdtéd. Once
these messages are sent the process simply stops patticipat
ing in the service. A node that receives the departure no-
tifications, marks the sender as departed, hence preventing
any further communication with that node. The departed
information is included in the gossip messages and shared
among non-failed participants. This improvement reduces
the extra communication burden created by processes send-
ing gossip messages to processes that left the service. The
incremental gossip protocol trades the local processing fo
decreased communication cost. Each process keeps track of
information that is known by each process initsrld. This
knowledge is used when sending gossip messages: only new
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Figure 5. Do-RamBO vs. the composition ofX| in- Figure 6. Do-RaMBO vs. RamBoO for a single “super-
stances of RMBO. object” of | X4| objects.

or unacknowledged information is sent. The proof of cor- now state the latency bounds on the read/write operations
rectness of LL-RMBO is shown by forward simulation [7].  under the steady state assumptions @+ RAMBO.

We now make two observations. First, in LLARBO Theorem 5.1 Let o be a steady state execution B-
the leave protocol is per object, similarly to the join ser- paypo. Assume is a process that successfully joined the
vice. In the case of D-RAMBO the leave protocol is per  gystem prior to time and does not fail or depart in until
domain. Second, the incremental gossip mechanism is usedyer timet + 85. Then if a read or write operation starts at
on world (anddeparted) variables; state variables that per- process for objectz at timet, it completes by time+ 86.
tain to the entire domain. Therefore, as in [7] we augment Implementations. We implemented RmBo and Do-
Do-RamBo by adding the leave protocol and incremental RAMBO on a net.work-of—workstations We now describe

gossip mechanism and obtain long-lived{RAMBO. r imolementations alona with the initial experimental r
Using the approach from [7] we prove the following by our implementations along € al experimental re
sults. These preliminary results support our expectation

forward simulation. that grouping objects into domain leads to improved per
Theorem 4.1 Long-lived Do-RAMBO implements atomic grouping ob) P P

read/write objects formance. e
T We manually translated the IOA specification to Java
In the remainder of the paper, when lebfRAMBO de-  ¢ode. To mitigate the introduction of errors during trans-
note the long-lived version of the service. lation, the implementers followed a set of precise rules tha

5 Analysis, Implementation, and Evaluation guided the derivation of Java code [15]. The platform con-
' ’ sists of a cluster with ten machines running Linux. The ma-

We now present a conditional analysis of operation la- chines are various Pentium processors up to 900 MHz inter-
tency in Do-RAMBO, and the preliminary empirical results  connected via a 100Mbps Ethernet switch.

obtained from our implementations ofARBO and Do- Each instance of RvBO (resp. Db-RAMBO) uses a sin-
RAMBO on a LAN, comparing the performance of the two gje socket to receive messages over TCP/IP, and maintains
implementations in two different settings. a list of open, outgoing connections to each process in its
Conditional Analysis. A conditional analysis of RMBO world. Both algorithms use identical communication rou-
read and write operation latency is presented in [13, 10, 7].tines. The implementation dbiner andReconservices is
Here we show that under the same conditiorss RAMBO also identical.
has the same operation latency asvRo . The Reader-Writerservice is implemented as described
An execution is said to be isteady statavhen the fol- in the previous sections. Managementommorstate vari-

lowing conditions hold: (a) the local clocks of all automata ables to RmMBo and Do-RAMBO, such asworld, cmap, is
progress at exactly the rate of real time, (b) all messagesidentical. However, we make one simple optimization in the
sent prior to and during the steady state are delivered with-implementation of @-RAMBO. In the specification of D-

ing bounded time of, (c) the sending pattern is restricted, RAMBO we assume that each gossip message is per object
where each automaton sends messages at the first possib(eontainsvalug tag, andobject identifierof a single object).

time and at regular intervals ¢f as measured on the local In the implementation our messages may include informa-
clock, (d) the non-send locally controlled events occur in- tion about multiple objects (at least one). This simple-opti
stantaneously and just once, and (e) reconfiguration is-infr mization trivially preserves correctness.

guent and the installed configurations are not disabled dueExperiments. We designed two experiments as follows:

to failures and departures—also, at the time of a configu- There are ten processes that do not leave the system and
ration being installed, all of its members have successfull a single configuration is installed that includes all of thes
joined the system and have learned about each other. Werocesses as members. The configuration does not change



over time and consists of majorities; here we consider anying about the behavior of systems that are built using such
majority configuration with at least six processes. Inthet fir  services. Moreover, current middleware provides only-+udi
experiment we compare the performance a$-RAMBO mentary support for fault-tolerance. In contrast, our Bew
with | X,4| objects to that of dX,| instances of RmMBO, are precisely defined, with respect to both their interfaces
where all processes perform concurrent read and write op-and their behavior.

erations on all objects in the domain. Figure 5 presents
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